
Algorithms for Nonlinear Models in

Computational Finance

and their

Object-oriented Implementation

by

Robert Bu�

A dissertation submitted in partial ful�llment of the

requirements for the degree of Doctor of Philosophy

Department of Computer Science

Graduate School of Arts and Sciences

New York University

September 1999

Approved:

Marco Avellaneda

c Robert Bu�

All rights reserved 1999

Acknowledgment

I have traded options only once in my life, almost a decade ago. Having learned about

options from newspaper diagrams that proliferated after the Deutsche Terminb�orse was

set up, my initial investment of 5000 DEM shriveled to 1500 DEM in a matter of days.

A few years ago, I returned to the subject as a computer science student at NYU. To

create risk management tools appealed as a safer road to the holy grail of high �nance,

and one for which I was well equipped, given my experience and education. Having

�nished this thesis, I am encouraged to promise that eventually, I'm going to use the

insight I gained over the last few years to make those 3500 DEM (and some more) back!

I would like to thank my advisor, Prof. Marco Avellaneda, for accepting me as the

�nancial greenhorn I was and guiding me to a stage where I can navigate Wall Street

with con�dence. Besides teaching me the intricacies of UVM and dynamic programming,

Marco has always allowed me to contribute from the perspective of a computer scientist.

I thank Prof. Robert Kohn and Prof. Bud Mishra, Prof. Jonathan Goodman and

Prof. Michael Overton for serving as members of my committee.

I thank Prof. Arthur Goldberg for funding me over the last two years. Readers of the

last chapter of this thesis will notice that our work on Internet performance issues has

inspired the direction of my research quite a bit.

iv

Contents

Acknowledgment iv

1 Introduction 1

1.1 Uncertain Volatility Scenarios and Exotic Options 3

1.2 Volatility Shock Scenarios . 5

1.3 Object-Oriented Implementation . 6

1.4 Client-Server Computing on the Web . 7

1.5 Related Work . 9

1.6 How to Best Read this Thesis . 9

I Computational Finance: Theory 11

2 Notation and Basic De�nitions 12

2.1 Linear Algebra . 12

2.2 Probability and Stochastic Processes . 12

2.3 Portfolios and Partial Portfolios . 13

3 Continuous Time Finance 14

3.1 Deterministic Volatility . 14

3.1.1 One-Factor Black-Scholes Analysis 14

3.1.2 Interest Rate Models . 16

3.2 Stochastic Volatility . 20

3.2.1 Tradable and Nontradable Factors 20

3.2.2 Some Concrete One-dimensional Models 21

4 Scenario-based Evaluation and Uncertainty 25

4.1 Preliminaries . 25

4.2 The Worst-case Volatility Scenario . 28

4.2.1 Worst-case Pricing . 29

4.2.2 The Optimal Hedge Portfolio . 31

4.2.3 Calibration . 32

v

4.3 Scenarios and Nonlinearity . 34

II Algorithms for Nonlinear Models 36

5 A Lattice Framework 37

5.1 Multi-lattice Dynamic Programming . 38

5.1.1 Data Structures . 39

5.1.2 Dataow for Explicit Methods . 40

5.1.3 Dataow for Mixed Explicit/Implicit Methods 40

5.2 Numerical Issues . 41

6 Algorithms for Barrier Options 48

6.1 The Hierarchy of PDEs . 50

6.1.1 Construction . 51

6.1.2 Complexity . 54

6.2 Performance Results . 59

6.2.1 Convergence . 60

6.2.2 Combinatorics . 62

7 Algorithms for American Options 67

7.1 Early Exercise Combinations . 68

7.1.1 Long and Short Positions . 69

7.1.2 Best Worst-case Evaluation Formalized 72

7.2 Speedup Techniques . 82

7.2.1 Maintaining the Corridor of Uncertainty 85

7.2.2 Collapsing the Corridor of Uncertainty 92

7.2.3 Other Issues . 99

7.3 Performance Results . 105

7.3.1 Complexity . 105

7.3.2 A Mass Test . 111

7.4 American Options and Calibration . 121

vi

8 Exotic Volatility Scenarios 122

8.1 Volatility Shocks for Portfolios of Vanilla Options 122

8.1.1 Worst-case Volatility Shocks . 124

8.1.2 Experimental Results . 135

8.2 Volatility Shocks and Exotic Options . 138

III Object-oriented Implementation 145

9 The Architecture of MtgLib 146

9.1 The Class Hierarchy|External . 148

9.1.1 Instruments . 150

9.1.2 Portfolios . 155

9.1.3 Models . 157

9.1.4 Model coeÆcients . 162

9.1.5 Scenarios . 172

9.1.6 Numerical methods . 180

9.1.7 Evaluaters . 193

9.2 The Class Hierarchy|Internal . 196

9.2.1 Compute Engines . 196

9.2.2 Other Groups of Classes . 207

10 Towards Web-based Applications 209

10.1 Example 1: a Client/Server UVM Pricer 209

10.2 Example 2: Remote Calibration Sketched 215

10.2.1 Theoretical Foundations . 215

10.2.2 Extensions to MtgLib . 217

10.2.3 Architecture . 219

11 Conclusion 227

Bibliography 228

vii

List of Figures

1.1 Our achievements and vision in a nutshell 3

1.2 Progressing from a general view on evaluation to the concrete method for

the concrete model . 7

4.1 Both scenario and portfolio are required components when model coeÆ-

cients are instantiated . 26

4.2 Scenario and portfolio components for worst-case volatility scenarios . . . 28

5.1 The �nal payo� with and without the barrier option 38

5.2 Dataow for explicit one-level �nite di�erencing in the continuation region 41

5.3 Dataow for mixed explicit/implicit one-level �nite di�erencing in the con-

tinuation region . 42

5.4 Discretizing space while preserving the von Neumann condition 44

5.5 The explicit forward Euler scheme to compute the worst-case value 45

6.1 Two paths taken by the underlying asset, with one path crossing the barrier 49

6.2 A portfolio consisting of four options and its upper and lower extensions . 52

6.3 The extension hierarchy created by a portfolio of four options 53

6.4 Finding the extension hierarchy amounts to computing a closure 54

6.5 Solving the worst-case pricing problem requires solving subordinate worst-

case problems in the right order . 55

6.6 A portfolio consisting of four double-barrier options 56

6.7 The extension hierarchy created by a portfolio of four double-barrier options 57

6.8 The induction case for the upper bound for the extension hierarchy 58

6.9 Prices for a double barrier call option . 61

6.10 A portfolio of four down-and-out 30-day at-the-money puts 62

6.11 Results for a portfolio of four down-and-out at-the-money puts 63

6.12 A portfolio of two 30-day barrier options and four 30-day vanilla options . 64

6.13 Worst-case prices for a double-barrier option, a single-barrier option and

three traded vanillas . 65

6.14 A portfolio of four down-and-out 30-day at-the-money puts and four up-

and-out 30-day at-the-money calls . 65

6.15 Running times for various combinations of down-and-out and up-and-out

barrier options . 66

viii

6.16 Running times for various combinations of single-barrier options 66

7.1 The combinatorial post-processor selects a suitable early exercise combi-

nation . 69

7.2 Row maxima and the best worst-case value 72

7.3 An illustration of the local �xation of early exercise 74

7.4 The algorithm to track the best worst-case process on the lattice 83

7.5 Non-overlapping and overlapping corridors of uncertainty (conceptual) . . 85

7.6 A generic algorithm that exploits corridors of uncertainty 86

7.7 A concrete method to compute corridors of uncertainty 90

7.8 Non-overlapping and overlapping corridors of uncertainty (concrete) . . . 91

7.9 A heuristic: collapsing corridors of uncertainty 99

7.10 An example of the domino e�ect . 101

7.11 Early exercise combinations for six American options, three long and three

short . 104

7.12 Prices for a portfolio of three American 30-day puts 106

7.13 Running times in seconds for the three 30-day American puts 107

7.14 A schematic view of the corridors of uncertainty for the three American puts108

7.15 Running times for portfolios with a varying number of 30-day American

puts under three volatility scenarios . 109

7.16 Running times in previous �gure, graphically 110

7.17 A random portfolio space . 112

7.18 The evaluation space: 7200 evaluations lead to statistical data on perfor-

mance . 114

7.19 The running time if corridors of uncertainty are maintained 114

7.20 The relative discrepency if the number of time steps is doubled 115

7.21 Mean and standard deviation of the running time if corridors of uncertainty

are collapsed . 116

7.22 The data in previous �gure, graphically 117

7.23 Mean and standard deviation of the relative deviation from the benchmark

if corridors of uncertainty are collapsed . 118

7.24 Frequency with which the relative error stays within 0%, 1% and 5% of

the benchmark . 119

ix

7.25 Four cases in in which the relative deviation from the benchmark result

exceeds 50% . 120

7.26 High oscillation of the best worst-case value of an outlier portfolio 121

8.1 Three paths hit the volatility shock front 125

8.2 Four lattice instances are needed to solve a volatility shock scenario with

shock duration 4, periodicity 2 and frequency 1 128

8.3 The hierarchy of lattice instances for general shock frequency 130

8.4 The algorithm to create all required lattice instances for a given volatility

shock scenario . 131

8.5 Phase-1 algorithm, applied to all lattice instances 133

8.6 Phase-2 algorithm, applied to all conventional lattice instances 134

8.7 A buttery spread consting of four call options 135

8.8 The buttery spread priced under three volatility scenarios 136

8.9 The shock front unveiled . 137

8.10 Running times, number of lattice instances and worst-case volatility-shock

values as a function of the shock frequency 140

8.11 Worst-case volatility-shock values for the buttery spread 141

8.12 The top-level shock front unveiled for f = 2; 3; 4 142

8.13 Worst-case prices for a call spread under the shock-volatility scenarios d =

3, p = 1 and f = 1; 2; 3 . 143

8.14 Horizontal and vertical relationships between consolidating and conven-

tional lattice instances . 143

8.15 A volatility shock scenario with f = 2 for a portfolio containing some

exotic options . 144

9.1 The components MtgSvr, MtgLib, MtgClt and MtgMath 146

9.2 An example script understood by MtgSvr 149

9.3 The hierarchy of instrument classes . 150

9.4 A crude sketch of the class de�nition of tClaim 151

9.5 The de�nition of abstract class tCashflow 154

9.6 The de�nition of tCustomClaim . 156

9.7 A very condensed de�nition of tPortfolio 157

9.8 The model hierarchy . 158

x

9.9 The fundamental members of the class tModel 159

9.10 The class tBSModel . 161

9.11 A sketch of the member function tBSModel::createSpace() 163

9.12 The member function tBSModel::createEngine() 164

9.13 Classes for model coeÆcients . 165

9.14 The skeleton of class tTermStruct . 167

9.15 The child class tSqTermStruct . 169

9.16 Class tDrift is an abstract interface for drift coeÆcients 170

9.17 Class tVol is an abstract interface for volatility coeÆcients 171

9.18 Piece-wise linear drift coeÆcients are of type tStepDrift 173

9.19 Piece-wise linear (uncertain) volatility coeÆcients are of type tStepVol . 174

9.20 Scenario classes . 175

9.21 The de�nition of the abstract class tScenario 176

9.22 tWorstCase instantiates the member functions of tScenario 179

9.23 The body of the function tWorstCase::selectVol() 180

9.24 The body of the function tWorstCase::endureOver() 181

9.25 An outline of the function refineExPolicy() of class tWorstCase 182

9.26 The class tShockScenariomerely adds the parameters of a volatility shock

scenario . 183

9.27 The collection of classes that work together to support lattice-based eval-

uation . 184

9.28 The class tLattice de�nes the layout of the lattice 185

9.29 A very condensed summary of class tLatticeInstance 187

9.30 The class hierarchy for �nite di�erence solvers 190

9.31 Some of the features of tOFSolver . 191

9.32 The class tGeoSolver expands the stub class tProcessParamsStub 193

9.33 Actual solvers belong either to class tGeoExplicit or tGeoImplicit . . . 194

9.34 Evaluaters know about all the objects that make up a particular pricing

problem . 195

9.35 The hierarchy of compute engines . 197

9.36 The abstract base class tEngine performs some preparation and cleanup

tasks before and after evaluation . 199

xi

9.37 A small part of the de�nition of tFDEngine 201

9.38 A schematized listing of the central control loop in the function run() of

class tFDEngine . 202

9.39 The class tOFEngine: a compute engine for one-factor models 203

9.40 The class tGeoEngine prepares the model coeÆcients for tOFEngine and

tGeoSolver . 206

9.41 The class tShockEngine and some of its members 206

10.1 The architecture of MtgClt/MtgSvr . 210

10.2 A European call option, evaluated with di�erent dt 212

10.3 A customized 90-day down-and-out put 213

10.4 The same put evaluated under a worst case scenario 214

10.5 Extensions to MtgLib . 217

10.6 The architecture of MtgCal . 220

10.7 The top half of the HTML form for MtgCal 222

10.8 The bottom half of the HTML form for MtgCal 223

10.9 The top half of the HTML result page after calibration 224

10.10The bottom half of the result page . 225

10.11The calibration result can be used to calulate rates 226

xii

1 Introduction

This thesis tries to pioneer some unexplored aspects in computational �nance. Com-

putational �nance is rapidly gaining reputation as a �eld worthy of dedicated research.

Although far from maturity, it may one day complement the established league of �nancial

economics, corporate, mathematical and statistical �nance as equal partner.

There are some institutional activities that try to advance computational �nance as

a �eld in its own right. Publications such as the \Journal of Computational Finance"

or the \Journal of Computational Intelligence in Finance" encourage research that uses

computational techniques. Topics range from numerical methods to neural networks to

genetic algorithms. Some academic places o�er graduate programs in computational

�nance, based on a mixture of �nance, mathematics and computer science courses.

Then, of course, there is the vast collection of books on standard derivative pricing

models that, to a more or lesser degree, contain recipes on how these models are imple-

mented on a computer. In virtually all cases, instructions are kept on a very high level,

or actual programs are rudimentary and isolated solutions.

In this thesis, we attempt to combine results in mathematical �nance with object-

oriented software-development techniques. The goal is to create a program that solves

the particular �nancial problem that we have posed ourselves, is extensible, durable, and

capable of forming the base of an industrial-strength product.

These features make it necessary to create a shell of supporting software �rst. The

mathematically sophisticated code that tackles the particular pricing problem must be

inserted into this shell. The shell, in fact, turns out to be rather large|81500 lines of

C++ code and 11500 of Java code have been written altogether for this thesis, of which,

for instance, only 2800 deal with the combinatorial structure of the pricing problem (these

2800 lines do not contain numerical code).

Large programs are best developed through modularization. The unit of modular-

ization under the object-oriented approach is the class|an abstract data type that may

inherit properties from super or parent classes and defer the instantiation of properties

to child or sub classes. The �nal application ideally consists of a forest of shallow class

hierarchies. Our code contains classes and class hierarchies for entities that have direct

�nancial signi�cance (instruments, portfolios, models, scenarios), classes that support

certain mathematical methods (lattices, �nite di�erence solvers, path spaces, optimiz-

1

ers), classes that control the evaluation loop (compute engines and evaluaters), scripting

classes (parser, scanner, script sources, expressions), system classes (sockets, pipes, ser-

vices), and many others. Altogether, there are about 135 classes in our code.

In the following pages we report on our concrete achievements, and hope to induce

the reader to participate in our vision. Our achievements are two-fold:

1. We have solved the worst-case pricing problem for path-dependent options such as

barrier or American options under uncertain volatility assumptions. We have also

added a new type of uncertain volatility scenario: volatility shock scenarios allow a

�xed number of limited-duration volatility oscillations of high amplitude.

2. We have done so by creating a software environment that is thoroughly modular,

object-oriented, and extensible. Combinatorial and numerical algorithms are sepa-

rated and orthogonal. The system is downwards-compatible without performance

loss (i.e., it solves the plain Black-Scholes PDE without performance penalty). It

is upwards-compatible in the sense that extensions to the system are indeed exten-

sions|they don't require an overhaul of the existing code (this has been proven

experimentally when we added Monte Carlo optimization methods).

Our vision has two aspects as well:

1. The worst-case pricing problem for path-dependent options is only one case among

many that require combinatorial and numerical methods for their solution. In

this singular example, the combinatorial aspect dominates the running time and

therefore justi�es the search for eÆcient algorithmic techniques. In general, we think

the convergence of numerical methods and discrete algorithms promises interesting

research directions and practical applications that bene�t the �nancial community.

2. The evaluation of portfolios does not occur in a vacuum. Data needs to ow in

from somewhere, and prices, curves, or calibrated surfaces need to be propagated.

The problems we are investigating require considerable computing resources. For

that reason, a client-server approach is very attractive: the client speci�es the

concrete pricing problem and supplies some of the data, and the high-powered

server computes the answer, possibly augmenting the data with pre-fabricated data

that resides on the server (such as a calibrated volatility surface, for instance).

2

We have started to explore this architecture through Java- and HTML-based client

frontends and server backends that receive requests via TCP or CGI. Ultimately, we

envision a centralized site that o�ers a variety of pricing, hedging and calibration

services that are based on novel techniques such as those presented in this thesis.

For the reader in a hurry, Fig. 1.1 summarizes the microscopic and macroscopic aspects

of our achievements and vision in a nutshell.

The overview on the next few pages describes and motivates our interest in the algo-

rithmic and architectural topics in this thesis.

1.1 Uncertain Volatility Scenarios and Exotic Options

It is widely accepted that the assumption of constant volatility in �nancial models (such

as the original Black-Scholes model) and derivatives prices observed in the market are

incompatible. There are several ways to �x this de�ciency: prescribed heterogeneous

yet deterministic volatility models, stochastic volatility models, or the calibration of a

volatility surface to market prices are common approaches.

Strongly related to �nding the right method of modeling volatility is the problem to

measure the exposure of the options portfolio under investigation to volatility risk; how

does the model value of the portfolio change if the volatility is perturbed a little?

Uncertain volatility models attack both problems: they select a concrete volatility

surface among a candidate set of volatility surfaces, and they answer the sensitivity

question by computing an upper bound that the value of the portfolio can take under any

achievement vision

uncertain volatility models discrete algorithms

microscopic for barrier and dominate

American options numerical methods

macroscopic scalable, object-oriented Web-computing for �nance

software solution takes o�

Figure 1.1: Our achievements and vision in a nutshell

3

candidate volatility. (By inverting the position, a lower bound can be computed as well.)

This is achieved by choosing the local volatility �(St; t) among two extremal values �min

and �max such that the value of the portfolio is maximized locally.

Uncertain volatility scenarios generalize this approach: given a model that exhibits

uncertainty in some of its coeÆcients (the volatility, in particular), instantiate those

uncertain coeÆcients such that some objective is ful�lled. This objective is called a

scenario.

The original uncertain volatility model by Avellaneda and Par�as (1995) is a worst-case

scenario for the sell-side. By maximizing the portfolio value and charging accordingly,

sellers are guaranteed coverage against adverse market behavior if the realized volatility

belongs to the candidate set. Worst-case prices are nonlinear, due to diversi�cation of

volatility risk and \gamma-risk." Worst-case evaluation is based on a nonlinear Hamilton-

Jacobi-Bellman equation that generalizes Black-Scholes by adjusting the local volatility,

or conditional variance, to the local gamma.

The worst-case volatility scenario (our notion) has been implemented for portfolios

of vanilla options, for which the Hamilton-Jacobi-Bellman equation is straightforward to

implement on a computer. An extension that hedges a portfolio of vanilla options with

liquidly traded market benchmarks is presented in Avellaneda and Par�as (1996).

The computational overhead, however, grows quite dramatically once path-dependent

options, such as barrier or American options, are added to the portfolio. The worst-case

volatility scenario from today's perspective of a portfolio containing an American option,

for instance, depends on whether the option is exercised today or not (for simplicity,

assume the option can be exercised only at �nitely many times). A worst-case pricer

must compare

� the worst-case price of the portfolio under the assumption that the American option

is exercised tomorrow at the earliest;

� the worst-case price of the portfolio minus the American option, plus the cashow

received or paid immediately from early exercise.

The pricer then must select the early exercise strategy that �ts the worst-case assumption.

As the number of American options in the portfolio increases, the number of di�erent

early exercise strategies that must be invesigated increases potentially exponentially, as

4

nonlinearity forces the pricer to consider all relevant combinations. This leads to a hier-

archy of interdependent PDE's, each solving a Hamilton-Jacobi-Bellman problem.

In this thesis, we solve the pricing problem for portfolios containing barrier and Amer-

ican options, under worst-case volatility scenarios. For barrier options, the computational

complexity can be determined beforehand and is always O(n2), n being the number of

barrier options in the portfolio. For American options, the situation becomes more diÆ-

cult since

� the early exercise boundaries are not known a priori: each PDE describes a free

boundary problem, the boundary value being selected locally from a hierarchy of

subordinate PDE's (numerical aspect);

� the pricer must distinguish between long and short positions, as agents can use their

long positions to counter somewhat the worst-case early exercise strategies ascribed

to the investors with whom they have established their short positions. This gives

rise to the notion of best worst-case scenario (combinatorial aspect).

Potentially, up to O(2n) early exercise combinations need to be considered (n being the

number of American options in the portfolio). This, of course, is unacceptably expensive.

We have developed algorithms that reduce the number of combinations tested locally,

but remain correct in the sense that, locally, the best worst-case scenario is always found.

We also present a heuristic which reduces the compute time further, but is no longer

guaranteed to be correct.

1.2 Volatility Shock Scenarios

Worst-case volatility scenarios limit the candidate set to volatilities that oscillate between

two extremal bounds (which may be heterogeneous). The resulting spread between the

worst-case values for the original and inverted position is often unacceptably large. To

narrow the extremal bounds �min and �max is a possible solution, but also makes it

less likely that the volatility realized later indeed observes those bounds. To narrow the

extremal bounds selectively in some places, and leave them unmodi�ed (or even widened)

in others seems a plausible alternative, allowing for periods of relative calm and periods

of volatility shocks with high amplitude.

5

Where on the time axis should those periods of high volatility uctuation be located?

If market events that inuence volatility cannot be foreseen, the exact location of volatility

shocks is diÆcult to determine. The worst-case paradigm comes to rescue: it is the

pricer's task to locate volatility shock periods where they cause the most damage, in a

path-dependent way. Thus, the portfolio is not only maximized over the local volatility,

but also over the location of volatility shock periods.

An example helps to clarify. Suppose the volatility is estimated at 15%. There exists

very likely, we assume, one short period of 3 days during which the volatility may vary

between 15 and 100%. Given some portfolio, what is its worst-case value under the

assumption that the 3-day volatility shock period can start anytime? Its start date may

even be path-dependent: it may start earlier if the stock price moves up, and later if it

moves down.

Volatility shock scenarios can be solved with dynamic programming. We have devel-

oped algorithms that solve volatility shock scenarios for portfolios of vanilla, barrier and

American options. The number f of volatility shock periods is not limited; the overhead

is linear in f (for instance, if there is exactly one volatility shock period of duration one

day, then the slowdown factor compared to the regular worst-case scenario is 3).

Volatility shock scenarios are a useful new member in the arsenal of tools that assess

volatility risk. They furthermore �t neatly into the scenario paradigm introduced above.

1.3 Object-Oriented Implementation

The thesis title promises insight into the actual implementation. We comply by, �rst of all,

giving a name to our creation: Mtg. Mtg consists of modules MtgLib, MtgClt, MtgSvr,

MtgCal and MtgMath, where the latter three are essentially only wrappers around the

C++ class library MtgLib, o�ering di�erent ways to access its features. MtgClt is a Java

frontend to MtgSvr.

MtgLib contains object-oriented code that solves the worst-case volatility and volatil-

ity shock scenarios for vanilla, barrier and American options. Its higher-level combina-

torial classes are geared towards multi-factor models on lattices. Its numerical classes

for �nite di�erence solutions (explicit and mixed implicit/explicit) accept any one-factor

model. MtgLib strictly adheres to the scenario concept.

Figure 1.2 shows how successive re�nement leads from a general view on evaluation

6

all methods

lattice-based

one-factor

Black-Scholes

HHHj

HHHj

HHHj
����

����

����

Figure 1.2: Progressing from a general view on evaluation to the concrete method for the

concrete model. The boxes correspond to classes tEngine, tFDEngine, tOFEngine and

tGeoEngine in MtgLib

to a concrete lattice-based method supporting a one-factor Black-Scholes model. At each

level in the hierarchy, alternative approaches can be spawned o�.

A similar hierarchy can be drawn for scenarios: scenarios in general are re�ned to

worst-case volatility scenarios, which in turn are extended to volatility shock-scenarios.

The choice of the scenario is orthogonal to the choice of the method of evaluation. At

the deepest level, Black-Scholes may be evaluated under either scenario.

In this thesis, we give a broad overview over the categories of classes in MtgLib.

Interfaces are emphasized over implementation details. We hope our exposition proves

that MtgLib is an example of good object-oriented design.

1.4 Client-Server Computing on the Web

Two of our programs are accessible on the World Wide Web:

� MtgSvr is a general-purpose server that accepts requests in a customized scripting

language and returns the result in ASCII format. MtgClt is a Java frontend to

MtgSvr that can be downloaded from our website. It connects to MtgSvr through

7

the TCP protocol. Through MtgSvr, MtgClt handles all cases of exotic options

(barrier, American) and volatility scenarios (worst-case, volatility shock) discussed

in this thesis.

� MtgCal is a calibrator for �xed-income markets. The user speci�es model coef-

�cients and benchmark instruments in an HTML form. After the data has been

submitted through the CGI protocol to MtgCal, calibration is started on the server

and eventually produces a result HTML page, which can then be inspected by the

user.

MtgSvr uses lattice-based numerical methods. MtgSvr demonstrates that the algorithms

proposed in this thesis can be implemented. MtgCal uses Monte Carlo simulation and

minimum-entropy optimization to calibrate. We mention MtgCal and discuss some of its

features to give an idea of the direction in which our work is heading.

Client-server computing based on standard web technology creates a variety of prob-

lems:

� The sandbox and �rewall problem: MtgClt may be unable to connect to the server

via low-level TCP if the security settings in the web-browser are high, or there is a

�rewall between the server and the client (this is the case for most corporate clients

that access our server at NYU). Possible solutions to this problem exist (HTTP

tunneling, the SOCKS protocol), but haven't been explored by us.

� The HTTP protocol is designed for simple request-response transactions. Long-lived

transactions that lead to considerable CPU overhead at the server (like calibration

which might take several minutes to complete) do not �t this paradigm very well.

MtgCal uses a polling mechanism that lets the client detect the �nal result (almost)

as soon as it becomes available, and yet does not go beyond basic HTTP/Javascript

technology.

Other issues are related to security (HTTPS versus HTTP), dissemination of results (the

calibrated surface for subsequent pricing), and the fee structure for such online services. In

summary, we consider web computing for �nance a challenging �eld which will de�nitely

encourage future research here at NYU.

8

1.5 Related Work

Starting point of this thesis is the uncertain volatility model by Avellaneda and Par�as

(1995). Its extension to barrier and American options is, to the best of our knowledge,

original. The volatility shock scenario is a re�nement of the band-approach and also, to

the best of our knowledge, original.

Part I gives an overview over the literature in mathematical and computational �-

nance, as far as it is relevant to our work. Chapter 4 in particular reviews uncertain

volatility models and the notion of scenario-based pricing to which they give rise.

1.6 How to Best Read this Thesis

We summarize the following chapters and try to assess their respective value for readers

of di�erent backgrounds.

Chapter 2 summarizes notation and conventions, most of which are standard or intu-

itive. This chapter can be consulted as need arises.

Chapter 3 gives a short overview over mathematical �nance. The Black-Scholes model

receives the most attention, although interest-rate models such as HJM are also

mentioned. The distinction between deterministic and stochastic volatility is em-

phasized. This chapter can be skipped safely by anyone familiar with the terms.

Chapter 4 reviews the concept of uncertain model coeÆcients and introduces the no-

tion of \scenarios." Pricing, hedging and calibration are briey discussed as three

applications. An understanding of these issues is essential.

Chapter 5 introduces the multi-lattice framework within which our algorithms are de-

veloped. This chapter de�nes notation and key data structures that should not be

missed. It also presents insight into some numerical issues regarding stability in

Sect. 5.2. This section is rather technical and can be skipped at �rst reading (not

by anyone actually implementing our algorithms, though).

Chapter 6 discusses algorithms for scenario-base evaluation of barrier option portfolios.

In particular, it shows how to set up multi-lattice dynamic programming so that

9

the potentially large number of PDE's can be handled. This chapter and the next

describe the key algorithmic achievements of this thesis. Please read them.

Chapter 7 discusses algorithms for scenario-based evaluation of American option port-

folios. Evaluating American options is more complex than evaluating barrier op-

tions, but the same idea of ordering solutions of PDE's hierarchically applies. The

economic implications are discussed in Sect. 7.1.

Chapter 8 describes an extension to worst-case volatility scenarios. The volatility is now

allowed to exhibit short shocks at unpredictable times. This chapter is independent

of Chapters 6 and 7 and can be read immediately after Chapter 5. The style is less

formal.

Chapter 9 gives an overview over the class library MtgLib and has the class declarations

for the core classes. This chapter gives an idea of the architecture of a system that

has the capabilities described in Chapters 6, 7 and 8. Readers can bene�t from

the exposition even if they have not read those chapters. Chapter 9 focuses on the

architecture of MtgLib and is not a tutorial on its use.

Chapter 10 describes some aspects of MtgSvr and MtgCal, our two online applications.

MtgSvr is discussed to demonstrate the feasibility of the algorithms in Chapters 6,

7 and 8. MtgCal is included to show ongoing work and motivate possible future

directions. This chapter is fairly self-contained.

More information on the work presented in this thesis can be obtained by following these

links:

buff@cs.nyu.edu

http://www.courantfinance.cims.nyu.edu

10

Part I

Computational Finance: Theory

11

2 Notation and Basic De�nitions

2.1 Linear Algebra

N denotes the nonnegative integers. R denotes the real numbers. R+ denotes the non-

negative real numbers. R++ denotes the strictly positive real numbers.

Vectors and matrices are typeset in boldface (except when greek symbols are used):

x 2 R
n , A 2 R

n�m . Vectors are interpreted as column vectors: Rn = R
n�1 . In text, they

are quoted in transposed form.

