
Parsing All of C
by Taming the Preprocessor

NYU CS Technical Report TR2011-939

Paul Gazzillo Robert Grimm
New York University

{gazzillo,rgrimm}@cs.nyu.edu

Abstract
Given the continuing popularity of C for building large-scale pro-
grams, such as Linux, Apache, and Bind, it is critical to provide
effective tool support, including, for example, code browsing, bug
finding, and automated refactoring. Common to all such tools is
a need to parse C. But C programs contain not only the C lan-
guage proper but also preprocessor invocations for file inclusion
(#include), conditional compilation (#if, #ifdef, and so on),
and macro definition/expansion (#define). Worse, the preproces-
sor is a textual substitution system, which is oblivious to C con-
structs and operates on individual tokens. At the same time, the
preprocessor is indispensable for improving C’s expressivity, ab-
stracting over software/hardware dependencies, and deriving vari-
ations from the same code base. The x86 version of the Linux ker-
nel, for example, depends on about 7,600 header files for file in-
clusion, 7,000 configuration variables for conditional compilation,
and 520,000 macros for code expansion.

In this paper, we present a new tool for parsing all of C, in-
cluding arbitrary preprocessor use. Our tool, which is called Su-
perC, is based on a systematic analysis of all interactions between
lexing, preprocessing, and parsing to ensure completeness. It first
lexes and preprocesses source code while preserving conditionals.
It then parses the result using a novel variant of LR parsing, which
automatically forks parsers when encountering a conditional and
merges them again when reaching the same input in the same state.
The result is a well-formed AST, containing static choice nodes for
conditionals. While the parsing algorithm and engine are new, nei-
ther grammar nor LR parser table generator need to change. We
discuss the results of our problem analysis, the parsing algorithm
itself, the pragmatics of building a real-world tool, and a demon-
stration on the x86 version of the Linux kernel.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors; D.2.3 [Software Engineering]: Coding Tools
and Techniques

General Terms Languages, Algorithms

Keywords C, preprocessor, LR parsing, fork-merge LR parsing,
SuperC

1. Introduction
C code continues to be essential to all aspects of computing, touch-
ing on government, business, and leisure. Large and complex pro-
grams, such as Linux, Apache, and Bind, run on a wide range of de-
vices, from embedded systems (e.g., smartphones) to servers (e.g.,
cloud services). Consequently, effective tool support for develop-
ing and maintaining C code is of critical importance. For example,
source code browsers can help write new C code, bug finders help

improve existing C code, and automated refactorings help evolve
large and complex codebases.

But all these tools are considerably complicated by the fact that
C code mixes two languages: the C language proper and the prepro-
cessor, which supports file inclusion (#include), conditional com-
pilation (#if, #ifdef, and so on), and macro definition/expansion
(#define). Preprocessor usage is pervasive [11, 32]. For example,
the x86 version of the latest stable Linux kernel (2.6.39.2) depends
on about 7,600 header files for file inclusion, 7,000 configuration
variables for conditional compilation, and 520,000 macros for code
expansion. Preprocessor usage isn’t limited to the kernel either: The
familiar stdio.h program header in Ubuntu 10.0 depends on 44
more files with a total of 1,293 conditionals, which are nested up to
35 levels deep, and 966 macros, which are defined up to five times
each (through conditionals). To make matters worse, the preproces-
sor is a textual substitution system; it is oblivious to C constructs
and operates on individual tokens. For example, stdio.h contains
three conditionals and five macros with incomplete syntactic units
(expressions, statements, and so on).

Existing tools for developing and maintaining C punt on the full
complexity of processing the two languages at the same time. They
assume that preprocessor usage is well-formed, i.e., that directives
surround C’s syntactic units, and/or they process a single config-
uration at a time. Most research focused on parsing the two lan-
guages does not fare any better [1, 3–5, 12, 16, 25, 27, 31, 35]. Only
the recent TypeChef project seeks to completely solve the prob-
lem of parsing C with arbitrary preprocessor directives [21, 22].
It comprises three basic ingredients: (1) preserve conditionals dur-
ing preprocessing—in TypeChef, by annotating each token with its
presence condition, i.e., the conjunction of nested conditional tests;
(2) fork parser states on diverging presence conditions and then
merge them again on convergence; and (3) embed all resulting al-
ternatives in the abstract syntax tree (AST) through static choice
nodes. But TypeChef also suffers from three limitations. First, it
does not support several, more subtle features of the preprocessor
and C, requiring careful manual configuration to parse the x86 ver-
sion of Linux. Second, it is fairly complex, combining lexing and
preprocessing into a new “variability-aware lexer” and reengineer-
ing the parser through a new LL parser combinator library. Third,
its Scala-based implementation is relatively slow. In our tests on
x86 Linux, it has a median per-file latency of 17.9 seconds, 90th
percentile latency of 26.6 seconds, and worst-case latency of 652.2
seconds.

This paper presents SuperC, a new tool for parsing C with arbi-
trary preprocessor directives, which uses the same basic approach
(developed independently) while improving on TypeChef in all as-
pects. First, SuperC is based on a systematic analysis to identify
all interactions between lexing, preprocessing, and parsing and to
ensure that our tool is complete. Second, SuperC is carefully de-

signed to keep individual concerns separate and to only innovate
where necessary. Crucially, it is based on a novel variant of LR
parsing, which handles preprocessor conditionals by automatically
forking and merging parser states and eliminates the need to rewrite
grammars as well as parser table generators. These fork-merge LR
parsers are comparable to GLR parsers, such as those generated by
Elkhound [26] or SDF2 [8, 34], in that they tolerate ambiguity. But
whereas GLR parsers allow for several nonterminals to match the
same input, fork-merge LR parsers allow for several inputs (condi-
tional branches) to match the same nonterminal. Third, by building
on an LR foundation, SuperC is faster than TypeChef. For the same
x86 Linux kernel, it has a median per-file latency of 5.8 seconds,
90th percentile latency of 6.6 seconds, and worst-case latency of
14.2 seconds. Since our implementation assumes little in advanced
language support (unlike TypeChef’s Scala-based combinator li-
brary), SuperC also is more easily portable to lower level languages
(such as C) that allow for further, fine-grained performance tuning.

This paper makes the following contributions:

• A systematic analysis of the challenges involved in parsing C
with arbitrary preprocessor usage and an empirical quantifica-
tion for the x86 Linux kernel.

• A novel variant of LR parsing, which recognizes preprocessor
conditionals without the need for rewriting grammars or parser
table generators.

• A comprehensive description of SuperC, a tool for parsing all
of C, and its demonstration on the x86 version of the Linux
kernel.

We have released SuperC as open source at http://cs.nyu.
edu/rgrimm/xtc/. Retargeting it to other languages is relatively
straight-forward: change that language’s preprocessor to preserve
conditionals and connect it with our Fork-Merge LR parsing en-
gine. No changes are necessary to the language’s LR grammar (if
available), the parser table generator, or the parsing engine. Finally,
we leave type checking across conditionals as future work (just like
TypeChef).

2. Problem and Solution Approach
The main challenge in processing C is that a program, as written,
is fundamentally different from its semantics, as expressed through
C constructs proper, due to wide-spread preprocessor usage. File
inclusion means that individual files are only fragments of com-
pilation units. Macros mean that fragments of program text can
be completely different from the actual program. And conditionals
mean that only some fragments of program text are valid. So, even
when processing only one configuration at a time, any C tool needs
to go through three steps to build an AST. First, it lexes each source
file to convert sequences of characters into tokens. Second, it pre-
processes the tokens, resolving file includes, macro definitions and
expansions, as well as conditionals. Third, it parses the resulting
tokens, which represent only C constructs proper. The preproces-
sor and parser can exchange tokens, instead of printing and lexing
again, since they share key lexical syntax.

This pipeline of lexer, preprocessor, and parser does not change
when processing all of C, with two crucial differences: Prepro-
cessing now needs to preserve conditional branches and parsing
now needs to explore all branches while also integrating them into
the AST as static choice nodes. Furthermore, since conditionals
may appear around arbitrary tokens, the parser may only combine
branches after recognizing complete C constructs. This approach
to parsing all of C was first suggested by Garrido and Johnson for
CRefactory [16], though their parser recognizes only some condi-
tional usage. It is also taken by TypeChef and our own SuperC.
McCloskey and Brewer have explored normalizing (some) macro

1 #include "major.h" // Defines MISC_MAJOR to be 10
2

3 #define MOUSEDEV_MIX 31
4 #define MOUSEDEV_MINOR_BASE 32
5

6 static int mousedev_open(struct inode *inode, struct file *file)
7 {
8 int i;
9

10 #ifdef CONFIG_INPUT_MOUSEDEV_PSAUX
11 if (imajor(inode) == MISC_MAJOR)
12 i = MOUSEDEV_MIX;
13 else
14 #endif
15 i = iminor(inode) - MOUSEDEV_MINOR_BASE;
16

17 return 0;
18 }

(a) The unpreprocessed source.

