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Abstract

Let A be acomplex matrix with arbitrary Jordan structure, and A an eigenvalue
of A whose largest Jordan block has size n. We review previous results due to
Lidskii [10], showing that the splitting of A under a small perturbation of A of
order ¢ is, generically, of order /. Explicit formulas for the leading coefficients
are obtained, involving the perturbation matrix and the eigenvectors of A. We also
present an alternative proof of Lidskii’s main theorem, based on the use of the Newton
diagram. This approach clarifies certain difficulties which arise in the nongeneric
case, and leads, in some situations, to the extension of Lidskii’s results. These results
suggest a new notion of Hélder condition number for multiple eigenvalues, depending
only on the conditioning of the associated eigenvectors, not the conditioning of the
Jordan vectors.
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1 Introduction

Given a square complex matrix A, it is an important question from both the theo-
retical and the practical point of view to know how the eigenvalues and eigenvectors
change when the elements of A are subjected to small perturbations. The usual for-
mulation of the problem introduces a perturbation parameter e, belonging to some
neighborhood of zero, and writes the perturbed matrix as A 4+ eB for an arbitrary
matrix B. In this situation, it is well known ( [1] §9.3.1, [7] §11.1.2) that each eigen-
value or eigenvector of A+4¢B admits an expansion in fractional powers of ¢, whose
zero-th order term is an eigenvalue or eigenvector of the unperturbed matrix A.

In this paper we address the question of determining the first-order term of this
expansion, or more precisely, the first term following the terms of order zero. No
restriction is imposed on the Jordan structure of A although we assume that this
Jordan structure is known from the outset. In Section 2 we present two results, due
to Lidskii [10], which provide, under certain nondegeneracy conditions, the leading
exponents and leading coefficients of both eigenvalue and eigenvector perturbations.
The central idea of the proof is simply to transform the characteristic equation
det (wl — A —eB) = 0 into an equivalent one Q(y,z) = 0 through a change of
variables

5= 25~1/'rz
w—A (1)

z

ILL:

for a suitable n, where A is an eigenvalue of A. An appropriate factorization of
Q(p,0) leads to the final result.

A specific example may be helpful to give a better idea of these results: consider
a 9x9 Jordan matrix J with a unique zero eigenvalue and four Jordan blocks
with respective dimensions 3, 3,2 and 1. Lidskii’s results show that, generically, the
leading terms in the expansions of the eigenvalues of any perturbation J+4+cB depend
exclusively on those elements of B marked with a box in the matrix below:

¥ ok ok | ko ok k| ok k| ok
¥ ok ok | ok ok k| ok k| ok
O x |0 x x| 0O %x|0O
¥ ok ok | ok ok k| ok k| ok
B = * ok k| kx  k k| ok k| %
O x x |0 x x| 0O %x|0O
* ok ok | ok ok k| ok k| ok
O x x |0 x x| 0O %x|0O
L O *x x| 0 x |0 |0 |

More specifically, let ®; denote the 2 x 2 matrix given by the four boxes at the top
left, i.e.



B61 B64

and let &;,&; be the eigenvalues of ®;. Then, the perturbed matrix J +&eB has six
eigenvalues with leading terms

@1:[331 334]

5}/351/37 5;/381/37

using all three cube roots of & and &;. Furthermore, the other three eigenvalues of
J+eB have, generically, leading terms of order £1/2 and ¢, and their coefficients can
be obtained by solving certain polynomial equations which only involve the elements
of B marked with boxes above.

In the most general case when A is not in Jordan form, these elements of B must
be replaced by products yBz, where z (resp. y) is a right (resp. left) eigenvector
of A.

The first results in this direction were obtained by Vishik and Lyusternik [13], mo-
tivated by applications to differential operators. Lidskii [10] generalized their results
in the finite dimensional case, obtaining simple explicit formulas for the perturbation
coefficients and providing, at the same time, a much more elementary proof (which
is, essentially, the one we present in Section 2). The results in both [13] and [10]
were later refined by Baumgirtel ( [1] §7.4), in the sense of dealing not only with
perturbation series for eigenvalues and eigenvectors, but also with the correspond-
ing eigenprojections as functions of £. Vainberg and Trenogin ( [12] §32), on the
other hand, offer a fairly thorough account of similar results, obtained for Fredholm
operators by applying the techniques of branching theory. Langer and Najman [9]
recently generalized Lidskii’s results to matrix pencils M (X) + N (A, ¢), using the
local Smith normal form of parameter-dependent matrices (Lidskii’s results follow
from choosing M = A — AI, N = ¢B). The fundamental results of Lidskii remain,
however, almost completely unknown in the Western literature. The only references
to [10] appearing in the Science Citation Index are [3] and [9], and both of these
continue earlier work [2] and [8] in which the authors were unaware of [10]. The
main purpose of this paper is, therefore, to bring Lidskii’s results to the attention of
the broad linear algebra community. See [11] for an application to stability theory
for Hamiltonian systems.

Section 2 is devoted to reviewing both the results and the proofs given in [10].
We should stress here that, although Lidskii stated his results as being valid for
analytic perturbations, we will see that they hold in fact for a more general class
of perturbations, namely those of class C! (see Remark 4 in Section 2). Lidskii’s
results depend on certain nondegeneracy assumptions, and no information about the
leading exponents or coefficients is available in the degenerate case from the approach
taken in Section 2. We present in Section 3 a different approach which, apart from
providing an alternative proof of Lidskii’s main theorem, identifies the difficulties
which arise in degenerate cases, and, in some situations, leads to extensions of the



results in Section 2. This alternative approach is much in the spirit of [12], since
our main tool is the Newton diagram. We end by proposing in Section 4 a new
notion of Hoélder condition number for multiple eigenvalues, suggested by Lidskii’s
results. Although it is closely related to previous Hélder condition numbers in the
literature ( [4] p.156), its main difference is that it only depends on the conditioning
of eigenvectors, not on the conditioning of Jordan vectors.