The normal font is used for vector or matrix components: a = (a1; : : : ; an)
T =

(ai j 0 � i � n)T.

The zero vector is denoted by 0. The dot product is written a �b = aTb. If a 2 R
n is

a vector, B = Ia denotes the diagonal matrix B 2 R
n�n with bii = ai and all o�diagonal

elements vanishing. For B 2 R
n�n , the trace of B is the sum of its diagonal elements:

tr (B) =
Pn

i=1 bii.

For x;y 2 R
n , x � y means xi � yi for 1 � i � n. x > y means x � y and there

is at least one j 2 f1; : : : ; ng such that xj > yj . x � y means xi > yi for 1 � i � n

throughout.

2.2 Probability and Stochastic Processes

Let (
;F ; P) be a probability space. A family of �-algebras fFt j t � t0g is called a

�ltration on (
;F) if Ft � Ft0 � F for t0 � t � t0. Here, both t 2 N or t 2 R+

are admissible. (
;F ; fFtg; P) is called a �ltered probability space. It satis�es the usual

conditions if F is P -complete, F0 contains all P -nullsets of F and fFtg is right-continuous.
Let X = fXt j t0 � t � t1g be a stochastic process de�ned on
. If the range of the

index t is clear we write fXtg. If the sample points Xt are random variables in R we write

Xt 2 R. If the sample points Xt are n-vectors of random variables we write Xt 2 R
n .

Given ! 2
, we call fXt(!) j t0 � t � t1g the sample path of the process X on !.

X is called adapted to the �ltration fFtg if the random variable Xt is Ft-measurable
for every t. The �ltration fFX

t g = f�fXs j s � tg j t � t0g is called the natural �ltration

of X. If fFtg = fFX
t g we say that fFtg is generated by X. If a �ltered probability

space (
;F ; fFtg; P) appears without further comments, we assume that (
;F ; fFtg; P)

12

satis�es the usual conditions, and the stochastic process X under consideration generates

fFtg. In particular, we assume F0 = f
; ;g. These de�nitions can be looked up in

Borodin and Salminen (1996) or any textbook on stochastic processes. They apply to

the discrete case (t; t0; t1 2 N) as well as to the continuous case (t; t0; t1 2 R+). In the

discrete case, i, j, k are the preferred index symbols (instead of t, u etc.).

For any event A 2 F , we write P (A) for the probability of A under the measure P .

For any random variable X, we write EP (X) for the expectation of X under the measure

P . If it is clear which measure is meant, we simply write E (X). Two measures P and Q

are equivalent if they have the same nullsets. The indicator random variable for A 2 F
is denoted by 1A.

2.3 Portfolios and Partial Portfolios

Let X be a vector of k random variables (i.e., a portfolio of k contingent claims), and

let � 2 R
k be a position in X. Let M � f1; : : : ; kg, and let i1 < i2 < � � � < in be an

enumeration of the n elements in M . The selection operator on X and � is de�ned as

follows:

select (X;M) = (Xi1 ; : : : ;Xin)
T

select (�;M) = (�i1 ; : : : ; �in)
T

(2.2.1)

A vector Y of k0 � k random variables is called a restriction or partial portfolio

of X, in symbolic notation Y � X, if there is M � f1; : : : ; kg, jM j = k0, such that

Y = select (X;M). Y results by removing some claims from X (possibly none!). The

interpretation of \=" and \<" is obvious.

The de�nition of a restriction or partial position of �0 2 R
k0

is analoguous (in symbolic

notation �0 � �).

We write (Y; �0) � (X; �) if Y � X and �0 � �. In this case we re-use the term

partial portfolio.

13

3 Continuous Time Finance

In this chapter we give a brief survey of continuous time �nance. Since the dominant

state variable in all models is the di�usion coeÆcient|the volatility|of the asset price

process, we categorize models according to the nature of this coeÆcient. Models whose

volatility coeÆcient does not exhibit randomness are treated in Sect. 3.1. Models whose

volatility coeÆcient follows a stochastic process are discussed in Sect. 3.2.

The material presented in this chapter is standard. Uncertainty volatility models, on

which the original work of this dissertation is grounded, are discussed in Chapter 4.

3.1 Deterministic Volatility

Most of our work is based on equity/FX Black-Scholes models. For this reason, Black-

Scholes analysis is reviewed in rather more detail in the �rst half of this section.

In Chapter 10.2 we outline a client/server architecture for model calibration. Since

our prototype calibrates to �xed income data, the second half of this section is dedicated

to the HJM framework and the Vasicek short rate model.

3.1.1 One-Factor Black-Scholes Analysis

There are many ways to derive the Black-Scholes partial di�erential equation. Baxter

and Rennie (1996), DuÆe (1996), Hull (1993) and Wilmott et al. (1993) use the common

approach based on stochastic calculus. Cox and Rubinstein (1985) show that the Black-

Scholes formula can be interpreted as the continuous-time limit of the binomial random

walk model.

Given is a �ltered probability space (
;F ; fFtg; P) and a �nite time horizon T . In

this probability space, let B = fBtg, B0 = 1 be the price process of a riskless asset (B

for bond), and let S = fStg be the security price process:

dBt = rtBt

dSt = St(�t dt+ �t dW)
(3.3.1)

W is a Brownian motion and rt, �t and �t are suÆciently well-behaved functions. Let X

be a nonnegative FT -measurable random variable that represents the payo� structure of

14

a contingent claim on S.

�t =
�t � rt
�t

(3.3.2)

and

�t = exp

�
�
Z t

0
�u dWu � 1

2

Z t

0
�2u du

�
(3.3.3)

de�ne a martingale measure Q equivalent to P via Q(A) = EP (�t1A) for all A 2 F . The
arbitrage-free price � of the contingent claim X is given by

� = EQ (�TX) (3.3.4)

where � = f�tg, �t = 1=BT , is the discount process belonging to B.

In order to compute �, a replicating strategy for X is constructed explicitely. Let

f(St; t) denote the (yet unknown) price of X at time t for security price S1t , with �nal

value f(ST ; T) = X. Let F = fFtg be the associated price process: Ft = f(St; t). Assume

for the moment that f is twice di�erentiable. A partial di�erential equation for f can be

determined as follows.

De�ne the R2 -valued process � = f�tg

�0t = �t(Ft � @

@S
f(St; t)St) and �1t =

@

@S
f(St; t) (3.3.5)

� replicates F and thus X: �0tBt + �1t St = Ft. Now notice that, with Ito's formula,

dFt =

�
@f

@t
+ �tSt

@f

@S
+
1

2
�2t S

2
t

@2f

@S2

�
dt+ �tSt

@f

@S
dWt (3.3.6)

This implies together with the de�nition of � that the instantaneous change of the value

of the portfolio (�0tBt; �
1
t St) is

�0t dBt + �1t dSt =

(�0t �tSt + �1t rtBt)dt+ �1t �tStdWt =

dFt �
�
@f

@t
+
1

2
�2t S

2
t

@2f

@S2
+ rtSt

@f

@S
� rtFt

�
dt =

dFt � � dt

(3.3.7)

where � stands for the term in the brackets.

15

� is self-�nancing only if � = 0, for in this case F becomes the value process corre-

sponding to �, and

Ft � F0 =

Z t

0
�0udBu + �1udSu du (3.3.8)

holds.

It is the condition � = 0 which gives rise to the Black-Scholes partial di�erential

equation

@f

@t
+
1

2
�2t S

2
t

@2f

@S2
+ rtSt

@f

@S
� rtft = 0 (3.3.9)

with boundary condition

f(ST ; T) = X (3.3.10)

Fact 3.1. If there is no arbitrage, then the price function f : (0;1)� [0; T]! R+ for X

satis�es (3.3.9). In this case, (3.3.5) de�nes the replicating trading strategy.

There is an intuitiv economic interpretation of (3.3.9): the di�erence of the return of a

hedged option portfolio (the �rst two terms) and a bank account (the last two terms) must

be zero. The prominent role of the volatility �t in the determination of the arbitrage-free

price for S becomes clear after the derivation of (3.3.9) (�t, on the other hand, can be

"hedged away").

We have f(S0; 0) = � and therefore f(S0; 0) = EQ (�TX). Moreover,

Ft =
1

�t
EQ (�TX j Ft) (3.3.11)

This is sometimes called the probabilistic solution of (3.3.9).

3.1.2 Interest Rate Models

Interest-rate derivatives can in some sense be regarded as a bet on the future cost of

money. The role of the security price process S is played by processes of bond prices,

yields, spot or forward rates, depending on the focus of the model.

16

Terminology

Let (
;F ; fFtg; P) be the underlying �ltered probability space. W = fWtg is an N -

dimensional Brownian motion on it; � a �nite time horizon. In this context, the symbol

T usually denotes the maturity of a bond in the literature. We follow this convention

here, but use T for other purposes in later sections.)

Assume a continuum of discount bonds, one for each maturity T � � . The time t-price

of the bond with maturity T is denoted by P (t; T), with terminal price P (T; T) = 1 (all

bonds are normalized). The instantaneous forward rate at time t for borrowing at time T ,

f(t; T), and the yield|the average implied interest rate|at time t of the bond maturing

at time T , R(t; T), ful�ll

f(t; T) = � @

@T
logP (t; T)

R(t; T) = � logP (t; T)

T � t

(3.3.12)

for all 0 � t < T � � , respectively. Solving for P , one gets

P (t; T) = exp

�
�
Z T

t
f(t; u) du

�
(3.3.13)

The time t instantaneous forward rate, de�ned as

rt = f(t; t) (3.3.14)

is called the spot rate. Note that the spot rate is not suÆcient to recover P (t; T); the

entire forward rate curve is needed.

It is assumed that there exists a cash bond B = fBtg, whose stochastic di�erential

equation is

dBt = rtBtdt (3.3.15)

B is the numeraire. With B0 = 1, the solution of (3.3.15) is

Bt = exp

�Z t

0
ru du

�
(3.3.16)

for 0 � t � � . Again, we de�ne a discount factor �t = 1=Bt.

17

The HJM Model

This no-arbitrage model by Heath et al. (1992) models the evolution of the entire forward

rate curve, starting with a term-structure of interest rates observed in today's market.

Jarrow (1996) is another comprehensive source.

For 0 � T � � , let the R-valued process fT = ffTt g denote the evolution of the time

t forward rate for borrowing at time T : fTt = f(t; T). The dynamics of the fT are

fTt = fT0 +

Z t

0
�Tu (!) du+

NX
i=1

Z t

0
�T iu (!) dW i

u (3.3.17)

for 0 � t � T . Here ffT0 = f(0; T) j 0 � T � �g is a nonrandom initial forward rate

curve, and the R-valued processes �T and �T i (0 � T � � , 1 � i � N) may depend

on !, are adapted to fFtg and satisfy certain continuity, integrability and boundedness

conditions. We will omit the argument ! to enhance readability. (In the literature, fTt is

usually written f(t; T), �Tt is written �(t; T) and �T it is written �i(t; T). In order to be

consistent with our earlier notation, we keep the current time t as a subscript, the index

of the asset as �rst superscript and the index of the source of uncertainty as the second

superscript.)

With (3.3.14) and (3.3.17), the spot rate process can be written as

rt = f t0 +

Z t

0
�tu du+

NX
i=1

Z t

0
�tiu dW

i
u (3.3.18)

Ito's lemma together with some regularity conditions on B show that P (t; T) is the

solution of

dP (t; T) = P (t; T)

"
(rt + bTt)dt+

NX
i=1

aT it dW i
t

#
(3.3.19)

with

aT it = �
Z T

t
�T iu du (1 � i � N)

bTt = �
Z T

t
�Tu du+

1

2

NX
i=1

�
aT it
�2 (3.3.20)

bTt is the excess rate of return of the T -maturity bond at time t. The bond price processes

P (t; T) are not necessarily Markovian!

18

Under no-arbitrage assumptions, it is necessary to �nd an equivalent measure Q which

makes the discounted bond price processes �tP (t; T) martingales, simultaneously for all

0 � T � � . Heath et al. (1992) argue that it is suÆcient to �nd such Q for a \basis" of

N di�erent bonds. It can furthermore be shown that Q, if it exists, is unique and does

not depend on the choice of the basis.

After doing this, the spot rate rt follows the process

rt = f t0 +

NX
i=1

Z t

0
�tiu

Z t

u
�viu dv du+

NX
i=1

Z t

0
�tiu d ~W

i
u (3.3.21)

where ~W is a Q-Brownian motion. In general, rt is path dependent. Note that the drift

� does not appear in (3.3.21).

Given the martingale measure Q, contingent claims X that mature at some time T

are evaluated in standard fashion, with fair price � = EQ (�TX) and value process

Xt =
1

�t
EQ (�TX j Ft) = EQ

�
exp

�
�
Z T

t
ru du

�
X

���� Ft
�

(3.3.22)

In particular,

P (t; T) = EQ

�
exp

�
�
Z T

t
ru du

� ���� Ft
�

(3.3.23)

The Vasicek Short-rate Model

HJM o�ers a general framework that can be instantiated with speci�c drift and volatility

coeÆcients. Vasicek (1977) proposes the one-factor model where the spot rate follows an

Ornstein-Uhlenbeck mean-reverting process under the equivalent martingale measure Q:

drt = (� � � rt)dt+ � d ~Wt (3.3.24)

with constants �, � and �. In terms of HJM, this means

�Tt = �e��(T�t)

fT0 = �=�+ e��T (r0 � �=�)� �2

2�2
(1� e��T)2

(3.3.25)

19

3.2 Stochastic Volatility

Some authors include under the concept of \stochastic volatility" the case where the

coeÆcient �(St; t) of the asset price process

dSt = �(St; t) dt+ �(St; t) dWt (3.3.26)

depends on St. A time and/or space-heterogeneous yet deterministic volatility coeÆcient,

however, merely makes the arithmetic more challenging and often precludes the existence

of a closed-form solution; the argument from replication still goes through. The situation

is di�erent if � undergoes random shocks which are \nontradable" in the economy. It is

this case which is discussed in this section.

3.2.1 Tradable and Nontradable Factors

The following exposition is taken from Hofmann et al. (1992). Their work, in turn, draws

from results presented in F�ollmer and Schweizer (1991). Their model is general enough

to include the concrete models of Sect. 3.2.2 as special cases.

LetW = fWtg be an N -dimensional Brownian motion on a �ltered probability space

(
;F ; fFtg; P). Fix some time horizon T . De�ne the RM -valued process X = fXtg with
component processes X1; : : : ;XM by

dXt = �(Xt; t) dt+ �(Xt; t) dWt (3.3.27)

where � = (�i : RM ! �[0; T]R j 1 � i � M) and � = (�ij : RM � [0; T] ! R j 1 � i �
M; 1 � j � N) are functions satisfying appropriate regularity conditions. The component

processes X1; : : : ;XM may represent tradable assets or economic factors; trivially, there

must be at least one tradable asset Xi and we assume i = 1 without loss of generality.

We also postulate the existence of an R++ -valued process X0 which plays the role of

the riskless asset:

dX0
t = r(Xt; t)X

0
t dt and X0

0 = 1 (3.3.28)

The discount factor � = f�tg is de�ned via �t = 1=X0
t , as usual.

Let the random variable Y on (
;FT) be a contingent claim. Standard procedure

would imply a trading strategy � = f�tg, �t 2 R
M+1 , for Y and a value process V �, which

20

would then satisfy

V �
t =

1

�t
EQ (�TY j Ft) (3.3.29)

under some P -equivalent measure Q 2 P which makes �X a martingale.

This is indeed the case if the economy is complete, i.e. N =M and all components are

tradable. In this case, � exists and is self-�nancing, and Q and � are uniquely determined

by �, � and YT .

In the general, incomplete situation, this need not be so. We would certainly wish

�i � 0 to hold for all nontradable components i. However, this restriction might make a

self-�nancing replicating strategy impossible. There are several ways out of this dilemma.

Schweizer (1991) discusses \mean-self �nancing" strategies; here, we briey summarize

some �xes which are more concrete.

3.2.2 Some Concrete One-dimensional Models

We present some concrete models based on a ome-dimensional asset price process and

stochastic volatility. The models di�er in how they supplement no-arbitrage theory.

Hull-White and Wiggins, for instance, advance equilibrium arguments, while others try

to exploit ad-hoc hedging opportunities in the Black-Scholes spirit.

Let (
;F ; fFtg; P) be a �ltered probability space and T a �xed, �nite time horizon.

Let W = fWtg, Wt 2 R
2 , be a two-dimensional Brownian motion with correlation

coeÆcient �, or EP
�
dW 1dW 2

�
= � dt. (At this point, we deviate from our standard

assumption that the component processes of W are independent, i.e. � = 0.)

There is a riskless asset X0 = fX0
t g with X0

0 = 1 and X0
t = ert. r is the riskless rate

and � = 1=X0 the discount process, as usual.

Hull and White's Model

Hull and White (1987) propose the following model:

dSt = St(r dt+ �t dW
1)

d�2t = �2t
�
�(�2t ; t) dt+ �(�2t ; t) dW

2
� (3.3.30)

where � and � may depend on �2 and t, but not on S. Under the additional assumption

that (a) � = 0 and (b) �2 does not have systematic risk (a statement we shall not explain

21

further at this point), a partial di�erential equation slightly more complex than (3.3.9) can

be derived by using CAPM equilibrium arguments, eliminating randomness and therefore

precluding any risk preferences.

Now de�ne the mean volatility V over a particular path f�2t g as

V =
1

T

Z T

0
�2t dt (3.3.31)

For any attainable contingent claim X, let

�(V) = EP
�
�TX j �2 � V

�
(3.3.32)

denote the fair price of X under the restricted scenario where �2t = V for 0 � t � T .

Then it can be shown that the no-arbitrage price of � is

� =

Z 1

�1
�(V)h(V j �20) dV (3.3.33)

where h(V j �20) is the density of V conditional on �20 under P . In other words, the price

of a contingent claim X turns out to be the weighted average Black-Scholes price for any

realizable mean volatility. This result does not hold if � 6= 0 or � or � depend on S.

Wiggins' Model

The model advocated in Wiggins (1987) has the dynamics

dSt = St(�dt+ �t dW
1)

d�t = h(�t) dt+ ��t dW
2

(3.3.34)

It is not required that � = 0. Let F = fFtg, Ft = f(St; t), be the value process of a

contingent claim X. Wiggins de�nes a hedge portfolio � = f�tg, �t 2 R
2 , in the riskless

asset and the security by

�0t = �t

�
Ft � @

@S
f(St; t)St � ��

@

@�
f(St; t)

�

�1t =
@

@S
f(St; t) +

��

St

@

@�
f(St; t)

(3.3.35)

� is a modi�cation of (3.3.5) with the property that its value process V � satis�es

dV �
t

V �
t

dSt
St

= 0 (3.3.36)

22

for 0 � t � T . I.e., the return of the hedge portfolio is uncorrelated with the return of

the security. If S is an index on the market, the hedge portfolio has therefore a zero beta

coeÆcient. Under some additional economic assumptions and for the special case that

S is indeed a contingent claim on the market, f is a solution to the partial di�erential

equation

BS +
1

2
�2t �

2 @
2f

@�2
+ ���2t St

@f2

@S@�
+
@f

@�

�
h(�t)� � ��2t

�
= 0 (3.3.37)

where BS stands for the left side terms of the Black-Scholes partial di�erential equa-

tion (3.3.9).

Johnson and Shanno's Model

Johnson and Shanno (1987) choose the model

dSt = St(�dt+ �tS
�1�1
t dW 1)

d�t = �t(� dt+ ���2�1t dW 2)
(3.3.38)

with �1; �2 � 0. The correlation coeÆcient between W 1 and W 2 is �. Setting up the

Black-Scholes hedge portfolio � as in (3.3.5), one �nds that the value process V � of �

satis�es

dV �
t = dFt � (BS + JS)dt� ���2t

@f

@�

@f

@S
dW 2 (3.3.39)

where BS represents the standard Black-Scholes terms|see (3.3.9)|and JS stands for

additional nonrandom terms which are easy to derive with Ito calculus. At this point,

Johnson and Shanno assume that the dW 2 term can be diversi�ed away (this assump-

tion replaces the equilibrium principles in the previous two models), and get a partial

di�erential equation BS + JS = 0 with appropriate boundary conditions for X.

Scott's Model

Scott (1987) uses a model in which the volatility follows a mean-reverting process with

mean ��:

dSt = St(�dt+ �t dW
1)

d�t = �(�� � �) dt+ �dW 2
(3.3.40)

23

Again, � is the correlation coeÆcient between dW 1 and dW 2. Assume there are two

contingent claims,X and Y , with price functions f and g, respectively, and price processes

F = fFtg and G = fGtg. Assume furthermore that X expires at time TX � T , and Y

expires at time TX < TY � T . A trading strategy � that hedges a portfolio of X and

Y (with dynamic weights) during times 0 � t � TX gives rise to a partial di�erential

equation

@g

@�

�
BSf + ���tSt

@f2

@S@�
+
1

2
�2
@f2

@�2

�

� @f

@�

�
BSg + ���tSt

@g2

@S@�
+
1

2
�2

@g2

@�2

�
= 0

(3.3.41)

which does no longer have terms in dW 1 or dW 2. BSf and BSg represent the standard

Black-Scholes terms corresponding to f and g terms as they appear in (3.3.9).

However, the PDE in (3.3.41) does not have a unique solution for given boundary

conditions at t = TX . There are two ways in which this situation can be resolved:

� Equilibrium arguments can be applied. This approach is chosen in Scott (1987) and

leads to a partial di�erential equation for X which depends on ��, the risk premium

associated with d�.

� If the price for the claim Y is known (for instance, if Y is a liquid option), one

can model Y 's price process G as a geometric Brownian motion di�usion with the

constant volatility implied by Y 's price. This path is explored|based on a slightly

di�erent model for d�|in Zhu and Avellaneda (1997).

A theoretical third possibility is to postulate the existence of an asset whose price is

perfectly correlated with d�.

24

4 Scenario-based Evaluation and Uncertainty

The following problems arise as soon as arbitrage pricing theory is applied in practice:

� Plausible values for volatility and other coeÆcients must be found to instantiate

the chosen model.

� Once instantiated, models often prove too weak to represent the market dynamics

adequately; in the case of Black-Scholes, this de�ciency shows itself in the often

cited implied volatility smile.

It is natural to try to cure the second problem by introducing time- and space-dependency

in the volatility and other coeÆcients. If this leads to randomness in the evolution of

the volatility, one has created a stochastic volatility model. The �rst problem still looms

large, however, and some sort of parameter calibration becomes necessary before the

stochastic volatility model can be applied.

Uncertain volatility takes a di�erent approach. Instead of chosing a �xed set of a

priori model coeÆcients, agents specify priorities which they would like to see applied

when a given portfolio is evaluated under the model. These priorities are initially stated

\in prose" and have some economic function. They usually correspond to stochastic

control problems and require dynamic programming methods for their solution.

4.1 Preliminaries

De�nition 4.1 (Scenario). We call a set of (declarative) agent priorities and the (im-

perative) evaluation rules they imply a scenario.

De�nition 4.2 (Uncertain coeÆcients). Model coeÆcients which are variable under

a given scenario are called uncertain. The evaluation rules of the scenario control the

instantiation of uncertain coeÆcients, locally or globally.

These de�nitions are not strictly formal. The soundness of the concept needs to be

established for each concrete scenario. In this thesis, we restrict ourselves to two scenarios:

� the worst-case volatility scenario;

� the volatility-shock scenario.

25

j- �
?

?

PortfolioScenario

Instantiated model coeÆcients

(Patterns for model coeÆcients)

Figure 4.1: Both scenario and portfolio are required components when model coeÆcients

are instantiated. Model coeÆcients can, but must not, be restricted by patterns

We review the foundations of the former and its companion, the Uncertain Volatility

Model (UVM) by Avellaneda and Par�as, in this chapter. Algorithmic issues of worst-

case scenarios are moved as original work to Part II. The volatility shock scenario is an

extension of the worst-case scenario and is discussed, also as original work, in Chapter 8

of Part II.

The bene�t of the scenario approach is clear: no a-priori choice of model coeÆcients

has to be made. Furthermore, once evaluation rules have been applied to instantiate

uncertain coeÆcients, we're back in the realm of arbitrage pricing theory. On the other

hand, as seen in Sect. 3.2, no-arbitrage arguments alone are not suÆcient when coeÆcients

are stochastic; disputable assumptions, equilibrium arguments and other methods which

are not easily generalizable are required to complete the job.

The scenario approach may yield di�erent instantiations of model coeÆcients for dif-

ferent portfolios. Figure 4.1 shows how scenario and portfolio are both taken into account

when the evaluation rules of the scenario are executed.

The separation into model and scenario is in fact strong enough to reappear in the

object-oriented implementation in Part III. Models, scenarios and portfolios all have

associated class hierarchies.

In this thesis, we exclusively focus on the volatility as the only uncertain

coeÆcient. Formally, we assume a �ltered probability space (
;F ; fFtg; P), a one-dim-
ensional Brownian motion W , and some �nite time horizon T . In this probability space,

let S = fStg be a security price process with the stochastic di�erential equation

dSt
St

= �(St; t) dt + �(St; t) dW (4.4.1)

26

Let r : [0; T]! R+ be the time-dependent interest rate, and � = f�tg the corresponding
discount process:

�t =

Z t

0
e�rs ds (4.4.2)

We assume r and � are continuous functions that are suÆciently well behaved for our

purpose. � : (0;1) � [0; T]! R++ is our uncertain model coeÆcient.

De�nition 4.3 (Candidate set and scenario measure). A set

C � f� j (4.4.1) has a solutiong (4.4.3)

is called a candidate set for �. For each � 2 C there exists a unique measure Q(�) which

makes �S a martingale: we say Q(�) is the scenario measure for �.

Sometimes we also refer to the \scenario �" or \scenario volatility." The candidate

set implements the optional pattern for the uncertain coeÆcient referred to in Fig. 4.1.

Let the nonnegative, continuous random variable X denote the payo� of a contingent

claim at time T . The no-arbitrage price of the contingent claim for �xed � follows the

process

Ft(X;�) =
1

�t
EQ(�) (�TX j Ft) (4.4.4)

Extension to portfolios of contingent claims is straightforward. Let X = (X1; : : : ;Xk)
T

be a set of k > 0 nonnegative contingent claims|a portfolio!|on (
;F), all maturing
at time T . (The theory can be easily generalized to contingent claims with di�erent

expiration dates.) For any combined position � = (�1; : : : ; �k)
T 2 R

k , � �X is also a|

not necessarily nonnegative|random variable on (
;F) and represents the �nal cashow
at time T for the holder of the portfolio. (At this time we assume that contingent claims

are not path-dependent; i.e., their payo� can be written as g(ST) for some function

g. Later, of course, we will include barrier and American options.) The value process

F = fFtg is extended to cover combined positions through

Ft(� �X; �) =
kX
i=1

�iFt(Xi; �) (4.4.5)

27

j- �
?

?

(�;X)Worst-case scenario

� : (0;1) � [0; T]! R++

C

Figure 4.2: The generic terms of Fig. 4.1 �lled in. The worst-case scenario can be tailored

to pricing, hedging or calibration situations as described in the text

4.2 The Worst-case Volatility Scenario

We distinguish three concrete worst-case volatility scenarios, or worst-case scenarios for

short, each illuminating the exposure to volatility risk from a slightly di�erent perspective.

All scenarios have in common that

C = f� j �min � �(St; t) � �max and (4.4.1) has a solutiong (4.4.6)

where 0 < �min � �max represents a prescribed bound. For simplicity, we assume constant

bounds, but the theory holds for time-heterogeneous bounds as well. Figure 4.2 illustrates

the ow of information that leads from C, (�;X) and the concrete scenario to the selection

of � 2 C.
The agent priorities in each of the worst-case scenario variations can be informally

stated as follows:

Worst-case pricing. Given the portfolio X and a position � 2 R
k in X. Which �̂ 2 C

maximizes today's value F0(� �X; �)?

The optimal hedge-portfolio. Given two portfolios X and �X of k resp. �k contingent

claims, and a position � 2 R
k in X. For each �Xi, 1 � i � �k, a \market price" ��i

is known. (Assume, for instance, that the �Xi are traded frequently, and the Xi are

exotic over-the-counter instruments.) Which �̂ 2 C maximizes F0(� � X; �) under
the additional constraint that F0(�Xi; �̂) = ��i for 1 � i � �k?

Calibration. Given a portfolio �X of �k contingent claims, and market prices ��i for all

�Xi, 1 � i � �k. Fix a subjective \prior" �� 2 C. Which �̂ 2 C minimizes k� � ��k

28

under the additional constraint that F0(�Xi; �̂) = ��i for each 1 � i � �k? We leave

the semantics of the distance k � k unspeci�ed.

Section 4.2.1 is dedicated to the the worst-case pricing problem. Section 4.2.2 is a short

treatise on the problem of �nding the optimal hedge portfolio. Section 4.2.3 investigates

calibration issues.

Here and throughout the rest of the work, optimality is denoted by a \̂ " accent.

4.2.1 Worst-case Pricing

The objective is to �nd the volatility coeÆcient �̂ 2 C which maximizes F0(� �X; �) for
a given vector X of k contingent claims, and given position � 2 R

k . Sellers of � � X
are completely hedged against volatility risk within the bounds (4.4.6) if they charge at

least F0(� �X; �̂). (From this point of view, �i > 0 means Xi is sold, and �i < 0 means

Xi is bought. Positive quantities signify liabilities of the seller, while negative quantities

signify cash inow.)

The objective must be formalized with care, since �̂ may not exist. For instance,

assume the �nal payo� � � X is convex and continuous, and C =
�
0:2� 1

n j n � 6
	
. It

is clear that F0(� � X; 0:2 � 1
n) ! F0(� � X; 0:2) from below as n ! 1, yet 0:2 62 C.

Nevertheless, F0(� �X; 0:2) should be regarded as the worst-case price, and � = 0:2 as its

its scenario coeÆcient.

