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Abstract

We define and study a directional derivative for two functions of the spectrum
of an analytic matrix valued function. These are the maximum real part and
the maximum modulus of the spectrum. Results are first obtained for the roots
of polynomials with analytic coefficients by way of Puiseux-Newton series. In
this regard, the primary analytic tool is the so called Puiseux-Newton diagram.
These results are then translated into the context of matrices. Precise results are
obtained when the eigenvalues that achieve the maximum value for the function
under consideration are all either nondefective or nonderogatory. In the defective
derogatory cases a general lower bound for the directional derivative is given
which, in particular, describes those directions in which the directional derivative
attains an infinite value.

1 Introduction

In this study we consider the directional differentiability of two related functions of the
spectrum of an analytic matrix function. Specifically, given an analytic (holomorphic)
matrix valued mapping A(z) from €7 to €"*", we are interested in the directional
differentiability of the functions

a(z) = max{Re A : A € X(z)}, (1)
and
() = max{]\|: X € 5(:)}, 2)

where X(z) is the spectrum of A(z). The functions « and p are called the spectral
abscissa and spectral radius maps, respectively, for the analytic matrix function A(z).
They are key functions in the analysis of various stability properties associated with
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the mapping A(z). Both functions are, in general, nonlipschitzian. Thus nonstandard
techniques are required in the analysis of their variational properties. In order to give
some insight into the problem, let v: €' — C* be analytic and consider the eigenvalues
of A(¢) = A(¥(¢)) near zero. It is well known that these eigenvalues are given by so
called Puiseux series, that is, series in fractional powers of ( with the smallest such
power being greater than or equal to % Our results are a consequence of certain
properties of these series. The derivation of these properties depends on a classical
computational scheme due to Newton [11] known as the Puiseux-Newton diagram.

Our method of analysis requires the introduction of a notion of directional differ-
entiability that depends on analyticity in the following way: For w: (" — R, define
wh(z;): €7 — RU {£o0} by

wh(z;d) = inf 1iminfw’ 3)
vel(z,d) €l0 €
where
F(Z, d) = {y:C — C”|y is analytic 7(0) =z, and 7/(0) = d}. (4)

The superscript A in (3) is used to emphasize that w”(z; d) depends only on the holo-
morphic curves in ¥ that pass through z. This notion of directional differentiability
shares many of the properties of other such notions that have recently been developed
in the literature on nonsmooth analysis [5,9,10,14]. Understanding the relationship
between (3) and these other notions is important for the development of a calculus.
However, we defer the discussion of these issues to a future work. At present we con-
centrate on the evaluation of (3) for the functions « and p.

Let Hg[A] be the set of monic polynomials in A whose coefficients are analytic
mappings from G C €7 to €. If G = €7, we simply write H[A]. Observe that X(z)
is by definition the set of roots of a polynomial in H[A]. For this reason we begin in
Section 2 by studying the properties of o and p when it is assumed that

N(z) = {A € C: P(z,)) = 0}, (5)

where P € H[A]. This approach has its limitations since in general we only obtain a
lower bound on the value of the directional derivative (3). Nonetheless, this lower bound
can be shown to be sharp in certain nondegenerate situations. Let Ag(z) and Ro(z)
denote the elements of X(z) that achieve the maximumvalue in (1) and (2), respectively.
Then, in the context of matrices, the polynomial results are most meaningful when all of
the eigenvalues in either Ag(z) or Ro(z) are nonderogatory, that is, their multiplicity in
both the characteristic and minimal polynomial for A(z) coincide. For a nonderogatory
eigenvalue, the characteristic polynomial contains all of the essential information about
the eigenvalue. This is the case in which our lower bound is most likely to be sharp. The
opposite extreme is when all of the eigenvalues in either Ag(z) or Rg(z) are semisimple
(nondefective), that is, when the multiplicity of these eigenvalues in the characteristic
polynomial is greater than or equal to one and yet their multiplicity in the minimal
polynomial is precisely one. In this case, the characteristic polynomial contains the



least amount of information about the eigenvalues. It is in this latter case that the
lower bounds that we obtain for the directional derivatives are most likely not sharp.
On the other hand, one can precisely evaluate the ordinary directional derivative in
the semisimple case. This is done in [12]. Thus the cases for which precise results are
unknown are those where at least one of the eigenvalues in either Ag(z) or Ro(z) is
both derogatory and defective. Nonetheless, the lower bounds that we establish do
provide a great deal of information about when these directional derivatives attain the
value 4o0.