2 Lidskii’s perturbation theory

Let A be a complex matrix with distinct eigenvalues Ay,..., A,, and a correspond-
ing Jordan form

J =P 'AP=Diaglh,...,J,]. (2)
We partition
P=| PR P,
and
@1
P_l = .
Qv
conformally with (2). Given ¢ € {1,...,v}, we write A = \; and
Ji = Diag(I'{,..., T, ..., Ty, ..., The), (3)
suppressing the index 2, where, for j =1,...,¢,
Al
1 o
Iy=...=1/ =
1
A

is a Jordan block of dimension n;, repeated r; times, and ordered so that

Ny >ng > ...> ng.
The n; are called the partial multiplicities for A. The eigenvalue A is semisimple
(nondefective) if ¢ = n; = 1 and nonderogatory if ¢ = ry = 1. The algebraic and
geometric multiplicities of A are, respectively,



g g
m = E rin; and g = E ;.
Jj=1 j=1

We further partition
P=|P|...|P|... qu | P

conformally with (3), again suppressing the index i. The columns of each P]k form
a right Jordan chain of A with length n; corresponding to A. If we denote by mf
the first column of P]k, each z% is a right eigenvector of A associated with .

J
Analogously, we split

Ql

Tq
q

also conformally with (3). The rows of each Qf form a left Jordan chain of A of
length n; corresponding to A. Hence, if we denote by y;“ the last (i.e. n;—th) row
of Q?, each y;“ is a left eigenvector corresponding to A. With these eigenvectors we
build up matrices

Y;
Y, = I Xj:[m]l, ..,$;J],
y;’
and
Y
WjI , Zj:[)(l,...,X]‘]
Y;

J
and define square matrices ®; and F; of dimension f; = Z rs by
s=1



&, =W,;BZ;, j=1,...,q

By =1, Ej:lg ?] for j=2,...,q,

where the identity block in F; has dimension r;. Note that, due to the cumulative
definitions of W; and Z;, every ®;_y, j =2,...,¢q, is the upper left block of &;.

Theorem 1 (Lidskii [10]) Let j € {1,...,q} be given, and assume that, if j > 1,
®;_1 is nonsingular. Then there are r;n; eigenvalues of the perturbed matriz A +
eB admitting a first-order expansion

Mgy = A+ (€5 etm 4 o(e/m) (4)
for k=1,...,r;, [ =1,...,n;, where

i) the ff, k=1,...,r; are the roots of equation

det (®; — £ Ej) =0 (5)
or, equivalently, the eigenvalues of the Schur complement of ®;_; in ®; (if
j =1, the & are just the r, eigenvalues of by );
ii) the different values /\é?l for l=1,...,n; are defined by taking the n; distinct
n;-th roots of 5;“

If, in addition, the r;solutions ff of (5) are all distinct, then the eigenvalues
(4) can be expanded locally in power series of the form

M) = Aot (€D et/ 3 bt e, (6)

s=2

k=1,...,r;, l=1,...,n;.

Remark: Two special cases of Theorem 1 are well known. In the case that X is
semisimple, i.e. ¢ =mn; =1 with multiplicity r1, equation (4) reduces to

M) = A+ &F e+ o(e),

where the £F are the eigenvalues of the ry by r; matrix Y;BX; (cf. [7] §11.2.3).
In the case that A is nonderogatory, i.e. ¢ =ry = 1 with multiplicity ny, equation
(4) reduces to

ey = A+ (€D et ot/

where & = yi Bzl. These two cases coincide when \ is simple.



Theorem 2 (Lidskii [10]) Let ®; be nonsingular for s = 1,...,q, and let j €
{1,...,q} be such that the r; roots of (5) are different. Then the corresponding
eigenvalues (6) of A+ ¢eB are simple for € small enough and the associated right
etgenvectors admit a power series erpansion

vile) = uf + 3 whetl™ (7)

s=1

k=1,...,r;; I=1,...,n;, where

J

ok kp .p. _ .
uj_Zc- x’ k=1,...,r;

R
p=1
and the column vector
k1
C.
J
c;? = :
kf;
€
satisfies
k k
(®; & Ej)cj =0. (8)

PROOF of Theorem 1:

We may suppose, for the sake of simplicity, that A has only one eigenvalue .
The general case may be reduced to this one using appropriate Riesz projections (we
refer to Lidskii’s original paper [10] pp. 83-84, or [1] §3.9.1 for the details). We are
interested in the roots w of the characteristic equation

det C(w,e) =det (Wl —J —eB)=0, B=P 'BP. (9)

As announced in the introduction, we perform on C(w,e) the change of variables
(1), choosing n = n;, the partial multiplicity corresponding to j. This leads to a
polynomial equation

det C(p, z) = det[(A+ p2)l —J — 2 Bl =0

in the new variables. Since we are mainly concerned with solutions which are close
to z = 0, it will prove convenient to multiply C'(u,z) by the following diagonal
matrices L(z) and R(z), partitioned conformally with .J,

L(z) = Diag[L{,..., L7, ..., L}, ..., Ly],
R(z) = Diag[R],..., Ry, ..., Ry, ..., Ry,

where



Li(z)=...= LI (z) = diag[z71, 272, ..., 27™] if 7> j,

Li(z)=...= L' (z) =diag[l,..., 1,27 272, ..., 27™] if i<y
———r
n;—mny
and
R} z) =...= R(z) = diag[l,z,2% ..., 2" 1] if i>7
RYz)=...= Rl'(z) =diag[l,...,1,1,2,2% ..., 2% 71] if 1<y
N —
n;—n;

for i = 1,...,¢ (note that n; > n; if and only if 7 < 7). We now introduce the
matrix F'(p, 2) = L(2) C(p, z) R(z) and define

Q(p, 2) = det F(u, z).
The nonsingularity of both L(z) and R(z) implies that, for any given z # 0,

det C(p,2) =0 & Q(u,2) =0,
although, of course, the condition numbers of L(z), R(z) diverge to oo as z — 0.
Let us show that @ is a polynomial in g and z. For this, we split F(u,z) =
G(p, z) + H(z), where
G, 2) = L() [+ p2) T = J] R(:)
is block-diagonal and
H(z) = —2" L(z) B R(z).
We write TF = AT+ N,, k=1,...,7, where

0 1
17V5 = . . 3
1
0
for s =1,...,q, and use two straightforward properties of the matrices Lf and Rf,

namely, that
LE(2) N; RF(2) = N, 1=1,...,q, k=1,...,1;

LE(Z)RE(z) =271 whenever  n; < n;



to check that the diagonal blocks of G'(u, z) are

ul — N; if 1> 7,
k k k
Gi(n,z) = Li (pz2 I = N;y) Ri = diag [z, ..., pz, fy ..o, ] — N; if 1 < j.
——
n;—n;
(10)

Hence, all powers of z in G are non-negative, and the same applies to H, since
no negative powers appear either in 2" L¥ or in RF. This proves our claim that
Q(u, z) is a polynomial.