Convex Contingent Claims

It is instructive to consider the simple case of convex portfolios �rst. Let Y = � � X,

and assume Y can be written g(ST (!)) = Y (!) for ! 2
 and some nonnegative convex

function g : (0;1) ! R+ . (For instance, X might be a vector of European call or put

options, with positions �i > 0 throughout). In this case, the Black-Scholes solution is

also convex in S. Jeanblanc-Picque et al. (1991) conclude

Fact 4.4. For convex Y , the value processes F (Y; �max) and F (Y; �min) form a super-

resp. submartingale under any measure Q(�) with � 2 C. This implies

Ft(Y; �min) � Ft(Y; �) � Ft(Y; �max) (4.4.7)

for 0 � t � T and for all � 2 C.

29

For a nonnegative convex overall position Y , the solution of the maximization problem

is thus �̂ = �max. Similarly, if Y is negative and concave, jY j is positive and convex, and

Ft(Y; �) � Ft(Y; �min) for all � 2 C.

General Portfolios

Let Y = � �X be the liability structure at time T for a portfolio X of k contingent claims

and position � 2 R
k . This time we make no assumptions about Y :
 ! R. Avellaneda

and Par�as (1995) generalize Fact 4.4 as follows:

Fact 4.5. Given Y , de�ne a value process F̂ (Y) = fF̂t(Y)g by F̂t(Y) = f̂(St; t;Y), where

f̂ is the solution of the partial di�erential equation

@f

@t
+
1

2
�

�
@2f

@S2

�
S2t

@2f

@S2
+ rtSt

@f

@S
� rtft = 0 (4.4.8)

with boundary condition f̂(ST ; T) = Y (ST) and

�(x) =

8<
:�max if x � 0

�min if x < 0
(4.4.9)

Then F̂ (Y) is a supermartingale under any measure Q(�) where � 2 C.
The informal rationale is the following: take the original Black-Scholes equation (3.3.9)

and bring rtft to the right side, while observing that the remaining terms on the left side

do not contain f . To make f as large as possible, we maximize the only term on the left

side which has some degree of freedom: 1
2�S

2
t
@2f
@S2 . This is accomplished in (4.4.9).

Fact 4.6. Let F̂ (Y) be the value process for Y de�ned in Fact 4.5. Then

F̂0(Y) = sup
�2C

F0(Y; �) (4.4.10)

Moreover, the � which yields the supremum is given by (4.4.9).

Thus, there actually exists a \scenario �̂", and it can be constructed locally.

Fact 4.7. For c 2 R++ and two liability structures Y = � �X and Z = �0 �X0,

F̂t(c Y) = cF̂t(Y)

F̂t(Y + Z) � F̂t(Y) + F̂t(Z)

F̂t(Y + Z) � F̂t(Y)� F̂t(�Z)
(4.4.11)

30

Thus, positions may be scaled, but F̂ is nonlinear and sub-additive. (The third

statement follows from the second with Ft(Y) = Ft(Y +Z �Z) � Ft(Y +Z) +Ft(�Z)).
Notice also that Fact 4.7 is vaiud for 0 � t � T , not just for t = 0.

4.2.2 The Optimal Hedge Portfolio

Let X and �X be two portfolios of size k and �k, respectively. Assume furthermore that

� 2 R
k is a position for X, and �� 2 R

�k
++ is a market price vector for �X. (X might be

a book position, and �X might be a set of liquid options.) It is a natural restriction to

consider only those � 2 C under whose scenario measure Q(�) the prices �� for �X are

matched. This restriction on C is de�ned as follows:

C0 = f� 2 C j F0(�Xi; �) = ��i for 1 � i � �kg (4.4.12)

Now let Y = � � X be the combined payo� of portfolio X. Avellaneda and Par�as

(1996) show

Fact 4.8. Given X, �X, � and ��. Assume �̂ 2 R
�k is a �nite solution of the optimization

problem

inf
��2R�k

�
sup
�2C

F0(Y + �� � �X; �) � �� � ��
�

(4.4.13)

Let �̂ be the scenario volatility for �̂ as in Fact 4.6:

F0(Y + �� � �X; �̂) = sup
�2C

F0(Y + �� � �X; �) (4.4.14)

Then

F0(Y; �̂) = sup
�2C0

F0(Y; �) (4.4.15)

The solution �̂ is unique, since the function

h(��) = sup
�2C

F0(Y + �� � �X; �)� �� � �� (4.4.16)

is convex and has therefore at most one minimum. Furthermore, under �rst-order condi-

tions on optimality,

@

@��i

�
F0(Y + �� � �X; �̂)� �� � ��� ����

�̂i

= F0(�Xi; �̂)� ��i = 0 (4.4.17)

31

and therefore F0(�Xi; �̂) = ��i, for 1 � i � �k.

The position �̂ is optimal in the sense that no other position reduces the worst-case

residual liability h(��) by a larger amount. An agent who counterbalances a stake in X

by taking an o�setting position �̂ in �X needs at most h(��) additional cash to hedge the

combined position, provided the volatility does not leave C. �̂ can thus be regarded as

the optimal hedge portfolio under the worst-case scenario.

4.2.3 Calibration

Calibration is not the main task of this thesis, although we sketch an online calibrator

for the money market in the context of software engineering topics in Chapter 10.2. Cal-

ibration naturally motivates, however, further application of the optimization techniques

described in the previous section, and shall thus be awarded a few lines.

The goal of calibration is to �nd an instantiation of the uncertain coeÆcients that

matches observed prices of market instruments exactly. In that sense, the optimal hedge

portfolio results from calibrating � to the market prices ��. The method, however, is

less satisfactory since it depends on the presence of a book portfolio X. Furthermore,

agents cannot introduce subjective prior beliefs about uncertain coeÆcients; in fact, the

resulting scenario � takes on only extremal values �min and �max.

For this reason, let us reformulate the problem. Given a portfolio �X and a corre-

sponding price vector �� 2 R
k
++ , choose some (constant) prior �� 2 C that best reects

your subjective beliefs about the volatility of the underlying asset.

For any � 2 C and for any ! 2
, de�ne the distance of � to �� on the path fSt(!) j 0 �
t � Tg as

d(�; !) =

Z T

0
�
�
�(Su(!); u)

2
�
du (4.4.18)

where � is a smooth, �nite, strictly convex function which attains its minimum at ��2, i.e.

�(��2) = 0. � is called pseudo entropy function and implements a penalty for deviation

from the prior|for instance, take �(�2) = 1
2(�

2 � ��2)2.

With C0 as de�ned in (4.4.12), Avellaneda et al. (1997) extend Fact 4.8 by showing

Fact 4.9. Given �X and ��. Assume �̂ 2 R
�k is a �nite solution of the optimization problem

inf
��2R�k

�
sup
�2C

F0(�d(�) + �� � �X; �)� �� � ��
�

(4.4.19)

32

and let �̂ 2 C be the scenario volatility for �̂. Then

F0(�d(�̂); �̂) = sup
�2C0

F0(�d(�); �) (4.4.20)

In other words, �̂ minimizes the penalty. Again, the solution �̂ is unique.

Computation of h(��)

In the case of the optimal hedge portfolio, h(��) is computed by solving (4.4.8). This

approach needs to be modi�ed for calibration.

For �xed �, de�ne the ux function

�(x) = sup
�

�
�2x� �(�2)

�
(4.4.21)

where the supremum is taken over (�min; �max) and attained at � = �0(x). With �Y = ��� �X
for �xed �� 2 R

�k , de�ne the process G = fGtg as

Gt = sup
�2C

Ft(�d(�) + �Y ; �) (4.4.22)

Fact 4.10. Given G and �Y . Then Gt = g(St; t), where g is the solution of the partial

di�erential equation

@g

@t
+

1

�t
�

�
�t
2
S2t

@2g

@S2

�
+ rt St

@g

@S
� rtgt = 0 (4.4.23)

with boundary condition g(ST ; T) = �Y (ST). The supremum in (4.4.22) is realized at

�(St; t) =

s
�0
�
�t
2
S2t

@2g

@S2

�
(4.4.24)

By construction, h(��) = G0.

Notice that (4.4.23) is not the pricing equation for �Y ; the pricing equation for �Y is

obtained by replacing � with �0

2 S2t
@2g
@S2

.

The PDE (4.4.23) can be solved with �nite di�erence methods. We will get back to

calibration issues briey at the end of Part III, in Chapter 10.2, although there the stage

will be the money market (not the equity/FX market), and the numerical tool will be

Monte Carlo simulation.

33

Other Approaches

Calibration or the problem of �tting parameters of stochastic models to market data has

been studied for some time. Breeden and Litzenberger (1978) observe that the price of a

binary option X with X = 1 if K1 � ST � K2 and X = 0 otherwise must beZ K2

K1

@2

@K2
C(K) dK (4.4.25)

where C : (0;1) ! R++ , K ! C(K), is the pricing function for a continuum of call

options on the asset, with strike price K and expiration date T . This result stems from

no-arbitrage arguments involving buttery spreads and is valid regardless of the stochastic

model. The price of any contingent claim can be recovered in a similar way from such a

curve C, provided suÆcient market data is available.

In a recent study, Jackwerth and Rubinstein (1996) minimize the distance between a

prior probability distribution for ST and a posterior distribution compatible with prices

of contingent claims in a one-period setting, using a variety of objective functions. Among

others, least-squares, absolute variation, maximum entropy and smoothness criteria are

tested, the latter not requiring a prior distribution. The least-squares approach is based

on an earlier paper, Rubinstein (1995). Pirkner et al. (1999) suggest to model the terminal

return density of the stock with a mixture of normal distributions.

Lagnardo and Osher (1997) use a gradient descent procedure to minimize the func-

tional

F (�) = k jr�j k22 + �(F0(�� � �X; �)� �� � ��)2 (4.4.26)

where � > 0 is a constant and controls the rate of convergence in a numerical procedure.

4.3 Scenarios and Nonlinearity

In general, worst-case scenarios lead to nonlinear solutions and may be asymmetric for

the buy and sell side.

In economic terms, nonlinearity is due to risk-diversi�cation under mixed convexity.

Any position � in X has to be priced and hedged as a unit; no \stand-alone" scenario

price for Xi can be deduced from F̂0. Sellers of Y = � �X are hedged against volatility

risk within the bounds C if they charge at least F̂0(Y). Vice versa, buyers of Y are

34

hedged if they pay at most �F̂0(�Y). The volatility range [�min; �max] thus leads to a

corresponding no-arbitrage worst-case price range [�F̂0(�Y); F̂0(Y)].
Computationally, nonlinearity requires sophisticated algorithms which handle and

(hopefully) reduce the combinatorial complexity that arises if the portfolio under con-

sideration contains exotic, path-dependent options. In the remainder of this thesis, algo-

rithms for barrier and American options are studied in particular.

35

Part II

Algorithms for Nonlinear Models

36

5 A Lattice Framework

Nonlinear models that embed Black-Scholes in worst-case scenarios require algorithmic

techniques on two levels:

1. Finite di�erence methods combined with dynamic programming are used to solve

individual PDEs of type (4.4.8).

2. A collection of PDEs needs to be solved in the right order if exotic options with

barrier or American features are involved. Solutions of subordinate PDEs serve as

boundary data for PDEs higher up in the hierarchy. (There is only one PDE if the

portfolio under consideration contains only vanilla options.)

The sensitivity of the remaining portfolio to uctuations in � changes if options are taken

out through knock-out or early exercise. The so altered portfolio, evaluated indepen-

dently, may yield an instantiation of � under the worst-case scenario which di�ers from

the one for the original portfolio. Consequently, it may also yield a worst-case value that

di�ers from the contribution of the remaining options to the worst-case value of the orig-

inal portfolio, had the option(s) not been taken out. The worst-case value of the reduced

portfolio, computed separately, must be used as boundary value for the original portfolio

where options are removed by knock-out or early exercise.

An example may help to clarify this explanation. Assume a portfolio of two call

options X1 and X2 which are identical except for the fact X2 allows early exercise, while

X1 does not. The positions are �1 = �1 and �2 = 2, respectively. Let Y = � �X be the

payo� if X2 is held until maturity, and let Y 0 = �1X1 be the remaining payo� if X2 is

not held until maturity, but exercised early. Figure 5.1 shows the payo� graphically for

both cases.

It is clear that the worst-case volatility is � = �max if X2 is held until maturity, for

Y and ft(St; t;Y) are both convex in S. (Recall that f is the solution of (4.4.8).) On

the other hand, � = �min from the time on at which X2 is exercised, for the remainder

Y 0 and thus ft(St; t;Y
0) are concave in S. In this case, the outlook in terms of exposure

to volatility risk is signi�cantly changed. Although the analysis is straightforward in this

toy example, the complexity of the problem grows very fast in cases of mixed convexity

or exotic options.

37

�
�
�
��

@
@
@
@@

0

2max(S �K; 0)

�max(S �K; 0)

�max(S �K; 0)

Figure 5.1: The shape of the �nal payo� Y = � � X = 2X2 � X1 on the left side, and

Y 0 = �1X1 = �X1 on the right side

From now on, worst-case pricing|see Sect. 4.2.1|will be the underlying

worst-case scenario. Results are easily applicable to worst-case hedging and calibra-

tion.

The complexity of worst-case pricing and algorithms that cope with it are the focus

of the rest of Part II. Chapters 6 and 7 treat in detail the implications arising from the

inclusion of barrier and American options into the portfolio. The current chapter focuses

on numerical and general data structure aspects of solvers for PDEs of type (4.4.8). As

one may need to solve multiple PDE's simultaneously, data structures must support the

ow of boundary and decision-support data.

5.1 Multi-lattice Dynamic Programming

The current price of the underlying asset is denoted by S0 = s0. Let [sD; sU] and [0; T] be

suitably chosen ranges for the space and time dimensions of the lattice, with sD < s0 < sU .

Let

0 = t0 < t1 < � � � < TN = T

be an equidistant discretization of time, i.e. ti = i dt for dt = T=N and 0 � i � N .

The space dimension need not be uniformly disretized; we will see later that the

arbitrary spacing of knock-out barriers requires non-uniformity to avoid slow convergence.

Denote the space discretization by

sD = � � � < s�2 < s�1 < s0 < s1 < s2 < � � � = sU ;

38

where for convencience we use the D and U subscripts also as numerical index. (In

practice, sU=s0 = s0=sD � 3:5
p
T leads to good results and limits the time complexity in

the number of time steps to O
�
N3=2

�
. The interested reader is referred to Par�as (1995).)

5.1.1 Data Structures

We refer to a lattice node by its space and time labels (sj; ti), or simply by its space and

time indexes (j; i), whichever is more convenient. All PDEs are based on the same dis-

cretization. Each PDE, however, is assigned its own lattice instance in memory. Boundary

values are shared by copying (and possibly processing) data from one lattice instance to

another.

Each lattice instance L is identi�ed by a partial portfolio XL � X and a position �L

(which need not be a partial position of �). If there are only vanilla options in X, there

is only one lattice instance in the computation, identi�ed by top-level (X; �).

De�nition 5.1 (Lattice signature). Let L be a lattice instance identi�ed by partial

portfolio XL � X and position �L. The pair (XL; �L) is called the signature of L. The

size of L is denoted by jLj = jXLj = j�Lj.

Often, �L is ommitted, and only XL is used to refer to a lattice instance for simplicity.

Lattice instances may be added dynamically during the computation. The set of the

signatures of active lattice instances is denoted by L. At all times, (X; �) 2 L.

De�nition 5.2. Let L 2 L be a lattice instance with signature (XL; �L), and (j; i) a

node. V̂ (j; i;L) denotes the �nite di�erence approximation of the worst-case value F̂i(�L �
XL j Si = sj), and v̂k(j; i;L) denotes its partial derivative in (�L)k, 1 � k � jLj:

V̂ (j; i;L) = F̂i(�L �XL j Si = sj)

v̂k(j; i;L) =
@

@(�L)k
F̂i(�L �XL j Si = sj)

(5.5.1)

(Here and in the following, i and ti are used interchangingly to index processes such as

F̂ .)

With each node instance (j; i;L) is therefore associated a value/gradient pairh
V̂ (j; i;L); (v̂k(j; i;L) j 1 � k � jLj)

i

39

that is stored in the lattice instance's private memory. If is clear which lattice instance

L is meant, or if L is not signi�cant, L is omitted.

Not all value/gradient pairs need to be accessible at the same time. Two general rules

must to be observed, however:

Internal consistency: For the �nite di�erence scheme to work, time i+1 value/gradient

node instances need to be available when time i node instances are computed.

External consistency: A node instance (j; i;L0) needs to be available if the computa-

tion of node instance (j; i;L), XL0 � XL, requires the lookup of a boundary value

associated with partial portfolio/position (XL0 ; �L0).

The second rule motivates the general policy, possibly augmented for special cases, to

process existing lattice instance L before lattice instance L0 if jLj < jL0j. Furthermore, a
mechanism must be implemented which automatically inserts a new lattice instance with

the appropriate signature into L if the second rule is violated nevertheless (exception

handling).

5.1.2 Dataow for Explicit Methods

De�nition 5.3. We say that the node instance (j; i;L) belongs to the continuation re-

gion if no L0-lookup is necessary to determine the worst-case value for it, for any lattice

instance L0 6= L.

Figure 5.2 shows the dataow for an explicit forward Euler one-level scheme for a

PDE of type (4.4.8) within the continuation region.

If a node instance (j; i;L) turns out to require boundary data from L0 6= L, the

scheme in Fig. 5.2 may or may not be bypassed, depending on whether V̂ (j; i;L) can be

determined unconditionally (knock-out) or not (agent's choice like early exercise).

Notice that data ows from time i + 1 to time i slices for both instantiation of the

uncertain coeÆcient and actual rollback.

5.1.3 Dataow for Mixed Explicit/Implicit Methods

Mixed explicit/implicit methods such as Crank-Nicholson introduce a lag of one time slice

between the instantiation of the uncertain coeÆcient and the actual rollback, as shown

pictorially in Fig. 5.3.

40

@
@

@
@I

�
�

�
�	��

�

?

convexity

V̂ (j � 1; i+ 1)

V̂ (j; i + 1)

V̂ (j + 1; i+ 1)

�

V̂ (j; i)

Figure 5.2: Dataow for explicit one-level �nite di�erencing in the continuation region.

Values at time i+ 1 nodes are �rst used to compute the worst-case volatility. The black

box signi�es the �nite di�erence approximation for the PDE. The compartmentalized

node attachments symbolize the gradient (v̂k(�; �))k

This discrepancy is necessary to preserve the simplicity of the tridiagonal system

of linear equations that obtains in the rollback step from time i + 1 to time i. The

nonlinearity introduced by the worst-case scenario is taken care of entirely in the explicit

instantiation of �.

Mixed methods cause more problems if the transfer of boundary values between lattice

instances is not unconditional. Iterative re�nement methods such as SOR must then be

employed since the replacement of one V̂ (j; i;L) a�ects all other V̂ (�; i;L)'s, through their
implicit connection.

5.2 Numerical Issues

Standard procedure is to solve PDEs of the Black-Scholes type on a lattice whose space

dimension is discretized uniformly after logarithmic scaling. It is also well-known to

practitioners that barriers should coincide with spatial levels of the lattice whenever

possible. Since a) the number of distinct barriers in the portfolio is not limited, b)

all instruments and thus all barriers must be watched simultaneously under worst-case

41

@
@

@
@I

�
�

�
�	�

�

?

convexity

V̂ (j � 1; i+ 1)

V̂ (j; i + 1)

V̂ (j + 1; i+ 1)

�

V̂ (j � 1; i)

V̂ (j; i)

V̂ (j + 1; i)

-

@
@
@
@R

�
�
�
��

@
@

@
@I

�

�
�

�
�	

Figure 5.3: Dataow for mixed explicit/implicit one-level �nite di�erencing in the contin-

uation region. Values at time i+1 nodes are �rst used in an explicit fashion to compute

the worst-case volatility at all space levels. The black box represents one equation in

the linear system of equations, instantiated with the local worst-case volatility. The

bi-directional arrows on the left side indicate the implicit nature of the system

scenarios, and c) uniform spacing can match at most one barrier and s0, or two barriers

at the same time (Rubinstein and Reiner (1991) and Cheuk and Vorst (1996)), it is

reasonable to modify the standard procedure to allow non-uniformity.

Secondly, to guarantee stability, explicit forward Euler schemes require the von Neu-

mann condition dt=(�x)2 � 1=2 to hold. Here, �x is the spatial step size after a suitable

variable transformation. Equivalently, one may require the transition weights assigned to

the arrows in Fig. 5.2 to remain positive (see Thomas (1995) or Wilmott et al. (1993)).

We present an algorithm that matches all barriers except those that are very close

together, retains uniform spacing between barriers, and obyes the von Neumann stability

condition (this condition is lifted for Crank-Nicholson, since it is not necessary for mixed

epxlicit/implicit methods).

The following exposition is taken from Avellaneda and Bu� (1998).

Let the factors Uj = sj+1=sj resp. Dj = sj�1=sj represent the size of the up resp.

down moves at each spatial level. Instead of using the increments Uj and Dj directly,

42

however, we switch to their logarithms and work with quantities �jU and �jD satisfying

Uj = 1=Dj+1 = e�
j
U

p
dt

Dj = 1=Uj�1 = e��
j
D

p
dt

(5.5.2)

for D � j � U . dt is the time increment determined from an initial target increment

dtmax.

Equation (4.4.8) is formulated with the riskneutral drift rt. We generalize and write

�t = rt � dr instead, where dt denotes a dividend rate, foreign interest rate or storage

cost, depending on the properties of the underlying asset. It is assumed that lower and

upper bounds

�min � �t � �max (0 � t � T) (5.5.3)

are known.

For simplicity, we assume that there are n up-and-out barriers

s0 < b1 < b2 < � � � < bn <1;

and no down-and-out barriers. Extension to down-and-out barriers in both algorithms

and proposition is straightforward. By convention, s0 = b0 is also treated as a barrier.

Proposition 5.4. Given barriers b0; : : : ; bn, a target time step dtmax, volatility bounds

�min, �max, and drift bounds �min, �max. If the algorithm in Fig, 5.4 is used to compute

spatial increments �jU , �
j
D for D � j � U together with a possible adjustment of dtmax to

dt, then the explicit forward Euler approximation of (4.4.8) shown in Fig. 5.5 obeys the

von Neumann stability condition. In particular, the variables PU and PD satisfy

PU ; PD > 0

PU + PD <
1

2

(5.5.4)

Furthermore, the barriers b0; b1; : : : ; bn are all matched if the algorithm in Fig. 5.5 does

not stop with an error.

Proof. See Avellaneda and Bu� (1998) for a full proof. Here, let us only apply the

transformation X = log(S) to (4.4.8) to get

@f

@t
+
1

2
�2

�
e�2X

�
@2f

@X2
� @f

@X

���
@2f

@X2
� @f

@X

�
+ �t

@f

@X
� rt ft = 0 (5.5.5)

43

Input: barriers b0; : : : ; bn, dtmax, �min, �max, �min, �max

Output: dt, �jU , �
j
D for 0 � j � U

(extension to cover down-and-out barriers as well is straightforward)

1. Set � := maxfj�minj; j�maxjg

2. Set dt := dtmax. This is the initial guess, to be adjusted later

3. Repeat for i = 0; : : : ; n:

(a) Set � := 2�max (see remark in text)

(b) If i = n then skip the next step (there are no more barriers above bn)

(c) Increase � such that bie
k�
p
dt = bi+1 for some k 2 N. If no such k exists (i.e.,

ln(bj+1=bj) < �
p
dt), abort and report an error (see remark in text)

(d) Set

dt0 :=
�

2�2min

�(�2max + 2�)

�2

Check if dt < dt0. If yes, skip the next step (dt has passed the test)

(e) dt is too big: choose a new dt > 0 such that dt < dt0 and start over with step 3

(for instance, set dt = 0:9dt0)

(f) For all sj such that bi < sj < bi+1 (or simply bi < sj if i = n), set �jU := �jD :=

�. In addition, set �j0U := � where sj0 = bi, and if i < n, set �j1D := � where

sj1 = bi+1

Figure 5.4: Discretizing space while preserving the von Neumann condition. The input

dtmax indicates the desirable time step, from which spatial increments �jU and �jD are

derived. The output dt is equal to dtmax if no adjustments are necessary, smaller otherwise

(see step 3e). The algorithm matches one barrier at a time, starting with b0 = s0

44

Input: Lattice instance L, time i dt, �jU , �
j
D for D � j � U

Output: V̂ (j; i;L) for D � j � U

1. Repeat for D < j < U :

(a) De�ne

PU (�) =
�2

�jU�
j
D +

�
�jU

�2

1� �jD

p
dt

2

!
+

��jD
p
dt

�jU�
j
D +

�
�jU

�2

PD(�) =
�2

�jU�
j
D +

�
�jD

�2

1 +

�jU
p
dt

2

!
� ��jU

p
dt

�jU�
j
D +

�
�jD

�2

PM (�) = 1� PU (�)� PD(�)

(b) Set

V̂ (j; i;L) :=e�rtidtmax
�

n
PU (�) V̂ (j + 1; i + 1;L)

+ PM (�) V̂ (j; i + 1; L) + PD(�) V̂ (j � 1; i+ 1;L)
o

where the maximum is taken over f�min; �maxg

2. Extrapolate to get V̂ (D; i;L) and V̂ (U; i;L)

Figure 5.5: The explicit forward Euler scheme to compute the worst-case value V̂ (j; i;L)

at all spatial levels sD; : : : ; sU from the V̂ (�; i+1;L). The gradient is computed similarly.

This algorithm corresponds to Fig. 5.2

45

with

�2fCg =
8<
:�

2
max if C � 0

�2min if C < 0
(5.5.6)

The explicit �nite di�erence approximations for (5.5.5) are as follows. For the time axis,

the forward di�erence

@f

@t
_=
V̂ (j; i+ 1)� V̂ (j; i)

dt
(5.5.7)

is used. On the space axis, centered di�erences for both the �rst and second partial

derivatives are used. Since the upward and downward displacement might di�er, the

formulas are slightly more complex than usual:

@f

@X
_=

1

�
p
dt

h�
�jD

�2
V̂ (j + 1; i + 1)

�
�
�jU

�2
V̂ (j � 1; i + 1)�

��
�jD

�2 � ��jU�2
�
V̂ (j; i + 1)

i

@2f

@X2
_=

2

� dt

h
�jDV̂ (j + 1; i + 1)

+ �jU V̂ (j � 1; i + 1)� (�jD + �jU)V̂ (j; i + 1)
i

(5.5.8)

where

� = �jU

�
�jD

�2
+ �jD

�
�jU

�2
(5.5.9)

Algebra shows that the weights PU , PM and PD computed in the algorithm in Fig. 5.4

replicate the approximation (5.5.7) and (5.5.8). They furthermore satisfy (5.5.4) by con-

struction: crucial is step 3d.

The barriers are matched by construction as well.

PU , PD and PM = 1 � PU � PD can be regarded as probabilities. The property

PU +PD < 1
2 guarantees that the middle weight is always at least 1

2 ; this has been found

empirically to lead to a signi�cant improvement in accuracy (a small PM e�ectively turns

the explicit scheme into a binomial tree method).

Note that the algorithm in Fig. 5.5 matches the barriers regardless of the validity

of the von Neumann condition. The algorithm can thus be used unmodi�ed for mixed

46

explicit/implicit schemes (and indeed is). The algorithm in Fig. 5.4 can be signi�cantly

simpli�ed in the mixed case (the test with dt0 can be ommitted).

Two further remarks should be made. Firstly, step 3a in the algorithm in Fig. 5.5 can

safely be replaced by

3a0 Set � :=
p
2 �max

In this case PU + PD < 1
2 only if �jU = �jD. For �jU 6= �jD, the upper bound becomes

PU + PD < 1 instead. This still guarantees PM > 0 and therefore does not break the

probability framework of the derivation. Moreover, �jU 6= �jD for at most n spatial levels of

the lattice (n is the number of barriers). The ratio of the number of \good" j's (�jU = �jD)

over the number of \bad" j's (�jU 6= �jD) is therefore negligible as the granularity of the

lattice gets �ner.

Secondly, the algorithm may trigger an error in step 3c. If two barriers are too close to

each other, one of them must be ignored and the algorithm is restarted with the number

of barriers reduced by one.

47

6 Algorithms for Barrier Options

Consider a portfolio X consisting of position �1 in barrier option X1 with knock-out

barrier b > s0 and positions �2; : : : ; �k in k�1 vanilla options X2; : : : ;Xk. Let all options

mature at time T . The payo� at time T is path-dependent: depending on whether the

underlying asset has reached the barrier b in the time interval [0; T] or not, the owner of

the portfolio receives
Pk

i=2 �iXi or � �X, respectively.

The situation is shown pictorially in Fig. 6.1. Path 1 crosses the barrier u at time t,

path 2 doesn't. When path 1 hits the barrier, X1 becomes worthless. As the portfolio is

reduced by one instrument, its sensitivity to volatility uctuations between times t and

T is likely to di�er from the sensitivity of the original, unaltered portfolio (X; �). The

worst-case volatility from time t on is therefore likely to be di�erent for the partial and the

original portfolio. Hence, two instances of the worst-case pricing problem must be solved,

for (X; �) and for (Y; �0), respectively, whereY = (X2; : : : ;Xk)
T and �0 = (�2; : : : ; �k)

T.