1 static int mousedev_open(struct inode *inode, struct file *file)
2 {
3 int i;
4

5 #ifdef CONFIG_INPUT_MOUSEDEV_PSAUX
6 if (imajor(inode) == 10)
7 i = 31;
8 else
9 #endif

10 i = iminor(inode) - 32;
11

12 return 0;
13 }

(b) The preprocessed source preserving all configurations.

Function Definition

Compound Statement Function DeclaratorDeclaration Specifiers

Declaration Static Choice

static int mousedev_open(…)

int i

Return Statement

return 0

If Else Statement Expression Stmt.

i = iminor(…) - 32

Expression Stmt.Expression Stmt.Equality Expression

i = iminor(…) - 32i = 31imajor(…) == 10

! CONFIG…XCONFIG…X

(c) Sketch of the AST containing all configurations.

Figure 1. From source code to preprocessed code to AST. The ex-
ample is edited down for simplicity from drivers/input/mousedev.c.

invocations in Macroscope [25]. But due to the many and often
subtle interactions between preprocessor features (see below), we
are skeptical whether a general solution for macro normalization is,
in fact, possible. Figure 1 illustrates the three steps—from source
code to preprocessed code to abstract syntax tree—on a program
snippet, which, like all examples in this paper, has been taken from
the Linux kernel.

Two basic design decisions immediately arise from this ap-
proach to parsing all of C: (1) How to represent the different con-

http://cs.nyu.edu/rgrimm/xtc/
http://cs.nyu.edu/rgrimm/xtc/

1 #ifdef CONFIG_SCHED_DEBUG
2 # define const_debug __read_mostly
3 #else
4 # define const_debug static const
5 #endif
6

7 const_debug unsigned int sysctl_sched_nr_migrate = 32;

Figure 2. A multiply defined macro from kernel/sched.c.

figurations after preprocessing and (2) what parsing technology to
build on. First, SuperC preserves conditional directives as com-
pound tokens and otherwise relies on regular tokens, whose pres-
ence conditions are implicit in the boolean conjunction of nested
conditional tests. This representation is close to the original source
and facilitates pretty printing code after preprocessing for debug-
ging purposes, as with gcc’s -E option. In contrast, TypeChef di-
rectly annotates each regular token with its presence condition,
which trades representational uniformity against preprocessor com-
plexity. Second, SuperC builds on LR parsing, which makes the
parser stack explicit and thus makes it trivial to fork parsing state
for conditional branches. It also is key to SuperC directly reusing
existing grammars and parser table generators. In contrast, Type-
Chef relies on an LL parser combinatory library, which trades ease
of experimentation against advanced language support and rela-
tively slow parser performance.

2.1 The Gory Details
With the basic approach in place, we now turn to a systematic anal-
ysis of the interactions between lexing, preprocessing, and parsing
C code. Most complications stem from three properties of the pre-
processor. First, the preprocessor operates on tokens and is obliv-
ious to C constructs. Directives and macro invocations alike may
appear between arbitrary tokens and also produce arbitrary tokens.
Second, preprocessor directives cannot be nested within each other.
They must start with the beginning of a source line and must end
with the end of that same line. Yet, macro invocations and entire
conditionals may span several source lines. Third, preprocessor in-
vocations may be nested within each other. Notably, macro invoca-
tions may produce further macro invocations. They may also span
conditionals, with only part of the invocation being contained in a
conditional.

Table 1 summarizes all interactions between lexer, preproces-
sor, and parser. Rows denote features and are grouped by the three
steps. The first column names the feature, the second column iden-
tifies language and source granularity, and the third column de-
scribes the general processing strategy. The remaining columns
capture complications due to feature interactions. If an interac-
tion applies, the corresponding table entry explains how to over-
come the complication. Gray table entries highlight interactions not
yet supported by TypeChef. In contrast, SuperC does address all
interactions—with exception of annotating tokens with layout as
well as error, warning, pragma and line directives, which is mostly
implemented but still too buggy to use.

Layout. The first step is lexing, which converts raw program
text into tokens while also stripping layout, i.e., whitespace and
comments. Lexing is performed before both preprocessing and
parsing and does not interact with the two latter steps. At the same
time, automated refactorings, by definition, restructure source code
and need to output source code as originally written, modulo any
intended changes. Consequently, they need to preserve layout, and
a complete solution for parsing C needs to (optionally) annotate
tokens with surrounding layout—plus, keep sufficient information
about preprocessor invocations to restore them as well.

1 // In include/linux/byteorder/little_endian.h:
2 #define __cpu_to_le32(x) ((__force __le32)(__u32)(x))
3

4 #ifdef __KERNEL__
5 // Included from include/linux/byteorder/generic.h:
6 #define cpu_to_le32 __cpu_to_le32
7 #endif
8

9 // In drivers/pci/proc.c:
10 _put_user(cpu_to_le32(val), (__le32 __user *) buf);

Figure 3. A macro conditionally expanding to another macro
name.

Macro (un)definitions. The second step is preprocessing. It col-
lects macro definitions (#define) and undefinitions (#undefine)
into a macro symbol table—with definitions being either object-
like

#define name body

or function-like

#define name(parameters) body

Both definitions and undefinitions for the same name may appear
in different conditional branches. As a result, the macro sym-
bol table needs to store multiple versions of such a macro, an-
notated by their presence conditions. Furthermore, since macros
exist in a single, global scope, the macro symbol table needs
to replace versions, when a macro is re- or undefined under the
same presence conditions. When a macro’s definition depends
on a configuration, as in lines 1–5 of Figure 2, the macro prop-
agates an implicit conditional to wherever it is used. The definition
of sysctl_sched_nr_migrate on line 7 depends on the macro
CONFIG_SCHED_DEBUG, even though there is no explicit condi-
tional. Garrido and Johnson first observed that a configuration-
preserving preprocessor can expand such a multiply-defined macro
to an explicit conditional, so as not to lose any configuration infor-
mation [16].

Macro invocations. As already discussed, the preprocessor ex-
pands macro invocations to all definitions of the corresponding
macros. Since macro invocations may be nested in macro defini-
tions, the preprocessor needs to revisit the result of every macro
expansion. Furthermore, since C compilers have several built-in
object-like macros, such as __STDC_VERSION__ to indicate the C
Standard’s version number, the preprocessor needs to be configured
with the ground truth for the targeted compiler.

Beyond these fairly simple issues, a configuration-preserving
preprocessor needs to handle two, more subtle interactions. First,
some versions of a multiply-defined macro may be invalid at a par-
ticular invocation site, notably because the invocation is surrounded
by conditionals creating an implicit presence condition. Conse-
quently, the preprocessor should expand only valid definitions of
a macro. SuperC uses a binary decision diagram [9] (BDD) library
for this purpose. It facilitates the tracking of presence conditions
and testing whether such conditions are equivalent or infeasible.

Second, function-like macro invocations interact with condi-
tionals. Both macro name and arguments may contain condition-
als, either explicitly in the source or implicitly through multiply-
defined macros. These conditionals can alter the invoked macro,
i.e., its name, and the provided arguments, including their num-
ber and values. For conditionals that modify the macro invoca-
tion (e.g., by changing the number of arguments), a configuration-
preserving preprocessor needs to hoist the conditionals from within
the invocation to the outside. Figure 3 illustrates this complication.
If __KERNEL__ is defined, line 6 defines macro cpu_to_le32 to
name another macro, __cpu_to_le32 as defined on line 2. Other-

Complications
Language & Strategy Surrounded by Contains Spans Contains Multiply- OtherGranularity Conditionals Conditionals Conditionals Defined Macros

Lexer

Layout CPP Annotate
Arbitrary tokens

Preprocessor

Macro CPP Use conditional Multiple entries Expansion delayed Remove
(Un)Definition One line macro table in macro table until invocation redefinitions

Macro Invocation CPP Expand to Expand to valid Hoist conditionals Hoist conditionals Expand nested Get ground
Many lines all definitions definitions only around invocation around invocation macros truth for built-ins

from compiler

Token Pasting & CPP Apply pasting & Hoist conditional Hoist conditional
Stringification One line stringification around operations around operations

File Inclusion CPP Include & Preprocess under Hoist conditional Reinclude when
One line preprocess presence condition around inclusion guard macro is

not false

Conditionals CPP Preprocess AND nested AND nested Hoist conditionals Preserve order
Many lines tests & conditions conditions around expression for non-boolean

all branches expressions

Error Directives CPP Annotate Indicates
One line tokens infeasible branch

Line, Warning, & CPP Annotate tokens
Pragma Directives One line

Parser

C Constructs C Fork-merge Fork parsers
Arbitrary LR parsing

Typedef Names C Use conditional Fork parsers on
One token symbol table ambiguous

names

Table 1. The interactions between lexing, preprocessing, and parsing.

1 #define __gcc_header(x) #x
2 #define _gcc_header(x) __gcc_header(linux/compiler-gcc##x.h)
3 #define gcc_header(x) _gcc_header(x)
4 #include gcc_header(__GNUC__)

Figure 4. A computed include from include/linux/compiler-gcc.h.

wise, the former macro is undefined. Consequently, the invocation
on line 10 may either be an invocation of macro __cpu_to_le32
or of function cpu_to_le32.