In the discussion that follows certain statements are sensitive to the domain of the
variable being discussed. Thus, in order to avoid confusion, we obey the following
convention concerning the labeling of the variables (, €, and z: ¢ will always represent
a complex scalar, € a real scalar, and z a vector in C”.

2 Roots of Polynomials with Complex Coefficients

Let P € H[A]. We begin by studying the differential properties of the function ¢ at
2% € C¥ . From [2, pp. 376-381] there exists a neighborhood G of z° in € on which
P has the unique representation

P = H Hi (6)

ARED(29)

where p € Hg[)] for each A, € X(z°). The polynomials yj can be taken to have the
form

(A 2) = (= )™ + e (23— M) e, (2), (7)

where
crj(2°) =0 for j=1,... 1

and t is the multiplicity of the root Ax. We begin with the case in which P has only
a single root Ag, with multiplicity tg, i.e.

P z2)= (A= X)) +ei(2)(A — /\o)t“_1 + e (2), (8)

where
¢j(z°) =0 for j=1,... .

We will return to the general case at the end of this section.

Our first objective is to understand the behavior of g along analytic curves in €%
passing through 2°. Let 4: €' — C” be an analytic curve satisfying v(0) = 2. Compose
each ¢; with v to obtain

P(A,7(€)) = (A= X0) + B1(O(A = Ao)*7H 4+ B4,(() = 0, (9)

a polynomial equation in A with analytic coefficients 5;(¢) = ¢;(v(€)), satisfying

Bi(0)=0,j=1,... t.
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We may write
Bi(¢) = B¢+ B¢+
where, for example,
B =i ). (10)

In the discussion which follows we restrict ¢ to a nontrivial real interval [0, €g] and write
€ in place of { to emphasize this restriction.

As has already been noted, it is well known (e.g. [2], [7]) that the roots of (9) are
described by series in fractional powers of €. These series are commonly called Puiseux
series, since it was Puiseux [13] who established their convergence; however they were
derived formally by Newton two centuries earlier (also see [15, Chapter 1, Section 2]
and [11, page 88] for examples and applications). We obtain the results we need by
making use of a diagram devised by Newton for the purpose of calculating coefficients
of Puiseux series. _

Let ﬁ} = ﬁ]@j) be the first nonzero value in the sequence {ﬁ](»l),ﬁ](»z), ...}. By defi-
nition, £; > 1,j = 1,...,t0. If B;(e) is identically zero, take ¢; = co; also, since the
coefficient of (A — Ag)™® in P(A,€) is one, take £5 = 0, Bo = 1. Now plot the values 4
versus j, and consider the lower boundary of the convex hull of the points plotted. Let
s; be the slope of the line on [j, j + 1] forming part of this boundary, j = 0,...,%; — L.
Clearly 1/ty < sp < s1 < -+ < 84,—1. Figure 1 shows the diagram for the following
example (taken from [2]):

to=3;20 = 0; Bi(e) = € Pale) = —c — €2 Ba(e) = €2 + 2¢6°.

We have ¢y =0, {1 =1, {5 =1, f3:2,and5030:51:%,32:1.



Now consider the following “Ansatz” argument. Suppose a root of (9) is to have
the form

Ale) — Ao =aeP + - - (11)

where a is nonzero and p is the smallest power of ¢ in the expansion for this root.
Substituting (11) into (9), we need

(atu€tup+...) + (31€Z1_|_._.)(atu—IG(tD—l)p_i_.”)_1_.”
+  (Brgor€ot 4 - ) (a€l + )+ (Bt + ) = 0.