Let us now examine F'(u,0) = G'(,0)+H (0) : the block-diagonal matrix G'(u, 0)
is given by equations (10) with z = 0. To give a careful description of H(0) we
need to partition E, F and H conformally with J. We denote by

o kk . )
BHE o gi=1,q k=1, i=1,2

the n;, X n;, block of B lying on the same rows as Ffll and on the same columns

as Ffj (the corresponding blocks of H and I’ are defined likewise). Following this
notation, we have

ki1k k nkik k
Hj';(2) = == Lji (2) B}l B2 (2),
which implies, in the first place, that
kik :
Hj11j22 (0) - 0 lf njl < ’I”L]‘, (11)
due to the vanishing of z" Lfll at z = 0. On the other hand, if 7; < j and j; < j,
an elementary calculation shows that

0 0 --- 00 --- 0
H;'52(0) = 0 0 - 00 --- 0| (12)
ki k
_ﬂjllj; * 0 0

where the n;, —n; elements marked with an asterisk are irrelevant to our argument,
and ﬁfllg" is the element in the lower left corner of the block Bfllg". The same
structure (12) applies to the case j; < j, j2 > j, but with zeros instead of asterisks.
The main point of (12) is that every ﬁfllg" = y;? B xfj is an element of ®,=Y,BX;
for s=max{j1,j2}. In other words, we may find all the elements of the matrix &;
by looking at the lower left corners of the blocks (12) for ji, 72 < 7 (or, equivalently,
for nj,n;, > n;).

Before our final examination of ¢ (u,0), let us briefly turn to the diagonal blocks
of F(u,0) of size n;, i.e.



L -1 0 --- 0

0 -1 -0
kk H
Fyw0=1 "
_ @;,c]k 0 0 - pu
The determinant of this block does not change if we add to its first column the
products of its second column by g, of its third column by w?,..., and of its last

column by p™~!. Neither does the whole determinant @Q(u,0) if we perform iden-
tical operations on the same columns of the whole matrix I'(u,0), since, according
to (11) and (12), the n; —1 columns of F' which are being multiplied by powers of
it have no non-zero elements outside F]k]]C This amounts to replacing every block

F ]kjk with the block

0 -1 0 0
0 poo—1 0
—ﬁff—k,unﬂ 0 0 - pu

Let us now prove that the determinant ¢ (u,0) of the matrix we finally obtain can
be written in the form

Qp, 0) = £ p det (®; — p™ Ej) (13)
for a suitable o > 0. Although elementary, the proof is quite messy in the general
case, so we will instead illustrate the strategy on a specifical example. Take, for
instance, the case ¢ =3, j =2, ny =4, no =3, n3 =2, r1 =1, 19 =2, r3 = 1,
i.e., Q(p,0) is the determinant of the 12 x 12 matrix

0 -1 0 0 0 0 0 0 0 0| 0 0
0 u -1 0 0 0 0 0 0 0| 0 0
0 0 p -1 0 0 0 0 0 0| 0 0
Bl x+ 0w | Py x O -piF 0 0 |-Bi5 0
0 0 0 0 0 1 0 0 0 0] 0 0
0 0 0 0 0 o1 0 0 0| 0 o0
By 0 0 p | =Bup+pd 0 p | =By 0 0 | -B 0
0 0 0 0 0 0 0 0 1 0] 0 0
0 0 0 0 0 0 0 0 g o—1] 0 0
B3 0 0 p | P30 0 |-BH+p 0 p |- 0
0 0 0 0 0 0 0 0 0 0] p -1
L0 0 0 0 0 0 0 0 0 0| 0 pu

There are four rows in this matrix (first, fifth, eighth and twelfth) containing one
single non-zero element. In calculating the determinant of the matrix we may, there-
fore, remove the rows and columns corresponding to these four elements. This leaves

10



an 8x8 matrix M;(p) such that Q(u,0) = p det My (). Because of the previous
deletions, there are again four rows in AM; with one single non-zero element. Elim-
inating the appropriate rows and columns of M; we get a 4 x4 matrix M, and,
finally, deleting one row and one column of Mj, a 3x3 matrix

_ all _ all _ al2
it 12 12
11 11 3 12
Ms=| —Pa1  —Dyp+p — 33
21 21 22 3
—Pai — B3, —B35 + 1

such that Q(,0) = p? det M3(u). But we know from (12) that the ﬁfllg" are just
the elements of ®3. Hence, M3(u) = —®3 + p® Fy and we obtain (13) with a = 2.
The same procedure goes through to the general case exploiting in much the same
way our knowledge of the block structure of the modified matrix F'(g,0).

Once we have ((p,0) factorized as in (13), we note that its second factor
det (®; — p' F;) is a polynomial of degree r; in p™ . This is trivial if j =1 and
a consequence of the nonsingularity of ®;_; if j > 1. We now take Q(u,2) as a
polynomial in p whose coefficients are continuous z-dependent functions. Contin-
uous dependence of the roots of ¢ upon its coefficients guarantees the existence of
exactly r;n; continuous functions

u?l(z) = (ff)l/nﬂ + o(1), k=1,...,r;; 1=1,...,n;,

describing all solutions of @ (x(z),2) =0 for z small enough (recall that some roots
ff of (5) might be zero if ®; is singular). Expansion (4) is obtained by returning
to the original variables (A, ¢).

Finally, if all r; roots ff of equation (5) are known to be distinct, we may apply
the implicit function theorem to (13) to show that the u?l(z) are in fact analytic
functions of z, thus giving rise to the power series (6). u

PROOF of Theorem 2:

In the conditions of Theorem 2 it is clear that, for £ small enough, no eigen-
value (6) corresponding to j can possibly coincide with any of the eigenvalues (4)
corresponding to Jordan blocks of different dimensions.

Furthermore, given one of these simple eigenvalues )\?l(e), a right eigenvector
associated with it may be constructed by taking as its components the m cofactors of
the elements of a row of A+eB— /\;?ZI. This implies the analyticity of the eigenvector,
since the elements of this latter matrix are analytic functions of ¢ and the cofactors
are simply sums of products of these elements (we recall that the eigenvector is
unique up to constant multiples due to the simplicity of the eigenvalue).