Two worst-case pricing problems correspond to two lattice instances L1 and L2, each

assigned to solve a PDE of type (4.4.8). The boundary conditions imposed on the two

PDE's, however, di�er. L2 is used to solve an initial-value problem with initial value

f̂(ST ; T ;�
0;Y) = �0 �Y(ST) (6.6.1)

as the partial portfolio (Y; �0) contains only vanilla options. L1 is used to solve an

initial-boundary-value problem with initial value

f̂(ST ; T ;�;X) = � �X(ST) (6.6.2)

and boundary value

f̂(u; t;�;X) = f̂(u; t;�0;Y) (6.6.3)

for 0 � t � T . Under the assumption that L1 and L2 match the barrier u at level ju,

(6.6.3) is reected within the �nite di�erence framework by the identity of values

V̂ (ju; i;L1) = V̂ (ju; i;L2) + 0 (6.6.4)

48

�
�
�
�
�
�
�
�� �

�
�
�
�
�
�
��

s0

u

T

��

�
�
�
�
�
�
�
�� �

�
�
�
�
�
�
��

s0

u

Tt

t

u

?

u� �X

Pk
i=2 �iXi

�� @
@
@@

@@�� @@�
�
��

@@ ��� @@�
��@

@��path 2

path 1

lattice instance L2

lattice instance L1

PP

Figure 6.1: Two paths taken by the underlying asset. Path 1 crosses the barrier u and

looses the position in X1 at time t, consequently shifting to lattice instance L2 whose

signature does not contain X1. Path 2 stays below the barrier and leaves the portfolio

intact until expiration

and the identity of gradients

v̂1(ju; i;L1) = 0

v̂2(ju; i;L1) = v̂1(ju; i;L2)

� � �
v̂k(ju; i;L1) = v̂k�1(ju; i;L2)

(6.6.5)

for all time slices 0 � i � N . We write \+0" in (6.6.4) to indicate that any potential

premium received as a result of X1's knock-out must be added to the residual worst-case

liability V̂ (ju; i;L2). The identities (6.6.4) and (6.6.5) replace the transactions shown in

Figs. 5.2 and 5.3. External consistency requires furthermore that nodes of L2 are always

processed before corresponding nodes of L1.

A remark regarding path-dependency The candidate set C de�ned in Def. 4.3

contains only non-path-dependent elements � : (R++ � [0; T]) ! R++ . To solve sepa-

49

rate pricing problems on distinct lattice instances and transfer boundary data essentially

makes the volatility path-dependent and thus leads to a worst-case volatility scenario that

may not be part of C. Without proof, however, we point out that the worst-case volatility

is path-independent (i.e., recombining on a discrete lattice) for paths that remain within

a single lattice instance. Only where paths hit boundaries and a jump between lattice

instances occurs may volatilities diverge. Each realized path can experience only a �nite

number of such jumps.

We refrain from changing Def. 4.3 formally, but ask the reader to keep this re-

mark in mind. At any rate, the subsequent de�nitions that contain terms such as

sup�2C(EQ(�) (: : :)) remain consistent under either interpretation of C, since jumps are al-
ways explicitely reected in recursive boundary terms or terms that contain independent

�0.

This remark applies to both worst-case pricing of barrier options (this chapter) and

American options (treated in Chapter 7).

6.1 The Hierarchy of PDEs

We have seen that two lattice instances have to be created if the portfolio contains one

barrier option, thus doubling the cost of solving the worst-case pricing problem. The

immediate question is: what is the number of lattice instances in the general case, and

what are their signatures? How expensive is it to compute worst-case values for portfolios

that contain more than one barrier option?

We answer this question for any portfolio that contains up-and-out, down-and-out and

double-barrier knock-out options. Up-and-out barrier options knock out if the asset price

reaches a barrier u > s0, as in the example in Fig. 6.1. Down-and-out barrier options

knock out if the asset prices falls to a level d < s0. Double-barrier options knock out as

soon as the asset reaches a barrier u > s0, or falls to a level d < s0: the interval [d; u]

de�nes a corridor in which the double-barrier option is alive.

The following sections closely follow Avellaneda and Bu� (1998).

50

6.1.1 Construction

Let each instrument of the portfolio X be associated with an up-and-out barrier u(Xi)

and a down-and-out barrier d(Xi), 1 � i � k. Vanilla options are modeled by setting

d(Xi) = 0 and u(Xi) to a very large number (preferrably larger than sU , the upper

boundary of the �nite di�erence lattice). For a single up-and-out barrier option with

barrier b, d(Xi) = 0 and u(Xi) = b. For a single down-and-out barrier option with

barrier b, d(Xi) = b and u(Xi) very large. For double barrier options, d(Xi) and u(Xi)

are both set to the respective barriers.

The open asset-price interval in which the instrument Xi is possibly alive is denoted

by a(Xi) = (d(Xi); u(Xi)), 1 � i � k. Let Y � X be a partial portfolio with k0 � k

instruments . De�ne

A(Y) =

k0\
i=1

a(Yi) (6.6.6)

A(Y) is also open. Let

U(Y) = supA(Y) =
k0

min
i=1

u(Yi)

D(Y) = inf A(Y) =
k0

max
i=1

d(Yi)

(6.6.7)

[D(Y); U(Y)] is the closure of A(Y). U(Y) is the smallest up-and-out barrier of the

instruments in Y. Similarly, D(Y) is the largest down-and-out-barrier in Y. If the

underlying asset stays within A(Y), an initial position in Y will remain intact until

expiration.

De�nition 6.1 (Extensions). Let Y � X be a partial portfolio with k0 � k instru-

ments.

BU (Y) =
�
1 � i � k0 j u(Yi) > U(Y)

	
(6.6.8)

is called the upper extension of Y. Correspondingly,

BD(Y) =
�
1 � i � k0 j d(Yi) < D(Y)

	
(6.6.9)

is called the lower extension of Y. The vectorized versions of BU and BD are

BU (Y) = select (Y; BU (Y))

BD(Y) = select (Y; BD(Y))
(6.6.10)

51

s0

U(X)

D(X)

BU (X)

BD(X)

X1 X2 X3 X4

XA(X)

Figure 6.2: A portfolio X consisting of k = 4 options and its upper and lower extensions,

BU (X) and BD(X). The vertical axis marks the price of the underlying asset. U(X) is

the smallest up-and-out barrier among the up-and-out barriers in X. Similarly, D(X) is

the smallest down-and-out barrier among the down-and-out barriers in X. Each option

Xi is represented by a vertical bar whose endpoints are its barriers u(Xi) and d(Xi)

Similarly, a position �0 in Y is reduced to

�0U (Y) = select
�
�0; BU (Y)

�
�0D(Y) = select

�
�0; BD(Y)

� (6.6.11)

BU (Y) resp. BD(Y) indicate which instruments in Y remain possibly alive when the

price of the underlying asset crosses U(Y) resp. D(Y). BU (Y) and BD(Y) are sets; the

corresponding partial portfoliosBU (Y) and BD(Y) are possibly empty. (BU (Y); �0U (Y))

and (BD(Y); �0D(Y)) are the signatures of the lattice instances that feed the boundary

data at U(Y) and D(Y). For empty BU (Y) or BD(Y), no lookup is necessary.

If U(Y) is very large (as is the case if Y consists of vanilla options only), it will lie

outside the �nite lattice. Similarly,D(Y) = 0 also falls outside the lattice. In these cases,

no additional lattice instances need to be maintained.

Figure 6.2 gives an example for k = 4. The sequences of up-and-out and down-and-out

52

barriers are

s0 < u(X4) < u(X1) = u(X3) < u(X2)

s0 > d(X1) = d(X3) > d(X2) = d(X4)
(6.6.12)

The upper and lower extensions BU (X) and BD(X) of the full portfolio contain them-

selves barrier options. Thus, additional lattice instances covering the extensions ofBU (X)

andBD(X) need to be created as well. Recursion leads to the four partial portfolios shown

in Figure 6.3. Altogether, four lattice instances are needed to solve the worst-case pricing

problem for the example portfolio.

Partial portfolio Upper extension Lower extension

(X1;X2;X3;X4)
T (X1;X2;X3)

T (X2;X4)
T

(X1;X2;X3)
T (X2)

T (X2)
T

(X2;X4)
T (X2)

T empty

(X2) empty empty

Figure 6.3: The extension hierarchy created by the example portfolio X of Fig. 6.2

De�nition 6.2 (Extension hierarchy). Let X be a portfolio with k > 0 instruments.

Let B denote the set of all partial portfolios of X. The extension hierarchy of X, written

B(X), is de�ned as the smallest subset of B such that

� X 2 B(X), and

� Y 2 B(X) implies BU (Y) 2 B(X) and BD(Y) 2 B(X), assuming those are

nonempty

Figure 6.4 sketches the algorithm to �nd the extension hierarchy B(X) of any given

portfolio X on a very high level. The sketch is ineÆcient, but �nding B(X) is the least

costly operation in solving the worst-case for X. (In our actual implementation, we do

employ a more eÆcient procedure.)

Once B(X) is known, lattice instances can be created, with appropriately instantiated

signatures.

B(X) is exhaustive. No more lattice instances are required to solve the worst-case

pricing problem for X. The solution itself is obtained by solving worst-case pricing

53

Input: portfolio X

Output: extension hierarchy B(X)

1. Set B(X) := fXg

2. Repeat the following:

(a) Set B0 :=
[

Y2B(X)
fBD(Y);BU (Y)g

(b) Set B0 := B0 n (B(X) [f;g)
(c) Set B(X) := B(X) [B0

until B0 = ;

Figure 6.4: Finding the extension hierarchy B(X) amounts to computing a closure. In

step 2a, we make sure we know all extensions immediately reachable from the current

con�guration. In step 2b, extensions that are already known are discarded, as well as the

empty extension for which no lattice instance is created

problems on all lattice instances, transferring boundary data where necessary. The policy

outlined in Sect. 5.1 to ensure external consistency leads to the approach shown in Fig. 6.5,

outlined on a very high level. (In a concrete implementation, step 3c is done time slice by

time slice; the inner loop implicit in step 3c and the outer loop in step 3 change places.)

6.1.2 Complexity

The example in Fig. 6.2 requires four lattice instances for the solution of the worst-case

problem. Now consider a second portfolio X0 also consisting of 4 double-barrier options,

with the barriers rearranged as shown in Fig. 6.6. In this case, the application of the

algorithm in Fig. 6.4 yields an extension hierarchy of 10 elements, listed in Figure 6.7.

It turns out that 10 = 4 � (4 + 1)=2 is indeed the maximum size of any extension

hierarchy for a portfolio with 4 instruments. This result can be generalized to the following

proposition, taken from Avellaneda and Bu� (1998).

54

Input: extension hierarchy B(X)

1. Set n := jB(X)j

2. Find an ordering Yl1 ;Yl2 ; : : : ;Yln of B(X) such that jYli j � jYlj j for i < j

3. Repeat for i = 1; : : : ; n:

(a) If BU (Yli) 6= ; then access the lattice instance for partial portfolio BU (Yli),

and use it for the boundary condition at U(Yli)

(b) If BD(Yli) 6= ; then access the lattice instance for partial portfolio BD(Yli),

and use it for the boundary condition at D(Yli)

(c) Solve (4.4.8) for (Yli ; �li), using the data produced in the previous two steps

Figure 6.5: Solving the worst-case pricing problem for X requires solving subordinate

worst-case problems in the right order. The particular ordering in step 2 implies that

Yln = X

Proposition 6.3. Given a portfolio X of k � 1 instruments such that

u(X1) > u(X2) > � � � > u(Xk) (6.6.13)

d(Xi) 6= d(Xj) (1 � i; j � k; i 6= j) (6.6.14)

Then jB(X)j � k(k + 1)=2.

Proof. By induction over k. For k = 1, jB(X)j = 1 by inspection and the proposition is

true. Thus assume k > 1. De�ne X0 = (X1; : : : ;Xk�1)T. X0 is a partial portfolio of X

with k � 1 instruments and ful�lls the premises of the proposition. Figure 6.8 shows an

example for k = 4.

The idea is to count the lower extensions that must be added to B(X0) as a consequence

of adding Xk to X
0. It will turn out that a) all new extensions contain Xk, and b) upper

extensions will not cause trouble, thanks to the particular ordering (6.6.13).

Clearly, X 2 B(X). By assumption (6.6.13), BU (X) = X0 which implies X0 2 B(X),

and by transitivity B(X0) � B(X) (here we refer to the algorithm in Fig. 6.4).

55

s0

X1 X2 X3 X4

X0

D(X)

U(X)

Figure 6.6: A portfolio X0 consisting of k = 4 double-barrier options with up-and-out

barriers u(X1) > u(X2) > u(X3) > u(X4) and down-and-out barriers d(X1) > d(X2) >

d(X3) > d(X4). This particular combination requires 10 lattice instances

Now consider the sequence Y0 = X, Y1 = BD(Y0), Y2 = BD(Y1), : : : , Yk�1 =

BD(Yk�2), Yk = ;. This sequence of consecutive lower extensions has k + 1 distinct

elements, because by assumption (6.6.14) the di's are all distinct.

Thus, jYij = k � i. For 0 � i � k � 1, de�ne

Bi = select (Yi; f1 � j � k � i j Yi;j 6= Xkg) (6.6.15)

Bi is Yi, possible reduced by the element Xk if it happens to be part of Yi. Note that

by de�nition of X0,

B0 = X0 (6.6.16)

We claim that for 0 � i � k � 1,

Bi 2 B(X0) (6.6.17)

To see this choose i0 2 f0; : : : ; k � 1g such that Bi � Yi (i.e., Xk is in Yi, and Bi is a

strictly partial portfolio of Yi) for i � i0 and Bi = Yi (i.e., Xk is not element of Yi) for

i > i0, and note that for i < i0, the equality BD(Bi) = Bi+1 holds.

56

Partial portfolio Upper extension Lower extension

(X 0
1;X

0
2;X

0
3;X

0
4)
T (X 0

1;X
0
2;X

0
3)
T (X 0

2;X
0
3;X

0
4)
T

(X 0
1;X

0
2;X

0
3)
T (X 0

1;X
0
2)
T (X 0

2;X
0
3)
T

(X 0
2;X

0
3;X

0
4)
T (X 0

2;X
0
3)
T (X 0

3;X
0
4)
T

(X 0
1;X

0
2)
T (X 0

1) (X 0
2)

(X 0
2;X

0
3)
T (X 0

2) (X 0
3)

(X 0
3;X

0
4)
T (X 0

3) (X 0
4)

(X 0
1) empty empty

(X 0
2) empty empty

(X 0
3) empty empty

(X 0
4) empty empty

Figure 6.7: The extension hierarchy created by the example portfolio X0 of Fig. 6.6

Together with (6.6.16) as starting point, this implies that B1 2 B(X0) and recursively

Bi 2 B(X0) for 0 � i � i0. Thus, (6.6.17) is true for at least 0 � i � i0.

That (6.6.17) is also true for i0 + 1 � i � k � 1 can be derived from Bi0 = Bi0+1 and

Bi = Yi for i > i0, both true by choice of i0, and since Yi 2 B(X0) by de�nition of Yi.

u(Xk) is the smallest up-and-out barrier, and Xk is thus the �rst instrument which

is dropped. Therefore, BU (Yi) = Bi, or BU (Yi) 2 B(X0) for 0 � i � k � 1 by (6.6.17).

This implies that the partial portfolios that are not already part of B(X0) are exactly

those that contain Xk, namely X;Y1; : : : ;Yi0 . Thus, since i0 � k� 1, it follows that the

size of B(X) is bounded by

jB(X)j � jB(X0)j+ 1 + (k � 1) (6.6.18)

or, by induction,

jB(X)j � k(k � 1)=2 + 1 + (k � 1) = k(k + 1)=2 (6.6.19)

which completes the proof.

It is easy to see that the size of the extension hierarchy does not become larger if

u(Xi) and d(Xi) are not distinct as postulated in the proposition, making the upper

57

s0

u(X1)

u(X2)

u(X3)

u(X4)

d(X1)

d(X3)

d(X2)

d(X4)

X0

Y1

X1 X2 X3 X4

X

Figure 6.8: Portfolios X and X0 illustrate the proof of Prop. 6.3 for k = 4. Y1, the lower

extension of X, is also marked. Note that BU (Y1) = BD(X
0) = (X2;X3)

T

bound k(k+1)=2 the general worst case upper bound for every portfolio of vanilla, single

and double barrier options of size k. Motivated by the example in Fig. 6.6, it can be

shown that this upper bound is tight.

Corollary 6.4. Let X be a portfolio of k double barrier options with barriers u(X1) >

u(X2) > � � � > u(Xk) and d(X1) > d(X2) � � � > d(Xn). Then jB(X)j = k(k + 1)=2.

Proof. All elements in the sequence of lower extensions Y0; : : : ;Yk in the proof of

Prop. 6.3 contain Xk. i.e. i0 = k � 1. Since this is true in each inductive step, equality

follows in (6.6.19).

Most practical cases do not involve double barrier options. Proposition 6.3 can be

specialized for portfolios that contain only single barrier options.

Proposition 6.5. Given a portfolio X of k � 1 instruments such that

s0 > d(X1) > d(X2) > � � � > d(Xkd) (6.6.20)

and

u(Xkd+1) > � � � > u(Xk) > s0; (6.6.21)

58

for some kd 2 f0; : : : ; kg. Furthermore, u(X1); u(X2); : : : ; u(Xkd) are very large, and

d(Xkd+1) = � � � = d(Xk) = 0. (Thus, there are kd down-and-out barrier options and

ku = k � kd up-and-out barrier options in X.) Then

jB(X)j = kd + ku + kd ku: (6.6.22)

Proof. A simple counting argument will do. If a path fSt(!)g, ! 2
 of the underlying

crosses barrier d(Xn), 1 � n � kd, it must have crossed barriers d(X1); : : : ; d(Xn�1)

before. Thus, only subsets X1; : : : ;Xn with contiguous indexes can be knocked out at

any particular time. Therefore, we count kd + 1 ways to separate the kd down-and-out

barrier options into knocked-out ones and ones which are still alive.

Similarly, we count ku+1 ways to divide the ku up-and-out barrier options in X into

knocked-out and alive ones. Since the up-and-out and down-and-out barrier options are

unrelated, there are (kd + 1)(ku + 1) combinations altogether. Disregarding the empty

combination, we get

jB(X)j = (kd + 1)(ku + 1)� 1 = kd + ku + kd ku: (6.6.23)

Proposition 6.5 shows that the number of lattice instances for a portfolio of single

barrier options is linear both in the number of up-and-out resp. down-and-out barrier

options. Again, barriers are not necessarily distinct as required in the premise of the

proposition. If, however, kd and ku are set to the number of distinct up-and-out and

down-and-out barriers inX, respectively, then (6.6.22) remains precise. IfX also contains

vanilla options, one additional lattice instance needs to be created, and jB(X)j = kd +

ku + kd ku + 1.

6.2 Performance Results

All tests were performed on a Pentium/166 MHz PC running Windows NT Workstation

4.0/SP 3 and equipped with 128 MB of RAM. The worst-case pricer is written in C++ and

compiled with Microsoft Visual C++ 5.0, optimizations activated. The pricer uses the

algorithms developed in the previous sections, and is implemented in an object oriented

fashion of which more will be heard in Part III.

In the following, the term \Mtg" is used to refer to our pricer.

59

6.2.1 Convergence

Before we measure the speed of Mtg, we need to convince ourselves that the results it

delivers are numerically accurate. We �rst apply Mtg to a double-barrier option and

compare the result with two sources in the literature.

Experiment 1: A Double-barrier Option

Set X = (X1) and �1 = 1. X1 is a double barrier option with variable strike K, up-

and-out barrier u = u(X1) and down-and-out barrier d = d(X1). We assume S0 = 2 and

T = 365 days. The interest rate r and volatility � are constant.

Geman and Yor (1996) use a probabilistic approach to price X1. Kunitomo and Ikeda

(1992) suggest a pricing formula that consists of a sum of an in�nite series. Mtg is run with

four di�erent time steps dtmax = 1=(N � 365), where N = 1, 5, 20 and 50, respectively,

as well as under explicit and Crank-Nicholson schemes (in the explicit scheme dt = dtmax

after the algorithm in Fig. 5.4 is run).

Figure 6.9 lists the results for three combinations of r, �, u and d. Geman and Yor's

method is quoted as \G-Y", and Kunitomo and Ikeda's method is quoted as \K-I."

The convergence is very satisfactory. For N = 5, the �rst four digits after the decimal

point of the results of all three methods agree. The Crank-Nicholson scheme converges

slightly faster than the explicit forward Euler scheme. It is, however, between 30 and

50% slower than the explicit scheme.

For N = 1, the result appears almost instantaneously. For N = 50, 32 and 44 seconds

are needed for the explicit and Crank-Nicholson scheme, respectively. The theoretical

time complexity is O(N3=2), due to trimming. Measurements for all N validate the

theory and yield a running time of approximately 0:1 � N3=2 seconds for the explicit

scheme, and 0:14 �N3=2 seconds for Crank-Nicholson.

Experiment 2: A Portfolio of Single-barrier Puts

To test the algorithm in Fig. 5.5, a portfolio of four down-and-out at-the-money puts is

priced, listed in Figure 6.10. All options mature in 30 days. The other parameters are

S0 = 100, r = 0:025 and � = 0:2.

The results for the explicit and the Crank-Nicholson scheme are summarized in

Fig. 6.11. Also shown are �D and �U (de�ned in Sect. 5.2). There are four regions

60

N scheme � = 0:2 � = 0:5 � = 0:5

(periods (CR = r = 0:02 r = 0:05 r = 0:05

per Crank- K = 2 K = 2 K = 1:75

day) Nicholson) d = 1:5; u = 2:5 d = 1:5; u = 3 d = 1; u = 3

Mtg 1 explicit 0.040899 0.017666 0.075914

Mtg 1 CR 0.040968 0.017844 0.076146

Mtg 5 explicit 0.041050 0.017819 0.076102

Mtg 5 CR 0.041063 0.017856 0.076149

Mtg 20 explicit 0.041079 0.017848 0.076158

Mtg 20 CR 0.041083 0.017857 0.07617

Mtg 50 explicit 0.041085 0.017853 0.076168

Mtg 50 CR 0.041086 0.017857 0.076173

G-Y 0.0411 0.0178 0.07615

K-I 0.041089 0.017856 0.076172

Figure 6.9: Prices obtained for a double barrier call option with each of the three methods

Mtg, G-Y and K-I. There is no uncertainty

in the lattice with di�ering �D and �U ; the three interior barriers at 98, 95 and 90 mark

the boundaries between these regions. The range of �D and �U narrows as N becomes

large, from a range of 0.29{0.38 with an absolute di�erence of 0.09 for N = 1 to a range of

0.28285{0.028591 with an absolute di�erence of only 0.000306 for N = 400. (It is obvious

that smaller and thus more numerous spatial increments have to be bent relatively less

to match the barriers.)

A closed form formula for down-and-out barrier puts yields 10:287 as the model value.

The numerical result is suÆciently close for N � 100.

For N = 50, 100, 200 and 400 the running time is 2, 6, 17 and 51 seconds under the

explicit scheme, and 5, 15, 44 and 139 seconds under Crank-Nicholson. This suggests

a running time of 0:006 � N3=2 (explicit) respectively 0:0162 � N3=2 seconds (Crank-

Nicholson). Crank-Nicholson trails the explicit scheme by a factor of � 2:7, while not

yielding signi�cant higher accuracy.

Note that this example does not exhibit uncertainty. Only one lattice instance is

61

type strike barrier position

put 100 98 long 200 contracts

put 100 95 long 10 contracts

put 100 90 long 2 conctracts

put 100 85 long 1 contract

Figure 6.10: A portfolio of four down-and-out 30-day at-the-money puts. The position

in each put is approximately inverse proportional to the relative value that it contributes

to the portfolio

needed to compute the price of the portfolio, and in this case the individual values of

the puts might as well have been computed separately and added up. We introduce

uncertainty for this particular portfolio below.

6.2.2 Combinatorics

Experiment 3: Two Barrier Options Hedged

We introduce uncertainty in � for the �rst time and choose �min = 0:1 and �max = 0:2 as

upper and lower bounds. The other parameters are S0 = 100 and r = 0:02.

LetX be a portfolio of 5 instruments. X1 is a double-barrier call, X2 is a single-barrier

put, and X3, X4 and X5 are vanilla calls whose market prices are known. All options

mature in 30 days. Let � = (1; 1; 0:24;�0:98; 8:47)T be the position in X.

Four lattice instances are necessary to solve the worst-case problem for (X; �). Their

signatures are, respectively,

� the two barrier options plus the vanillas;

� the double barrier option plus the vanillas;

� the single barrier option plus the vanillas;

� the vanillas.

The worst-case price of (X; �) is shown in Fig. 6.13 for various time steps. Results

under the explicit scheme and Crank-Nicholson are in close agreement, although Crank-

62

N price �D, �U �D, �U �D, �U �D, �U

(periods between between between between

per explicit Crank- 98 98 95 90

day) Nicholson and above and 95 and 90 and below

1 7.72429 7.76010 0.38597 0.29699 0.34432 0.36400

2 7.79286 7.80849 0.33426 0.34294 0.29819 0.31524

5 9.96666 10.0005 0.28769 0.33205 0.28872 0.30523

10 10.1146 10.1320 0.30514 0.31306 0.29695 0.28777

20 10.2094 10.2185 0.28769 0.29515 0.28872 0.28727

50 10.2532 10.2569 0.30325 0.30001 0.29216 0.28599

100 10.2709 10.2727 0.29690 0.28285 0.28693 0.28737

200 10.2793 10.2803 0.28729 0.28966 0.28643 0.28599

400 10.2832 10.2837 0.28591 0.28285 0.28300 0.28364

Figure 6.11: Results for a portfolio of four down-and-out at-the-money puts. The model

value is 10:287. Also shown are �D and �U for the four signi�cant regions of the lattice,

determined by the interior barriers 98, 95 and 90 and found by the algorithm in Fig. 5.5

Nicholson turns out to be between 2 and 4 times slower. The running times for the

explicit scheme are less than 1, 1, 3 and 12 seconds for N = 5, 10, 20 and 50, respectively.

The running times for Crank-Nicholson are 1, 2, 12 and 32 seconds, respectively.

Given their market prices, the transaction involvingX3, X4 andX5 creates a premium

of 84:499. Thus, anyone charging at least 85.5801 for the entire package and at the same

time entering the o�setting position in X3, X4 and X5 (thus e�ectively charging 1.0811

for X1 and X2) will break even or make a pro�t provided the volatility stays within the

band 0:1 � � � 0:2 over the next 30 days. It can be shown that our particular o�setting

position in the vanillas is optimal in the sense that 1.0811 is the smallest surcharge for

X1 and X2 for any o�setting position. The position (0:24;�0:98; 8:47) in (X3;X4;X5) is

the optimal hedge portfolio for the position (1; 1) in (X1;X2). See also Sect. 4.2.2.

63

type strike position U&O barrier D&O barrier

call 110 long 1 contract 120 90

put 100 long 1 contract { 95

type strike position quoted price

call 110 long 0.24 contracts 17% implied vol

call 100 short 0.98 contracts 13% implied vol

call 90 long 8.47 contracts 15% implied vol

Figure 6.12: The portfolio consists of two 30-day barrier options and four 30-day vanilla

options. The market prices for the vanilla options are quoted as implied volatility. The

contribution of X3, X4 and X5, given their market prices and positions, is 84.499

Experiment 4: Single-barrier Portfolios of Various Sizes

According to Prop. 6.5, the running time is O(kd+ku+kd ku) in the number of down-and-

out barriers kd and up-and-out barriers ku, assuming there are no double-barrier options

in the portfolio. We want to validate this formula experimentally.

We augment the portfolio of four down-and-out barrier puts in Fig. 6.10 by four up-

and-out barrier calls as shown in Fig. 6.14. For each combination of down-and-out and

up-and-out barrier options (kd; ku) 2 f(x; y) j 0 � x; y � 4; x � 1; y � xg, the worst-case
price is computed for the portfolio consisting of the �rst kd puts and the �rst ku calls.

Since we are only interested in the running time, we set �min = 0:199999 and �max = 0:2

just to make sure the problem becomes nonlinear. The other parameters are S0 = 100,

r = 0:025 and N = 20 (i.e., dt = 1=(20 � 365)).

Figure 6.15 shows the result in tabulated form. Figure 6.16 plots the running times

against the number of lattice instances required for the combinations of Fig. 6.15. The

graphic shows that the running time progresses linearly, thereby validating Prop. 6.5 ex-

perimentally. (Slight deviations are expected: each partial portfolio has its unique bound-

ary, and the corresponding lattice instance thus a unique continuation region. Numerical

processing concentrates on the continuation region, causing slightly di�erent processing

times for di�erent lattice instances.)

64

N price explicit price

(periods explicit Crank- minus premium

per day) Nicholson for X3, X4, X5

5 85.5709 85.5720 1.0719

10 85.5762 85.5771 1.0772

20 85.5788 85.5791 1.0798

50 85.5801 85.5803 1.0811

Figure 6.13: Worst-case prices for a double-barrier option, a single-barrier option and

three traded vanillas. The last column shows the contribution of X1 and X2 to the worst-

case price, given that the market prices for X3, X4 and X5 are 17, 13 and 15% implied

volatility, respectively

type strike barrier position

put 100 98 long 200 contracts

put 100 95 long 10 contracts

put 100 90 long 2 conctracts

put 100 85 long 1 contract

call 100 102 long 200 contracts

call 100 105 long 10 contracts

call 100 110 long 2 conctracts

call 100 115 long 1 contract

Figure 6.14: The portfolio of four down-and-out 30-day at-the-money puts of Fig. 6.10,

augmented by four up-and-out 30-day at-the-money calls

65

ku (explicit) ku (Crank-Nicholson)

kd 0 1 2 3 4 0 1 2 3 4

1 0.3 1.3 0.5 1.9

2 1.0 3.1 5.9 1.6 4.2 8.2

3 1.8 5.2 9.2 13.8 3.2 7.1 12.7 18.1

4 2.9 7.8 14.1 19.9 26.7 4.9 10.6 17.7 26.5 37.4

Figure 6.15: The running times in seconds under the explicit resp. Crank-Nicholson

schemes for various combinations of down-and-out and up-and-out barrier options (kd

and ku, respectively)

0

10

20

30

[s] 40

1 3 5 8 11 15 19 24
nd + nu + nd nu

explicit

ttttt t
ttt

t
tt

t
t

0

10

20

30

40

1 3 5 8 11 15 19 24
nd + nu + nd nu

Crank-Nicholson

ttt
t
t t

t
tt

t
tt

t

t

Figure 6.16: The running times in seconds under the explicit resp. Crank-Nicholson

schemes, plotted against the number of lattice instances necessary to process various

combinations of single-barrier options

66

7 Algorithms for American Options

Just like barrier options, American options may be subjected to premature termination

sometime between the settlement and the face maturity date. This seems to make the

techniques discussed in Chapters 5 and 6 applicable to portfolios that contain American

options as well.