The terms involving the smallest powers of € are among the terms
to t 5 to—1 £14(to—1 5 Lig— h ot
aloetor | pratemtehitlto=br 3 gtomite B o (12)

For cancellation to take place, at least two terms with the same smallest power of € must
appear. Equivalently, p must equal one or more of the slopes sg,...,s:,—1 defined by
the Puiseux-Newton diagram. The following discussion will apply to a particular choice
of such p. Define b and g by p = s = ... = sp44—1, so that the line in the diagram
with slope p passes from the point (b,4) to the point (b + g,€34+,). Cancellation of
the coefficients of the terms with the smallest powers of € in (12) requires a to be the
root of a polynomial equation with degree g, with leading term Bb a? and constant term
Bb_w, and with an additional intermediate nonzero term for each point (j, ¢;) lying on
the line in the diagram with slope p, where b < j < b+ g. Now let p = ¢/f, where
q, f are relatively prime integers. By definition, p is an integral multiple of 1/g, so ¢
is an integral multiple of f, say ¢ = mf. It is then clear from the diagram that of
the ¢ — 1 abscissa values j between b and b + g, only every fth value is a candidate
for the intersection of the line with a point with integer coordinates. Consequently the
polynomial of degree g in a reduces to a polynomial of degree m in af, which we may
denote by Q(r). The conclusion is that the given value of p is associated with g roots
with an expansion of the form (11), with a taking the values

rllwi h=1,.. . m, j=1,...f (13)
where the 7, are the m roots of Q(r) =0, r,i/f
the principal fth root of unity.
Completing the example given above, we see that the two values for p are sg = 57 =
%andsz = 1. In the case p = % we have b =0,9 =2,f=2,m =1, with Q(r) =r— 1,
so the possible values for a are £1, giving the Puiseux series

is the principal fth root of r, and w is

Ae) — Ao = He7 4.

In the case p=1we have b =2,g = 1,f = 1,m = 1, with Q(r) = r — 1, so the only
possible value for a is 1, giving the Puiseux series

Ale) —Adg =€+ .



The subsequent terms in the series may also be calculated by repeating the process.
The following result is the key to our analysis. It is a generalization of [3, Theorem 1];

see also [8]. The lemma provides information about the coefficients of (9) when it is

assumed that roots of (9) lie in the half plane Re §y(z— Ag) < 0 infinitely often as € | 0.

Lemma 1 Consider the polynomial equation (9), with roots given by one or more
Puiseur series of the form (11). Let yo € € and suppose that there exists g > 0 such
that all the roots A(e) of (9) satisfy

Re 7o(Ae) — Ao) < be + o(e) (14)
for some sequence {e*} with €* | 0. Then

Re 7o} > ~tod, (15)

Re 785 > 0, m 72" =0, (16)

Y =0, j=3,... 1. (17)

Here (16) is understood to be vacuous ifto = 1.

Proof The coefficient f;(€) is the sum of the differences Ag — A(€) over the roots
A(e) of (9); thus (15) follows from (14), letting ¢ — 0. The other results follow from
the Puiseux-Newton diagram as follows. Consider the Puiseux series corresponding to
p = sg, the smallest possible value. In order for (14) to hold either

i)p>1(eg,if f=1),0r

(i) p= %, f =2, and Re yoré =0 for h = 1,...,m, where the r, are the m roots of
Q(r), with Q(r) taking the form

Qr) =" + BT o BT, (18)

No other cases having p < 1 are possible due to the splitting of the roots as described
in (13). In both cases (i) and (ii), p > %, SO ﬁ](.l) =0 for j = 3,...,t; from the Puiseux-
Newton diagram. In the case p > 1, we also have ﬁ;l) = 0. In the case f = 2, observe

1

that the condition Re y,r7 = 0 is equivalent to the two conditions Re %3r, < 0 and
Im y2r, = 0. Now, since — gl) is the sum of the roots of Q(r), (16) follows. O
We apply this result to the evaluation of a”(2%; d) where a is given by (1) with X(z)
and P defined in (5) and (8), respectively. First observe that we can replace the limit
infimum in (3) by limit since the perturbed roots of the polynomial (9) are given by
Puiseux series of the form (11) for some non-negative rational number p. Therefore,

this limit always exists and can only take the value +co if it is not finite. Consequently,
a(2%):€” — RU {+o0} and is given by

ah(Z'd): inf limw. (19)
’ ~€l(z,d) €l0 €

We now state the main result of this section.