Token pasting and stringification. Macros may contain two spe-
cial operators to modify tokens: The infix token pasting operator
(##) concatenates two tokens, and the prefix stringification oper-
ator (#) converts a sequence of tokens into a string literal. The
preprocessor simply applies these operators, with one complica-
tion: Similar to macro invocations, the operators’ arguments may
contain conditionals, either explicitly in the source or implicitly
through multiply-defined macros. Consequently, a configuration-
preserving preprocessor needs to hoist the conditionals outside op-
erator invocations. Figure 4 illustrates stringification on line 1 and
token pasting on line 2. Figure 5 illustrates hoisting a multiply-
defined macro out of the token pasting operator. When expanding
the macro DEFAULT_FETCH_TYPE, the preprocessor ends up with
u## being applied to a conditional, for the multiply-defined macro
BITS_PER_LONG. It then hoists the conditional around the token
pasting operator, yielding the conditional shown in part (b). Finally,
it performs the token pasting, yielding a conditional with u64 when
CONFIG_64BIT is defined and u32 otherwise.

File inclusion. To arrive at a complete compilation unit, the pre-
processor resolves file inclusion directives (#include) and re-

1 // In include/asm-generic/bitsperlong.h
2 #ifdef CONFIG_64BIT
3 #define BITS_PER_LONG 64
4 #else
5 #define BITS_PER_LONG 32
6 #endif
7

8 // In kernel/trace/trace_kprobe.c
9 #define __DEFAULT_FETCH_TYPE(t) u##t

10 #define _DEFAULT_FETCH_TYPE(t) __DEFAULT_FETCH_TYPE(t)
11 #define DEFAULT_FETCH_TYPE _DEFAULT_FETCH_TYPE(BITS_PER_LONG)

(a) The macro definitions.

1 #ifdef CONFIG_64BIT
2 u##64
3 #else
4 u##32
5 #endif

(b) Hoisting CONFIG 64BIT outside the token pasting operator.

Figure 5. An example of hoisting a multiply-defined macro when
expanding DEFAULT FETCH TYPE.

curses over header files. As for macro invocations, the preprocessor
needs to track implicit presence conditions due to surrounding con-
ditionals. Furthermore, it needs to correctly handle guard macros.
By convention, header files protect against multiple inclusion with
the incantation:

#ifndef FILENAME_H
#define FILENAME_H

If the guard macro FILENAME_H is undefined, the preprocessor
needs to process the included header—even if the header has been
included before and the guard macro has since been undefined.
More interestingly, the include directive itself may invoke macros.
As for macro invocations in general, token pasting, and stringifi-
cation, a configuration-preserving preprocessor needs to hoist any
conditional implicit in the macro outside the directive. Figure 4 il-
lustrates such a computed include with the gcc_header macro. It
relies on several other macros performing token pasting and stringi-
fication to arrive at a header file name containing the compiler’s
version number, as provided by the built-in __GNUC__ object-like
macro.

Conditionals. A configuration-preserving preprocessor needs to
process all branches of a conditional and their respective tests,
instead of just processing the first branch whose test resolves to
true. If multiply-defined macros appear in a test, the configuration-
preserving preprocessor needs to hoist the corresponding full con-
ditional outside the directive. Finally, it needs to track the current
presence condition, by performing a conjunction of nested con-
ditions. This is straight-forward for boolean expressions by us-
ing BDDs (as done by SuperC) or even a more heavy-weight
SAT solver (as done by TypeChef). However, conditional tests
may contain arbitrary integral arithmetic and comparisons, such as
BITS_PER_LONG == 32. Since there is no known efficient algo-
rithm for comparing arbitrary polynomials [20], the preprocessor
needs to treat such conditions as opaque and their branches akin
to barriers in multi-threaded programming. It must never omit or
combine them, it must preserve their source code ordering, and it
must not move other branches across them.

Other preprocessor directives. The C preprocessor supports
four additional directives, to issue errors (#error) and warnings
(#warning), to configure compilers (#pragma), and to overwrite
line numbers (#line). A configuration-preserving preprocessor
simply reports errors and warnings appearing outside condition-
als, and also terminates for such errors. More importantly, it treats
conditional branches containing error directives as infeasible and
disables their parsing. Otherwise, it optionally preserves such di-
rectives as token annotations to support automated refactorings.

C constructs, incl. typedef names. The third and final step is pars-
ing. After configuration-preserving preprocessing, tokens may con-
tain conditionals. Consequently, the parser needs to fork its internal
state when reaching a conditional and merge it after the conditional
again—but only when considering the same derivation of nonter-
minals for the same token. This merge discipline ensures that the
resulting AST is well-formed, i.e., contains only complete syntac-
tic units. Figure 1(b) illustrates this constraint. The conditional on
lines 5–9 of the preprocessed source contains an incomplete syntac-
tic unit due to the trailing else. As a result, the two subparsers rec-
ognizing the conditional and the implicit (and empty) #else branch
can only merge after each processing line 10 and thus each recog-
nizing a complete statement, preceded by a declaration (on lines 3)
and within a function definition (on lines 1–13).

A final complication results from the fact that C syntax is
context-sensitive [30]. Depending on context, names can either
be typedef names, i.e., type aliases, or they can be object, function,
and enum constant names. Furthermore, the same code snippet can
have fundamentally different semantics, depending on names. For
example,

T * p;

is either a declaration of p as a pointer to type T or an expression
statement computing the product of T and p, depending on whether
T is a typedef name. In the presence of conditionals, however, a
name may be both. Consequently, the parser’s symbol table for

disambiguating such names now needs to store multiple versions
and their presence conditions, just like the macro symbol table.
Furthermore, when encountering an ambiguously declared name,
the parser needs to implicitly fork its internal state.

3. Fork-Merge LR Parsing
Having systematically analyzed the problem and sketched the key
ingredients of the solution in Section 2, we now turn to parsing
C with conditionals between arbitrary tokens. We do not present
configuration-preserving preprocessing in further detail, since its
implementation follows directly from the description in the previ-
ous section and, while tedious to engineer completely and correctly,
does not require algorithmic innovation. In contrast, parsing C with
conditionals does require algorithmic innovation. To this end, we
turn to LR parsing, more specifically LALR(1) parsing.

LR parsers are bottom-up parsers [2, 24]. To recognize their
input, LR parsers maintain an explicit parser stack, which contains
terminals, i.e., tokens, and nonterminals. On each step, LR parsers
perform one of four actions: (1) shift to move the next token in
the input onto the stack, (2) reduce to replace one or more top-
most stack elements with a nonterminal, (3) accept to successfully
complete parsing, and (4) reject to terminate parsing with an error.
The choice of action depends on both input and parser stack. To
ensure efficient operation, LR parsers encode their status in a single
state, that is, combine a deterministic finite automaton (DFA) with a
stack to form a push down automaton (PDA). Furthermore, for both
actions and state transitions, they only consider the next k tokens
in the input, which is called the lookahead. In practice, most such
LR(k) parsers are LR(1) and, more specifically, LALR(1) [10].
The latter give up some expressivity of full LR(1), but also have
more compact action and transition tables. Either way, the PDA
implementation is the same, e.g., considers only the next token in
the input.

Compared to top-down parsing techniques, such as LL [29] and
PEG [6, 13], LR parsers are attractive for our purposes for four
reasons. First, LR parsers make the parsing state explicit, in the
form of PDA state and stack. Consequently, it is easy to fork the
parser state on a conditional, e.g., by representing the stack as a
singly-linked list and adding several stack frames that point to the
shared remainder. Second, LR parsers are easier to implement ef-
ficiently, since they just operate PDAs. Third, LR parsers support
arbitrary left-recursion in addition to right-recursion, which is help-
ful for writing programming language grammars. Finally, most of
the complexity of LR parsing is isolated to table generation, which
we do not modify at all. At the same time, table generation also
tends to be somewhat brittle, with many a developer dreading ob-
scure shift-reduce or reduce-reduce conflicts.

3.1 The Algorithm
Algorithm 1 shows the pseudo-code for the Fork-Merge LR
(FMLR) parsing algorithm. Unlike regular LR parsers, which rely
on a single PDA, FMLR parsers operate a set of subparsers, de-
noted by P . Each subparser p runs its own PDA, with p.a denoting
the next token for that subparser. The algorithm starts with a single
subparser, initialized with the first token a0. It then performs regu-
lar LR actions on subparsers with regular tokens (lines 6–16), while
also forking on conditionals (lines 17–20) and merging whenever
possible (lines 25–26). It ends when all subparsers have either ac-
cepted or rejected the input (lines 22–24). The set of subparsers
P is ordered by their tokens’ positions in the input. That way, the
FMLR algorithm always advances the subparsers with the earliest
token (lines 4–21) and thus ensures that no subparser moves be-
yond a position that would allow it to merge again. We do not show
PDA states in the algorithm; they are updated in the regular LR
manner by the SHIFT and REDUCE functions.

Algorithm 1 The Fork-Merge LR Parsing Algorithm
a is a token.
p is a subparser, with p.a denoting its next token.
P is the set of subparsers ordered by input position.