This is true|in principle. The fundamental di�erence is that the early exercise of

American options is voluntary. The precise date is not known a priori, although it may

be assumed that holders of American options time early exercise so as to maximize their

expected payo�. How mathematical �nance models this behavior can be read in Bensous-

san (1984) and Karatzas (1988). Numerically, American options can be evaluated with

projected SOR (Successive Over-Relaxation) methods on a lattice or tree, as described

in Wilmott et al. (1993). Other approaches are also possible (see Longsta� and Schwartz

(1998), for instance).

Uncertainty in some of the model coeÆcients adds another twist to the problem: the

early exercise strategy for an individual American option X1 now depends on the entire

position (X; �), not merely on the contribution of X1 judged separately. We have en-

countered this situation with barrier options: once X1 is exercised, the exposure of the

remaining partial portfolio to uctuations in the uncertain coeÆcients may be di�erent,

and so may the worst-case value. Thus it is not possible to pre-process the components

of X with American early exercise features separately and use the so found early exer-

cise boundaries just like knock-out boundaries are used in the case of barrier options.

Rather, the continuation and early exercise regions for each American option in X must

be searched for dynamically, by considering the consequences of all possible early exer-

cise strategies (of which there are plenty if X contains several American options) on the

worst-case value of the entire position.

In this chapter, we show how to implement the dynamic search for continuation and

early exercise regions within the framework of worst-case pricing. We also show how

to cope with the explosion of combinations: it is possible to reduce the combinatorial

complexity in most practical cases considerably.

In some sense, the concept of optional early exercise is merely an extension of the

notion of forced knock-out. The algorithms in this chapter work for both American and

barrier options indiscriminately. In particular, they are capable of pricing a portfolio of

67

American barrier options!

Once again, � shall be the only uncertain model coeÆcient.

7.1 Early Exercise Combinations

We use a lattice approach as proposed in Chapter 5. Let (X; �) be the portfolio, and

assume all k instruments in X mature at time T , and may be exercised early at any time

between now and T .

The local data ow shown in Figs. 5.2 and 5.3 captures the situation only partially if

American options are present. V̂ (j; i;L), unmodi�ed, represents the worst-case portfolio

value under the restriction that no option be exercised at t = ti and Si = sj (recall

that Si is an abbreviation for Sti and sj is the jth spatial level of the lattice). V̂ (j; i;L)

needs to be compared to other worst-case values that arise under viable early exercise

combinations, and a proper selection needs to be made. Thus, the original scheme turns

into a two-tiered numerical-combinatorial regime:

1. The �nite-di�erence scheme is applied to �nd the worst-case value under a no-

exercise assumption. This is the numerical phase.

2. This preliminary value competes against the worst-case values delivered by all vi-

able early exercise combinations. It may or may not be updated. This is the

combinatorial phase.

V̂ (j; i;L) is always paired with its gradient vector (v̂1(j; i;L); : : : ; v̂k(j; i;L))
T. Although

sometimes not explicitely mentioned, the gradient is always computed, and modi�ed,

together with V̂ (j; i;L).

Figure 7.1 presents this approach graphically. Subordinate lattice instances need to

be accessed in the combinatorial phase. As some early exercise combinations might be

dismissed right away, exactly which lattice instances must be available at a given node

instance (j; i;L) is determined at runtime. Clever selection techniques lead to signi�cant

speedup.

Note that Fig. 7.1 is correct for explicit �nite di�erence schemes, but not necessarily for

mixed explicit/implicit schemes such as Crank-Nicholson. As the update of one V̂ (j; i;L)

a�ects all the others implicitely, iterative improvement over both phases 1 and 2, applied

68

preliminary V̂ (j; i;L)

�nal V̂ (j; i;L1)

�nal V̂ (j; i;L2)
� � �

�nal V̂ (j; i;Ln)

combinatorial �nal V̂ (j; i;L)- -

6666

Figure 7.1: The preliminary worst-case value V̂ (j; i;L) at node instance (j; i;L), result of

the dataow in Fig. 5.2, enters the combinatorial post-processor which selects a suitable

early exercise combination. To do that it needs to access lattice instances L1; : : : ; Ln, all

carrying partial portfolios of X

to all node instances (�; i;L) of the current time slice, is required. A modi�ed projective

SOR method, for instance, may do.

For this reason, all experimental results were obtained with explicit forward Euler.

Although we have implemented Crank-Nicholson (and projected SOR), we focus on com-

binatorial aspects in this chapter and ignore the numerical side as much as possible.

7.1.1 Long and Short Positions

Which early exercise combinations should be adopted at (j; i; L)? Which combination

is \suitable", in the language of Fig. 7.1? Simply choosing the one that represents the

largest worst-case value is not suÆcient, since control lies not only with the other party

to whom some of the American instruments in the portfolio have been sold, but also with

the agent who may own some of the American options.

The Worst-case Price Revisited

To clarify this point, we remind ourselves that

the worst-case price of (X; �) represents the largest amount of funds that may

be necessary to delta-hedge a portfolio (X; �). It thus represents the safe price

which, when charged, guarantees that the seller of (X; �) will not incur any

losses.

69

The worst-case price therefore represents the point of view of the sell-side:

� �i > 0 means that the agent has sold �i contracts in the ith instrument and does

therefore not control the early exercise strategy for this instrument. (When the

sell-side sells a long position in Xi, it e�ectively goes short Xi.)

� �i < 0 means that the agent has bought j�ij contracts in the ith instrument and

therefore controls its early exercise strategy.

The worst-case value of (X; �) is the worst-case liability of the sell-side. Positive values

mean that additional funds must be provided to hedge against the worst-case. They

represent an upper bound for the price (i.e., the most desirable price) the seller can

justi�ably charge the buyer, assuming the buyer agrees with the seller on the uncertain

model coeÆcients.

Similarly, negative values indicate a net ow of funds from the seller to the buyer; the

absolute value represents a lower bound (corresponding to the unaltered value being an

upper bound) on the amount of funds p the seller needs to transfer together with (X; �).

Any amount smaller than p is no longer competitive under the particular uncertainty

assumptions of the model. Thus, p is the most desirable cost for the seller.

The Best Worst-case Price

In the previous paragraph we gave an economic justi�cation for the maximum-principle

in worst-case pricing. So far, however, agents from whose perspective the worst-case price

is computed have been unable to modify their risk pro�le after the position (X; �) has

been set up.

This is di�erent if X contains American instruments. Suppose Xi is American, and

�i < 0. De�ne X0 = (X1; : : : ;Xi�1;Xi+1; : : : ;Xk)
T, and �0 accordingly. De�ne Xe = X,

with X1 modi�ed to preclude early exercise if t = ti (early exercise is still allowed for t �
ti+1). Let the signature of lattice instance L

e and L0 be (Xe; �) and (X0; �0), respectively.

Consider the two quantities

V1 = V̂ (j; i;Le)

V2 = V̂ (j; i;L0) + �iXi

(7.7.1)

Both are worst-case prices: V1 under the restriction that X1 must not be exercised now,

but may be later, and V2 under the constraint that X1 be forcibly exercised now. Let

70

us assume that there are no other American options in X. Then V1 and V2 exhaust the

possible early exercise combinations for X1 and the remainder of the portfolio, and we

may express V̂ (j; i;L) in terms of V1 and V2.

Since the agent may choose between V1 and V2, it is advisable to choose the minimum.

This strategy reduces the worst-case liability of the agent and assures that the agent

selects the most competitive price when (X; �) is o�ered for sale, while still being hedged

against volatility uctuations.

De�nition 7.1 (Best worst-case). The best worst-case value of portfolio (X; �) is the

minimal worst-case value of (X; �), where the minimum is taken over the early exercise

strategies open to the seller of (X; �).

We illustrate the principle of best worst-case evaluation with an example, and give a

formalization in Sect. 7.1.2.

AssumeX = (X1;X2)
T and � = (�1; 1)T. Both instruments are American. The seller

of (X; �) controls early exercise for X1, but is subjected to any early exercise decisions

made by the holder of X2. Suppose the outcomes of the four early exercise combinations

at node instance (j; i) are those shown in Fig 7.2:

� 40 if X1 and X2 are both exercised (payo� of X1 plus payo� of X2);

� 10 if only X1 is exercised (payo� of X1, plus worst-case value of X2 under the

restriction that X2 not be exercised at node (j; i));

� 20 if only X2 is exercised (payo� of X2, plus best worst-case value of X1 under the

restriction that X1 not be exercised at node (j; i));

� 30 if neither instrument is exercised (best worst-case value under the restriction

that X1 and X2 not be exercised at node (j; i)).

De�nition 7.1 requires a strategy forX1 that guarantees the lowest value under all possible

decisions of the holder of X2. The agent therefore selects the strategy with the lowest

row maximum. In the example, the agent postpones the exercise of X1 at least until time

ti+1 and thus guarantees a worst-case value of 30.

71

exercise X2 don't exercise X2

exercise X1 40 10

don't exercise X1 20 30

Figure 7.2: Early exercise combinations at node (j; i) and their corresponding values.

Bold values are row maxima; the framed value is the best worst-case

7.1.2 Best Worst-case Evaluation Formalized

Most of the exposition in this section is taken from Bu� (1999a) and reformulated for a

discrete setting.

Some notational remarks. In general, if nothing else is said, the lattice instance

associated with signature (X; �) is denoted by L, and vice versa. Its size is denoted

jLj = jXj = j�j = k. In some cases, however, XL and �L express this relationship

explicitely. If (X0; �0) � (X; �) is partial, and L0 is the corresponding lattice instance, we

refer to L0 as a sub-lattice instance. L is sometimes called the root-lattice instance.

De�nition 7.2 (Separation into long and short). Let (X0; �0) � (X; �) be a partial

portfolio of size k0. Then

long
�
X0; �0

�
=
�
1 � n � k0 j �0n < 0 and X 0

n is American
	

short
�
X0; �0

�
=
�
1 � n � k0 j �0n > 0 and X 0

n is American
	

am
�
X0� = �1 � n � k0 j �0n 6= 0 and X 0

n is American
	 (7.7.2)

separate the American instruments in X0 into long and short positions. (Recall that for

the sell-side, �0n > 0 translates to X 0
n being sold.)

De�nition 7.3 ("Europeanization"). Let X be a portfolio, and Xn 2 am (X) one of

its American instruments. Then XE
n is its \europeanized" version: early exercised is pre-

cluded everywhere. If G is any process involving Xn, then we write GE for the correspond-

ing process involving XE
n (where \corresponding" depends on the context). Similarly, LE

is a lattice instance whose signature contains europeanized versions XE
1 ; : : : of American

instruments X1; : : : .

72

De�nition 7.4 (Residual lattice instance). Let L be a lattice instance with signature

(X; �), and let M � f1; : : : ; jLjg. Then :M = f1; : : : ; jLjg nM , and L:M with signature

(select (X;:M) ; select (�;:M)) (7.7.3)

is called the residual lattice instance of L.

De�nition 7.5 (Payo� from early exercise). Given a lattice instance L with signa-

ture (X; �) and an enumeration of instruments M � am (X). Then the payo� from early

exercise of the instruments in M is given by the linear combination

payo� (L;M) = select (�;M) � select (X;M) (7.7.4)

The Best Worst-case Price Process

De�nition 7.6 (Local �xation of early exercise). Let F̂ = fF̂ig be any discrete pro-
cess de�ned on the space of node instances. F̂i(L) is a random variable; F̂i(j;L) its value

at node instance (j; i;L). Assume (X; �) is the signature of L, and choose � 2 C.
Then we de�ne the local �xation of F̂ for M � am (X) as follows:

Fi(L;M; �) =
1

�i
EQ(�)

�
�i+1 F̂i+1(L:M) j Fi

�
+ payo� (L;M) (7.7.5)

where L:M is the residual lattice instance of L. Fi(L;M; �) is also a random variable,

and Fi(j;L;M; �) its value at node instance (j; i;L).

In some sense, the local �xation Fi(L;M; �) \harnesses" the power of F̂i(L) by �xing

the volatility � as well as the early exercise strategy for one time period. The parameter

M in Def. 7.6 has the e�ect of modifying the features of X locally. The maturity date

of the instruments covered by M is advanced to ti, and for all other instruments the

earliest date on which early exercise is permissible is set to ti+1. It is easy to see that F

is adaptable.

The following de�nitions remove the restrictions on the parameters M and � in

F (L;M; �) again. The result will not be the original F̂ , but a version that incorporates

the best worst-case paradigm in Def. 7.1.

De�nition 7.7 (Local uncertainty reintroduced). Let F (L;M; �) be a local �xati-

on. Then F̂ (L;M) = fF̂i(L;M)g, de�ned as

F̂i(L;M) = sup
�2C

Fi(L;M; �) (7.7.6)

73

j j j j
Fi+1(L;M; �)Fi(L;M; �)Fi�1(L;M; �)Fi�2(L;M; �)

j j j j

F̂i+1(L)F̂i(L)F̂i�1(L)F̂i�2(L)

@
@

@
@

@
@I

@
@

@
@

@
@I

@
@

@
@

@
@I

????

diagonal = expectation

vertical = selection

Figure 7.3: An illustration of Def. 7.6. The process F (L;M; �) = fFi(L;M; �)g depends
on the values the base process F̂ (L) = fF̂i(L)g takes on in subsequent time slices, by

taking the (discounted) expectation over all possible transitions. Although not implied

in Def. 7.6, we shall see later that F̂ (L) in turn may depend on F (L;M; �), by selecting

among feasable instantiations of M and �

reintroduces uncertainty in � locally.

De�nition 7.8 (Local optionality reintroduced). Let F̂ = fF̂ig be any discrete pro-
cess de�ned on the space of node instances. Let F̂ (L;M; �) be its local �xation, and let

F̂ (L;M) be the process de�ned in Def. 7.7. Let

A(L) = long (X; �)

B(L) = short (X; �)
(7.7.7)

denote the American instruments on lattice instance L with signature (X; �). Then the

process Ĝ(L) = fĜi(L)g, de�ned as

Ĝi(L) = min
A�A(L)

max
B�B(L)

F̂i(L;A [B) (7.7.8)

is said to reintroduce optionality locally.

De�nition 7.9 (Best worst-case process). Given (X; �). Let F̂ = fF̂ig be a discrete

process de�ned on the space of node instances belonging to the set of root- and sub-lattice

instances for (X; �), and let Ĝi reintroduce optionality locally. Then F̂ is called a best

74

worst-case process if

F̂i(L) = Ĝi(L) (7.7.9)

for all lattice instances L with signatures (X0; �0), X0 � X and �0 2 R
jX0 j, and 0 � i �

N � 1. If furthermore the payo� condition

F̂N (L) = �L �XL (7.7.10)

holds for all those L, then F̂ is called a best worst-case price process for (X; �).

We require (7.7.9) and the payo� condition to hold for all possible positions, not

only for those which can be constructed by removing elements from �. This is necessary

because auxiliary positions (especially in singleton partial portfolios) may be required to

support the computation.

The vertical arrows in Fig. 7.3 now make sense: the process F̂ in the picture is a best

worst-case price process.

Notice how Defs. 7.7 and 7.8 implement the proper hierarchy of local minimization

and maximization, corresponding to the following sequence of moves between the agent,

the client(s) who hold the instruments sold by the agent, and the market:

1. The agent chooses instruments to exercise. Candidates are found in long (X; �).

2. The client(s) decide likewise for the instruments enumerated in short (X; �).

3. The market acts by \selecting" the volatility of the underlying asset until the sub-

sequent time slice.

No other order is plausible. The minimization operator in (7.7.8) guarantees that the

agent makes the best possible choice, assuming maximal adversion by the client(s) and

by the market.

Proposition 7.10 (Uniqueness). There is only one best worst-case price process for

(X; �).

Proof. Let F̂ and Ĝ be both best worst-case price processes for (X; �). Since, by de�ni-

tion, both processes ful�ll the payo� condition (7.7.10), they agree for i = N . Induction

over i = N � 1; : : : ; 0 and the de�niteness of Defs. 7.7 and 7.8, including (7.7.8), imply

uniqueness.

75

Compatibility with Traditional Formulations

It is easy to verify that the de�nition of the best worst-case price process F̂ for (X; �)

implies that

F̂i(L) = sup
�2C

1

�i
EQ(�)

�
�i+1 F̂i+1(L) j Fi

�
(7.7.11)

if long (X; �) = short (X; �) = ;, i.e. if all instruments in X = XE are European. Expan-

sion leads to

F̂i(L) = sup
�2C

1

�i
EQ(�)

�
sup
�02C

EQ(�0)

�
�i+2 F̂i+2(L) j Fi+1

� �� Fi
�

= sup
�2C

1

�i
EQ(�)

�
EQ(�0)

�
�i+2 F̂i+2(L) j Fi+1

� �� Fi� (7.7.12)

where we exploit the fact that the outer and inner expectations are taken over distinct

periods of time. The outer supremum is insensitive to changes of the values of the function

� for t 62 [ti; ti+1), and the inner supremum is insensitive to changes of the values of �0

for t 62 [ti+1; ti+2). Both operators can thus be merged. Telescoping leads to

F̂i(L) = sup
�2C

1

�i
EQ(�)

�
�i+2 F̂i+2(L) j Fi

�
� � �

= sup
�2C

1

�i
EQ(�)

�
�N F̂N (L) j Fi

�

= sup
�2C

1

�i
EQ(�) (�N (� �X) j Fi)

(7.7.13)

This is the discrete version of (4.4.10) in Fact 4.6.

Now assume long (X; �) = ;, but short (X; �) 6= ;, i.e. some of the sold options

are American, but none of the options held long (by the sell-side) are. In this case, the

minimization operator in (7.7.8) is superuous, and we get, after unrolling the de�nitions,

F̂i(L) = max
B�B(L)

sup
�2C

1

�i
EQ(�)

�
�i+1 F̂i+1(L:B) j Fi

�
+ payo� (L;B) (7.7.14)

There are two cases:

1. The maximum is attained at B = ;, or F̂i(L) = F̂i(L; ;). In this case, early exercise

76

of any American instrument does not make the situation worse, and we conclude

F̂i(L) = sup
�2C

1

�i
EQ(�)

�
�i+1 F̂i+1(L) j Fi

�

= sup
�2C

1

�i
EQ(�)

�
�i+1 max

B�B(L)
F̂i+1(L;B)

�� Fi
� (7.7.15)

If, in turn, F̂i+1(L) = F̂i+1(L; ;) for all sj, conditioned on Fi, then

F̂i(L) = sup
�2C

1

�i
EQ(�)

�
�i+2 max

B�B(L)
F̂i+2(L;B)

�� Fi
�

(7.7.16)

and so on. Most of the time this will not be so, however, and branching into case

2 may occur, depending on Fi+1.

2. The maximum is attained for some B 6= ;, or F̂ (L) 6= F̂ (L; ;). Let L0 = L:B
be the residual lattice instance, with signature (X0; �0) = (XB ; �B). Now choose

B0 � short (X0; �0) such that a)

F̂i(L
0) = sup

�2C
1

�i
EQ(�)

�
�i+1 F̂i+1(L

0
:B0) j Fi

�
+ payo�

�
L0; B0� (7.7.17)

and b) no subset B00 for which (7.7.17) also holds has fewer elements. Then B0 = ;
must necessarily be true, for otherwise one could identify the instruments enu-

merated in B0 in the original portfolio X (the indexing might be di�erent). They

wouldn't be covered by B since B0\B = ;, and exercising them in addition to those

in B would increase the worst-case value, contradicting the maximality under B in

(7.7.14). (The argument uses the associativity of the maximum operator.) Thus,

F̂i(L
0) = F̂i(L

0; ;), and

F̂i(L) = F̂i(L
0; ;) + payo� (L;B) (7.7.18)

We have found the free boundary.

These two cases can be combined with the introduction of a discrete stopping time �i

such that

�i(L) = inf
n
i � u � N j F̂u(L) 6= F̂u(L; ;) or u = N

o
(7.7.19)

77

�i(L) marks the �rst time case 2 is encountered on lattice instance L. Combining cases 1

and 2, (7.7.14) can be re-written

F̂i(L) = sup
�2C

1

�i
EQ(�)

�
��i(L) max

B�B(L)

h
F̂�i(L)(L:B) + payo� (L;B)

i ���� Fi
�

(7.7.20)

which is the form for the early exercise problem that can be found in standard textbooks,

such as DuÆe (1996) (in a linear setting).

Subadditivity Revalidated

Fact 4.7 states that worst-case prices are subadditive. In the following paragraphs, we

show that best worst-case prices have the same property.

De�nition 7.11 (Signature arithmetic). Given c 2 R++ , a portfolio X of size k and

two positions �; �0 2 R
k . The following symbols for lattice instances and signatures are

associated:

symbol signature

L (X; �)

L0 (X; �0)

cL (X; c�)

�L (X;��)
L+ L0 (X; �+ �0)

Proposition 7.12 (Subadditivity). Given c 2 R++ , a portfolio X of size k and two

orthogonal positions � and �0, i.e., �n�0n = 0 for 1 � n � k. Let F̂ be the best worst-case

process for (X; �)..

Then, in the notation of Def. 7.11, the following holds for 0 � i � N :

F̂i(cL) = c F̂i(L)

F̂i(L+ L0) � F̂i(L) + F̂i(L
0)

F̂i(L+ L0) � F̂i(L)� F̂ 0
i (�L0)

(7.7.21)

Proof. We only prove the second inequality, by induction over i. For i = N , equality

holds in (7.7.21) throughout, as all instruments mature at time t = tN .

So let i < N , and assume (7.7.21) is true for i+ 1:

F̂i+1(L+ L0) � F̂i+1(L) + F̂i+1(L
0) (7.7.22)

78

Let M � am (X) be a subset of American instruments on L (and on L0 and L + L0, for

that matter). If M = ; the residual lattice of L+ L0 is L+ L0 itself. In this case, direct

application of (7.7.22) leads to

Fi(L+ L0; ;; �) = 1

�i
EQ(�)

�
�i+1 F̂i+1(L+ L0) j Fi

�
� 1

�i
EQ(�)

�
�i+1

�
F̂i+1(L) + F̂i+1(L

0)
� �� Fi�

=
1

�i
EQ(�)

�
�i+1 F̂i+1(L) j Fi

�
+

1

�i
EQ(�)

�
�i+1 F̂i+1(L

0) j Fi
�

= Fi(L; ;; �) + Fi(L
0; ;; �)

(7.7.23)

If M 6= ; we have (L+ L0):M � L+ L0. (7.7.22) does not directly validate

F̂i+1((L+ L0):M) � F̂i+1(L:M) + F̂i+1(L
0
:M) (7.7.24)

but we may hold (7.7.24) to be true, by nested application of the proposition for a portfolio

of smaller size k0 = j(L+ L0):M j < k. (For k0 = 0, equality obviously holds.) Thus,

Fi(L+ L0;M; �)

=
1

�i
EQ(�)

�
�i+1 F̂i+1((L+ L0):M) j Fi

�
+ payo�

�
L+ L0;M

�
� 1

�i
EQ(�)

�
�i+1

�
F̂i+1(L:M) + F̂i+1(L

0
:M)

�
j Fi
�
+ payo�

�
L+ L0;M

�
=

1

�i
EQ(�)

�
�i+1 F̂i+1(L:M) j Fi

�
+ payo� (L;M)

+
1

�i
EQ(�)

�
�i+1 F̂i+1(L

0
:M) j Fi

�
+ payo�

�
L0;M

�
= Fi(L;M; �) + Fi(L

0;M; �)

(7.7.25)

and subadditivity is shown for the local �xation. Since this is true for all � 2 C, we get

sup
�2C

Fi(L+ L0;M; �) � sup
�2C

�
Fi(L;M; �) + Fi(L

0;M; �)
�

� sup
�2C

Fi(L;M; �) + sup
�02C

Fi(L
0;M; �0)

(7.7.26)

or

F̂i(L+ L0;M) � F̂i(L;M) + F̂i(L
0;M) (7.7.27)

79

Thus, reintroducing local uncertainty does not violate subadditivity.

The remainder of the proof is concerned with retaining subadditivity through the

application of the minimum and maximum operators. Just as in (7.7.7), de�ne

A(L) = long (X; �) B(L) = short (X; �)

A(L0) = long (X; �L0) B(L0) = short (X; �L0)

A(L+ L0) = long (X; �L+L0) B(L+ L0) = short (X; �L+L0)

(7.7.28)

The orthogonality of � and �0 and Def. 7.2 imply that

A(L+ L0) = A(L) [A(L0)
B(L+ L0) = B(L) [B(L0)

(7.7.29)

where the union is direct, i.e. A(L) \A(L0) = ; and B(L) \B(L0) = ;.
Now partition M = A [B with A � A(L+ L0) and B = B(L+ L0). Then

payo� (L;M) = payo� (L;A [B)
= payo� (L; (A \A(L)) [(B \B(L)))

payo�
�
L0;M

�
= payo�

�
L0; A [B�

= payo�
�
L0;
�
A \A(L0)� [�B \B(L0)��

(7.7.30)

and consequently

F̂i(L;M) = F̂i(L;A [B)
= F̂i(L; (A \A(L)) [(B \B(L)))

F̂i(L
0;M) = F̂i(L

0; A [B)
= F̂i(L

0;
�
A \A(L0)� [�B \B(L0)�)

(7.7.31)

Although we do not show this in every detail, (7.7.30) and (7.7.31) are easy to validate,

since A n A(L) and B n B(L) respectively A n A(L0) and B n B(L0) refer to vanishing

positions: the correspondings �'s respectively �0's are all zero. It is straightforward to

equate payo� terms and signatures of lattice instances that di�er only on instruments

whose position is zero.

Reintroducing local optionality, it follows from (7.7.27) that

F̂i(L+ L0) = min
A�A(L+L0)

max
B�B(L+L0)

F̂i(L+ L0; A [B)

� min
A�A(L+L0)

max
B�B(L+L0)

�
F̂i(L;A [B) + F̂i(L

0; A [B)
� (7.7.32)

80

With (7.7.31),

min
A�A(L+L0)

max
B�B(L+L0)

�
F̂i(L;A [B) + F̂i(L

0; A [B)
�

= min
A�A(L+L0)

max
B�B(L+L0)

�
F̂i
�
L; (A \A(L)) [(B \B(L))�

+ F̂i
�
L0;
�
A \A(L0)� [�B \B(L0)���

� min
A�A(L+L0)

�
max

B�B(L+L0)
F̂i
�
L; (A \A(L)) [(B \B(L))�

+ max
B�B(L+L0)

F̂i
�
L0;
�
A \A(L0)� [�B \B(L0)���

(7.7.33)

Some of the candidate sets searched by the maximum operators can be dropped, and the

candidate sets for the minimum operator can be partitioned:

min
A�A(L+L0)

�
max

B�B(L+L0)
F̂i
�
L; (A \A(L)) [(B \B(L))�
+ max

B�B(L+L0)
F̂i
�
L0;
�
A \A(L0)� [�B \B(L0)���

= min
A�A(L+L0)

�
max

B�B(L)
F̂i
�
L; (A \A(L)) [B�

+ max
B�B(L0)

F̂i
�
L0;
�
A \A(L0)� [B��

= min
A1�A(L)

min
A2�A(L0)

�
max

B�B(L)
F̂i(L;A1 [B) + max

B�B(L0)
F̂i(L

0; A2 [B)
�

(7.7.34)

Rearranging terms yields

min
A1�A(L)

min
A2�A(L0)

�
max

B�B(L)
F̂i(L;A1 [B) + max

B�B(L0)
F̂i(L

0; A2 [B)
�

= min
A1�A(L)

�
max

B�B(L)
F̂i(L;A1 [B) + min

A2�A(L0)
max

B�B(L0)
F̂i(L

0; A2 [B
��

= min
A1�A(L)

max
B�B(L)

F̂i
�
L;A1 [B) + min

A2�A(L0)
max

B�B(L0)
F̂i(L

0; A2 [B)

(7.7.35)

Since, by de�nition,

min
A1�A(L)

max
B�B(L)

F̂i(L;A1 [B) = F̂i(L) (7.7.36)

and

min
A2�A(L0)

max
B�B(L0)

F̂i(L
0; A2 [B) = F̂i(L

0) (7.7.37)

81

we conclude from the sequence (7.7.32) through (7.7.35) that

F̂i(L+ L0) � F̂i(L) + F̂i(L
0) (7.7.38)

This completes the induction step and the proof.

It should be obvious that the assertions of Prop. 7.12 also hold simultaneously for all

partial portfolios (X0; �0) � (X; �).

In the proposition, the portfolio X is split into halves (Xn j �n 6= 0)T and (Xn j �n =
0)T. A di�erent formulation uses two partial portfolios (Xi; �i) � (X; �), i = 1; 2,

that do not overlap: (Xi; �i) = (select (X;Mi) ; select (�;Mi)) with M1 \M2 = ; and

M1 [M2 = f1; : : : ; jXjg. L1, L2 and �L2 being the lattice instances with signatures

(X1; �1), (X2; �2) and (X2;��2), respectively, (7.7.21) reads

F̂i(L) � F̂i(L1) + F̂i(L2)

F̂i(L) � F̂i(L1)� F̂ 0
i (�L2)

(7.7.39)

We will refer to the assertions of the proposition in either form, depending on the context.

Implementation

In principle, we have already seen in Fig. 7.1 how the best worst-case process for (X; �)

can be implemented by applying dynamic programming principles locally. The variables

V̂ (j; i;L) are discrete approximizations of the values F̂i(L j Si = sj) of the best worst-case

process. The results achieved so far motivate the algorithm in Fig. 7.4 to compute the

\suitable early exercise combination" mentioned in the caption of Fig. 7.1.

7.2 Speedup Techniques

The term

F̂i(L) = min
A�A(L)

max
B�B(L)

F̂i(L;A [B) (7.7.40)

has 2jA(L)j+jB(L)j subexpressions. If corresponds to step 3b in Fig. 7.4. If the signature

of L is (X; �) and there are n � k American instruments in X, the running time of the

worst-case pricer becomes O(2n), which is quite unacceptable.