Theorem 2 Let P be given by (8) and choose d € €. If any one of the conditions
Re ch(2°)d > 0, Im ¢4 (2°)d = 0, (20)

(zd=0, j=3,... .t (21)
1s violated, then
a(2%d) = +o0;
otherwise

a(2%d) > —tiRe ) (2%)d . (22)
0

Moreover, if the rank of ¢'(2°) is to, where ¢: €7 +— € is given by

Cto(z)
then equality holds in (22) whenever (20) and (21) are satisfied.

Proof Suppose +o0o > & > a”(2%;d). Then there is a v € I'(2°,d) such that

o 2(3(9) = a(=)
€l0 €

< 6, (23)

or equivalently,
a(vy(e)) — a(2°) < 8¢ for € € 0, €],

for some €y > 0. Let ﬁ](»l) =cj (2%)d for j = 1,2, as in (10). By invoking Lemma
1 with yo = 1, we see that (20) and (21) must be satisfied. Thus, if any one of these
conditions is violated, we must have a®(2%;d) = +c0. By letting 6 | a”(2%;d), we also
obtain from Lemma 1 the inequality

ah(zo; d) > ——Re 6(1).

Let us now suppose that the rank of ¢/(z°) is t;. We need to establish equality in
(22). Clearly, we need only consider the case in which (20) and (21) hold for yo = 1.
In this case, equality follows if we can exhibit a curve v € ['(z°,d) such that

€l0 €

Consider the coefficients of the powers of (A — Ag) in the polynomial

(1) (1) (1)
(= 20) + B0y = da + 1500 + B0 = do — (8000 + B

0 to to



(A= 20)" + B = 20) ™ 4 (8¢ + 0N = Xo) ™ 4 (25)
(/\ — /\0)t0 + UI(C)(/\ — /\o)to_1 + 'UQ(C)(A — Ao)to_z + ... s
where ¢ = v/—1. Note that these coefficients satisfy (16) and (17) with yo = 1. Also
note that if ¥ can be chosen from (4) so that (9) has these coefficients, then (24) is

satisfied for this curve and the proof is complete. We now show that this can indeed
be done.

Define F: €1 — €% by

F(z,() = ¢(z) — v((),

where v: € +— (€' is the curve whose component functions are the coefficients of the
powers of (A — Ag) in the polynomial (25):

0(¢) = [01(¢), v2(C), -, (O = €' (2°)y'(0) + O(¢?), (26)

where the second equality follows from the definition of v. Let I C {1,...,v} be
such that the matrix ¢}(2°) is nonsingular and set J = {1,...,v}\ I. By the implicit
function theorem [6], there is a neighborhood G C € ~**! of ((2°);,0) and an analytic
mapping 7: G — C° such that

F(9(25,¢),25,¢) =0,

for all (z5,¢) € G with

Furthermore,
7' ((2°)7,0) = =7 (%) 5 ("), =" (0)] (27)
Define v: €' +— €% by
77(¢) = (%) +¢dy, (28)
and
71(¢) = 7(72(€), ) (29)

Then for all ¢ sufficiently small ¢(y(¢)) = v(¢). Consequently, with this choice of ¥,
the polynomial (9) is precisely the polynomial (25). Moreover, from (26)-(29) we have

75(0) = ds
and
. d
10 =700 | § | =ar
so that 4/(0) = d. Thus, ¥ € ['(2°,d). This concludes the proof of the theorem. 0

Let us now return to the general case and recall the factorization (6). Our results
in this case follow directly from the special case (8).