1: procedure PARSE(a0)
2: P ← { initial subparser for a0}
3: loop
4: for all subparsers p in P on the earliest p.a do
5: if p.a is a regular token then

6: . Regular LR
7: if action(p) is shift then
8: SHIFT(p)

9: p.a← next token after p.a
10: else if action(p) is reduce then
11: REDUCE(p)

12: else if action(p) is accept then
13: Remove p from P

14: else . Found a parsing error
15: Remove p from P

16: end if

17: else if p.a is a compound token then
18: . Fork subparsers on the conditional
19: P ← FORK(p) ∪ (P \ p)
20: end if
21: end for
22: if P = ∅ then . Done
23: return
24: end if
25: . Merge subparsers again
26: MERGE(P)

27: end loop
28: end procedure

Parsing regular tokens. For regular tokens, FMLR behaves just
like regular LR (lines 6–16; highlighted in gray). The subparser
p operates its PDA like a regular LR PDA by shifting, reducing,
accepting, and rejecting. The only difference is that the implemen-
tation of the accept and reject actions only removes the subparser p
from the set of all subparsers P instead of immediately stopping the
entire parser. Still, if there are no conditionals in the input, FMLR
performs LR parsing. As a direct result, an FMLR parser can reuse
LR parser tables without modification. In turn, this enables us to
reuse an existing LR parser table generator and an existing C gram-
mar for SuperC.

Forking on conditionals. For conditionals, FMLR needs to fork
the subparser p and replace it with the resulting parsers in P (lines
17–20). The forking itself is performed by simply creating several
new subparsers pi that have the same PDA state and stack as p,
but have different new tokens pi.a. As a result, all subparsers in
P form a directed acyclic graph (DAG) of PDA stack fragments,
comparable to Elkhound’s GLR parser [26]. This is an efficient
encoding of FMLR PDAs. It also is correct because, up to a FORK
operation, all subsequently forked parsers have processed the same
input in the same way, i.e., have the same PDA execution history.

The challenge is determining which new subparsers to create.
Intuitively, FORK should create a new subparser for each branch of

the conditional, which starts with the compound token p.a. How-
ever, conditionals may have empty branches, which, like the #else
branch in Figure 1, may even be implicit. Furthermore, condition-
als may be directly nested within conditional branches and they
may directly follow other conditionals. To put it differently, the in-
put is ambiguous and FORK needs to create a new subparser for
each non-ambiguous path through the input—by determining each
path’s next regular token.

To this end, FMLR’s FORK function computes FOLLOW(p.a),
the set of all regular tokens immediately following the compound
token p.a across all paths through the input. It then forks a parser
for each distinct a ∈ FOLLOW(p.a). For completeness, the compu-
tation of FOLLOW is shown in Appendix A. It is comparable to the
computation of follow sets for grammars [2], with two differences.
First, instead of considering all alternatives of productions, it con-
siders all branches of conditionals. Second, since there is no equiv-
alent to nonterminals, it does not compute a fixed-point. Rather, it
simply scans the input (without backtracking) until reaching a state
where all possible paths through all conditionals have reached reg-
ular tokens.

Merging subparsers. After stepping and forking subparsers as
well as checking for parser completion, FMLR attempts to merge
subparsers (lines 25–26). Since FMLR’s main loop on lines 3–
27 only steps and forks subparsers at the earliest input position
and then always invokes the MERGE function, the algorithm en-
sures that subparsers are, in fact, merged as soon as possible. The
MERGE function itself must follow the merge discipline introduced
at the end of Section 2: It may only merge subparsers that have the
same derivation of nonterminals for the same position in the input.
Finding candidate subparsers that are at the same position is triv-
ial, since the set of subparsers P is already ordered by input posi-
tion. Ensuring that candidate subparsers have the same derivation of
nonterminals means comparing their PDAs, including their stacks.
In practice, the comparison of PDA stacks never traverses the com-
plete stacks. Since PDA stacks form a DAG, the stack comparison
either reaches differing stack frames (and thus does not merge) or
identical stack frames (and thus does merge).

Finding the next token. A final detail of the FMLR algorithm is
how to move to the next token. As written, the algorithm assumes
that a compound token on line 17 also starts a conditional (#if
and #ifdef), even though compound tokens may also start con-
ditional branches (#elif and #else) or end conditionals (#end).
The FORK function already ensures that each forked subparser has
a regular token as its next token, and thus does not violate the algo-
rithm’s compound token invariant. Getting the next token on line 9,
however, must take compound tokens into account. If the next token
in the input is a compound token starting a conditional branch or
ending a conditional, then it must skip ahead to the token right after
the conditional. Furthermore, due to nested conditionals, it needs to
repeat this process—until the next token is either a regular token or
a compound token starting a conditional.

3.2 Discussion
A naive implementation of the FMLR algorithm has performance
exponential in the size of the input, even when it is neither nec-
essary nor desired. For instance, consider the code in Figure 6,
which conditionally initializes an array. It effectively encodes a
binary number and a naive implementation of FMLR would fork
an exponential number of subparsers, with each recognizing one
such binary number. To avoid this blow-up for common coding id-
ioms, such as conditional struct and union member declarations
as well as array initializers, a performant implementation of FMLR
needs to do three things. First, it needs to avoid recomputing FOL-
LOW for all but the first conditional in the chain of conditionals.

1 static int (*check_part[])(struct parsed_partitions *)={
2 #ifdef CONFIG_ACORN_PARTITION_ICS
3 adfspart_check_ICS,
4 #endif
5 #ifdef CONFIG_ACORN_PARTITION_POWERTEC
6 adfspart_check_POWERTEC,
7 #endif
8 // 16 more similar initializers
9 NULL

10 };

Figure 6. An example of a conditional encoding a binary number
from fs/partitions/check.c.

Configuration
Preserving

Preprocessor

Lexer

Expression
Parser

FMLR Parser

LALR
Parsing Table

Semantic
Actions

Lexer
Definition

CPP
Expression
Grammar

C Grammar

JFlex

Rats!

C Source

C AST

Bison

AST
Tool

Figure 7. The SuperC architecture. The actual tool is shown on
the left, while supporting tools and their inputs are shown on the
right.

Second, it needs to delay the actual forking, until required by an
LR operation. Third, it needs to recognize each conditional as a
complete syntactic unit and merge subparsers after each conditional
again. SuperC meets all three requirements and, in the above exam-
ple, produces an AST that preserves the binary number through a
list of 18 static choice nodes.

Since meeting the third requirement depends on the input, it is
still possible to construct pathological inputs that cause exponen-
tial performance. This is an inherent limitation of any algorithm
that completes syntactic units without memoizing all intermedi-
ate results. For instance, both SuperC and TypeChef need to parse
line 10 of the preprocessed code in Figure 1(b) twice, once to com-
plete the if statement starting on line 6 and once as a stand-alone
statement. Additional, though comparatively minor sources of non-
linear performance for FMLR are the ordered set P and the MERGE
function. Notably, a straight-forward implementation of an ordered
set has O(|P |) insertion time and O(1) extraction time; though an
implementation with O(log log |P |) insertion time is possible [33].
Furthermore, the pairwise comparison of candidate subparsers for
merging is O(n2) in the number n of candidates, with each com-
parison walking PDA stacks down to a single common frame in the
worst case.

4. Pragmatics
Having presented the FMLR algorithm, we now turn to the SuperC
tool and explore the pragmatics of building a real-world system.
Figure 7 illustrates SuperC’s architecture. Our tool implements all

three steps for parsing all of C—lexing, preprocessing, and parsing
itself—in Java. The lexer produces the initial stream of tokens; the
preprocessor, in turn, produces a stream of tokens and compound
tokens; and the parser produces a program’s AST. The lexer is au-
tomatically generated by JFlex [23] from an existing lexer defini-
tion included with Roskind’s C grammar [30], which we modified
to support common gcc extensions, such as __attribute__. We
engineered the configuration-preserving preprocessor from scratch,
using the solution strategies identified in Section 2 and summarized
in Table 1. Since the preprocessor needs to parse expressions con-
tained in conditional directives, we reused a C expression grammar
distributed with the Rats! parser generator [18]. This has enabled us
to more quickly bootstrap SuperC. The parsing engine is our imple-
mentation of the FMLR algorithm. It accepts LALR parser tables
for any language in the format produced by Bison [14]. Since Bison
generates C headers, we rely on a very short C program to convert
its tables to Java. Because of this, we can directly reuse Roskind’s C
grammar (modified to support gcc extensions). In addition to parser
tables, SuperC’s parsing engine also accepts semantic actions for
building ASTs. They are automatically generated from grammar
annotations by a small tool we developed.

In implementing FMLR, we faced three main engineering chal-
lenges, all of which are caused by the need to recognize an input
while also generating an abstract syntax tree. (1) The parser needs
to create static choice nodes when merging, and do so efficiently.
(2) Downstream tools need an AST that is amenable to further pro-
cessing. (3) The parser needs to support context-sensitive languages
like C. To help address these challenges, our implementation of the
FMLR parsing engine provides three extra components for each
subparser besides the next token and PDA stack. First, it maintains
the presence condition for each subparser, automatically updating
it when entering and leaving conditionals. Second, it stores a se-
mantic value on each stack frame, which is used for building the
AST. Third, it provides each subparser with its own parsing con-
text, which, in combination with semantic actions, enables the pars-
ing engine to recognize context-sensitive languages. The remainder
of this section discusses the three challenges in further detail, one
subsection for each.