Finally, let €¥'(z) be a vector in the null space of FF!(z) = F(u%(z), 2), where
u;?l(z) = (/\;“l(z) — A)/z. Dropping for simplicity both sub and superscripts, we have

11



F()e(z) = L(z)C (=), 2) R(=)e(z) = 0,

which, due to the nonsingularity of L(z) for z # 0, shows that R(z)e(z) is a right
eigenvector of .J 4 z™ B associated with /\;?l. Hence, the first term R(0)e(0) of
its e-expansion must be, up to a constant, equal to the zero-th order term u;? of
expansion (7). Equation (8) is finally obtained by applying to the linear system
F(0)e =0 the same ideas we used to simplify (g, 0) in the proof of Theorem 1. m

Remarks:

1. A proof of the existence of power series expansions (6) and (7) under the
conditions of Theorem 2 goes back to Vishik and Lyusternik ( [13], Theorem
6, Appendix I). Their approach, however, is radically different from Lidskii’s,
since they impose both expansions (6) and (7) as formal series at the outset,
recursively find all coefficients and finally prove the convergence of the series
on some nontrivial interval around € = 0. In their setting, the assumption that
all Schur complements have non-zero distinct eigenvalues arises as a solvability
condition on the system of infinitely many equations determining the coefficients
of the series. Lidskii’s approach in [10], on the other hand, concentrates only
on the leading term, regardless of the rest of the expansion. This allows him
to get more general results, avoiding at the same time the issue of convergence
of the series: in those cases where a power series expansion is obtained, its
convergence is a consequence of the function theoretical results invoked in the
proof.

2. The computation of Schur complements is equivalent to (and may be replaced
by) choosing the eigenvector matrices X; and Y; in a special way. Suppose,
for instance, that j = 2 and ®; = Y7 BX; is nonsingular. A straightforward
calculation shows that the columns of

X; = X, — X197V, BX, (14)

and the rows of

Y, =Y, - V,BX 97y, (15)

are, respectively, right and left eigenvectors of A, corresponding to Jordan

chains of the same length as the eigenvectors given by the rows and columns
of Xy and Y;. Furthermore, we have Y; BXy =0 and Yy BX; = 0. Hence, it
suffices to define

~ Y, - - - — o~
W, = l {1 ] Ly = [Xl, Xz} and &, = WoBZ,
Y

12



to obtain a block-diagonal matrix 52 whose lower right block %Bf(g is pre-
cisely the Schur complement of ®; in the old matrix ®,. Replacement of X3
and Y3 by suitable matrices leads to block-diagonalization of ®3, provided
that @, is nonsingular. It should be noted that, although only one of the
two matrices (14) or (15) is required to reproduce the Schur complement for
j = 2 (by block-triangularizing ®3), both of them are needed to carry on to
the following step 7 = 3.

. Both matrices ®;_; and ®; need to be nonsingular in order to obtain the
leading nonzero terms in all expansions (4). That is probably why Lidskii’s
original statement of Theorem 1 imposed nonsingularity of both ®;_; and &;.
Nevertheless, as we have seen in the proof of the Theorem, only ®;_; need be
nonsingular for the eigenvalue expansions (4) to hold: suppose that ®;_; is
nonsingular and ®; is singular. Then we have

det (®; — €F;) = €7 q(€),  q(0) # 0,

for a certain 3 > 0, i.e. (5) has § zero and r; — 3 nonzero solutions. Hence,
(r; — B)n; expansions (4) have a nonzero first-order term, while all we can say
about the remaining (Bn; eigenvalues is that they are of the form /\;? = A+
0(51/“J). This strongly suggests the possibility of interaction with eigenvalues
associated with Jordan blocks of size less than 7n;. These interactions will
become much clearer in the next section with the use of the Newton diagram.

. Lidskii pointed out in [10] that his results concerning perturbations A + ¢B
could be readily extended to the case of analytic perturbations A + 322, £* By.
We may further improve this statement by noting that Theorem 1 remains valid
even if the perturbation is of class C', i.e. if the perturbed matrix is of the
form

A+eB+o(e).

In fact, the same proof holds with minor changes. First observe that the conti-
nuity of the Riesz projections only depends on the continuity of the perturba-
tion [7, Theorem 5.1]. Next, using a bar to denote matrices arising in this new
setting, we obtain that

det C'(w,e) = det (wl — A — eB — o(g)) = det C(w,e) + o(e)
where C'(w,¢) is given by (9). After changing to variables p, z, we have
det C'(u, 2) = det C(u, 2) + o(2™),
so, multiplying by L(z) and R(z), we obtain

F(p, 2) = L(z)C(p, 2) R(2) = F(p, 2) + S(2)

13



for S(z) = L(z) M R(z), where M is o(z"). Now, recall that no negative
power of z in L(z) has absolute value larger than n;. This means that S(z) =
o(1), so

Q(p,0) = det F(p,0) = Q(x,0)

and the factorization (13) still holds. Finally, although in this case Q(u, z) will
no longer be a polynomial in both variables p and z, it is a polynomial in g
whose coefficients are continuous functions of z. Thus, we may still guarantee
that the roots of @(u, z) depend continuously on z to conclude the proof.

Example:

We consider the simplest case of a matrix having an eigenvalue which is neither
semisimple nor nonderogatory: let A be a 3x 3 matrix with a triple eigenvalue
A of geometric multiplicity two (in our notation, ¢ =2, ny =2, ng =1, 11 =
ro = 1). Dropping the superscripts, we denote the two left eigenvectors by
Y1, Y2, and the two right eigenvectors by zq, 5. We find ®; = 11 = y1 Bz,
and

| B B
2= [ Ba1 a2

We always get two eigenvalues

M=xtBrel?+oE?,  1=1,2.

Furthermore. if both 817 and det ®, are different from zero, the third eigen-
value is A + &3¢ + o(¢), where & = det ®3/31; is the solution of

det(CIDQ — gEQ) = det q)g - ﬁuf =0.

Note that, if ®; is zero, we only know that two of the eigenvalues are 0(51/2)
perturbations of X, without any further indication of their asymptotic order.

Note that even in this quite simple example, it is unclear which leading powers
of ¢ are to be expected when some ®; is singular. Lidskii [10] gives an example
where all three eigenvalues above are perturbed to order £2/3. One may also find in
Wilkinson [14] §2.22 a similar example of a 5 by 5 matrix A with Jordan blocks of
sizes 3 and 2, whose perturbed eigenvalues are of order £2/5 for a conveniently chosen
perturbation. None of these leading exponents can be explained, in principle, by any
of the above results. It seems that the information that Q(u,0) provides in the case
of singular ®; is only helpful in predicting which powers of ¢ cannot appear in the
eigenvalue expansions. In the following section we present an alternative approach
that will improve our understanding of Theorem 1, giving us a global picture of what
happens in the degenerate case when some &; is singular.