Theorem 3 Let a be given by (1) with S and P as defined in (5) and (6), respectively.
Choose d € €. If for some Ay € Ag(2°) = {Ar € B(2%) : Re Ay, = a(2°)} any one of

the conditions

Re chy(2°)d > 0, Im ¢4y(2°)d = 0, (30)
() =0, j=3,... 1, (31)

1s violated, then
a(2%d) = +o0 ; (32)

otherwise,

Re ¢},(2°)d
173
Moreover, if the vectors {cﬁw»(zo) c Ak € A1(2%,d), j=1,..., tx} are linearly indepen-

dent, where

a(2%; d) > max{—

Ak € Ag(20)). (33)

“Re ch1(2%)d

! 0
A, d) = (A € Ap(2) : — Re cjy(27)d
k

2200 e A=),
£

= min{

then equality holds in (33).

Proof The proof is almost identical to that of Theorem 2. The primary difference is
that now all of the roots in Ag(2°) contribute to the value of a”(z%; d). In order to see
this observe that the inequality (23) implies that

Re (A(y(€)) — Ax) < de for € € [0, €] and Ay € Ag(2?),

for some ¢y > 0. Consequently, (33) again follows from Theorem 1.
In order to establish equality in (33), it is again sufficient to exhibit the existence
of a curve y € I'(2°, d) such that

lim a(y(e)) — a(z) — max{— Re ¢,,(2°)d
el0 € tk

DAk € Ao(29)}. (34)

We generate such a curve precisely as in the proof of Theorem 2 except now we must
choose the curve from T'(z°,d) so as to match the coefficients in (25) for each Ay €
A1(2°,d). Just as before, it is the linear independence of the gradients {c},(2°) : A €
A1(2°,d)} which guarantees that this can be done via the implicit function theorem.
Moreover, it is clear that we need only match the coefficients for Ay € A1(2°, d) since
these are the dominant first order terms. 0

3 Eigenvalues of Complex Matrices

Let H[C”,C™*"] denote the set of mappings from € to €C™*™ each of whose compo-
nents is an analytic map from € to €. Let A € H[C?,C™*"]. In this section we again



study the differential properties of the function « given in (1) with the multifunction
Y(z) defined to be the spectrum of A(z), that is, X(z) is given by (5) where

P(A, z) = det[AI — A(2)] (35)

is the characteristic polynomial for A(z). One can now apply the results of the previous
section to obtain differential information about « since P € H[A]. However, by itself,
this result is not completely satisfactory since it does not describe the relationship
between A and the terms cj; (2°)d appearing in (33). In this section we describe this
relationship, making use of results from [3] which in turn depend on work of Arnold
[1]. Since our description depends on the Jordan decomposition of A(®) = A(2%), we
need to introduce the notation necessary for this discussion.

Suppose A(® is a matrix with eigenvalues Ay, . . ., Ap, having (algebraic) multiplici-
ties tq,...,1,, respectively. Let the Jordan form of A be given by

A = g55-1
where
J1
J = ,
Iy
Jr1
Jk = 3
kak
and the Jordan block
A 1
Jr =
1
Ak

has dimension ng;. We have
nk1+"'+nkmk:tk; kzl:ﬂ?

If mp = 1, A is said to be a nonderogatory eigenvalue, while if m; = i, i.e.
Ng1 =+ = Npm, = 1, Ap is said to be semisimple (nondefective).

Definition 4 Define the jth generalized trace of a square matriz A, denoted by
tr(j)A,

as the sum of the elements on the diagonal of A which is j —1 positions below the main
diagonal. Thus one obtains the ordinary trace in the case 5 = 1 and the bottom left
element of the matriz in the case that j is the dimension of the matriz. If j exceeds
the dimension of A, take tr)A = 0.

10



Theorem 5 Let A € H[CY,C"*"] and choose 2° € 7. Suppose that A®) = A(2°)
has Jordan form as described above. Define

0A

(1) _
Ay 324(

O, forq=1,.

Foreachq=1,... v partition S_lA(ql)S conformally with the partition of J and denote
its diagonal block corresponding to Jy by By, k = 1,...,n, with each By having
diagonal blocks Byy; corresponding to Jyi, 1 =1,...,my. Then, fork=1,...,n,

PPy tr0) By
c;cj(zo): , forg=1,... tg, (36)
S ) By

where the functions cy; are as given in (7) for the factorization (6) of P(X,z) =
det[AI — A(2)] at z = 2°.