4.1 Merging Subparsers
While merging subparsers, SuperC’s FMLR engine also creates
static choice nodes. Each subparser’s semantic value and presence
condition becomes a child of the newly created static choice node,
which, in turn, becomes the semantic value of the merged sub-
parsers. In contrast to conditional tests in the (preprocessed) source,
the presence conditions of static choice nodes are self-contained.
As a result, downstream tools using SuperC’s ASTs can determine
a subtree’s presence condition by simply finding the lowest enclos-
ing static choice node, instead of walking from/to the top of the
tree. Because semantic values contain only terminals or tree nodes
resulting from the reduction of nonterminals, the generated AST
contains only complete syntactic units—even when conditionals in
the original source code do not. By default, SuperC treats all non-
terminals in the grammar as complete syntactic units, which may
be surrounded by static choice nodes. Since downstream tools may
not be prepared to handle static choice nodes for each and every
kind of AST node, SuperC also provides a simple grammar anno-
tation facility that overrides this default; it is described in the next
subsection.

Merging can be an expensive operation. The merge discipline
requires that the parsing engine fulfills two merge criteria: (1) sub-
parsers are at the same input position and (2) they are in the same
parser state. A naive implementation would perform a pair-wise
comparison of all subparsers to identify appropriate candidates,
which is clearly wasteful. Instead, SuperC tries to merge only sub-

Name Description
layout Omit terminal from the AST.
passthrough Use the only child’s value.
list Build a linear list for a recursive production.
complete Treat as a complete syntactic unit.
action Execute a developer-specified semantic action.

Table 2. Grammar annotations.

parsers on the earliest next token. After all, they are the only ones
being stepped during the next iteration through the FMLR algo-
rithm. Keeping subparsers in a priority queue facilitates efficient
selection of such merge candidates. More specifically, SuperC im-
plements the priority queue as a linked list, ordered by earliest next
token. As a result, insertion performance is O(n) in the length n
of the queue, while access to subparsers at the earliest next token
is constant. This is an appropriate trade-off: Insertion happens only
when forking subparsers on conditionals, while access to the ear-
liest subparsers happens during each iteration of the FMLR algo-
rithm.

Even with fast access to the earliest subparsers, SuperC needs
to enforce the second merge criterion by comparing parser states,
including stacks. To further reduce the number of such pairwise
comparisons, SuperC maintains a mapping from current PDA state
number to subparsers. Since the number of states is reasonably
small (about 900 for the C parser), the mapping is implemented
as an array keyed by state number. Finally, even when performing
a pairwise comparison, SuperC never walks complete stacks. As
already described in Section 3, all subparsers are forked from a
single, original subparser and their state stacks form a DAG.

4.2 Building Abstract Syntax Trees
Many parser generators and libraries, including Bison and Type-
Chef, require semantic actions for generating abstract syntax trees.
To simplify AST construction, SuperC includes an annotation fa-
cility that eliminates the need for explicit semantic actions in most
cases. Developers simply add a special comment of the form

/** annotation, annotation,. . . **/

next to the definition of a token or nonterminal. SuperC’s AST tool
then extracts these comments and instructs the parsing engine ac-
cordingly. Without annotations, the parsing engine builds a parse
tree, containing all tokens as leaves and all nonterminals as inner
nodes. Tokens form a statically typed class hierarchy, with the com-
mon superclass Token defining its interface. Nodes are instances
of a single generic node class, which stores a name and list of chil-
dren. Though, internally, that class utilizes further classes to opti-
mize memory utilization for nodes with a small, fixed number of
children.

Currently supported annotations are summarized in Table 2. The
first three, layout, passthrough, and list, control how SuperC
creates nodes for regular productions. First, layout instructs the
parsing engine to treat tokens, such as those representing punctua-
tion (,, ;, and so on) and grouping ({, }, and so on), just like layout,
i.e., omit them from the AST. Second, passthrough instructs the
parsing engine to reuse a child’s semantic value, if it is the only
child in an alternative. Though other alternatives in the same pro-
duction, which have more than one child, still produce AST nodes.
This annotation is particularly useful for C expressions, whose pro-
ductions are nested 17 levels deep to encode precedence. Third,
list instructs the parsing engine to encode the semantic values of
a recursive production as a linear list, instead of creating a recur-
sive chain of tree nodes. It is helpful because LR grammars typ-
ically represent repetitions as left-recursive productions. SuperC

implements such lists as pairs, comparable to functional languages.
When forked subparsers add elements to the same list (started be-
fore forking), SuperC currently annotates individual list elements
with their presence conditions. We are exploring alternatives that
avoid this inelegant sharing of lists between subparsers.

The fourth annotation, complete, instructs the parsing engine
to only treat productions with that annotation as complete syntac-
tic units. This lets grammar writers limit the kinds of nonterminal
values directly appearing in static choice nodes. The selection of
complete syntactic units should be made carefully. Both the en-
gine’s default behavior (treating all nonterminals as complete) and
complete annotations on too many productions result in ASTs
with static choice nodes around too many kinds of constructs for
downstream tools to handle effectively. Having too few complete
syntactic units can result in an exponential state explosion even
for common idioms. Section 3.2 illustrated this issue on the con-
ditional array initializer shown in Figure 6. SuperC’s C grammar
tries to strike a balance by treating not only declarations, defini-
tions, statements, and expressions as complete syntactic units, but
also members in commonly configured lists, including struct and
union member declarations, function parameters, and struct and
array initializers.

As a final annotation, action instructs the parsing engine to
execute an arbitrary semantic action. When reducing a nonterminal
with an action annotation, the parsing engine calls out to a plug-
in interface that allows external Java code to execute. Developers
implement their own plug-in class (which implement the interface)
and then configure the parsing engine with their code. That code
has access to the corresponding subparser and can perform arbi-
trary operations, including building an AST node and updating the
parsing context for context-sensitive languages.

4.3 Managing Parser Context
To support the recognition of C, SuperC’s parsing engine asso-
ciates each subparser with a context object. It also provides a condi-
tional symbol table to determine whether names are typedef names
or not and whether they are ambiguously defined. The symbol table
is shared between the contexts of all subparsers. At the same time,
each subparser’s context separately tracks the current C language
scope, which may differ across conditional branches. SuperC’s C
parser relies on semantic actions to update the symbol table when
encountering C declarations and when entering and leaving the
scope of functions, loops, etc. When forking, the engine makes a
shallow copy of the context, leaving the symbol table untouched.
When merging, the engine simply throws one of the contexts away,
since it also makes sure to only merge subparsers in the same C
language scope. Finally, when recognizing names that are ambigu-
ously defined, it forks subparsers, thus ensuring that SuperC’s C
parser correctly handles this final complication introduced in Sec-
tion 2.

We plan to refactor the current implementation, creating a plug-
in interface for context management comparable to SuperC’s exist-
ing plug-in interface for semantic actions. Developers, again, will
implement their own plug-in class and then configure the parsing
engine with their code. As in the current implementation, each sub-
parser will reference the context, which is available to semantic ac-
tions. Furthermore, to support forking and merging of subparsers,
the plug-in interface will contain four callbacks: (1) fork context
to fork the current parser context, (2) merge contexts to merge con-
texts again, (3) may merge to determine whether two contexts allow
merging, and (4) should fork to determine whether the current con-
text requires forking, even if the subparser is not at the beginning of
a conditional. These callbacks will then be automatically invoked
by SuperC’s parsing engine, thus providing a general solution for
recognizing context-sensitive languages.

Total C Files Headers
SLoC 7,916,995 85% 15%
All Directives 747,856 37% 63%
#define 520,054 19% 81%
#if, #ifdef, #ifndef 47,205 64% 36%
#include 129,291 88% 12%

Table 3. Preprocessor directives in the x86 Linux kernel source as
compared to source lines of code.

5. Evaluation
This work’s primary goal is to develop a general solution for pars-
ing C with arbitrary preprocessor usage. To evaluate how well our
work meets this goal, we consider two main factors. First, we em-
pirically characterize the extent of preprocessor usage in the x86
Linux kernel. The objective is to provide quantitative evidence for
preprocessor usage being extensive and complex—in addition to
the anecdotal evidence already provided in previous sections. Sec-
ond, we empirically evaluate SuperC’s handling of the x86 Linux
kernel. The objective is to provide experimental validation of Su-
perC’s functionality. Notably, this entails quantifying SuperC’s
performance, while also comparing it to TypeChef’s.