14



3 Application of Newton’s diagram

Consider a complex polynomial equation!

PAe) ="+ a1 ()N Tt a1 (@) A+ an(e) =0 (16)

in A, with analytic coefficients

Ozk(z’;‘):dkéak+..., k=1,...,m,

where aj is the leading exponent and & the leading coeflicient of aj(c) (i.e.
ér # 0 and no term of order lower than a; appears in the expansion of ay(e)). It
is well known ( [1], [7]) that the roots of (16) are given by expansions in fractional
powers of €. The leading exponents of these expansions can be easily found through
the following elementary geometrical construction: we plot the values ap versus k
for k=1,...,m together with the point (0,0) corresponding to A™ (if «;(c) =0,
the corresponding point is disregarded). Then we draw the segments on the lower
boundary of the convex hull of the plotted points. These segments constitute the so-
called Newton diagram associated with P(\,e) (see Fig. 1 for two specific examples).
One can prove ( [1] Appendix A7, [2], [12]) that the slopes of the different segments

a) b)

Figure 1: Newton diagrams associated with the polynomials: a) \* + (26 — ?)A* + &?X\? +
(e—e>)A+e% b) N =X+ (6 —3e2)A° +&2X — &

of the Newton diagram are precisely the leading powers of the e-expansions of the
roots A = A(g) of (16). The number of roots corresponding to each slope equals the
length of the projection on the horizontal axis of the segment with that particular
slope. The underlying idea is to substitute an Ansatz

Tn this section the symbol X is used as a parameter, not a fixed value as earlier.
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Ae) = puel + ... (17)

into (16), with u, 8 to be determined. Every point (k, ax) plotted in the diagram
produces an e F(m=F)8 term. If X is a root of (16), all the terms we obtain from
this substitution must cancel each other. Hence, at least two terms of the lowest
order in £ must be present, and this lowest order is clearly to be found among the
exponents {a; + (m —1)8,a2+ (m —2)f,...,a,}. Consider the segment S of the
Newton diagram with the smallest slope s, and choose 3 = s in (17). All points
(k,ar) lying on S give rise to terms with the same exponent, since ax + (m — k)s
is constant on S. The fact that no point (k,ax) lies below S implies that no other
term of the expansion can be of a lower order in . Hence, the leading coefficients
it are determined as the solutions of

S prra =o0. (18)
(k,ap)es
We get the leading terms of the remaining roots of (16) by repeating the same
argument for the increasingly larger slopes appearing in the Newton diagram.

Returning to the eigenvalue problem, our main goal in this section is to establish
the relationship between the quantities det ®;, j =1,..., ¢, and the Newton diagram
associated with the characteristic polynomial of A+eB. We recall that A is a matrix
with only one eigenvalue A of multiplicity m, with partial multiplicities n;, each
repeated r; times, for 7 = 1,...,¢. With no loss of generality, we may assume
that this eigenvalue is zero. In that case, the characteristic polynomial p(A,¢) =
det(A\l — A — eB) = det(AM — J — eB) can be written in the form (16), with
m = Y ]r;n;. In order to draw the Newton diagram associated with p(X,¢e), we
need to know the exponents a; for k£ = 1,..., m. Thisis quite easy if the eigenvalue
is semisimple, since the Jordan form J of A is zero and each aj(g) equals gmk
multiplied by a certain sum of minors of B of dimension m — k. In this case, the
Newton diagram is formed by one single segment of slope s = 1. If the eigenvalue
is not semisimple, some nontrivial Jordan block appears in .J, which means that,
apart from the O(¢™ %) terms, each ay(c) will typically contain terms of lower
order generated by the ones appearing above the diagonal of .J. This clearly shows
that the effect of nontrivial Jordan blocks is to introduce in the Newton diagram line
segments with slopes less than 1, with the smallest possible slope corresponding to
the case of a nonderogatory eigenvalue (one single segment of slope 1/m) and the
largest possible one to the semisimple case. All possible Newton diagrams for the
given multiplicity m lie between these two extremal segments.

We now must carefully determine which points (k, ax) may appear on the Newton
diagram for a particular Jordan structure. To that purpose, it will be useful to find
the lowest possible diagram compatible with the given Jordan structure: to do this,
we fix every exponent [ of ¢ and find the largest possible k& = k() such that
there exists a perturbation matrix B for which ay;) ={. This amounts to fixing a

16



height | on the vertical axis of the Newton diagram, and determining the rightmost
possible point (k,a) in the diagram. The following theorem gives us the values
k(l) for the exponents [ =1,..., f, which are relevant to our argument (we recall
that f; = r1 +...4r;) and, more importantly, also provides some coefficients of the
characteristic polynomial which are crucial to determine the Newton diagram.

Theorem 3 For every [, | =1,..., f,, the corresponding k(l) is equal to the sum
of the dimensions of the | largest Jordan blocks of J. More precisely, write fo =0
and suppose | = f;_1 +p, for some j=1,...,q and 0 < p <r;. Then,

E(l)=rinmi+...+rj_inj_1 +pny

and the coefficient of €' in agy is equal to (—1)l multiplied by the sum of all

principal minors of ®; corresponding to submatrices of dimension | that contain
the upper left block ®;_y of ®; (if 7 = 1, all principal minors of dimension [
are to be considered). If, in particular, | = f; for some j € {1,...,q}, then the
coefficient of €fi in Qp(s,) 1S (—1)% det @;.

PROOF of Theorem 3:

The characteristic polynomial of A+¢ B is a linear combination with coefficients
41 of all possible products of m elements of the matrix Al — J — sé, with the
restriction that no two factors can be on the same row or the same column.