Proof Let d € €¥ and y € ['(z°,d) and define A = Aoy. Given M € €™*" denote

by My that block of M which conforms to the block Jg; of J. By [3, Theorem 4] we
have

ch;(2°)d = Ztrm STLA(0)S)k
= Ztrm S=LA'(0)dS)
= Ztr@(s-l(quAgU)S)k,
= Zd ZtrU)qu,,
p

for 5 = 1,...,t;. Since this holds for all d € €C*, the result follows. 0

Thus, given the Jordan form of A(2°) together with A’(2°) it is possible to evaluate
a lower bound for a”*(2%; d) by combining Theorems 3 and 5. We do this in the following
corollary.

Corollary 6 Let the assumptions of Theorem 5 hold. If for some A\ € Ag(2°) any
one of the conditions

Re Zd Ztr( )Byer > 0, Im Zd Ztr( )Byw = 0,
g=1 =1 ¢=1 I=1

11



v Mk

> d Y By =0, 5=3,.. t,

¢=1 I=1

1s violated, then

a(2%d) = o0 ; (37)

otherwise,

Re EZ:1 dy 312 tr (VB

(2% d) > max{—

A € ./40(20)} . (38)

173
Moreover, if the vectors
S e Biy
: , for Ay € A1(2°,d) and j=1,... g, (39)
> tr0) B, g

are linearly independent, then equality holds in (38).

It should be observed that if any eigenvalue Ay € A;(2") is derogatory, then the
vectors in (39) cannot be linearly independent. In order to see this note that, for at
least one j between 1 and #j, j exceeds the dimension of all of the blocks Ji; making up
Ji, and hence the corresponding vector is zero. Thus, if A1 (2%, d) contains a derogatory
eigenvalue, then the sufficiency condition of Theorem 3 is not satisfied. In this case,
one should not expect to obtain equality in (33). Indeed, in the case where Ag(z)
contains only semisimple eigenvalues, the resolvent theory for eigenvalue perturbations
yields the following result [7], [12, Lemma 3.5].

Theorem 7 If Aq(z°) contains only semisimple eigenvalues of A(z°), then for every
d € € the ordinary directional derivative o' (2°;d) exists and satisfies

a/(zo; d) — ah(zo; d) — X max Re )“;cl s (40)

ma,
Ar€AQ(20) 1<Ktk
where X, L =1,... 1y are the eigenvalues of EZ:1 dyByr.

Therefore, if n = 1 and A; is semisimple, then the right hand side of (38) is the
average of the real parts of the eigenvalues of 23:1 d,By1, whereas, af(2%;d) is the
mazimum of these quantities.

4 The Spectral Radius

Let us now shift our attention to the study of the function p defined in (2). We study
the differential properties of p in the same manner as we studied these properties for «.
That is, we first consider the case when the spectrum near z° € € is given as the set

12



of roots of a polynomial of the form (8) and then extend this result to the general case.
To this end, consider the directional derivative p”(2°; d) defined by (3). As was the case
for the directional derivative o’*(z;d), the limit infimum in the definition of p"(z%;d)
can be replaced by limit. This is justified in the same way as it was for o”(2%; d), that
is, by considering the splitting behavior of the eigenvalues under perturbation. Thus,
we may write
h , - p((e) — p(2)
id) = f lim———————7—~. 41

p(z;d) seipd , lim ; (41)
where T'(2°,d) is defined in (4), and p"(2%):C” — R U {+oc0}. Continuing as in
Section 2, we begin with the following key result for the case in which (8) holds.

Theorem 8 Let P be given by (8) near 2° € €7 and choose d € €¥. We will consider
two cases: p(2°) = 0 and p(2°) £ 0.

1. Assume that p(z°) = 0 so that Ag = 0. In this case we have

Ll (%], if c}(zo)d =0forj=2 -1,

he 0. t
przd) 2 { —{foo , otherwise. (42)
2. Assume that p(z°) # 0 and consider the conditions
Re Aoch(2°)d > 0, Tm Xgch(2°)d = 0, (43)
h(z)d=0, j=3,... t. (44)
Then
_ 1 (|0 _ Y (.0 .
ph(zo;d) Z { top(z9) “62(2 )dl Re )\061(2’ )d] ’ Zf (43) ‘and (44) hold, (45)
+0o0 , otherwise.