The focus of our study is the x86 Linux kernel because the ker-
nel (a) is large and complex, (b) has many developers with different
coding styles and skills, and (c) needs to meet considerable flexibil-
ity and performance requirements. Consequently, we expect Linux
to provide us with a cornucopia of use cases for preprocessor and
language interactions. In evaluating the x86 Linux kernel, we first
present a brief static analysis of the source code as written, which
reflects a developer’s view of preprocessor usage. We follow with
a more detailed dynamic analysis of preprocessor behavior, which
reflects a tool’s view of preprocessor usage. To this end, we utilize
an instrumented version of SuperC and the latest stable version
of the x86 Linux kernel (2.6.39.2). In evaluating SuperC, we fo-
cus on characterizing performance, since it implicitly validates its
functionality. To ensure a fair comparison with TypeChef, this part
of our evaluation relies on a slightly older version of the x86 Linux
kernel (2.6.33.3); it is included with TypeChef’s source distribution
and has been manually prepared for processing by that tool.

In summary, our experimental evaluation demonstrates that
(1) the x86 Linux kernel indeed makes extensive use of the pre-
processor, with many of its features interacting with each other,
and (2) SuperC shows reasonable performance, while TypeChef is
not only slower but also has worse scalability.

5.1 Preprocessor Use in the x86 Linux Kernel
The Linux kernel can be configured to run across a wide range of
operating conditions with conflicting requirements, ranging from
embedded devices such as smartphones to massive server farms for
cloud computing. The preprocessor plays a crucial role in enabling
this flexibility. It provides concision, adds expressiveness to C,
abstracts over hardware and compilation environment, and enables
optimizations even when the compiler does not (e.g., inlining).

To capture the developers’ view of preprocessor usage, we
counted preprocessor directives in x86 Linux source files. Table 3
shows the results of this static analysis. It reports the total source
lines of code (SLoC), the total number of preprocessor directives,
and the number of macro definitions, conditionals, and includes,
respectively. For each category, the table shows the absolute num-
ber and the fraction found in C files (.c) as well as header files
(.h). Nearly 10% of all x86 Linux SLoC are preprocessor direc-
tives, a fairly substantial portion of the sources. Furthermore, most
preprocessor invocations (63%) are found in header files. Header

Header Name # C Files
include/linux/module.h 5,429
include/linux/slab.h 4,973
include/linux/init.h 4,044
include/linux/kernel.h 3,806
include/linux/delay.h 2,396
include/linux/interrupt.h 1,788
include/linux/errno.h 1,637
include/linux/types.h 1,584
include/linux/string.h 1,343
include/linux/platform device.h 1,197

Table 4. The ten most commonly included x86 Linux header files.

files, in turn, may include other header files (12% of all inclusions),
resulting in long chains of dependencies. This result is not sur-
prising, as C programming custom encourages placing common
definitions into header files, i.e., use them as a poor man’s module
system. Table 4 corroborates our expectation by showing the ten
most frequently included x86 header files. module.h is included
in nearly half of all compilation units! Also consistent with expec-
tation, header files provide most macro definitions (81%). At the
same time, it is hard to statically count macro invocations. Macro
invocations usually are in other files than their definitions. Macro
invocations have the same basic appearance as regular C identifiers
and function calls. And macro invocations may be nested within
each other. In contrast, dynamic analysis can easily capture such
invocations.

To capture a tool’s view of preprocessor usage, we instrumented
SuperC to count individual preprocessor operations and their in-
teractions. Table 5 shows the results of this dynamic analysis; the
table’s organization loosely follows the summary of challenges in
Table 1. Each row represents a preprocessor or C language fea-
ture, and each column shows the statistics for the feature and its
interactions. Table entries characterize the distribution across .c
files, i.e., full compilation units, with three percentiles: 50th · 90th
· 100th. The data confirms that preprocessor usage is pervasive,
and it demonstrates that many complications outlined in Section 2
do, in fact, occur. The most common complications are (1) nested
macro invocations, (2) hoisting of conditionals, and (3) condition-
als in C constructs. By comparison, computed includes are exceed-
ingly rare and ambiguously-defined typedef names do not occur,
likely because they lead to very confusing source code.

First, nested macro invocations, arising from macros appearing
in other macros, are the most common complication. Furthermore,
a comparison of the 50th percentile of total macro invocations (68k)
with nested macro invocations (51k), both across all configurations,
shows that most macros are invoked from within other macros. This
makes it hard to statically analyze macro invocations, especially
since macros, which look like C identifiers and function calls, may
expand to entirely different C constructs. Second, hoisting is es-
pecially common for stringification, i.e., when a stringification ar-
gument is a conditional. Stringification is often used for optional
debugging and tracing output, which likely explains why stringifi-
cation hoisting occurs so often.

As shown in Table 5, compilation units contain thousands of
conditionals. This raises the question of whether recognizing C
code across conditionals is even feasible. Two factors determine
feasibility: (1) the breadth of conditionals, which forces the fork-
ing of parser states, and (2) the incidence of partial C constructs
in conditionals, which prevents the merging of parser states. The
number of subparsers per iteration of FMLR’s main loop (lines 3–
27 in Figure 1) precisely captures the combined effect of these two
factors. Consequently, Figure 8 shows the cumulative distribution

Total Interaction with Conditionals Other Interactions
Macro Definitions 29k · 41k · 102k contained in 28k · 41k · 102k redefinitions 307 · 462 · 3,360

Macro Invocation 68k · 96k · 251k trimmed 10k · 15k · 39k nested invocation 51k · 72k · 186k
hoisted 88 · 162 · 718 built-in macros 134

Token Pasting 3k · 4k · 24k hoisted 0 · 0 · 35

Stringification 5k · 8k · 20k hoisted 713 · 1,141 · 3,190

File Inclusion 3k · 5k · 12k hoisted 27 · 45 · 90 reincluded headers 735 · 1,298 · 4,138

Conditionals 7k · 10k · 25k hoisted 120 · 162 · 419 non-boolean 12k · 16k · 25k
max depth 29 · 33 · 42 subexpressions

Error Directives 32 · 44 · 131

C Statements & 53k · 73k · 181k FMLR See Figure 8
Declarations

Typedef Names 687 · 966 · 2,595 ambiguously-defined 0 · 0 · 0
typedef names

Table 5. A dynamic analysis of preprocessor operations and interactions. Entries show the per-file distribution at three percentiles: 50th ·
90th · 100th.

0

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40

P
e
rc

e
n

ti
le

Subparsers

Maximum

Subparsers

is 40

Figure 8. The number of subparsers used while parsing the x86
Linux kernel as a cumulative distribution of parser loop iterations.

of subparsers for the x86 Linux kernel—but not per .c file, as the
other data in this section, but per iteration of FMLR’s main loop.
While FMLR needs a maximum of 40 subparsers, the parsing en-
gine rarely uses more than 10 subparsers, the 99th percentile. Con-
sidering the potential for exponential parser state explosion, this
result is extremely encouraging. It demonstrates that recognizing C
code across all conditionals is practical, even for a system as large
and flexible as Linux.

5.2 Performance of SuperC and TypeChef
To evaluate SuperC, we compare our tool’s performance with that
of TypeChef when processing Linux. To ensure a fair comparison,
we reuse TypeChef’s testing framework, included with its open
source release, and test case, version 2.6.33.3 of the x86 Linux
kernel, as prepared by its developers. We already validated Su-
perC’s functionality on the latest stable version of the x86 Linux
kernel, when collecting the statistics presented in the previous sub-
section. Since SuperC was performing fine-grained data collection
and reporting, in addition to lexing, preprocessing, and parsing ker-
nel sources, we do not report performance numbers for that version
of the kernel.

To run either SuperC or TypeChef, some preconfiguration is
necessary. As already discussed in Section 2, both tools need to be
configured with the targeted compiler’s built-in object-like macros.
In addition, TypeChef’s testing harness preconfigures parts of the
kernel to limits its variability. It includes over 300 manually prede-
fined macros. 30 of these provide values for non-boolean macros
and 2 of these replace such macros with multiply-defined boolean
equivalents; this is necessary, since TypeChef’s support for non-

Per-File Centile (Sec.)
50th 90th 100th Total (Hrs.)

SuperC 5.8 6.6 14.2 12.4
TypeChef 17.9 26.5 652.2 45.3

Table 6. Comparison of SuperC and TypeChef’s per-file latency
for the x86 Linux kernel with 7,665 C files.