It is clear that the only way to obtain a product of order £ is to choose exactly
m — [ factors containing e-independent terms (i.e. “lambdas” or “minus ones”).
Furthermore, we should try to include as few lambdas as possible among these
factors, since we are looking for the smallest possible power of A. However, we
are not free to make whatever choices we want: due to the special position of the
e-independent terms, every time we choose a minus one we are, at the same time,
excluding from the product those lambdas which lie on the same row or the same
column. Let us examine the restrictions: suppose an admissible choice (i.e. a choice
producing a term of order el) contains 3 minus ones. These [ choices remove a
certain number of lambdas, which depends on the number of Jordan blocks these
minus ones are sampled from. This is due to the fact that the first minus one we
choose from a particular block excludes two lambdas, while any further minus one
from the same block removes only one. Suppose the  minus ones were taken from
~ different blocks. These (3 choices exclude 3 + v lambdas, which, together with
the m — [ — # lambdas which were actually chosen in the product, cannot exceed the
total number m of available lambdas. We conclude that v <[, i.e., we are allowed
to sample minus ones from at most [ Jordan blocks. Hence, to produce the lowest
possible power of A we must exhaust all minus ones from the [ largest possible
Jordan blocks of J, and only then complete with lambdas until we have the m — [
factors.
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Suppose, in the first place, that [ = f; for some j = 1,...,¢q. Then, there is
only one way of choosing these m — [ factors: we must choose the g =ry(ny — 1)+
...+ 7;(n; —1) minus ones from the / largest Jordan blocks, plus the m —[ — 3 =
Ti+1Mj41 + ...+ 1ryny diagonal lambdas from the remaining Jordan blocks. Thus,
we get k(l) =14 3 = riny + ...+ r;n;. Note that if we delete from A\ —.J — B
the rows and columns corresponding to these m —{ elements, the f; x f; remaining
matrix is precisely —e®;, which proves our claim.

The same argument is valid in the case p < r;i1, although in this case there is
more than one way of building up the products: each one corresponds to a different
choice of p blocks among the r;1; Jordan blocks of dimension 7,41, generating a
different principal minor of ®; to be included in the sum. [

Let us now introduce the following definition:

Definition 4 Denote P; = (k(f;), f;), and let S; be the segment of slope 1/n;
connecting P;_y with P;, for 5 =1,...,q. We define the Newton envelope cor-
responding to the Jordan structure of .J as the diagram obtained by successively
joining the segments Sy, Sq,...,5,.

As a first consequence of Theorem 3, note that all points (k(l),!) for [ between
fi—1 and f; lie along the corresponding segment S;. Hence, the Newton envelope
is indeed the lowest Newton diagram we were looking for. This is not, however,
its most interesting feature: keep in mind that, given a particular B, only those
points (k(/),!) from the envelope such that ayy = will actually be plotted in the
Newton diagram. This means, in particular, that a corner point P; of the Newton
envelope appears on the Newton diagram only if the perturbation B is such that the
corresponding coefficient £ det ®; is nonzero. In other words, the Newton envelope
displays the generic behavior of the eigenvalues of A under perturbation, in the
sense that it coincides with the Newton diagram in all situations except in those
nongeneric cases in which the perturbation B causes one of the ®; to be singular.

Theorem 3 largely explains the importance of the det®; in obtaining the ex-
ponents 1/n; in the eigenvalue expansions. Furthermore, it opens the way for an
independent proof of Lidskii’s Theorem 1:

PROOF of Theorem 1:

Let us suppose first that j € {2,..., ¢} issuch that ®;_; and ®; are nonsingular
(the case j =1 is completely analogous). Then, both P;_; and P; are among the
points plotted to construct the Newton diagram, and .S; is one of the segments in the
diagram (no point (k, ax) can lie below S;). Thus, we obtain the leading exponent
of expansion (4). We also get the leading coefficient by carefully examining, for the
segment S;, equation (18). We first note that the only candidates (k,a) to lie on
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S; are the intermediate points Q¢ = (k(f; —t),f; —t), t=1,...,r; — 1. The fact
that the Q; are separated from each other by a distance n; on the horizontal axis
implies that equation (18) depends on p only through p"i. More precisely, let T’
be the set of values t€{1,...,r;_1} such that Q; appears in the Newton diagram.
Then,

Z Mm_kdk = Hm—k(fj) Nn]r]dk(f]—l) + Z dk(f]_t)utnj =+ dk(f]) = 0
(k,ak)ES] teT

where the expression in brackets is a polynomial in p™. Now, we recall from Theo-
rem 3 that for each [ = f; —¢ with ¢ € T, the corresponding dy ) is (up to the sign)
the sum of all principal minors of ®; of dimension [/ containing ®;_;, which is pre-
cisely the way the coefficients of the powers of £ are obtained in det(®; —£F;). This
implies that we get the nonzero solutions of (18) by solving det(®; — p™ E;) = 0.
Now, suppose that ®; is singular. Then, the corresponding point P; no longer
belongs to the diagram, implying the loss of some of the expansions (4) or, equiv-
alently, the loss of part of the segment S;. The part of S; that actually remains
depends upon the nullity of ®; : if rank ®; = f; — 3, there are 3 rows or columns
of ®; that depend linearly on the remaining ones. This means, on one hand, that
no point Q; = (k(f; —t), f; —t) appears in the diagram for 1 <¢ < f#,and, on the
other hand, that Qg does appear (each principal minor of ®; of dimension f; — f
either vanishes or takes a common nonzero value, since only f; — 8 columns of ®;
are linearly independent). We conclude that the part of S; remaining in the Newton
diagram is the segment connecting P;_y with Qg = (k(f; — ), f; — B) (see Fig.
2). This accounts for (r; — 3)n; expansions (4), whose leading coefficients are,
reasoning as above, the n;-th roots of the r; — 3 nonzero solutions of equation (5).
As to the fn; remaining eigenvalues, they correspond to segments whose slope is
strictly larger than 1/n;. Hence, expansion (4) is still valid, since they correspond
to the § null solutions of equation (5). |

A further consequence of this Newton diagram approach is that the hypotheses
of Theorem 2 can be weakened in the sense that, if j is such that all roots of (5) are
distinct, we only need ®q,...,®; to be nonsingular to guarantee the simplicity of the
r;n; eigenvalues /\;?l: the slope of any segment of the diagram lying to the right of
P; is strictly larger than 1/n; regardless of the singularity of ®,, s=j+1,...,q.
Hence, no eigenvalue corresponding to a Jordan block of size less than n; can
coincide with any /\;?l if € is small enough.

Apart from recovering the results of Section 2, the approach through the Newton
diagram is quite helpful in getting a better understanding of the nongeneric case
when some ®; is singular: the fact that, in that case, P; does not belong to the
Newton diagram implies that neither the complete segment S; nor the complete
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Figure 2: The Newton diagram is shown as a solid line, and the envelope as a dashed
line.