In this section, we explore two ways of improving this performance impasse:

82

Input: Lattice instance L with signature (X; �), time i

Output: V̂ (j; i;L) for D � j � U

1. Repeat for all spatial levels D � j � U , possibly with the algorithm in Fig. 5.5:

(a) Set V̂ (j; i;L; ;) _= sup
�2C

1

�i
EQ(�)

�
�i+1 F̂i+1(L) j Sj = si

�
(b) Set the gradient v̂n(j; i;L; ;) accordingly, for 1 � n � jLj:

v̂n(j; i;L; ;) = @

@�n
V̂ (j; i;L; ;)

2. Set A(L) = long (X; �) and B(L) = short (X; �)

3. Solve the local minmax problem:

(a) For all ; 6= M � A(L) [B(L), check whether V̂ (j; i;L0; ;) has already been

computed, where the signature of L0 is (select (X;M) ; select (�;M)). If not,

interrupt and recurse

(b) Find Â � A(L) and B̂ � B(L) such that

V̂ (j; i;L; Â [B̂) = min
A�A(L)

max
B�B(L)

V̂ (j; i;L;A [B)

and set M = Â [B̂, X̂ = select (X;M), and �̂ = select (�;M)

(c) If M = ; set V̂ (j; i;L) = V̂ (j; i;L; ;) and v̂n(j; i;L) = v̂n(j; i;L; ;), 1 �
n � jLj. Otherwise let L̂ be the lattice instance with signature (X̂; �̂), set

V̂ (j; i;L) = V̂ (j; i; L̂) + payo� (L;M), and copy v̂n(j; i;L) from L̂ for n 2
f1; : : : ; jLjg nM , after proper reindexing. For all other n, set v̂n(j; i;L) = Xn

Figure 7.4: The algorithm to track the best worst-case process on the lattice. In a

real implementation, step 1 is one round in an explicit or mixed explicit/implict �nite

di�erence scheme, based on PDE's of type (4.4.8). Step 2 o�ers potential for improvement.

The temporary vector V̂ (�; i;L; ;) is the discrete version of F̂ (L; ;)

83

1. Sometimes it can be said with certainty that a particular instrument Xn on a lattice

instance Lmust or must not be exercised, regardless of the remaining position. Only

where such certainty cannot be gained is it necessary to consider both possibilities

in concert with all other instruments.

2. In the linear case the simple cuto� rule

Xn � v̂n(i; j;L; ;) (7.7.41)

comparing the potential payo� with the prospective future pro�t determines the

early exercise boundary. This formula is no longer true in the nonlinear case, but

it might well be useful as heuristic.

In both cases, space is partitioned onto three regions.

De�nition 7.13 (Corridor of uncertainty). Let L be a lattice instance with signature

(X; �). Choose n 2 am (X). Let (j; i;L) be a node instance.

If early exercise of Xn is a priori not pursued at (j; i;L) then (j; i;L) belongs to the

continuation region of Xn.

If early exercise of Xn is a priori opted for at (j; i;L) then (j; i;L) belongs to the

exercise region of Xn.

In early exerise is a priori neither avoided nor opted for at (j; i;L) then (j; i;L) belongs

to the corridor of uncertainty of Xn. In its corridor of uncertainty, Xn contributes to the

exponential complexity of (7.7.40).

Notice that the terminology is operational: the continuation region of Xn is not the

region in which not exercising Xn is optimal in the sense of the minmax formulation.

Rather, continuation region, exercise region and corridor of uncertainty are established

externally; then (7.7.40) is applied at each node instance (j; i; L) that belongs to the

corridor of uncertainty of at least one instrument.

The computational complexity is still exponential in n where n corridors of uncer-

tainty overlap. Figure 7.5 shows cases with non-overlapping and overlapping corridors of

uncertainty.

It is crucial to keep the corridor of uncertainty as small as possible. The �rst speedup

approach uses a worst-case and best-case price band for each individual American in-

strument to estimate the corridor of uncertainty. This approach never misses the correct

combination (Â; B̂) in step 3b of Fig. 7.4 and is thus equivalent.

84

time

hhhhhhhhhh

hhhh
hhhh

hh

X1

X2

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q

HH
HH

HH
HH

HH!!
!!

!!
!!

!!

((((((((((

Y1 Y2
z

overlap
space

Figure 7.5: Shown on the left side are the non-overlapping corridors of uncertainty for

two American options X1 and X2. Within each corridor 2 early exercise alternatives must

be considered: execise X1 resp. X2 versus don't exercise X1 resp. X2. On the right side,

the corridors of uncertainty for the American options Y1 and Y2 overlap. In the overlap

region, 4 early exercise alternatives must be considered. (This picture is conceptual. For

an actual example, see Fig. 7.8)

The second speedup approach collapses the corridor of uncertainty. The formula

(7.7.41) is used to separate space into regions of continuation and exercise, respectively.

The corridor of uncertainty is empty. This approach is no longer guaranteed to be correct;

it is a heuristic. It handles American options much like barrier options. For instance, it

can be made to process barrier options with irregular barriers, by replacing (7.7.41) with

sj � U(Xn; i) where U maps to a time-dependent up-and-out barrier for Xn.

These techniques require a re�nement of steps 2 and 3 in Fig. 7.4. A general template

of the necessary changes is o�ered in Fig. 7.6.

7.2.1 Maintaining the Corridor of Uncertainty

So far we have created partial portfolios (X0; �0) � (X; �) only when they were necessary

as sources of boundary values. In this section we shall see how the separate computation

of best worst-case prices for (Xn; 1) and (Xn;�1), 1 � n � k, can help to eliminate early

exercise combinations without sacri�cing correctness. (The notation (Xn;�1) is used as

shorthand for the vector pair ((Xn); (�1)) throughout this section and the next.)

85

2� Partition long (X; �) = AC [AU [AE and short (X; �) = BC [BU [BE, where

the subscripts C, U and E stand for continuation region, uncertainty corridor and

exercise region, respectively

3� Solve the local minmax problem:

(a) For all M � AU [BU , interrupt and recurse if V̂ (j; i;L0; ;) has not been

computed yet. Here, the signature of L0 is

(select (X;M [AE [BE) ; select (�;M [AE [BE))

(b) Find Â � AU and B̂ � BU such that

V̂ (j; i;L; Â [B̂ [AE [BE)

= min
A�AU

max
B�BU

V̂ (j; i;L;A [B [AE [BE)

and set M = Â [B̂ [AE [BE, X̂ = select (X;M), and �̂ = select (�;M)

(c) : : : (just as step 3c in Fig. 7.4)

Figure 7.6: Steps 2� and 3� replace steps 2 and 3 in Fig. 7.4. Step 2� is still generic: it does
not provide guidelines as to how to partition the long and short positions. Sections 7.2.1

and 7.2.2 �ll in the details

Proposition 7.14 (Corridor of uncertainty I). Let L be a lattice instance of size k

with signature (X; �), and let F̂ be the best worst-case price process. For n 2 am (X), let

LU be the lattice instance with signature (Xn; 1), and let LD be the lattice instance with

signature (Xn;�1). Then

�F̂i(LD) � F̂i(LU) (7.7.42)

for 0 � i � N .

Proof. By induction over i. For i = N we have equality, as Xn is always exercised at the

maturity date tN , and

�F̂N (LD) = F̂N (LU) = XN (7.7.43)

86

For i < N , by unrolling Defs. 7.5, 7.6, 7.7 and 7.8, we get

�F̂i(LD) = �min

�
�Xn; sup

�2C
1

�i
EQ(�)

�
�i+1 F̂i+1(LD) j Fi

��

= max

�
Xn; � sup

�2C
1

�i
EQ(�)

�
�i+1 F̂i+1(LD) j Fi

�� (7.7.44)

Using the induction hypothesis and linearity of expectation,

� sup
�2C

1

�i
EQ(�)

�
�i+1 F̂i+1(LD) j Fi

�

= inf
�2C

1

�i
EQ(�)

�
��i+1 F̂i+1(LD) j Fi

�
� inf

�2C
1

�i
EQ(�)

�
�i+1 F̂i+1(L

U) j Fi
�

� sup
�2C

1

�i
EQ(�)

�
�i+1 F̂i+1(L

U) j Fi
�

(7.7.45)

Together,

�F̂i(LD) � max

�
Xn; sup

�2C
1

�i
EQ(�)

�
�i+1 F̂i+1(L

U) j Fi
��

= F̂i(L
U) (7.7.46)

Proposition 7.14 shows that �F̂ (LD) and F̂ (LU) span a non-empty corridor between

them. The following proposition shows that this corridor can be used to separate the

continuation and exercise regions.

Proposition 7.15 (Corridor of uncertainty II). Given a lattice instance L of size k

with signature (X; �). Let F̂ be the best worst-case process for (X; �). Choose n 2 am (X).

Set A(L) = long (X; �) and B(L) = short (X; �). Let A0(L) = A(L) n fng and B0(L) =

B(L)nfng be their reduced versions. Let LU be the lattice instance with signature (Xn; 1),

and let LD be the lattice instance with signature (Xn;�1).
If F̂i(L

U) � Xn then

F̂i(L) = min
A�A0(L)

max
B�B0(L)

F̂i(L;A [B [fng) (7.7.47)

i.e. Xn is exercised for sure.

If, on the other hand, �F̂i(LD) > Xn then

F̂i(L) = min
A�A0(L)

max
B�B0(L)

F̂i(L;A [B) (7.7.48)

i.e. Xn is not exercised.

87

Proof. The proof uses Prop. 7.12. Set M = f1; : : : ; n� 1; n+ 1; : : : ; kg and

(X0; �0) = (select (X;M) ; select (�;M)) (7.7.49)

Let L0 be the lattice instance with signature (X0; �0), and notice that

F̂i(L
0) = min

A�A0(L)
max

B�B0(L)
F̂i(L

0; A [B) (7.7.50)

Let L+ be the lattice instance with signature (Xn; �n), and let L� be the lattice instance

with signature (Xn;��n).

Case 1 Assume F̂i(L
U) � Xn and �n > 0, i.e. n 2 B(L) and B0(L) � B(L). Then

�nF̂ (L
U) = F̂ (L+) by the �rst assertion of Prop. 7.12. Furthermore, by the second

assertion of Prop. 7.12,

F̂i(L) � F̂i(L
+) + F̂i(L

0)

= �nF̂i(L
U) + F̂i(L

0)

� �nXn + F̂i(L
0)

= �nXn + min
A�A0(L)

max
B�B0(L)

F̂i(L
0; A [B)

= min
A�A0(L)

max
B�B0(L)

F̂i(L;A [B [fng)

(7.7.51)

The last transformation follows because a) �nXn can be pulled inside the payo� term of

F̂i(L
0; A [B), and b) the residual lattice instances of L with respect to A [B [fng and

L0 with respect to A [B are identical.

For �xed A we have maxB�B(L) F̂i(L;A [B) � maxB�B0(L) F̂i(L;A [B [fng), since
in the latter term the maximum is taken over less values. Since A(L) = A0(L),

F̂i(L) = min
A�A(L)

max
B�B(L)

F̂i(L;A [B)

� min
A�A(L)

max
B�B0(L)

F̂i(L;A [B [fng)

= min
A�A0(L)

max
B�B0(L)

F̂i(L;A [B [fng)

(7.7.52)

(7.7.51) and (7.7.52) together prove (7.7.47).

88

Case 2 If �n < 0, i.e. n 2 A(L) and A0(L) � A(L), we reason similarly. By the �rst

assertion of Prop. 7.12, ��nF̂ (LU) = F̂ (L�). By the third assertion of Prop. 7.15,

F̂i(L) � �F̂i(L�) + F̂i(L
0)

= �
�
��nF̂i(LU)

�
+ F̂i(L

0)

� �nXn + F̂i(L
0)

= �nXn + min
A�A0(L)

max
B�B0(L)

F̂i(L
0; A [B)

= min
A�A0(L)

max
B�B0(L)

F̂i(L;A [B [fng)

(7.7.53)

In the other direction we use B(L) = B0(L) and get

F̂i(L) = min
A�A(L)

max
B�B(L)

F̂i(L;A [B)

� min
A�A0(L)

max
B�B(L)

F̂i(L;A [B [fng)

= min
A�A0(L)

max
B�B0(L)

F̂i(L;A [B [fng)

(7.7.54)

Again, (7.7.47) follows readily.

Case 3 Now assume �F̂i(LD) > Xn and �n > 0, i.e. n 2 B(L), B0(L) � B(L). Then

�nF̂ (LD) = F̂ (L�) by the �rst assertion of Prop. 7.12. With the third assertion of the

proposition and A(L) = A(L0),

F̂i(L) � �F̂i(L�) + F̂i(L
0)

= ��nF̂i(LD) + F̂i(L
0)

> �nXn + F̂i(L
0)

= min
A�A0(L)

max
B�B0(L)

F̂i(L;A [B [fng)

(7.7.55)

Choose Â � A(L) and B̂ � B(L) such that F̂i(L) = F̂i(L; Â [B̂). If n 2 B̂ the strict

inequalitiy in (7.7.55) leads to a contradiction. Thus, n 62 B̂. Therefore, B̂ � B(L)nfng =
B0(L), and

F̂i(L) = min
A�A0(L)

max
B�B0(L)

F̂i(L;A [B) (7.7.56)

89

2�� Set

AC =
n
n 2 long (X; �) j � V̂ (j; i;LnD) > Xn

o
AF =

n
n 2 long (X; �) j V̂ (j; i;LUn) � Xn

o
AM = long (X; �) n (AC [AF)

and

BC =
n
n 2 short (X; �) j � V̂ (j; i;LnD) > Xn

o
BF =

n
n 2 short (X; �) j V̂ (j; i;LUn) � Xn

o
BM = short (X; �) n (BC [BF)

Figure 7.7: An elaboration of step 2� in Fig. 7.6, based on Prop. 7.15. LUn is the lattice

instance with signature (Xn; 1), and LnD is the lattice instance with signature (Xn;�1),
insofar Xn is American. Proposition 7.14 guarantees that AC \AF = BC \BF = ;

Case 4 If �n < 0, i.e. n 2 A(L) and A0(L) � A(L), we �nd that ��nF̂ (FD) = F̂ (L+)

by the �rst assertion of Prop. 7.12. The second assertion of Prop. 7.12 and B(L) = B(L0)

imply

F̂i(L) � F̂i(L
+) + F̂i(L

0)

= ��nF̂i(LD) + F̂i(L
0)

< �nXn + F̂i(L
0)

= min
A�A0(L)

max
B�B0(L)

F̂i(L;A [B [fng)

(7.7.57)

The argument that concluded case 3 works in this case as well, and thus (7.7.47) is shown.

This completes the proof.

Figure 7.7 shows how Prop. 7.15 can be used to initialize the corridor of uncertainty in

step 2� in Fig. 7.6. The discrete formulation in terms of node instances is straightforward.
Note that up to 2k additional lattice instances must be maintained. The technique is thus

not entirely overhead free, but the overhead is linear in the number of American options.

90

60

70

80

90

100

[S] 110

0 30
time [days]

0:1 � � � 0:2

60

70

80

90

100

110

0 30
time [days]

0:1 � � � 0:35

60

70

80

90

100

110

0 30
time [days]

0:1 � � � 0:5

Figure 7.8: The corridor of uncertainty for three 30-day American puts, with strike 90,

100 and 110, respectively (from bottom to top). The interest rate is r = 0:03. The

volatility range gets wider from left to right. In the left picture, there is no overlap;

in the middle picture, corridors of uncertainty overlap pairwise; in the right picture, all

corridors overlap in the shaded region

(In fact, it can be shown that the total number of lattice instances is bounded from

above by 2k + k � 1. The exhausitve set of 2k partial portfolios includes already k of

the additional singleton lattice instances, and \�1" comes from the fact that the empty

partial portfolio need not be carried on a lattice instance at all.)

Figure 7.8 shows the location of the corridor of uncertainty for three 30-day American

puts with strikes 90, 100 and 110. Under a scenario in which the volatility stays within 10

and 20% the corridors do not overlap. If L is a lattice instance with signature (X; �), and

the three American puts are part of X (but no other American instruments are), then

jAM j+ jBM j = 1 in step 2��, Fig. 7.7, in each corridor, and 0 otherwise. Under a 10{35%

scenario, the corridors for the puts with strikes 90 and 100, and the corridors for the

puts with strikes 100 and 110 overlap, respectively. Here, jAM j+ jBM j = 2 in the shaded

regions, leading to 4 combinations in the minmax term in step 3�b, Fig. 7.6. Under a

10{50% scenario all corridors overlap, and jAM j+ jBM j = 3 in the shaded region, leading

to 8 combinations in the minmax term. The example demonstrates that the corridor of

uncertainty is a powerful tool to reduce the combinatorial complexity of the best worst-

case pricing problem if the volatility range is not too wide. It also shows that the method

reverts to exponential complexity if the volatility range is extraordinarily wide. In the

91

next section, a heuristic is presented that tries to alleviate this dependency.

7.2.2 Collapsing the Corridor of Uncertainty

The complexity of best worst-case pricing is potentially exponential if the corridors of

uncertainty are nonempty and overlap. To collapse the corridor of uncertainty means

to select a de�nite early exercise boundary, possibly within the corridor, that divides

the lattice into continuation and exercise regions for each American option. The way

in which this is done in the following paragraphs makes the approach heuristic: it does

not guarantee that the resulting early exercise combinations reect the local best worst-

case selections adequately. We present, however, experimental results that show that the

discrepancy is negligible in most cases.

The idea is to apply the rule commonly used in linear lattice-based pricing of American

options: if the early exercise payo� exceeds the expected future payo� (which includes

possible future early exercise), then the expected future payo� is locally replaced by the

early exercise payo�. This cut-o� rule dynamically assigns each lattice node to either the

continuation or exercise region of the lattice.

Under nonlinearity, we do not have an isolated expected future payo� for an American

option Xn which is part of a larger portfolio (X; �). We do have, however, the discrete

version of the gradient of the best worst-case value of (X; �) with respect to the position

of Xn, namely

v̂n(j; i;L) _=
@

@�n
F̂i(L j Si = sj) (7.7.58)

(Discrete and continuous terms with analogue interpretations are equated with \ _=".) As

we will see in the following proposition, this gradient together with � provides suÆcient

information to reconstruct the best worst-case value locally.

In this section, we adopt a candidate set

C = f� j �min � � � �maxg (7.7.59)

with constants 0 < �min � �max for simplicity.

De�nition 7.16 (Local stability). Let L be a lattice instance with signature (X; �).

Choose n 2 f1; : : : ; jLjg. We say F̂ is locally stable with respect to �n if

@

@�n
F̂i(L) =

@

@�n
F̂i(L;M) (7.7.60)

92

whenever

F̂i(L) = F̂i(L;M) (7.7.61)

for some M � f1; : : : ; jLjg.

We are not too concerned with the situation in which F̂ is not locally stable. In

all practical cases, there are only �nitely many regions in �-space with distinct best

worst-case exercise combinations at a given node instance (j; i). Finiteness suggests that

whenever F̂i(�) switches from F̂i(�;M1) to F̂i(�;M2) with M1 6= M2, say at �n = � with

all other �'s unchanged, then there are intervals (� � �; �) and (�; � + �) in which M1

respectively M2 remain the best worst-case exercise combination. If we assume that

partial derivatives in �n exist for F̂i(�), then by approching � from above and below it

follows that F̂ is locally stable with respect to �n.

The subsequent propositions are meant to motivate heuristic (7.7.58). We therefore

leave it at this rather informal argument and, by assuming the existence of partial deriva-

tives in �, at the same time implicitely assert that Def. 7.16 applies to F̂ .

Proposition 7.17. Let L be a lattice instance of size k with signature (X; �). Assume

the partial derivatives with respect to � of the best worst-case price process F̂ exist. Then

the following identity holds:

kX
n=1

�n
@

@�n
F̂i(L) = F̂i(L) (7.7.62)

Proof. By induction over i. For i = N we have

F̂N (L) = payo� (L; f1; : : : ; kg) = � �X (7.7.63)

which, as linear combination of individual payo�s, obviously satis�es (7.7.62).

Now assume i < N . By induction hypothesis,

kX
n=1

�n
@

@�n
F̂i+1(L) = F̂i+1(L) (7.7.64)

Case 1 Assume that F̂i(L) = F̂i(L; ;), i.e. no instruments are exercised in the best

worst-case. Now recall that F̂i(L; ; j Si = sj) = f̂(sj; i), where f̂ satis�es a PDE of type

93

(4.4.8) between times i and i+1 (during which interval no exercise takes place), and the

boundary value is given by F̂i+1(L). The worst-case spot volatility is determined by the

spot convexity x = @2f̂
@S2

and the function

�(x) =

8<
:�max if x � 0

�min if x < 0
(7.7.65)

In particular,

@

@�n
�(x) = 0 (7.7.66)

for x 6= 0, and �(x)x = 0 for x = 0. Di�erentiating the PDE (4.4.8) with respect to �n

shows that @
@�n

f̂ satis�es the same PDE, and so does any linear combination of partial

derivatives.

We set the boundary at time i+ 1, and conclude furthermore from (7.7.64) that the

boundary condition is the same for PDE (4.4.8) and the linear combination of its partial

derivatives. Thus, by the uniqueness of the solution of (4.4.8),

kX
n=1

�n
@

@�n
F̂i(L; ;) = F̂i(L; ;) (7.7.67)

This completes the proof for case 1.

Case 2 Now assume F̂i(L) = F̂i(L;M) for some M 6= ;. Then, with L0 = L:M being

the residual lattice instance,

F̂i(L) = sup
�2C

Fi(L;M; �)

=

�
sup
�2C

Fi(L
0; ;; �)

�
+ payo� (L;M)

= F̂i(L
0; ;) + payo� (L;M)

(7.7.68)

by the de�nition of F̂i(L;M) and Fi(L;M; �) in Defs. 7.6 and 7.7, and switching between

lattice instances.

Let k0 = jLj � jM j = jL0j. The induction hypothesis (7.7.64) makes no statement for

the smaller lattice instance L0. We may, however, apply the proposition on L0 (inheriting

all the premises) and conclude

k0X
n=1

(�L0)n
@

@(�L0)n
F̂i(L

0; ;) = F̂i(L
0; ;) (7.7.69)

94

(A similar argument has been used in Prop. 7.12. The obvious base case k0 = 0, or even

k0 = 1, can be worked out directly.)

Let
�
n1; : : : ; njM j

	
be an enumeration of M . As in (7.7.63),

payo� (L;M) =

jM jX
l=1

�nl
@

@�nl
payo� (L;M) (7.7.70)

and hence, by adding (7.7.69) and (7.7.70) which sum over distinct positions,

kX
n=1

�n
@

@�n
F̂i(L;M) = F̂i(L;M) (7.7.71)

This completes the proof.

The next two propositions establish upper and lower bounds for the partial derivatives

of the best worst-case process.

Proposition 7.18 (Upper bounds for partial derivatives). Let L be a lattice in-

stance with signature (X; �). Assume the partial derivatives of the best worst-case price

process F̂ in � exist and are uniformly continuous. Choose n 2 f1; : : : ; jLjg and let LU

be the lattice instance with signature (Xn; 1). Then

@

@�n
F̂i(L) � F̂i(L

U) (7.7.72)

Proof. By induction over i. If i = N all instruments are forcibly exercised, and basic

algebra shows that equality holds in (7.7.72). Thus assume i < N , and reason as in the

proof of Prop. 7.17.

Case 1 Assume that F̂i(L) = F̂i(L; ;), i.e. no instruments are exercised in the best

worst-case. Fix �. Then, by uniform continuity and the induction hypothesis,

@

@�n
Fi(L; ;; �) = @

@�n

1

�i
EQ(�)

�
�i+1F̂i+1(L) j Fi

�

=
1

�i
EQ(�)

�
�i+1

@

@�n
F̂i+1(L)

�� Fi
�

� 1

�i
EQ(�)

�
�i+1F̂i+1(L

U) j Fi
�

(7.7.73)

95

The local �xation of F̂i(L
U) with respect to ; is

Fi(L
U ; ;; �) = 1

�i
EQ(�)

�
�i+1F̂i+1(L

U) j Fi
�

(7.7.74)

and therefore

F̂i(L
U) = max

�
Xn; sup

�02C
Fi(L

U ; ;; �0)
�

� Fi(L
U ; ;; �)

(7.7.75)

Together, (7.7.73), (7.7.74) and (7.7.75) show that

@

@�n
Fi(L; ;; �) � F̂i(L

U) (7.7.76)

(7.7.76) is true for every � 2 C. Now let �1; �2; : : : be a sequence such that

lim
l!1

Fi(L; ;; �l) = F̂i(L; ;) (7.7.77)

Then,

@

@�n
F̂i(L; ;) = @

@�n
lim
l!1

Fi(L; ;; �l)

= lim
l!1

@

@�n
Fi(L; ;; �l)

� lim
l!1

F̂i(L
U)

= F̂i(L
U)

(7.7.78)

As F̂i(L) = F̂i(L; ;), we conclude
@

@�n
F̂i(L) � F̂i(L

U) (7.7.79)

Case 2 Now assume F̂i(L) = F̂i(L;M) for some M 6= ;. Then, with L0 = L:M being

the residual lattice instance,

F̂i(L) = F̂i(L
0; ;) + payo� (L;M) (7.7.80)

as shown before in (7.7.68). If n 62M we apply the proposition for F̂i(L
0; ;) with smaller

lattice instance L0. If n 2M we take from (7.7.75) that

F̂i(L
U) � Xn

=
@

@�n
payo� (L;M)

=
@

@�n
F̂i(L;M)

(7.7.81)

96

This completes the proof.

The lower bounds for the partial derivatives of the best worst-case prices are weaker:

Proposition 7.19 (Lower bounds for partial derivatives). Let L be a lattice in-

stance with signature (X; �). Assume the partial derivatives of the best worst-case price

process F̂ in � exist and are uniformly continuous. Pick n 2 f1; : : : jLjg. Let LED be the

lattice instance with signature (XE
n ;�1), where XE

n denotes the European version of Xn

(see Def. 7.3). Let F̂E be the best worst-case price process for (XE
n ;�1). Then

�F̂E
i (L

E
D) �

@

@�n
F̂i(L) (7.7.82)

Proof. By induction over i. At maturity (i = N), all instruments are exercised, and

equality holds in (7.7.82). Therefore assume i < N .

Case 1 Assume that F̂i(L) = F̂i(L; ;), i.e. no instruments are exercised in the best

worst-case. Fix �. Then, by uniform continuity and the induction hypothesis,

@

@�n
Fi(L; ;; �) = @

@�n

1

�i
EQ(�)

�
�i+1F̂i+1(L) j Fi

�

=
1

�i
EQ(�)

�
�i+1

@

@�n
F̂i+1(L)

�� Fi
�

� 1

�i
EQ(�)

�
�i+1

�
�F̂E

i+1(L
E
D)
�
j Fi
�

= � 1

�i
EQ(�)

�
�i+1F̂

E
i+1(L

E
D) j Fi

�
(7.7.83)

Furthermore

�F̂E
i (L

E
D) = � sup

�02C
1

�i
EQ(�0)

�
�i+1F̂

E
i+1(L

E
D) j Fi

�

= inf
�02C

�
� 1

�i
EQ(�0)

�
�i+1F̂

E
i+1(L

E
D) j Fi

��

� � 1

�i
EQ(�)

�
�i+1F̂

E
i+1(L

E
D) j Fi

�
(7.7.84)

Together, (7.7.83) and (7.7.84) show that, for every � 2 C,
@

@�n
Fi(L; ;; �) � F̂E

i (L
E
D) (7.7.85)

97

Let �1; �2; : : : be a sequence such that

lim
l!1

Fi(L; ;; �l) = F̂i(L; ;) (7.7.86)

Then,

@

@�n
F̂i(L; ;) = @

@�n
lim
l!1

Fi(L; ;; �l)

= lim
l!1

@

@�n
Fi(L; ;; �l)

� lim
l!1

F̂E
i (L

E
D)

= F̂E
i (L

E
D)

(7.7.87)

Finally,

@

@�n
F̂i(L) � F̂E

i (L
E
D) (7.7.88)

Case 2 The case F̂i(L) = F̂i(L;M) for some M 6= ; is handled just as case 2 in the

proof of Prop. 7.18.

Propositions 7.18 and 7.19 show that @
@�n

F̂i(L) lies in the interval

F̂E
i (L

E
D) �

@

@�n
F̂i(L) � F̂i(L

U) (7.7.89)

for Xn. This band is wider than the corridor of uncertainty
h
F̂i(LD); F̂i(L

U)
i
. We

were unable to prove that the lower corridor bound is also a lower bound for the partial

derivative (which we conjecture nevertheless).

Of course, @
@�n

F̂i(L) is not available in a program unless all early exercise combi-

nations have already been examined. This can be avoided by substituting @
@�n

F̂i(L; ;)
for @

@�n
F̂i(L). Although not shown here, the previous results can be extended to (and

partially include already) the estimate

F̂E
i (L

E
D; ;) �

@

@�n
F̂i(L; ;) � F̂i(L

U ; ;) (7.7.90)

Figure 7.9 instantiates the algorithm of Fig. 7.6 to collapse the corridor of uncertainty.

98

2�� Set

AC = fn 2 long (X; �) j v̂n(j; i;L; ;) > Xng
AF = long (X; �) n AC

and

BC = fn 2 short (X; �) j v̂n(j; i;L; ;) > Xng
BF = short (X; �) n BC

Figure 7.9: An elaboration of step 2� in Fig. 7.6 that uses partial derivatives to estimate

the early exercise boundary. The variables v̂n(j; i;L; ;) have already been computed

7.2.3 Other Issues

Sections 7.2.1 and 7.2.2 have presented the big picture. In this section we review some

minor or unresolved issues which are interesting purely from a computational point of

view. They are of no �nancial or numerical concern.

Dynamic Maintenance of the Corridor of Uncertainty

The algorithm in Fig. 7.7 relies of the existence of V̂ (j; i;LUn) and �V̂ (j; i;LnD) to partition
long (X; �) respectively short (X; �) into AC , AF , AM respectively BC , BF , BM . Here,

LUn is the lattice instance with signature (Xn; 1), and LnD is the lattice instance with

signature (Xn;�1).
Depending on the shape of the lattice (box or tree shape?), its position (what is

s0?), the width of the volatility range and the characteristics of the instruments, AC or

AF respectively BC or BF may sometimes be empty, corresponding to the respective

boundaries lying outside the region covered by the lattice.