0

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40

P
e
rc

e
n
ti
le

Seconds

TypeChef
SuperC

TypeChef’s

Maximum

is 652.2

SuperC’s

Maximum

is 14.2

Seconds SuperC TypeChef

0

5

10

15

20

25

30

35

40

0 0

0.00443575 0.00287019

0.00704501 0.00417482

0.00782779 0.00626223

0.00821918 0.00678408

0.0101761 0.00769733

0.0117417 0.00795825

0.0117417 0.00821918

0.0125245 0.00821918

0.0241357 0.00834964

0.0816699 0.00834964

0.32955 0.00874103

0.662361 0.00900196

0.883105 0.00939335

0.920939 0.0101761

0.944553 0.0114808

0.973516 0.0116112

0.991389 0.0116112

0.997652 0.0116112

0.998174 0.0118721

0.998956 0.0120026

0.999087 0.0146119

0.999478 0.0319635

0.999609 0.0490541

0.999609 0.0739726

0.999609 0.0966732

0.999739 0.125766

0.99987 0.165819

0.99987 0.222962

1 0.26484

1 0.29863

1 0.339074

1 0.383562

1 0.412916

1 0.436008

1 0.469145

1 0.508023

1 0.543509

1 0.570907

1 0.605871

1 0.648402

1 0.691846

1 0.743118

1 0.779256

1 0.803653

1 0.823875

1 0.842401

1 0.858447

1 0.868232

1 0.876321

1 0.883105

1 0.886888

1 0.89302

1 0.899935

1 0.905675

1 0.909459

1 0.911807

1 0.915068

1 0.917417

1 0.918852

1 0.921592

1 0.923288

1 0.926158

1 0.92955

1 0.933464

1 0.9379

1 0.941422

1 0.945466

1 0.950815

1 0.954207

1 0.957469

1 0.961774

1 0.964514

1 0.967776

1 0.969993

1 0.972081

1 0.974429

1 0.975603

1 0.975995

1 0.976647

1 0.976778

Figure 9. Comparison of SuperC and TypeChef’s per-file latency
for the x86 Linux kernel as a cumulative distribution.

boolean macros is incomplete. Furthermore, TypeChef assumes
that only macros with the CONFIG_ prefix may be variable, treating
all other macros (which have neither been predefined nor start with
the prefix) as undefined. For our performance comparison, SuperC
reuses TypeChef’s predefined macros, but otherwise treats all other
macros as variable. For the previous subsection’s experiment, we
made no such predefinitions—with one exception: The x86 Linux
kernel includes a macro, whose integral value is token pasted to
the integer suffix UL when appearing within a C construct. We did
predefine that single macro (and compiler built-ins) for all experi-
ments. As a final preparation step, we manually removed all state-
ments that print debugging information from both tools.

Table 6 summarizes our performance results and Figure 9 plots
the cumulative distribution of per-file latencies. As for our dynamic

analysis of Linux preprocessor usage, we only consider .c files,
i.e., complete compilation units. While TypeChef’s testing harness
spawns a fresh Java virtual machine (JVM) instance for each file,
we do not believe this skews the results. In our measurements with
a no-op program, JVM startup and teardown takes only 0.04 sec-
onds on average. When considering the 50th and 90th percentiles
of per-file latency, both tools perform reasonably well. While Su-
perC is between 3.1 to 4.0 times faster than TypeChef, both tools
show a mostly linear increase in cumulative distribution, which is
consistent with a normal latency distribution. However, the plateau
in TypeChef’s cumulative distribution at about 23 seconds and the
subsequent long tail (up to almost 11 minutes!) indicate pathologi-
cal behavior on a substantial number of compilation units. Type-
Chef’s authors attribute this behavior to files with a large num-
ber of headers being conditionally included, which results in es-
pecially large presence conditions [21]. In contrast, SuperC is not
only faster, but its performance is also consistent: it scales across
the different compilation units and their different preprocessor fea-
ture interactions.

6. Related Work
Our work joins a good many attempts at solving the problem of
parsing C with arbitrary preprocessor usage [1, 3–5, 12, 16, 21, 22,
25, 27, 31, 35]. However, only our own work and TypeChef [21, 22]
provide a conceptually complete solution, even if TypeChef’s im-
plementation does not (yet) handle all complications. Since we al-
ready provided a detailed comparison between SuperC and Type-
Chef in Section 2 and 5, we focus on the other efforts in this section.

Previous, and incomplete, work on recognizing all of C can
be classified into three categories. First are tools, such as Xrefac-
tory [35], that process source code one configuration at a time, after
full preprocessing. This approach is also taken by Apple’s XCode
IDE [7]. However, due to the exponential explosion of the config-
uration space, this is only practical for small source files with little
variability. Second are tools, such as CRefactory [16], that employ
a fixed but incomplete algorithm. This approach is also taken by
the Eclipse CDT IDE [17]. It is good enough—as long as source
code does not contain idioms that break the algorithm, which is a
big if for complex programs such as Linux. Third are tools, such as
Yacfe [27], that provide a plug-in architecture for heuristically rec-
ognizing additional idioms. However, this approach creates an arms
race between tool builders and program developers, who need to
push both preprocessor and C language proper to wring the last bit
of flexibility and performance out of their code—as amply demon-
strated by Ernst et al. [11], Tartler et al. [32], and this paper’s Sec-
tion 5.

Considering parsing more generally, our work is comparable to
efforts that build on the basic parsing formalisms, i.e., LR [24],
LL [29], and PEG [6, 13], and seek to improve expressiveness
and/or performance. Notably, Elkhound [26] explores how to im-
prove the performance of generalized LR (GLR) parsers by falling
back on LALR for unambiguous productions. Both SDF2 [8, 34]
and Rats! [18] explore how to make grammars modular by build-
ing on formalisms that are closed under composition, GLR and
PEG, respectively. Rats! also explores how to speed up PEG im-
plementations, which, by default, memoize intermediate results to
support arbitrary back-tracking with linear performance. Finally,
ANTLR [28] explores how to provide most of the expressivity of
GLR and PEG, but with better performance by supporting variable
look-ahead for LL parsing.

At a finer level of detail, Fork-Merge LR parsing relies on a
DAG of parser stacks, just like Elkhound, but for a substantially
different reason. Elkhound forks its internal state to accept ambigu-
ous grammars, while SuperC forks its internal state to accept am-
biguous inputs. Next, like several other parser generators, SuperC

relies on annotations within the grammar to control AST building.
For instance, ANTLR, JavaCC/JJTree [19], Rats!, SableCC [15],
and SDF2 provide comparable facilities. Finally, many parsers for
C employ an ad-hoc technique for disambiguating typedef names
from other names, termed the “lexer hack” by Roskind [30]. Su-
perC’s context management is currently also hard-coded in the
parser engine; though we plan to refactor the implementation to
provide a more principled solution, similar to that provided by
Rats!.

7. Conclusion
This paper explored how to parse all of C. First, we systematically
explored the challenges posed by interactions between C prepro-
cessor and language proper. Our anecdotal and empirical evidence
from the x86 Linux kernel demonstrates that meeting these chal-
lenges is not just an academic exercise. Linux represents a trea-
sure trove of preprocessor (ab)use. Second, we outlined the func-
tionality of a configuration-preserving preprocessor and presented
a novel parsing algorithm, Fork-Merge LR parsing. The algorithm
recognizes languages with static conditionals appearing between
arbitrary tokens. To this end, it forks subparsers at the beginning
of conditionals and merges them again when reaching the same
state for the same input position. That way, it produces a well-
formed AST, which contains only regular nodes for language con-
structs and static choice nodes for conditionals. Since Fork-Merge
LR parsing incorporates LR parsing as its core, it enables the direct
reuse of existing grammars and parse table generators, including
for recognizing other preprocessed languages. Third, we presented
the SuperC tool, which implements our preprocessing and parsing
techniques, and demonstrated its effectiveness on the x86 Linux
kernel. In summary, forty years after C’s invention, we finally lay
the foundation for efficiently processing all of C.

References
[1] B. Adams, W. de Meuter, H. Tromp, and A. E. Hassan. Can we refactor

conditional compilation into aspects? In Proc. 8th ACM International
Conference on Aspect-Oriented Software Development, pp. 243–254,
Mar. 2009.

[2] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley, 2nd edition, Aug.
2006.

[3] R. L. Akers, I. D. Baxter, M. Mehlich, B. J. Ellis, and K. R. Luecke.
Re-engineering C++ component models via automatic program trans-
formation. In Proc. 12th IEEE Working Conference on Reverse Engi-
neering, pp. 13–22, Nov. 2005.

[4] G. J. Badros and D. Notkin. A framework for preprocessor-aware C
source code analyses. Software: Practice and Experience, 30(8):907–
924, July 2000.

[5] I. D. Baxter and M. Mehlich. Preprocessor conditional removal by
simple partial evaluation. In Proc. 8th IEEE Working Conference on
Reverse Engineering, pp. 281–290, Oct. 2001.

[6] A. Birman and J. D. Ullman. Parsing algorithms with backtrack.
Information and Control, 23(1):1–34, Aug. 1973.

[7] R. Bowdidge. Performance trade-offs implementing refactoring sup-
port for Objective-C. In Proc. 3rd ACM Workshop on Refactoring
Tools, Oct. 2009.

[8] M. Bravenboer and E. Visser. Concrete syntax for objects. In Proc.
2004 ACM Conference on Object-Oriented Programming Systems,
Languages, and Applications, pp. 365–383, Oct. 2004.

[9] R. E. Bryant. Graph-based algorithms for boolean function manipula-
tion. IEEE Transactions on Computers, C-35(8):677–691, Aug. 1986.