Here it is understood that the function cq is identically zero iftg = 1.

Moreover, if the rank of ¢'(2°) is to, where c: €7 +— €% is given by

then equality holds in (42) or (45) depending on whether p(z°) = 0 or p(2°) # 0 holds,

respectively.

Proof In this proof we will continue to use the notation of Section 2. Let y € I'(2°, d),
set 6](»1) = cg-(zo)’y’(O) = c;»(zo)d for j = 1,2,---,%¢ as in (10), and let A(e) be one of
the roots (11) of (9). Since

IMOI = 1A= 2Re Ao(A(e) — o)+ IA(e) — Aof?, (46)

13



a necessary condition for

be 4 o(e) Z[A(e)] = [Adl, (47)
or equivalently,
26 [Ao| €+ o(e) >\ ()] — Pl (48)
is that _
8 |Ao] € + 0(€) > Re Ag(A(€) — Ag). (49)

It follows from Lemma 1 that if either (16) or (17) with yo = Ao, or equivalently, (43)
or (44), do not hold, then inequality (48) cannot hold for any § € R. Since this is
independent of v € ['(z%,d), p"(2°d) = +co if any one of (43) or (44) are violated
regardless of the value of p(z°).

Let us now suppose that (43) and (44) hold, i.e. (16) and (17) hold with yo = Ag.
Then for every & > p"(2%; d) there is a v € ['(2°, d) such that

lim M < 6, (50)

or equivalently,
p(7(€)) — p(z°) < be for € € [0, o],

for some €y > 0. Therefore, inequalities (48) and (49) are satisfied.
As was observed in Section 2, the roots of the equation (9) are necessarily Puiseux
series of the form (11). Lemma 1 and inequality (49) imply that either

(i) the exponent p is greater than or equal to 1 corresponding to series of the form
A(e) = Ag + ae + o(e),

with @ € ' possibly taking the value zero, or

(ii) the exponent p equals % corresponding to m pairs of roots of the form

M) = Ao = (rre)® + (ax)e + o(e),
where, as with a in (i), @1 takes different values corresponding to different roots.

By summing over all the roots, we find that
1 - -
B =3 "a+ > (ay +a). (51)
Moreover, substituting the expressions for A(e) given in (i) and (ii) into (48) yields
26 |Ao| € > (2Re Aga)e + ofe) (52)

in case (i) and _
26 |Ao| € > (|ra] +2Re Agax )e + o(e€) (53)
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in case (ii). Now summing these inequalities over all the roots gives the inequality

26t |Ao| € > [2 Z |7n] +2Re XO(Z a+ Z(a+ +a-))le+ o(e), (54)

h=1

where the sums without explicit indexing indicates summing over all the roots, while
the factor 2 appearing in the front of 37" | |rj| reflects the fact that there are two
roots for each h = 1,2, .-, m. Now, as explained in Lemma 1,

STl =185 (55)
h=1 h=1

Combining this inequality with (51) and (54) gives
§ ol (1357 —Re Tt + 42, (56)
Letting € | 0, we obtain the inequality
& Pl (1857 ~Re Rap(") (57)

We now consider the two cases p(z°) = 0 and p(z°) # 0 separately. If p(z°) = 0,
then inequality (57) implies that ﬁ;l) = 0. Thus, p"(2%d) = 400 unless ﬁ](l) = 0 for
j=2,---,tg. Furthermore, observe that

A< S MOI< tobe

for all € € [0, €g] where the sum is taken over all branches A(¢). Letting 6 | p"(z%;d)
yields (42). On the other hand, if p(z°) # 0, then (45) follows immediately from (57)
by letting & | p*(2°%; d).