S;+1 appear on the Newton diagram. This indicates some kind of interaction be-
tween the eigenvalues associated with blocks of size n; and those associated with
blocks of size n;11. We may, in fact, use the Newton diagram as a tool to quantify
this interaction, actually finding both leading exponents and coefficients of the miss-
ing eigenvalue expansions in simple situations. The range of possibilities is easily
visualized with the aid of the Newton envelope. For example, if (A1, k1) and (hz, k2)
are two points that are known to lie on both the Newton diagram and the Newton
envelope, then the segment of the Newton diagram between h; and hy must neces-
sarily lie between the chord connecting (h1, k1) to (hz, k2) and the Newton envelope.
Thus, to determine the Newton diagram one need only focus on the integer lattice
points trapped between this chord and the Newton envelope. As an illustration of the
power of this observation in the nongeneric case, we provide the following corollary.
In this corollary, we identify a case in which no integer lattice points can lie between
the chord and the Newton envelope.

Corollary 5 Let 0 < 3 <r; and 0 < o < rjyq. Suppose that ol = (k(f;—0), fi—
B) and QJ = (k(f; + @), f;+a) are two points lying on the Newton diagram, while
the points Q) for s = —1,...,1, P;, and QAi for t =1,2,...,a—1 do not lie
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on the Newton diagram. Set p = ffn; + anjy, and 0 = /3-;%_ If
(on; — 1) < min(o,1 — o), (19)
then there are p eigenvalues of A+ ¢B of the form
M) = A+ 7P + o(c”), [=1,2,...,p, (20)

where n # 0. Moreover, if either
i) the inequality in (19) is strict
or
ii) (on; — 1) <o and a =njy =1,
then
n=-——"—. (21)

PROOF of Corollary 5:

As noted above the Newton diagram must lie between the chord connecting Qé
to QA{Y and the Newton envelope on the interval [k(f; — §), k(f; + «)]. Furthermore,

since none of the points QJ for s = 3 —1,...,1, P;, and QAi fort=1,2,...,a0—1
lie on the Newton diagram, the Newton envelope and diagram only coincide at the
end points of this interval. Thus, the expansions (20) will be valid if we can show
that there are no integer lattice points strictly between the chord and the Newton
diagram on the interval [k(f; — 8), k(f; + )]. In order to do this we need only show
that the lattice points (k(f;) — 1, f;) and (k(f;) +1, f;+ 1) lie on or above the chord.
The condition that (k(f;) — 1, f;) lies on or above the chord yields the inequality
(on; —1)B < o, while the condition that (k(f;)+1, f;+ 1) lies on or above the chord
yields the inequality (on; —1)3 < 1—o0. Note that this second condition is no longer
needed if o = m;y; = 1, since in that case (k(f;) + 1, f; + 1) coincides with 07,
Thus, under either condition i) or ii), Qg and QAQ are the only integer lattice points
on the chord and so (21) follows from(18). |

It is interesting to consider a few special cases of the above result. Note that if
B =0, then o can take any of the values 0,1,...,7;41, and if @ = 0, then 3 can take
any of the values 0,1,...,7;. The case 3 = 0 reaffirms the third remark at the end
of Section 2, while the case o = 0 illustrates that expansions with power 1/n; are
possible even if ®;_; is singular. Finally, if one is given a fixed value for either o or
3, then simple bounds on the other value are easily obtained from (19). For example,
if @ =1, then the restriction (19) yields the inequality #(n; — nj41 — 1) < 1. That
is, if n; = n;41 +1, then 8 can take on any of the values 0,1,...,7;;if n; = nj41+2,
then 3 can only take the values 0 and 1, and if n; > n;4; + 2, then 8 must be zero.
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The situation becomes more complicated with the introduction of more integer
lattice points between the chord and the Newton envelope since more possibilities
for the Newton diagram arise. But, in many cases, these possibilities can be delin-
eated by considering certain key lattice points as was done in the proof of the above
Corollary. Indeed, this approach can provide a fairly complete picture in many par-
ticular cases. Let us conclude by applying the ideas of this section to some specific
examples:

Example 1. We first turn to our example in the preceding section of a 3 x 3
matrix with ¢ =2, ny =2, ny =1, ry = ro = 1. The expansions we obtained
in the previous section correspond to a Newton diagram with two segments: S;
connecting (0,0) with P; = (2,1), and Sy joining P; and Py = (3,2). Note
that this is precisely the Newton envelope corresponding to the given Jordan
structure (see Fig. 3 a)).

a) b)

Figure 3: Newton diagrams corresponding to Example 1. In Fig. a), the Newton diagram
and envelope coincide. In Fig. b), the diagram is shown as a solid line and the envelope
as a dashed line.

Now, suppose that ®; = 0 with det ®; # 0. This means that P; no longer is
plotted, so the diagram consists of a single segment of slope 2/3 joining (0, 0)
with P, (see Fig. 3 b)). If both ®; and ®;, are singular, we obtain one single
segment of slope 1 as long as B is nonsingular.

Example 2. We consider a 5 X 5 matrix with one zero eigenvalue and ¢ =
2, mp =2, ng =1, 11 =2, r9 = 1. We assume, for the sake of simplicity, that
A is already in Jordan form, i.e.
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01
0
A= 01
0
0
If B= (b;j)7,_;, then
b b b21 b23 b25
(I)l = [ 521 b23 ] ’ (1)2 = b41 b43 b45
e bs1 bss | bss

We consider the different possibilities:

e Suppose det®; # 0, so that P, = (4,2) appears in the diagram. Then,
the perturbed matrix has four eigenvalues

M= EDV2 o), kiI=12,
where £1, &2 are the eigenvalues of ®;

- if, additionally, det®; # 0, so that P = (5,3) also appears in the
diagram, then the fifth eigenvalue of A +¢eB is A} = &e + o(e) for

1| b
&zb%—[%lbw}¢f[bi].

In this case, the Newton diagram and envelope coincide (see Fig. 4 a);

- if, on the other hand, ®, is singular, P does not appear in the

diagram. In that case, the order of the fifth eigenvalue is at least

O(£?), corresponding to a segment joining Py = (4,2) with (5,4).
However, higher slopes might appear in some cases.

e Suppose now that ®; is singular. Then the point P; no longer appears

in the Newton diagram, and to determine the order of the perturbations

we need to know whether or not the coefficient

0= —tr®; = —by; — bus

of € in ay(q is different from zero, i.e., whether or not @, = (2,1) is
among the points plotted in the Newton diagram:

- if 4 # 0, then ay;) = 1 and there is a segment of slope 1/2 in the
Newton diagram connecting (0,0) and Q. If, additionally, det &5 #
0, there is a second segment of slope 2/3 between Q; and Py = (5, 3)
(see Fig. 4 b)). Hence, two of the eigenvalues are

A= 51212 4 0(51/2),
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a)

Ny

b)

<)

Figure 4: Newton diagrams corresponding to Example 2. In Fig. a), the Newton diagram
and envelope coincide. In Figs. b) and c¢), the diagram is shown as a solid line and the

envelope as a dashed line.

since § = dy(1) is the unique nonzero eigenvalue of ®;. The other
three eigenvalues of A + B may be expanded as

det q)g
6 Y

AL = 771/382/3 + 0(62/3), for =

applying Corollary 5 i) (in this case @« =ny =1 and (ony; — 1)§ =
1/3<2/3=0.)