[10] F. DeRemer and T. Pennello. Efficient computation of LALR(1)
look-ahead sets. ACM Transactions on Programming Languages and
Systems, 4(4):615–649, Oct. 1982.

http://dx.doi.org/10.1145/1509239.1509274
http://dx.doi.org/10.1145/1509239.1509274
http://doi.ieeecomputersociety.org/10.1109/WCRE.2005.25
http://doi.ieeecomputersociety.org/10.1109/WCRE.2005.25
http://doi.ieeecomputersociety.org/10.1109/WCRE.2001.957833
http://doi.ieeecomputersociety.org/10.1109/WCRE.2001.957833
http://homepage.mac.com/rbowdidge/research_assets/bowdidgeTradeoffs.pdf
http://homepage.mac.com/rbowdidge/research_assets/bowdidgeTradeoffs.pdf
http://doi.acm.org/10.1145/1028976.1029007
http://dx.doi.org/10.1109/TC.1986.1676819
http://dx.doi.org/10.1109/TC.1986.1676819
http://dx.doi.org/10.1145/69622.357187
http://dx.doi.org/10.1145/69622.357187

[11] M. D. Ernst, G. J. Badros, and D. Notkin. An empirical analysis
of C preprocessor use. IEEE Transactions on Software Engineering,
28(12):1146–1170, Dec. 2002.

[12] J.-M. Favre. Understanding-in-the-large. In Proc. 5th IEEE Interna-
tional Workshop on Program Comprehension, pp. 29–38, Mar. 1997.

[13] B. Ford. Parsing expression grammars: A recognition-based syntactic
foundation. In Proc. 31st ACM Symposium on Principles of Program-
ming Languages, pp. 111–122, Jan. 2004.

[14] Free Software Foundation. Bison. http://www.gnu.org/
software/bison/.

[15] É. Gagnon. SableCC, an object-oriented compiler framework. Mas-
ter’s thesis, McGill University, Mar. 1998.

[16] A. Garrido and R. Johnson. Analyzing multiple configurations of a
C program. In Proc. 21st IEEE International Conference on Software
Maintenance, pp. 379–388, Sept. 2005.

[17] E. Graf, G. Zgraggen, and P. Sommerlad. Refactoring support for the
C++ development tooling. In Companion 22nd ACM Conference on
Object-Oriented Programming Systems, Languages, and Applications,
pp. 781–782, Oct. 2007.

[18] R. Grimm. Better extensibility through modular syntax. In Proc. 2006
ACM Conference on Programming Language Design and Implemen-
tation, pp. 38–51, June 2006.

[19] java.net. JJTree reference documentation. http://javacc.java.
net/doc/JJTree.html.

[20] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity
tests means proving circuit lower bounds. In Proc. 35th ACM Sympo-
sium on Theory of Computing, pp. 355–364, June 2003.

[21] C. Kästner, P. G. Giarrusso, and K. Ostermann. Partial preprocessing
C code for variability analysis. In Proc. 5th ACM Workshop on
Variability Modeling of Software-Intensive Systems, pp. 127–136, Jan.
2011.

[22] C. Kästner, P. G. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and
T. Berger. Variability-aware parsing in the presence of lexical macros
and conditional compilation. In Proc. 2011 ACM Conference on
Object-Oriented Programming Systems, Languages, and Applications,
Oct. 2011.

[23] G. Klein, S. Rowe, and R. Décamps. JFlex: The fast scanner generator
for Java. http://jflex.de/.

[24] D. E. Knuth. On the translation of languages from left to right.
Information and Control, 8(6):607–639, Dec. 1965.

[25] B. McCloskey and E. Brewer. ASTEC: A new approach to refactoring
C. In Proc. 10th European Software Engineering Conference, pp. 21–
30, Sept. 2005.

[26] S. McPeak and G. C. Necula. Elkhound: A fast, practical GLR
parser generator. In Proc. 13th International Conference on Compiler
Construction, vol. 2985 of Lecture Notes in Computer Science, pp.
73–88, Mar. 2004.

[27] Y. Padioleau. Parsing C/C++ code without pre-processing. In Proc.
18th International Conference on Compiler Construction, vol. 5501 of
Lecture Notes in Computer Science, pp. 109–125, Mar. 2009.

[28] T. Parr and K. Fisher. LL(*): The foundation of the ANTLR parser
generator. In Proc. 32nd ACM Conference on Programming Language
Design and Implementation, pp. 425–436, June 2011.

[29] D. J. Rosenkrantz and R. E. Stearns. Properties of deterministic
top down grammars. In Proc. 1st ACM Symposium on Theory of
Computing, pp. 165–180, May 1969.

[30] J. Roskind. Parsing C, the last word. The comp.compilers new-
group, Jan. 1992. http://groups.google.com/group/comp.
compilers/msg/c0797b5b668605b4.

[31] D. Spinellis. Global analysis and transformations in preprocessed lan-
guages. IEEE Transactions on Software Engineering, 29(11):1019–
1030, Nov. 2003.

[32] R. Tartler, D. Lohmann, J. Sincero, and W. Schröder-Preikschat. Fea-
ture consistency in compile-time-configurable system software: Fac-
ing the Linux 10,000 feature problem. In Proc. 6th European Confer-
ence on Computer Systems, pp. 47–60, Apr. 2011.

[33] M. Thorup. Equivalence between priority queues and sorting. Journal
of the ACM, 54(6), Dec. 2007.

[34] E. Visser. Syntax Definition for Language Prototyping. PhD thesis,
University of Amsterdam, Sept. 1997.

[35] M. Vittek. Refactoring browser with preprocessor. In Proc. 7th IEEE
European Conference on Software Maintenance and Reengineering,
pp. 101–110, Mar. 2003.

A. The FOLLOW Set

Algorithm 2 Compute the set of regular tokens immediately fol-
lowing a compound token starting a conditional.

1: procedure FOLLOW(a)
2: result← ∅
3: . FIRST assumes well-nested conditionals. Its result
4: . indicates whether to keep on following.
5: procedure FIRST(a)
6: loop
7: if a is a regular token then
8: result← {a} ∪ result
9: return false

10: else if a ends a branch then
11: return true
12: else . a starts a conditional
13: cont← false
14: for all branches b in the conditional do
15: if FIRST(token after one starting b) then
16: cont← true
17: end if
18: end for
19: if conditional has no #else then
20: cont← true
21: end if
22: if not cont then . No branch is empty
23: return false
24: end if
25: a← next token after conditional
26: end if
27: end loop
28: end procedure
29: loop
30: if not FIRST(a) then . Done
31: return result
32: end if
33: . Get next token while stepping out of conditionals
34: repeat
35: if a is a regular token then
36: a← next token in input
37: else . a is a compound token
38: a← next token after conditional
39: end if
40: until a does not end a branch
41: end loop
42: end procedure

http://doi.ieeecomputersociety.org/10.1109/TSE.2002.1158288
http://doi.ieeecomputersociety.org/10.1109/TSE.2002.1158288
http://dx.doi.org/10.1109/WPC.1997.601260
http://doi.acm.org/10.1145/964001.964011
http://doi.acm.org/10.1145/964001.964011
http://www.gnu.org/software/bison/
http://www.gnu.org/software/bison/
http://sablecc.sourceforge.net/downloads/thesis.pdf
http://dx.doi.org/10.1109/ICSM.2005.23
http://dx.doi.org/10.1109/ICSM.2005.23
http://dx.doi.org/10.1145/1297846.1297885
http://dx.doi.org/10.1145/1297846.1297885
http://doi.acm.org/10.1145/1133981.1133987
http://javacc.java.net/doc/JJTree.html
http://javacc.java.net/doc/JJTree.html
http://dx.doi.org/10.1145/780542.780595
http://dx.doi.org/10.1145/780542.780595
http://dx.doi.org/10.1145/1944892.1944908
http://dx.doi.org/10.1145/1944892.1944908
http://jflex.de/
http://dx.doi.org/10.1016/S0019-9958(65)90426-2
http://doi.acm.org/10.1145/1081706.1081712
http://doi.acm.org/10.1145/1081706.1081712
http://www.springerlink.com/content/gdh7lun4rbv1w54m/
http://www.springerlink.com/content/gdh7lun4rbv1w54m/
http://www.springerlink.com/content/gwn8x54521l5021p/
http://dx.doi.org/10.1145/1993498.1993548
http://dx.doi.org/10.1145/1993498.1993548
http://dx.doi.org/10.1145/800169.805431
http://dx.doi.org/10.1145/800169.805431
http://groups.google.com/group/comp.compilers/msg/c0797b5b668605b4
http://groups.google.com/group/comp.compilers/msg/c0797b5b668605b4
http://doi.ieeecomputersociety.org/10.1109/TSE.2003.1245303
http://doi.ieeecomputersociety.org/10.1109/TSE.2003.1245303
http://dx.doi.org/10.1145/1966445.1966451
http://dx.doi.org/10.1145/1966445.1966451
http://dx.doi.org/10.1145/1966445.1966451
http://dx.doi.org/10.1145/1314690.1314692
http://dx.doi.org/10.1109/CSMR.2003.1192417

	Introduction
	Problem and Solution Approach
	The Gory Details

	Fork-Merge LR Parsing
	The Algorithm
	Discussion

	Pragmatics
	Merging Subparsers
	Building Abstract Syntax Trees
	Managing Parser Context

	Evaluation
	Preprocessor Use in the x86 Linux Kernel
	Performance of SuperC and TypeChef

	Related Work
	Conclusion
	The Follow Set