Next, suppose that the rank of ¢/(z°) is ¢o and that (43) and (44) hold (otherwise
equality in either (42) or (45) is trivially satisfied). We will only consider the case
p(2°) # 0 since the case p(z°) = 0 follows in a similar manner. Moreover, in the case

to = 1, we take Bgl) = 0 as usual. Consider the coefficients of the powers of (A — Ag) in
the polynomial

(A= X0) + 06)°2[(A = Ao) + /= BSVeE + 7€l [(A = Ao) — ) —=B5 Ve + 7¢]

= (A= 20)° + B¢ = 20) 4 (BVCH+ O A= )T+, (58)
where o and 7 are defined by the expressions

Ao
Aof?

—1 —
- = K[Iﬁél)l —Re Xo8")]
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and

r= 5[0~ (to — 2]

These coefficients are chosen so that not only are (16) and (17) satisfied with yo = Ao,
but also the expansion of each root satisfies

1

1887 —Re Raptle + o).

I()]=[Aof* +
The proof now follows the argument given in the proof of Theorem 2, that is, one uses
the rank condition and the implicit function theorem to establish the existence of a
curve vy € T'(2°,d) such that (9) has the same coefficients as (58). With this choice of
7 equality holds in (45). O

The main theorem of this section now follows easily from Theorem 8. It is derived
from Theorem 8 in the same way that Theorem 3 was derived from Theorem 2 and so
its proof is omitted.

Theorem 9 Let P have the representation (6) where each py is given by (7), choose
d € €, and define Ro(2°) = {Ar € X(2°) :[Ak|= p(2°)}. We consider the two cases
p(z°) = 0 and p(z°) # 0 separately.

1. Suppose p(z°) = 0 so that Ro(z%) = X(2°) = {A1} and t1 = n. If any one of the
conditions
c’lj(zo)d =0,5=2,...,n,

s violated, then

P d) = +oo; (59)
otherwise,
1
P d) 2 — ey (2] (60)
2. Suppose p(z°) # 0. If for some Mg € Ro(2°) any one of the conditions
Re Xicgﬁ(zo)d >0, Im ch;cz(zo)d =0, (61)
¢ (2°9)d =0, 7=3,.. 1, (62)
s violated, then
(2% d) = 400 ; (63)
otherwise,
p" (2% d) > max{¥(\) : A\x € Ro(2%)}, (64)
where
T(A) = ;Hc’ (2°)d] —Re Aoc),(2°)d]
tkp(zo) k2 0Ck1

with cio understood to be the zero map if tp = 1.
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Moreover, if the vectors {c;cj(zo) t A € R1(2%,d), j=1,... tx} are linearly indepen-
dent, where R1(z°,d) is the set of A, € Ro(z°) such that ¥(A) = max{¥(¢) : £ €
Ro(2%)} when p(2°) # 0 and R1(2°,d) = X(2°) otherwise, then equality holds in (60)
or (64) depending on whether p(z°) = 0 or p(2°) # 0 holds, respectively.

For the case in which P is given by (35) one can apply Theorem 9 in conjunction
with Theorem 5 to directly obtain a result in terms of matrices. But, we again caution
that if any of the eigenvalues Ay € R1(2°, d) is derogatory, then the linear independence
condition used to establish equality in (60) and (64) is not satisfied. Thus, in this case,
one should not expect equality to hold. Indeed, when Rq(2%) contains only semisimple
eigenvalues, we obtain the following result as an immediate consequence of [12, Lemma

3.4].

Theorem 10 Suppose P is given by (35). If Ro(2°) contains only semisimple eigen-
values of A(z°), then for every d € CV the ordinary directional derivative p'(zo;d)
exists and satisfies

MaxgeR,(20) MAX1<i<n, | A% if p(z0) = 0,
pl(zoad):ph(zoad) = —
ﬁ MaXgeR,(-0) Maxi<i<n, Re ApAy,  if p(20) # 0.
(65)
where X, | = 1,...,t are the eigenvalues of Z;Il d, By and the matrices By are

defined in Theorem 5.

Therefore, if, for example, p(z°) # 0, Ro(z°) contains only the single element A;
and A; is semisimple, then the right hand side of (64) is the average of the values
ﬁRe ML, I=1,... 1, whereas p"(2°;d) is the maximum.
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