Thus LUn or LnD may sometimes be superuous. In order to not maintain lattice

instances which are of no use, we employ the dynamic lookup approach that reduces the

number of lattice instances carrying partial portfolios in the �rst place. The recursion that

adds lattice instances when needed is activated in step 3�a in the algorithm in Fig. 7.6.

99

The idea is to use the partial derivative of V̂ (j; i;L; ;) with respect to �n to make a

�rst choice. IfXn < v̂n(j; i;L) then V̂ (j; i;L
U
n) � Xn cannot be the case, due to Prop. 7.18

that says, in its discrete approximation, v̂n(j; i;L) � V̂ (j; i;LUn). This necessarily implies

x 62 AF [BF . Thus, lookup of LUn can be avoided in some cases. As v̂n(j; i;L) is not yet

available when the comparison needs to be made, v̂n(j; i;L; ;) may be used instead.

In the other direction the situation is more subtle. Prop. 7.19 only states that

�F̂E
i (L

E
D) � @

@�n
F̂i(L) which is too weak to allow conclusions from Xn > v̂n(j; i;L).

However, under the conjecture �F̂i(LD) � @
@�n

F̂i(L), the initial comparison with the

partial derivative may indeed lead to the avoidance of the LnD lookup for some Xn. This

strategy is pursued in our implementation.

A careful look at the data in Fig. 7.12 reveals that this avoidance strategy has practical

impact. The number of lattice instances reported in the table are smaller than the ones

that follow from the schematic view in Fig. 7.14, for �max � 0:4.

Recursion Leads to Domino E�ect

There is also the possibility of the recursion in step 3�a in Fig. 7.6 causing a domino

e�ect that restarts the rollback of the time slices in the �nite di�erence scheme for

many lattice instances. If V̂ (j; i;L;A1 [B1 [AE [BE) is not available in the com-

putation of V̂ (j; i;L) for some node instance (j; i;L), then lattice instance L1 with sig-

nature (select (X;M1) ; select (�;M1)) needs to be created. Here, M1 = f1; : : : ; jLjg n
fA1 [B1 [AE [BEg. The �nite di�erence scheme computes V̂ (�; i0;L1) for allN � i0 � i

and resumes the computation of V̂ (j; i;L).

A memory aware implementation of the �nite di�erence scheme does not keep all the

values of V̂ (�; i0;L1), and the other lattice instances. Rather, data is kept for the current

and the previous time slices i0 and i0 +1, in order to reduce the space complexity for one

lattice instance from O(N � (U �D)) to O(U �D). Here, D and U are the spatial levels

of the lattice boundaries.

For this reason, subordinate values V̂ (�; i0;L1; A2 [B2 [AE [BE) required in turn as

data for L1 need not be available, even if the associated lattice instance L2 exists. Each

lattice instance is equipped to provide data for one \current" time slice, and no others.

We have briey mentioned in the beginning of Sect. 7.2 that the algorithms for Amer-

ican options are applicable to barrier options with regular or irregular barriers as well.

100

B BC AB ABC

30X, 29 recurse for BC

30,29X resume 29

28{20X 28{20X

19 recurse for B

30{19X resume 191 19 recurse for AB

30X, 29 recurse for B

30,29X resume 29

28{19X 28{19X resume 19

18{0X 18{0X 18{0X 18{0X

Figure 7.10: Rolling back the lattice for a 30-day up-and-out barrier option A, a 25-

day vanilla option B and a 20-day down-and-out barrier option C. Numbers indicate

time slices i for which values V̂ (�; i; L) are being computed, and labels indicate actions

triggered due to lookup misses. (\19 recurse for AB", for instance, means that the lattice

instance for portfolio AB does not exist or cannot provide the data for the desired time

slice i = 19.) The computation proceeds row by row, and within rows from left to right

columns. The boxes represent the single case in which the creation of a new lattice

instance leads to a waste of compute time

The tools developed in Chapter 6, in particular the algorithm in Fig. 6.4 to compute the

extension hierarchy, go beyond the general approach of Fig. 7.6 in that they guarantee

that V̂ (j; i;L;AE [BE) is always available if the barriers are canonical.

For illustration purposes, we assume that the computation of the extension hierarchy

is turned o� in the following example shown in Fig. 7.10. The portfolio consists of a 30-

day up-and-out barrier option A, a 25-day vanilla option B and a 20-day down-and-out

barrier option C. The time step is one day: dt = 1=365.

Figure 7.10 monitors the �nite di�erence scheme time slice by time slice. \Recurse"

and \resume" labels indicate where recursion is triggered and work is resumed, and for

what time slice. Initially, only the lattice instance for the entire portfolio is maintained.

The boxed cells represent a situation in which a total restart is required: the lattice in-

stance L(B) for B is carried unimpeded through time slices 30; : : : ; 19, when the creation

101

of the lattice instance for AB requires access to time 30-values on L(B). These have been

discarded long ago, and so L(B) has to be restarted, resulting in double work for 12 time

slices on L(B).

In general, if the directed acyclic graph implied by lookup operations, where vertices

model lattices instances and edges model data ow, is recombining, then the domino e�ect

may occur. Edges in the dag are created at di�erent times and may connect to vertices

whose lattice instances are not synchronized. Singleton partial portfolios are likely to

lead to the domino e�ect, for instance..

The domino e�ect can have serious consequences for the running time. There are two

solutions to this problem:

1. Develop a tool that precomputes an anlogue of the extension hierarchy for American

options. It is in principle possible to evaluate all singleton portfolios �rst and create

a data structure with geometric information on overlapping corridors of uncertainty.

The resulting extension hierarchy would be exact. This is a preemptive solution.

2. Periodically checkpoint by saving the values V̂ (�; i;L) and related information such

as the gradient in separate memory space. A restart can then be based on the data

collected during the most recent checkpoint. This solution tries to alleviate the

e�ect of a restart.

Neither approach has been implemented in our system, however. Although the domino

e�ect plays no role in our laboratory test cases, we realize that an industrial-strength

product must implement at least one to yield competitive results, as far as speed is

concerned.

Intermediate Results in the Minmax Computation

Step 3�b in Fig. 7.6 requires the computation of

V (L) = min
A�AU

max
B�BU

V̂ (j; i;L;A [B [AE [BE) (7.7.91)

102

where the existence of V̂ (j; i;L;A [B [AE [BE) is guaranteed by step 3�a. Taking the
minmax term apart, we observe

V (L) = min

�
max

�
V̂ (j; i;L;AE [BE); max

B�BU

B 6=;
V̂ (j; i;L;B [AE [BE)

�
;

min
A�AU

A6=;
max
B�BU

V̂ (j; i;L;A [B [AE [BE)

� (7.7.92)

Furthermore,

max
B�BU

B 6=;
V̂ (j; i;L;B [AE [BE)

= max
n2BU

max
B�BUnfng

V̂ (j; i;L;B [AE [BE [fng)

= max
n2BU

�
max

B�BUnfng
V̂ (j; i;Ln; B [AE [BE) + �nXn

� (7.7.93)

where the signature of Ln is

�
select (X; f1; : : : ; n� 1; n+ 1; : : : ; kg) ; select (�; f1; : : : ; n� 1; n+ 1; : : : ; kg)�

Here we assume the computation of AE , BE , AU and BU is independent of the lattice

instance: switching to lattice instance Ln must not change these sets, apart from fng. In
the algorithms presented so far this is indeed so.

Now consider AU :

min
A�AU

A6=;
max
B�BU

V̂ (j; i;L;A [B [AE [BE)

= min
m2AU

min
A�AUnfmg

max
B�BU

V̂ (j; i;L;A [B [AE [BE [fmg)

= min
m2AU

�
V̂ (j; i;Lm) + �mXm

�
(7.7.94)

Together,

V (L) = min

�
max
n2BU

�
max

B�BUnfng
V̂ (j; i;Ln; B [AE [BE) + �nXn

�
;

min
m2AU

�
V̂ (j; i;Lm) + �mXm

�� (7.7.95)

103

Thanks to step 3�a, V̂ (j; i;Lm) is avaliable. It is reasonable to assume that the values

V̂ (j; i;Ln; B [AE [BE) are available as well; they can be readily stored as interme-

diate results when Ln is processed. Equally accessible (and computed only once) is

maxB�BUnfng V̂ (j; i;Ln; B [AE [BE), which can be constructed \bottom-up" when the

hierarchy of lattice instances is processed, and therefore need not involve all exponentially

many combinations.

With that in mind (7.7.95) is equivalent to (7.7.91), but with only jAU j+ jBU j terms
instead of 2jAU j+jBU j. The complexity of step 3�b (and likewise of step 3�a) can thus be

reduced dramatically, at the cost of additional storage of intermediate results. Figure 7.11

gives an idea of the savings for the case jAU j = jBU j = 3.

BU

AU ccc ccE cEc Ecc cEE EcE EEc EEE

ccc max max max max max

ccE min

cEc min

Ecc min

cEE

EcE

EEc

EEE

Figure 7.11: The table shows all 23+3 = 64 early exercise combinations if jAU j = jBU j = 3.

Rows represent combinations selected from AU , and columns represent combinations

picked from BU . A lower-case \c" means continuation or no exercise, an upper-case

\E" means Exercise. The formula in (7.7.95) examines the �lled in table elements only.

\max" indicates a subterm of (7.7.93). \min" indicates a subterm of (7.7.94) (the column

position is slightly misleading in this case, as the correct selection from BU might di�er;

it is, however, already reected in V̂ (j; i;Lm))

It is important to keep in mind, however, that the overall number of lattice instances

is not reduced by this algebraic trick. Again, think of lattice instances as vertices and

104

associations through lookup as directed edges. The result of the algebraic transformation

is to reduce the number of edges, but the set of vertices remains unaltered.

In an early stage of our research, (7.7.91) was replaced by (7.7.95). Although no

rigorous tests have been made, the speedup appeared to be marginal if the number of

instruments was very small, but noticeable once the number of instruments increased.

Since there was no obvious drawback and the additional overhead in memory management

seemed to be outweighed by the bene�t in all cases, (7.7.95) has been used ever since.

7.3 Performance Results

All tests were performed on a Pentium/166 MHz PC running Windows NT Worksta-

tion 4.0/SP 3 and equipped with 128 MB of RAM. The best worst-case pricer, which

we call Mtg in the following, is written and compiled with Microsoft Visual C++ 5.0,

optimizations activated.

7.3.1 Complexity

We investigate the computational complexity that arises from the positive correlation

between the width of the volatility band and the number of lattice instances required for

the solution of the best worst-case pricing problem. In this section, scenarios and portfo-

lios are constructed unter \lab conditions", to probe certain performance characteristics

while perturbing the setup as little as possible.

Statistical tests on a large number of generated situations are reported in Sect. 7.3.2.

Experiment 1: Three American Puts

The portfolio consists of three 30-day American puts with strikes 90, 100 and 110, re-

spectively. Market parameters are S0 = 100 and r = 0:03. The size of the time step is

dt = 1=(5 � 365), or �ve periods per day, 150 periods overall. All results are obtained

with the explicit method.

Figure 7.12 gives an overview of the running time when the corridors of uncertainty

are maintained (as described in Sect. 7.2.1) and collapsed (as described in Sect. 7.2.2),

respectively. In the linear case (�min = �max) Mtg takes 0.4 seconds to compute the result.

If corridors are maintained, the running time is stable in the intervals 0:12 � �max � 0:24

105

(small �max), 0:26 � �max � 0:40 (medium �max) and 0:42 � �max � 0:5 (large �max),

with jumps of about 1.5, 1 and 1.5 seconds preceding the intervals. Jumps correspond to

the introduction of more lattice instances, as wider volatility bands lead to more overlap

among corridors of uncertainty.

maintaining collapsing

�max time [s] # of lattices time [s]

0.10 0.4 1 {

0.12 1.9 6 1.0

� � �
0.24 1.9 6 1.0

0.26 2.9 7 1.0

0.28 3.0 8 1.0

� � �
0.40 2.7 8 1.1

0.42 4.2 10 1.0

� � �
0.50 3.9 10 1.0

Figure 7.12: Results for a portfolio of three American 30-day puts with strikes 90, 100

and 110, evaluated under a volatility band of [0:1; �max], with �max ranging from 0:1 to

0:5 in steps of 0:02. Shown is the running time if corridors of uncertainty are maintained,

together with the number of lattice instances created (of those, up to 6 lattice instances

are used to monitor the corridors of uncertainty). Also shown is the running time if

corridors of uncertainty are collapsed

Figure 7.13 contains a graph of the running times. Figure 7.14 displays the location

and extent of the corridors of uncertainty for the three puts schematically for the quali-

tatively di�erent small, medium and large volatility ranges. For medium and large �max,

the labels in the picture indicate the non-singleton residual portfolios that are part of the

early exercise combinations considered. In the medium scenario, 3 partial non-singleton

portfolios need to be maintained. In the large scenario, 4 partial non-singleton portfolios

need to be maintained. In addition, some singleton lattice instances may need to be

106

0

1

2

3

4

[s] 5

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 �max

0:1 � � � �max

6

6

6

t

t t t t t t t

t t t t t t t t

t t t t t

Figure 7.13: Running times in seconds for the three 30-day American puts with strikes

90, 100 and 110, respectively, evaluated under di�erent volatility ranges [0:1; �max], 0:1 �
�max � 0:5. The arrows mark jumps in the number of lattice instances, due to increasing

overlap of the corridors of uncertainty. The line at 1 second indicates the average running

time if the corridors of uncertainty are collapsed

maintained to feed boundary values, and some to provide the upper or lower boundary

for the corridor of uncertainty.

Also compare with Fig. 7.8, which shows the actual corridor shape for some sample

values of �max. Notice that the number of combinations cited there, 4 respectively 8,

refers to the maximum number of early exercise combinations that enter the minmax

term at any given node instance. This number is a lower bound for the overall number

of lattice instances.

The prices computed by both methods (maintaining versus collapsing) were identical.

Collapsing the corridors of uncertainty, however, turns out to reduce the running time

considerably and to make it independent from �max. The speedup is approximately

3:9=1:0 � 4 for �max = 0:5.

Experiment 2: Increasing the Number of Puts

In the previous experiment the size of the portfolio remained stable, while the width of

the volatility range increased. In experiment 2 the number of puts in the portfolio is

107

small �max medium �max large �max

110/100/90 or 100/90

: : : or 110/90

: : : or 110/100
6

6

100/90 or 110/90

100/90

100

110/100/90 or

continuation region

corridor of uncertainty

90

110

Figure 7.14: A schematic view of the extent of the corridors of uncertainty for the three

American puts mentioned in the text, under three qualitatively di�erent volatility ranges.

The vertical axis marks the value of the underlying. The labels indicate the residual non-

singleton portfolios (at least 2 puts); some singleton residual portfolios are evaluated in

addition to maintain the corridors of uncertainty. Instruments are identi�ed by their

strike, which is 110, 100 and 90, respectively

varied. All puts mature in 30 days and di�er only by their strikes. The extremal strikes

are 80 and 120, and all other strikes are equidistantly spaced between those endpoints.

Thus, a portfolio of size 5 contains the strikes 80, 90, 100, 110 and 120.

The number of puts varies between 2 (strikes 80 and 120 only) and 21 (10 strikes

below 100, 10 strikes above 100, and 100 itself). The experiment is repeated for a linear

scenario (� = 0:1) and two nonlinear scenarios, with �min = 0:1 and �max = 0:125

and 0:15, respectively. All other parameters are unchanged: S0 = 100, r = 0:03 and

dt = 1=(5 � 365).

Figure 7.15 shows the running times and number of lattice instances created for all

three volatility scenarios and all 20 portfolio sizes. Figure 7.16 presents the same data

pictorially. The superimposed step function shows the relative increase in the number of

lattice instances, normalized to �t into the plot. This function approximately follows the

trend in the running times.

108

� = 0:1 0:1 � � � 0:125 0:1 � � � 0:15

of puts time [s] time [s] # of lattices time [s] # of lattices

2 0.28 0.8 3 1.2 4

3 0.37 1.6 5 2.1 6

4 0.54 2.8 7 3.5 8

5 0.59 3.9 9 4.6 10

6 0.72 5.4 11 6.5 12

7 0.83 7.0 13 8.2 14

8 0.91 9.1 15 10.0 16

9 1.04 10.4 17 12.2 18

10 1.13 12.5 18 14.5 20

11 1.29 15.4 20 17.2 22

12 1.47 18.1 22 19.7 24

13 1.53 22.4 24 38.9 27

14 1.67 27.6 26 115.9 34

15 1.79 28.8 28 134.9 38

16 1.89 33.6 30 168.7 43

17 1.93 38.4 32 172.9 47

18 2.37 41.7 33 208.2 50

19 2.40 80.5 36 211.7 53

20 2.26 88.8 38 239.5 56

21 2.37 89.9 40 258.9 58

Figure 7.15: Running times in seconds for portfolios with a varying number of 30-day

American puts under three volatility scenarios. For the nonlinear scenarios, also shown

is the number of lattice instances necessary to compute the best worst-case price

109

0
0.5
1.0
1.5
2.0

[s] 2.5

1 5 10 15 20 21 puts

� = 0:1

t t t t t t t t t t t t t t t t
t t t t

0
20
40
60
80

[s] 100

1 5 10 15 20 21 puts

0:1 � � � 0:125

t t t t t t t t t t t t t t t t t

t t t

0
50
100
150
200
250

[s] 300

1 5 10 15 20 21 puts

0:1 � � � 0:15

t t t t t t t t t t t t
t t t t t t t t

Figure 7.16: The data in Fig. 7.15 presented graphically. Solid disks mark running times.

The step function in the bottom graphs tracks the relative (!) growth of the number of

lattice instances created. In the top graph there is only one lattice instance

110

Notice that the running time is not an absolute function of the number of lattice

instances. In the scenario �max = 0:125 , for instance, 38 lattice instances are processed

in 88.8 seconds (20 puts), while in the scenario �max = 0:15, 38 lattice instances are

processed in 134.9 seconds (15 puts). The individal width of the corridors of uncertainty,

positively correlated with �max, plays a signi�cant role, too. It is here where the early

exercise combinations are weighed, causing computational overhead.

The most signi�cant result of this test is the validity of the concept of corridors of

uncertainty: there are 2 21 theoretical early exercise combinations if the portfolio contains

21 puts.

7.3.2 A Mass Test

The experiments in the previous section were conducted under laboratory conditions: all

parameters but one remained frozen so as to test the inuence of the selected parameter

on the running time of Mtg. The dimensions along which tests were made were the width

of the volatility band and the density of strikes.

In this section we lift the ceteribus paribus condition, and compute best worst-case

prices for a set of portfolios with divergent characteristics. Statistical measures are then

used to judge performance and accuracy. The hardware is unchanged: a Pentium/166

MHz PC running Windows NT Workstation 4.0/SP 3 and equipped with 128 MB of

RAM. Mtg, the pricer, is written in C++.

The results reported here are published in Bu� (1999a).

The Random Portfolio Space

The random portfolio space consists of 200 portfolios. Each portfolio consists of 8 options

with characteristics determined randomly as follows:

� With equal probability the option is a call or a put.

� For call options, the strike lies in the interval [80; : : : ; 110] with probability

Pr fstrike = xg =

8>><
>>:

1

42
if 80 � x � 100

1

20
if 101 � x � 110

(7.7.96)

111

For put options, the strike lies in the interval [90; : : : ; 120] with probability

Pr fstrike = xg =

8>><
>>:

1

20
if 90 � x � 99

1

42
if 100 � x � 120

(7.7.97)

Thus, in-the-money and out-of-the-money options are equally likely, but the range

of possible strikes for in-the-money options is about twice as wide as for out-of-the-

money options.

� The maturity is uniformly distributed in the interval [50; : : : ; 100], counted in days.

� The position �n, 1 � n � 8, is �1, �2 or �3 with equal probability.

Figure 7.17 gives a summary.

type probability strike maturity position

call 1
2 betw. 80 and 110 betw. 50 and 100 �1, �2 or �3

put 1
2 betw. 90 and 120 betw. 50 and 100 �1, �2 or �3

Figure 7.17: The random portfolio space. Each option has the characteristics listed in

the table, randomly selected. In addition, options are either European or American

The random portfolio space is furthermore divided into two subsets:

� For the �rst 100 portfolios, 4 options are American. The remaining 4 options are

European. We refer to this subset as the 4/4 set of portfolios.

� For the last 100 portfolios, 5 options are American. The remaining 3 options are

European. We refer to this subset as the 5/3 set of portfolios.

The random portfolio space extends the theoretical framework observed so far in two

aspects:

1. Maturity dates di�er; and

2. there are American and European instruments in each portfolio.

These \advanced" features are incorporated to simulate actual situations better. Both

features are straightforward to add to the theoretical base. The 4 respectively 3 European

options contribute to curvature through superposition of their vanilla payo� structures.

112

The Evaluation Space

Each of the portfolios (X44
1 ; �

44
1), : : : , (X44

100; �
44
100) in the 4/4 set, and (X53

1 ; �
53
1), : : : ,

(X53
100; �

53
100) in the 5/3 set was evaluated several times under varying conditions. Always,

however, �min = 0:1. The market parameters are S0 = 100, interest rate r = 0:05 and

dividend rate q = 0:03 throughout. (A dividend rate is introduced since the portfolios

contain American calls which aren't exercised early if q = 0.)

Experiment 1 In the �rst experiment, all portfolios as well as their negative versions

(�� instead of �) were evaluated under the three volatility scenarios �max = 0:2, 0.4 and

0.6, respectively. Two series of evaluations were performed with maintained corridors

of uncertainty, and two series of evaluations were performed with collapsed corridors of

uncertainty. The time step in series 1 was dt = 1=365, under both methods; in series 2 it

was dt = 1=(2 � 365). This experiment required 2� 2 � 3 � (2 � 100 + 2 � 100) = 4800

evaluations.

Experiment 2 In the second experiment, all portfolios as well as their negative versions

(�� instead of �) were evaluated under the volatility scenario �max = 0:8. Again, two

series of evaluations were performed with maintained corridors of uncertainty, and two

series of evaluations were performed with collapsed corridors of uncertainty. The time step

in series 1 was dt = 1=(5�365), under both methods; in series 2 it was dt = 1=(10�365).

This experiment required 2� 2� (2� 100 + 2� 100) = 1600 evaluations.

The reason for using 5 and 10 as opposed to 1 and 2 time steps per day is stability: the

algorithm in Fig. 5.4 rejects 1 respectively 2 time steps per day as too coarse for �max =

0:8.

Experiment 3 In the third experiment, all portfolios as well as their negative versions

(�� instead of �) were evaluated under the volatility scenario �max = 1:0. One series

of evaluations was performed with maintained corridors of uncertainty, and one series of

evaluations was performed with collapsed corridors of uncertainty. The time step was set

to dt = 1=(16 � 365), after running the algorithm in Fig. 5.4. This experiment required

2� 2� 100 + 2� 100 = 800 evaluations.

Figure 7.18 provides an overview over all three experiment speci�cations.

113

volatility series 1 series 2

Experiment 1 0:1 � � � 0:2 dt = 1=365 dt = 1=(2 � 365)

0:1 � � � 0:4 dt = 1=365 dt = 1=(2 � 365)

0:1 � � � 0:6 dt = 1=365 dt = 1=(2 � 365)

Experiment 2 0:1 � � � 0:8 dt = 1=(5 � 365) dt = 1=(10 � 365)

Experiment 3 0:1 � � � 1:0 dt = 1=(16 � 365) n/a

Figure 7.18: The evaluation space. The time steps are chosen to guarantee numerical

stability. Altogether, 4800 + 1600 + 800 = 7200 evaluations were performed

Maintaining the Corridors of Uncertainty

We give absolute results for the exact approach where corridors of uncertainty are main-

tained as described in Sect. 7.2.1. In a later paragraph, the bene�t and drawback of

collapsing the corridors is analyzed relative to the absolute values given here.

Figure 7.19 presents the mean and standard deviation of the running time if corridors

of uncertainty are maintained. Only series 1 is analyzed in the �rst two experiments;

no data is avaliable for series 2. The maximum running time in experiment 3 was 302

seconds for the 4/4 set, and 1094 seconds for the 5/3 set.

4/4 set 5/3 set

experiment �max time step mean sdev mean sdev

1, series 1 0:2 1=365 1.5 1.0 3.4 2.8

1, series 1 0:4 1=365 3.1 1.1 9.5 4.2

1, series 1 0:6 1=365 3.5 1.1 10.7 4.1

2, series 1 0:8 1=(5 � 365) 36.7 8.9 115.4 36.5

3 1:0 1=(16 � 365) 207.8 45.9 662.2 193.1

Figure 7.19: The running time in seconds if corridors of uncertainty are maintained,

broken down for the 4/4 set and the 5/3 set of portfolios. Each entry represents 2�100 =

200 evaluations, as in (original + negative) � portfolios

114

Figure 7.20 presents data on convergence with respect to the time step. The results

obtained in series 1 and 2 are matched and compared pair-wise. Shown are the �rst two

central moments, in percentage, of

V̂2(0; 0;L
44
n)� V̂1(0; 0;L

44
n)

V̂1(0; 0;L44
n)

(7.7.98)

for 1 � n � 200, corresponding to 2 � 100 portfolios (including the negative �'s) in the

4/4 set, and the �rst two central moments, in percentage, of

V̂2(0; 0;L
53
n)� V̂1(0; 0;L

53
n)

V̂1(0; 0;L53
n)

(7.7.99)

for 1 � n � 200, corresponding to 2 � 100 portfolios in the 5/3 set. V̂l is the best

worst-case price observed in series l. L44
n is the lattice instance with signature (X44

n ; �
44
n)

if n � 100, and with signature (X44
n�100;��44n�100) if n � 101. L53

n is interpreted in an

analogue fashion.

No data is available for experiment 3, since experiment 3 contains only one series of

evaluations.

4/4 set 5/3 set

experiment �max time steps mean sdev mean sdev

1 0:2 1=365! 1=(2 � 365) 0.1 0.6 0.2 1.6

1 0:4 1=365! 1=(2 � 365) 0.3 6.0 �0.8 7.5

1 0:6 1=365! 1=(2 � 365) 0.0 11.2 �0.2 2.8

2 0:8 1=(5 � 365)! 1=(10 � 365) -0.5 11.7 �0.2 3.9

Figure 7.20: The relative discrepency in percentage for each matched evaluation in series 1

and 2, respectively, of experiments 1 and 2, broken down by volatility band and portfolio

set. The number of time steps is doubled between series 1 and 2

Convergence is better for narrow volatility bands. For �max = 0:2 we may expect

stability in the �rst two leading digits, and thus recommend dt = 1=(2 � 365) as being

adequate. On the other hand, there is considerable variance if �max � 0:4. This suggests

that for wide volatility ranges dt needs to be further reduced to achieve suÆcient numerical

stability.

115

Collapsing the Corridors of Uncertainty: Speed

After establishing a base for comparison, we examine the bene�t of collapsing corridors

of uncertainty. Let m44
n be the running time if corridors of uncertainty are maintained

for portfolio n (where 1 � n � 200, and portfolios are counted as described above) in the

4/4 set, and let c44n be the running time if corridors of uncertainty are collapsed. m53
n and

c53n are interpreted accordingly. Figure 7.21 shows mean and standard deviation for the

quantities

c44n
m44
n

and
c53n
m52
n

(7.7.100)

in percentage, for 1 � n � 200, broken down by experiment and series, as well as

aggregated over all experiments. Figure 7.22 shows the same data pictorially.

4/4 set 5/3 set

experiment �max time step mean sdev mean sdev

1, series 1 0.2 1=365 63.5 10.8 55.5 11.7

1, series 1 0.4 1=365 66.1 13.6 55.1 18.2

1, series 1 0.6 1=365 62.5 16.3 52.6 18.2

2, series 1 0.8 1=(5 � 365) 65.1 15.8 54.3 18.7

3 1.0 1=(16 � 365) 71.0 16.5 60.1 19.6

all 65.6 15.0 55.5 17.7

Figure 7.21: Mean and standard deviation in percentage of the relative running time

if corridors of uncertainty are collapsed, broken down by volatility band and portfolio

subset. The last row is the average over all previous rows. The inverse of the mean would

be the average speedup factor

The relative bene�t is remarkably uniform for di�erent volatility bands, although

the bene�t decreases slightly for very high �max. The standard deviation is under 20%

throughout. Relative speed increases if portfolios contain more American instruments .

116

0

20

40

60

80

[%] 100

0.2 0.4 0.6 0.8 1.0

4/4 set

t t t t t

0

20

40

60

80

100

0.2 0.4 0.6 0.8 1.0 �max

5/3 set

t t t t t

Figure 7.22: Mean � one standard deviation of the relative running time in percent-

age when corridors of uncertainty are collapsed, compared to the running time for the

benchmark result. The data is the same as in Fig. 7.21

Collapsing the Corridors of Uncertainty: Faithfulness

Collapsing the corridor of uncertainty may lead to false results. The faithfulness of the

heuristic measures the gravity of this defect. Let L44
n and L53

n denote lattice instances

for portfolios 1 � n � 200 in the 4/4 and the 5/3 set, respectively, as de�ned earlier.

Let the benchmark result M̂(0; 0;L44
n) = V̂ (0; 0;L44

n) be the best worst-case price on

lattice instance L44
n if corridors of uncertainty are maintained, and de�ne M̂(0; 0;L53

n)

accordingly. Let Ĉ(0; 0;L44
n) be the best worst-case price if corridors are collapsed, and

de�ne Ĉ(0; 0;L53
n) accordingly. Ĉ(0; 0;L44

n) and Ĉ(0; 0;L53
n) may di�er from V̂ (0; 0;L44

n)

and V̂ (0; 0;L53
n). The faithfulness of the heuristic is reected in the relative deviation

from the benchmark result:

Ĉ(0; 0;L44
n)� M̂(0; 0;L44

n)

M̂ (0; 0;L44
n)

(7.7.101)

and

Ĉ(0; 0;L53
n)� M̂(0; 0;L53

n)

M̂ (0; 0;L53
n)

(7.7.102)

Values close to 0 indicate high faithfulness. Large absolute values indicate low faithful-

ness. Mean and standard deviation in percentage of (7.7.101) and (7.7.102) are shown

in Fig. 7.23 for series 2 of experiments 1 and 2. Also shown is the frequency in percent-

117

age with which the approximated result deviates no more than 1% from the benchmark

result.