If § =0, then ayy) > 1 and Q; does not appear in the diagram. In
the case when det ®; # 0, the Newton diagram consists of a single
segment of slope 3/5 connecting the origin with P, (see Fig. 4 ¢)).
The five eigenvalues are of the form

(det ®2)1/53/5 4 o(3/5).
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Finally, if both ¢ and det ®, are zero, the actual slopes of the Newton
diagram depend on the vanishing of the four-dimensional minors of B.

4 Spectral condition numbers

The results of Section 2 lead immediately to the proposition of a new notion of
condition number for multiple eigenvalues:

Definition 6 Define the Holder condition number of the eigenvalue A by
cond(A) = (nq, @),

where, as before, ny is the dimension of the largest Jordan block associated with X,
and
o = max spr(Y;BX
(5%, P B,
where spr denotes spectral radius and, as earlier, the r1 columns of X1 (rows of Y1)
are independent right (left) eigenvectors of X, each corresponding to a Jordan chain
of greatest length nq.

The motivation for this definition is that 1/n; is the smallest possible power of
€ in the expansion of the eigenvalues of any perturbation A 4+ B, while o'/™ is the
largest possible magnitude of the coefficient of €1/ in such expansions. Clearly, it
follows from Theorem 1 that for all ¢ > 1, the eigenvalues A\’ of A 4+ B converging
to A as € | 0 satisfy

N = )| < callmgt/m

for all sufficiently small positive e.
Note that the definition depends on the choice of matrix norm || - ||. We shall
restrict our attention to unitarily invariant norms ( [6], p. 308).

Theorem 7 If the condition number cond(X) = (ny,«) is defined by any unitarily

invariant matriz norm || - ||, then
a = [[XiY1][2.
PROOF:
One has
Y1BX,) = r(BX1Y;
BE TR = ser(BXN)
< max ||BX1Yyl|s
1B]I<1
< [X1Ylle,



where the final inequality follows because ||B||; < ||B|| for any unitarily invari-
ant norm. To see that equality holds, note the following. Let the scalar oy, the
row vector u; and the column vector vy be respectively the largest singular value
and the corresponding left and right singular vectors of X;Yj, so that ||uy]| =
[lo]] = 1 and w3 X1Yiv1 = 01 = || X1Y1||2. Setting B = vyuy gives spr(BX1Y;) =
spr(u1 X1Yiv1) = o1. [

Note the following:

e In the case that X is simple, we have n; = r; = 1, so cond(A) = (1,a),
where « = ||zy|| = ||z|| ||y||, with the column vector z and the row vector
y respectively right and left eigenvectors for A, normalized so that yz = 1.
Without loss of generality, one can take ||z|| = 1, so @ = ||y||. Thus the
condition number reduces to the standard definition ( [4], p. 152); see also [5],
p. 202, where the normalization used is ||z|| = ||y|| = 1, giving the definition
1/(yz) for the condition number.

e In the case that A is nonderogatory, we have r; = 1, so cond(A) = (n1, ), where
a = ||lzyl| = ||z]| |ly]|, with 2 and y respectively right and left eigenvectors.
However, when ny > 1, we have yz = 0 (directly from the Jordan form). The
normalization in this case is Q P} = I, where the columns of P! (rows of Q1)
are right (left) Jordan chains for A, z being the first column of P! and y the
last row of Q1. If A is in Jordan form, then P! = Q1 = I, s0 cond(\) = (nq, 1).

5 1
=5 L)
and consider the eigenvalue A = §. For § > 0, one has =z = [1 0]7, y =[1 1/(29)],
so cond(§) = (1,a) with a = ||z|| ||y|| = 1+ 1/(46%). Since the eigenvalue is
simple, this condition number coincides with those given by [4] and [5]. As é | 0,
the coefficient o in cond(d) diverges to +o0o0. For § = 0, the eigenvalue A = § has
multiplicity two, so the definitions given in [4] (p. 152) and [5] do not apply. In
this case, A is in Jordan form, so one has z = [1 0]7, y = [0 1], and cond(0) =

(2,1). Thus, although the condition number is not a continuous function of ¢ in the
conventional sense, the divergence of « as § | 0 is reflected by the drop in the power

For example, take

1/ny at the limit point.

Chatelin ( [4], p. 156) has also introduced a closely related Hélder condition
number in the more general context of clusters of eigenvalues. Let us restrict our
attention to the case where the cluster consists of one multiple eigenvalue A. Chatelin
defines a Holder condition number csp(A) = (nq, 3), with a coefficient 3 which de-
pends on the conditioning of the transformation reducing the matrix to Jordan form.
An important advantage of cond(\) = (n1, @) over csp(A) = (ny, 3) is that the coef-
ficient o depends only on the conditioning of the eigenvectors, not the conditioning
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of the Jordan vectors. For example, consider

=10 o]

with a double eigenvalue A = 0. When § > 0, the Jordan form of A is given by

017 ., 10
[0 0]‘P AP, P‘[o 1/5]

with right eigenvector equal to the first column of P, i.e. 2 = [1 0]7, and left
eigenvector equal to the second row of P=1, y = [0 §]. Thus, for § > 0, cond(0) =
(2, a) with & = ||z|| ||y|| = §. The Chatelin condition number is csp(0) = (2, §) with
B = 1/§ because the condition number of P is 1/4. As § | 0, the coefficient « in
cond(A) = (2, @) converges to zero, as it should since, at the limit point, the power
1/ny increases to 1, giving the perfect condition number cond(0) = (1, 1). However,
the coefficient 3 in csp(0) = (2, §) diverges to 400, even though the condition number
in the limiting case § = 0 is also csp(0) = (1, 1).

The condition number cond(A) is trivially extended to clusters of eigenvalues
by defining it to be the lexicographic maximum of the ordered pairs defining the
condition number for each element of the cluster.

Acknowledgments: The third author thanks Prof. A. Seyranian for bringing [13]
to his attention several years ago and for suggesting the dedication of this paper.
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