4/4 set 5/3 set

experiment �max time step mean sdev good mean sdev good

1, series 2 0.2 1=(2 � 365) 0.00 0.32 99.0 �0.29 4.06 98.0

1, series 2 0.4 1=(2 � 365) 0.85 7.94 93.0 0.07 2.15 94.0

1, series 2 0.6 1=(2 � 365) �0.12 9.22 90.5 �0.22 2.44 88.5

2, series 2 0.8 1=(10 � 365) 8.93 122.55 87.0 0.94 18.65 83.0

all �0.15 3.00 94.2 0.28 6.61 93.5

Figure 7.23: Mean and standard deviation in percentage of the relative deviation from the

benchmark result if corridors of uncertainty are collapsed. The column labeled \good"

shows the frequency with which the benchmark result is reproduced exactly

Not shown in the �gure is the frequency of exactly matching results: 51.0 and 26.0%

overall for the 4/4 set, and 46.8 and 19.0% overall for the 5/3 set. Figure 7.24 interpolates

the frequency of exactly matching results, or of results that deviate no more than 1

or 5% for experiments 1 and 2. The frequency of \good" results drops consistently

as the volatility band gets wider, and slightly if the portfolio contains more American

options. Although the heuristic reproduces the benchmark result less than half the time,

the frequency at which a 1% relative error bound is achieved is above or close to 90%

throughout.

Collapsing the Corridors of Uncertainty: Outliers

There are 4 cases in experiment 1, series 2 in which the absolute deviation from the

benchmark result exceeds 50%. The amount by which these cases deviate is shown in

Fig. 7.25, together with the composition of one of the outlier portfolios.

The sequence of best worst-case prices for the marked portfolio shows considerable

oscillation as the time step decreases, even if the corridors of uncertainty are maintained.

Fig. 7.26 shows the values, plotted against the number d of steps per day for both the ex-

plicit and mixed explicit/implicit scheme (this is the only case in this chapter on American

118

0

20

40

60

80

[%] 100

0.2 0.4 0.6 0.8

4/4 set

�5%
�1%

exact

0

20

40

60

80

100

0.2 0.4 0.6 0.8 �max

5/3 set

�5%
�1%

exact

Figure 7.24: Frequency in percentage with which the relative error stays within 0% (exact

match), 1% and 5% of the benchmark result if corridors of uncertainty are collapsed,

drawn against �max. Data is base on series 2 in experiments 1 and 2

options where Crank-Nicholson combined with iterative re�nement is used). 20 lattice

instances, the largest possible number, are required to solve the best worst-case pricing

problem. The inverse portfolio (��n instead of �n for 1 � n � 8) converges convinc-

ingly: the value varies around �36:19, with noise in the fourth digit (values are not

shown here). There is no obvious sign that helps to explain what makes the portfolio

structurally unusual enough to lead to such instability.

Further comparative convergence analysis with 1, 2, 5 and 20 time steps per day,

for all portfolios in the 4/4 subset under the scenario �max = 0:6, shows that there

is no correlation between poor numerical convergence and a large deviation from the

benchmark result in the series 2 data. The Spearman and Kendall rank coeÆcients

for the association between the absolute relative change of the benchmark result when

switching from 1 to 20 time steps per day, and the maximum absolute deviation from the

benchmark in the series 2 data are 0.09 and 0.06, respectively. Rank coeÆcients measure

linear and nonlinear monotonic relationships. A value close to zero means there is no

such relationship. The linear correlation coeÆcient is 0.17.

The quality of the result achieved under the heuristic seems therefore unpredictable.

119

�max set deviation [%]

0.4 4/4 107.4

! 0.6 4/4 88.1

0.6 4/4 �85.3
0.2 5/3 �57.4

n exercise type maturity strike �n

1 European put 100 92 �3
2 European put 68 97 2

3 European call 66 93 �1
4 European put 61 98 1

5 American put 97 113 �3
6 American put 93 114 2

7 American call 68 102 1

8 American put 57 93 �2

Figure 7.25: Four cases in experiment 1, series 2 (time step dt = 1=(2 � 365)), in which

the relative deviation from the benchmark result exceeds 50%, and the composition of

one of the outlier portfolios (marked with \!")

Conclusion

The bene�ts of collapsing the corridor of uncertainty seem worth the loss of faithfulness

if the volatility band is narrow, for then the benchmark results are reproduced to a

suÆciently high degree. For 0:1 � � � 0:2, for instance, the mean error is zero and

the standard deviation of the error is 0.32%, for 4 American options in the portfolio

(Fig. 7.23). This is equivalent to 2 matching digits.

The situation becomes less clear as �max increases. Whether the gain in speed of about

40% is worth the increased chance of missing the best worst-case price by a large amount

must be decided case by case. As shown in Fig. 7.24, the 1% or 2 leading digit-threshold

is still reached about 90% of the time.

It should be noted that the volatility bands used in the mass test are extremely wide

and remain valid over the entire lifetime of the portfolio. In a more realistic setting, the

range of uncertainty would be narrower or restricted in time. The next chapter explores

volatility scenarios in this direction.

Numerical accuracy at timesteps in the tested range is satisfactory for narrow bands

(Fig. 7.20). For wider bands, smaller time steps than those tested should be used in

production mode. The use of the more accurate mixed explicit/implicit �nite di�erence

120

-8
-7
-6
-5
-4

[$] -3

1 10 20 30 40 50 60 70 80 90 100 steps/day

explicit

tt
t
t

t t

t t
t t

t

t t

-8
-7
-6
-5
-4

[$] -3

1 10 20 30 40 50 60 70 80 90 100 steps/day

Crank/Nicholson

t
t t

t

t
t

t t t

t

t
t

t

Figure 7.26: High oscillation of the best worst-case value of the portfolio marked in

Fig. 7.25 even if the corridors of uncertainty are maintained. There is no qualitative

di�erence between the explicit and Crank-Nicholson scheme. The number of steps per

day d is plotted on the x-axis; the corresponding time step would be dt = 1=(d � 365)

scheme would very likely improve the convergence behavior further.

7.4 American Options and Calibration

It is in principle possible to apply the ideas of Sect. 4.2.3 on calibration to portfolios of

American options. The calibrated volatility �̂ would be path-dependent and not easily

convertible into a two-dimensional surface. However, the volatility surface, being the

goal of calibration in the �rst place, should have a format in which subsequent pricing is

straightforward. Calibration to American options seems therefore not a viable task.

Optimizing a position in order to �nd the optimal hedge portfolio under worst-case

assumptions, on the other hand, would still be feasible (see Sect. 4.2.2).

121

8 Exotic Volatility Scenarios

In Chapters 6 and 7, algorithms have been discussed that compute (best) worst-case

prices under uncertain volatility scenarios in which �(St; t) and �(Su; u) are independent

for t 6= u. In this chapter we extend the notion of uncertain volatility scenarios to include

evolutions of the spot volatility that depend on its past history.

The non-Markovian character of � is expressed in by-conditions in the candidate

set C. � no longer depends merely on St and t, but on the path ! in the probability

space. Replicating the terminology for instruments, we call such volatility scenarios exotic

volatility scenarios, as opposed to \conventional" volatility scenarios. In particular, we

examine scenarios where the spot volatility can undergo one or several volatility shocks

of limited duration.

8.1 Volatility Shocks for Portfolios of Vanilla Options

Volatility shock scenarios are based on the assumption that the spot volatility does not

deviate from an estimated prior volatility except possibly when expected or unexpected

economic events upset the market for a limited period of time. Such events may be

announcements, mergers, court rulings, natural disasters, devaluations, or others. These

events have the properties that

� they are diÆcult to quantize; and, more importantly,

� they cannot be forecasted to happen on a speci�c day in the future.

We use the worst-case approach for the quantization problem, and multi-lattice dynamic

programming for the forecasting problem.

De�nition 8.1 (Prior and shock volatility). Assume we are given volatility values

0 < �min � �0 � �max. Then �0 is called the prior volatility and expresses the subjective

belief of the agent about the true model volatility. �min and �max are lower and upper

bounds which the spot volatility can attain during periods of upheaval. They are called the

shock volatility bounds.

For simplicity, Def. 8.1 introduces constant volatility parameters. The concepts in

this chapter can easily be extended to cover time and/or space dependent prior and

122

shock volatilities. (Recall that this does not mean that the worst-case volatility is also

constant!)

De�nition 8.2 (Volatility shock scenario). Assume prior and shock volatility 0 <

�min � �0 � �max are given. A volatility shock scenario is characterized by its duration

d � 1, its periodicity p � 1 and its frequency f � 1. The units of d and p are days; f is

a dimensionless number. All values are integers.

The interpretation is as follows: on any realized path ! the spot volatility will be �0,

except for f non-overlapping periods of length d days each, during which the spot volatility

may uctuate freely within �min and �max. Here, \non-overlapping" refers to the interior

of each period; they may touch at their endpoints. In addition, each of these f shock

periods must start on a day whose day count number is a multiple of p, where days are

counted from 0.

The class of volatilities that ful�ll this description is denoted by D.

The function of p is to reduce the computational overhead and the size of the lattice.

We will see below that the compute time is proportional to d=p. p may also be used to

time shock periods, but to support this aspect fully a more powerful notion of periodicity

may be nessesary. Although in most cases p � d, we explicitely allow the case p > d.

The f shock periods are located between time 0 and time N . In the following, we

assume N � d+ (f � 1) max(p; d) for convenience. In other words, the portfolios under

investigation last long enough to fall under the inuence of at least f shock periods.

Examples of volatility shock scenarios are:

� The prior volatility is �0 = 0:15. However, there will be a 7-day period during

which the volatility may oscillate between 0:15 and 1:0. This period, caused by a

merger announcement expected in the near future, can start on any day. Thus,

�0 = �min = 0:15, �max = 1:0, d = 7, p = 1, f = 1.

� The central bank of country XYZ meets once a week. It is expected that an im-

portant economic decision will be made in one of its future meetings, though it is

not known in which one. Heavy trading on the day following the announcement is

anticipated. In this case, �0 = �min = 0:15, �max = 1:0, d = 1, p = 7, f = 1 may be

a realistic volatility shock scenario.

123

The crucial property of volatility shock scenarios is that they leave open when the shock

periods occur. If the timing of events is known, a time-dependent conventional uncertain

volatility scenario works adequately. It is the additional dimension of uncertainty of

timing which opens the door to worst-case considerations.

The other quantitative di�erence between conventional and volatility shock scenarios

is the width of the volatility band: while conventional scenarios may allocate a 0.1{0.2

volatility band, for instance, volatility shock scenarios provide for volatility spikes of much

larger amplitude. Wide bands in the conventional scenario su�er from two aws: a) they

lead to wide price bands, and b) they do not reect the isolated nature of events which

inuence market bahavior. Volatility shock scenarios alleviate both drawbacks.

8.1.1 Worst-case Volatility Shocks

Under the worst-case paradigm volatility shock periods are located such that the resulting

worst-case price is maximized. The market is regarded as adversary that triggers events

perturbing the prior volatility at the most adverse moment.

The objective of worst-case pricing under a conventional volatility scenario has been

formulated in Sect. 4.2:

Given a portfolio X and a position � 2 R
k in X, which � 2 C maximizes

today's value of (X; �)?

The extension to volatility shock scenarios is straightforward and goes as follows.

Given a portfolio X and a position � 2 R
k in X. Given furthermore prior and

shock volatilities �min � �0 � �max and shock scenario attributes d, p and f .

Which � 2 D maximizes today's value of (X; �)?

D has been de�ned in Def. 8.2 as the class of volatilities � that satisfy

�min � �(!; t) � �max (8.8.1)

during shock periods and

�(!; t) = �0 (8.8.2)

during silent periods. We assume that X contains only vanilla options, all maturing at

time tN .

124

s0

T

#
#
#
#
##

A
A
A u

HHH u
��

���
"
""

u

s0

T

u
u

?
? hhhh

��
��

t1

t1 t2

�������

shock period

XXX
XXX

XXy

shock front1

2

3

lattice instance L

lattice instance L0

Figure 8.1: Paths 1 and 2 hit the shock front at time t1 and switch to lattice instance

L0, which solves a conventional worst-case pricing problem with time-dependent �min and

�max (i.e., �min = �max = �0 for t < t1 and t > t2). Path 3 hits the shock front at a later

time and continues on a lattice instance with a di�erent conventional worst-case volatility

scenario

Multi-lattice Dynamic Programming Revisited

The worst-case volatility-shock pricing problem can be solved with multi-lattice dynamic

programming. The number of lattice instances depends on the volatility shock scenario

and can be known beforehand. Each lattice instance carries (X; �), but solves PDE

(4.4.8) with a di�erent, non-path-dependent (!) volatility coeÆcient. Transferring data

between lattice instances works much like in the American case: local decisions are made

with regard to the \shock front\, i.e. the optimal (that is, worst) time of entering a shock

period. The shock front is the analogon of the early exercise boundary.

Figure 8.1 gives an example. Lattice instance L is the top-level lattice instance yielding

the �nal result V̂ (0; 0;L). Paths 1, 2 and 3 originating at s0 and hitting the shock front

at time t1 (paths 1 and 2) respectively at some later, unspeci�ed time (path 3) are traced.

125

After hitting the shock front, paths 1 and 2 continue on lattice instance L0. L0 di�ers

from L in that it prices with the conventional uncertain volatility scenario

�(St; t) = �0 (t < t1 or t > t2)

�min � �(St; t) � �max (t1 � t � t2)
(8.8.3)

with a �xed period of volatility oscillation between times t1 and t2. L, on the other hand,

prices with �0 between t = 0 and the shock front, whose location is determined with the

dynamic programming method.

Path 3 does not hit the shock front at time t1 and therefore does not continue on L0,

but on another lattice instance whose shock period is located suitably. Notice that while

the shock front in L is uneven, the shock period in L0 itself starts uniformly at time t1

and ends uniformly at time t2.

The example seems to suggest that there must be a lattice instance for every possible

location of the shock period. This is not so; lattice instances can be reset and reused in

the rollback scheme as soon as a shock period is �nished. A combination of high-level

handling of lattice instances and conventional worst-case pricing is powerful enough to

solve the worst-case pricing problem under volatility shock scenarios.

De�nition 8.3 (Extended lattice signature). Given (X; �), duration d, periodicity p

and frequency f . The extended signature of a lattice instance L for the so-speci�ed volatil-

ity shock scenario is a quintuple (X; �; �; �; Æ), where � 2 fconventional; consolidateg is

the type, 0 � � � f is the level, and 0 � Æ � dd=pe is the o�set of the lattice instance.

The o�set is unde�ned if � = consolidate.

If X contains only vanilla options, all lattice instances carry the same portfolio (X; �).

In that case, we ommit X and � and write (�; �; Æ).

Consolidating lattice instances use subordinate conventional lattice instances to locate

the shock front. If the duration exceeds the periodicity, potential shock periods may

overlap, and up to dd=pe conventional lattice instances need to be maintained to feed a

single consolidating lattice instance. Consolidating and associated conventional lattice

instances are grouped in levels. Levels are ordered, for conventional lattice instances, in

turn, fetch their boundary data from lower level consolidating lattice instances. Thus, L

in Fig. 8.1 is consolidating while L0 is conventional.

126

Level 0 is unique in that it does not contain any conventional lattice instances. The

consolidating lattice instance of level 0 prices (X; �) by de�nition with �0. On level 0,

pricing becomes linear.

Figure 8.2 explains these concepts for d = 4, p = 2 and f = 1. Shock periods are

possible between days 0{4, 2{6, 4{8, 6{10 and 8{10 (the last one being cut o� at day

10). The main lattice instance L1 imports worst-case prices on days 0, 2, 4, 6 and 8

from conventional lattice instances L0
1 and L

1
1, depending on the o�set. After maximizing

locally just like it is done for American options, the resulting value is rolled back 2 days

with linear volatility � = �0. Then data is imported from L0
1 or L

1
1 and compared again.

The shock front is implicitly given by the outcome of the local maximization operations

and continuously readjusted.

The conventional lattice instances L0
1 and L1

1 are reused several times. After worst-

case prices have been transferred to L1 on days 0, 2, 4, 6 and 8, the lattice instances are

reset with current linear prices, copied from L0. Here and in the subsequent paragraphs,

\current" refers to the loop variable i which iterates through time slices N; : : : ; 0 (i is

part of the input in the algorithm in Fig. 5.5). The function of L1, L
0
1, L

1
1 and L0 can be

summarized, bottom-up, as follows:

� L0 is the lattice instance at the lowest level and is used to price (X; �) at the prior

volatility � = �0.

� L0
1 is used to price (X; �) under the conventional worst-case volatility scenario with

a volatility band �min � � � �max during the current shock period [2lp; 2lp + 4],

l � 0 chosen suitably, and � = �0 during the tail period [2lp+ 4; 10]. The o�set of

L1
1 is Æ = 0. As the tail period becomes longer and a volatility shock date is crossed,

L0
1 is reset with data from L0.

� L1
1 is used to price (X; �) under the conventional worst-case volatility scenario with

a volatility band �min � � � �max during the current shock period [(2l + 1)p; (2l +

1)p+4], l � 0 chosen suitably, and � = �0 during the tail period [(2l+1)p+4; 10].

The o�set of L0
1 is Æ = 1, corresponding to a shift of Æp = 2 days of shock periods.

As the tail period becomes longer and a volatility shock date is crossed, L1
1 is reset

with data from L0.

� L1 holds prices for (X; �) which, during rollback, represent the expected payo�

127

0 1 2 3 4 5 6 7 8 9 10

� = conventional
� = 1, Æ = 0

� = consolidate
� = 1, � = �0

� = conventional
� = 1, Æ = 1

0 1 2 3 4 5 6 7 8 9 10

� = conventional
� = 1, Æ = 0

� = consolidate
� = 0, � = �0

� = conventional
� = 1, Æ = 1

? ? ?

66

max max max

max max

�min � � � �max �min � � � �max

�min � � � �max �min � � � �max

6

?

6

?reset reset

resetreset

�min � � � �max �min � � � �max

�min � � � �max

L0
1

L1

L1
1

L0
1

L0

L1
1

- time in days

Figure 8.2: Four lattice instances L1, L
0
1, L

1
1 and L0 are needed to solve a volatility

shock scenario with shock duration d = 4, periodicity p = 2 and frequency f = 1. L0
1 is

responsible for the shock periods [2lp; 2lp+4], and L1
1 is responsible for the shock periods

[(2l+1)p; (2l+1)p+4], where l � 0. After the worst-case price for a shock period has been

incorporated into the main lattice instance L1 through local maximization (top picture),

the associated conventional lattice instance is reset with the current linear price obtained

with the prior volatility �0 (bottom picture)

128

under the assumption that the volatility shock period has occured sometime between

the current time slice and day 10. As the rollback proceeds from day 10 to day 0,

this assumption is periodically veri�ed by checking whether the price for (X; �)

increases if the volatility shock period starts at the current time slice.

To decrease the periodicity p from 2 to 1 requires two additional conventional lattice

instances for shock periods with o�sets 1 and 3, respectively. The resulting cycle of

periods is [(4l+ o)p; (4l+ o)p+4], 0 � o � 3 and l � 0. To increase p from 2 to 4, on the

other hand, makes L1
1 superuous, and three lattice instances overall suÆce. Also note

that the days on which shock periods start and end must be matched by the lattice: if

d and/or p are small, the discretization becomes necessarily denser. 1=p is proportional

to the time complexity of the pricing problem. Fine-tuning of both d and p can lead to

a signi�cant gain in response time.

If the shock frequency f is increased from 1 to 2, a new level � = 2 needs to be

added. L2 becomes the main lattice, and V̂ (0; 0;L2) the overall result. L2 is interpreted

as follows:

� L2 holds prices for (X; �) which, during rollback, represent the expected payo� un-

der the assumption that up to two volatility shock periods occur sometime between

the current time slice and day 10.

The new conventional lattice instances L0
2 and L

1
2 with signatures (� = conventional; � =

2; Æ = 0) and (� = conventional; � = 2; Æ = 1), respectively, are reset with data from L1

when shock dates are crossed. They are interpreted as follows:

� L0
2 prices (X; �) under the conventional worst-case volatility scenario with a volatil-

ity band �min � � � �max during the current shock period [2lp; 2lp + 4], l � 0

chosen suitably, and under the assumption that an additional shock period occurs

during the tail period [2lp+ 4; 10].

� L1
2 prices (X; �) under the conventional worst-case volatility scenario with a volatil-

ity band �min � � � �max during the current shock period [(2l+1)p; (2l+1)p+4],

l � 0 chosen suitably, and under the assumption that an additional shock period

occurs during the tail period [(2l + 1)p+ 4; 10].

129

Care has to be taken that L0
2 and L1

2 are reset with data from L1 only after L1 has been

processed: the data must reect the result of the local maximization at L1 on the shock

date.

Figure 8.3 gives a schematic overview over the hierarchy of lattice instances for general

f . Each consolidating lattice instance Ln, 0 � n � f , carries the full solution of a worst-

case volatility-shock pricing problem with frequency f 0 = n.

L0

Lc�11L0
1

@
@
@I

�
�
��

a aa conventional

consolidating (linear)

L1 consolidating

@
@
@I

�
�
��

max

reset

�
�
��

@
@
@I

reset

@
@
@I

�
�
��

Lf consolidating

conventionala aa a aaa aa

max

Figure 8.3: The hierarchy of lattice instances for general f . Arrows represent the dataow.

c is the number of conventional lattice instances per level. The \max" and \reset" labels

correspond to the \max" and \reset" operations in Fig. 8.2

Algorithms

In the following we assume a discretization that coincides with day boundaries: ti = i for

0 � i � N . Depending on the duration and periodicity of the shock volatility scenario,

130

this convention may be relaxed in an actual implementation.

Input: Duration d, periodicity p, frequency f

Output: A set of lattice instances

1. Set c = dd=pe. c is the number of conventional lattice instances per level

2. Create lattice instance L0 with signature

(� = consolidate; � = 0; Æ = unde�ned)

3. Repeat for n = 1; : : : ; f :

(a) Create lattice instance Ln with signature

(� = consolidate; � = n; Æ = unde�ned)

(b) Repeat for m = 0; : : : ; c� 1:

i. Create lattice instance Lmn with signature

(� = conventional; � = n; Æ = m)

Figure 8.4: The algorithm to create all required lattice instances for a given volatility

shock scenario

The algorithm in Fig. 8.4 computes the required number of conventional lattice in-

stances, and creates all lattice instances. The following lemma shows that the algorithm

creates the necessary number of lattice instances, and uses them optimally.

Lemma 8.4 (Lattice instance creation). Given a volatility shock scenario with dura-

tion d, periodicity p and frequency f . For any given level n, 1 � n � f , the algorithm in

Fig. 8.4 facilitates an assignment of shock periods to conventional lattice instances such

that no two overlapping shock periods are assigned to the same lattice instance. (Touching

at the endpoints is allowed.)

Proof. Any shock period can be written [lp; lp+d], l � 0. The quantity c = dd=pe de�ned

131

in step 1 of the algorithm is the smallest number such that cp � d, for

cp = dd=pep � (d=p)p = d (8.8.4)

on one side, and

(c� 1)p = (dd=pe � 1) p < ((d=p+ 1)� 1) p = d (8.8.5)

in the other direction.

Now �x a level n. Cosider the �rst c shock periods [lp; lp + d], 0 � l � c � 1. All

c shock periods overlap, for their start dates 0; p; 2p; : : : ; (c � 1)p all lie within the �rst

period [0; d], as shown in (8.8.5). Thus, at least c lattice instances are required to ful�ll

the condition that shock periods assigned to the same lattice instance don't overlap. We

assign each of the c shock periods to a separate lattice instance.

Let L0
n; : : : ; L

c�1
n be the lattice instances created. The next shock period that needs

assignment is [cp; cp + d]. Since cp � d, assignment of this shock period to L0
n does not

violate the no-overlap condition (although the periods may touch at their endpoints). It

is easy to see how the round-robin assignment proceeds.

In summary, if day i is divisible by p, i.e. is a day on which a shock period may start,

then the lattice instance to which this shock period is assigned within any given level is

m = i=p mod c.

The worst-case volatility-shock pricing problem is solved in two phases. In phase 1,

values are rolled back in whatever scheme has been selected (explicit or mixed ex-

plicit/implicit). In addition, local maximization is performed for consolidating lattice

instances if the processed time slice falls on day on which a shock period starts. During

phase 1, lower level lattice instances are processed �rst, and conventional lattice instances

are processed before the consolidating lattice instance within the same level. This rule is

an extension of the external consistency rule proposed in Sect. 5.1. Figure 8.5 shows the

algorithm.

Phase 2 is dedicated to resetting the conventional lattice instances, depending on

whether their o�sets Æ and the round-robin index i=p mod c of the shock start-date

match. No particular order needs to be observed in phase 2. The data collected from

consolidating lattice instances has been prepared in phase 1. The algorithm is shown in

Fig. 8.6.

132

Input: Lattice instance L with signature (�; �; Æ), time i

Output: V̂ (j; i;L) for D � j � U

1. If � = conventional:

(a) Use the algorithm in Fig. 5.5 to get worst-case values V̂ (j; i;L) for D � j � U

2. If � = consolidate:

(a) Apply the algorithm in Fig. 5.5 with �min and �max set to �0 (essentially, a

linearized version of the algorithm) to get initial V̂ (j; i;L) for D � j � U

(b) If � > 0 and i is divisible by the periodicity p:

i. With c = dd=pe and m = i=p mod c, repeat for D � j � U :

V̂ (j; i;L) := max
h
V̂ (j; i;L); V̂ (j; i;Lm�)

i
where we can be sure that conventional Lm� has already been processed

earlier in phase 1; adjust the gradient of V̂ (j; i;L) accordingly

Figure 8.5: Phase-1 algorithm, applied to all lattice instances in the order L0, L
0
1, : : : ,

Lc�11 , L1, : : : , Lf . Note that V̂ (j; i;L) is treated as a variable which can be modi�ed

Instead of formalizing the notion of volatility shocks any further, we use the algo-

rithms in Figs. 8.5 and 8.6 to de�ne the worst-case volatility-shock price of a portfolio.

The consistency of the algorithms is clear by Lemma 8.4 and inspection. They are a

straightforward extension of the basic concepts developed in Chapter 5.

De�nition 8.5 (Worst-case volatility-shock price). Given a volatility shock scena-

rio with duration d, periodicity p and frequency f , together with prior volatility �0 and

shock volatility bounds �min and �max. The value obtained for a portfolio (X; �) by running

the algorithms in Figs. 8.5 and 8.6, embedded in a multi-lattice dynamic-programming

framework as discussed in Chapter 5, is called the worst-case volatility-shock price of

(X; �).

In particular, the subadditivity of the worst-case price asserted in Fact 4.7 (and re-

133

Input: Lattice instance L with signature (�; �; Æ), time i

Output: Adjusted V̂ (j; i;L) for D � j � U

1. If � = conventional:

(a) If i is divisible by the periodicity p:

i. With c = dd=pe, set m = i=p mod c

ii. If m = Æ repeat for D � j � U :

V̂ (j; i;L) := V̂ (j; i;L��1)

where consolidating L��1 has been processed in phase 1; reset the gradient

accordingly

Figure 8.6: Phase-2 algorithm, applied to all conventional lattice instances

peated later, for American options, in Prop. 7.12) is maintained through the application

of the maximum operator in step 2(b)i in Fig. 8.5.

Numerical Issues

Volatility shock scenarions encourage short volatility spikes with large amplitude. Since

these spikes can be located anywhere on the lattice, �max is the relevant upper volatility

bound for the algorithm in Fig. 5.4. Recall that the algorithm computes the discretiza-

tion in time and space for the explicit �nite di�erence scheme. Mixed explicit/implicit

schemes don't require exceptionally small time steps and may in the case of volatility

shock scenarios be faster than explicit schemes. For this reason, Crank-Nicholson is used

in the following experiments.

The validity of the PDE (4.4.8) is another numerical issue. Recall that the local

volatility under uncertainty is given by

�

�
@2f

@S2

�
=

8<
:�max if @2f

@S2
� 0

�min if @2f
@S2 < 0

(8.8.6)

134

which has the welcome property that @
@�n

� = 0 almost everywhere, for 1 � n � j�j. This
has the consequence that the gradient in � is a solution of (4.4.8), too, with di�erent

boundary conditions. Volatility-shock scenarios have only a �nite number of additional

transitions in volatility space and therefore do not change this property.

8.1.2 Experimental Results

All tests were performed on a Pentium/166 MHz PC running Windows NT Workstation

4.0/SP 3, with 128 MB of RAM. The software is called Mtg and has been written and

compiled with Microsoft Visual C++ 5.0, optimizations activated.

Experiment 1: A Buttery Spread

Consider the buttery spread of four call options in Fig. 8.7. The maturities of the

options are 30, 50, 40 and 60 days, respectivly. The current stock price is S0 = 100, and

the interest rate is r = 0:03.

type maturity strike �n

call 30 95 1

call 50 100 -1

call 40 110 -1

call 60 115 1

Figure 8.7: A buttery spread consting of four call options. The spread is not perfect:

the maturity dates of the calls are not aligned

The spread is priced under three volatility scenarios:

1. A linear volatility scenario with constant volatility � = 0:15.

2. A volatility shock scenario with �min = �0 = 0:15, �max = 0:5, duration d = 3 days,

periodicity p = 1 day and frequency f = 1.

3. A conventional worst-case volatility scenario with �min = 0:15 and �max = 0:184052,

where the latter was chosen to match the average volatility over any high-volatility

135

path in scenario 2:

�max =

s
1

60

Z 60

0
�2 dt =

r
1

60
(3� 0:52 + 57� 0:152) (8.8.7)

The time step for the Crank-Nicholson �nite-di�erence scheme is dt = 1=(10 � 365).

0

1

2

3

4

5

[$] 6

80 90 100 110 120 130 S

shock scenario

0:15 � � � 0:184052

� = 0:15 linear

�

Figure 8.8: The buttery spread of Fig. 8.7 priced under three volatility scenarios. Shown

is the worst-case value plotted against today's value of the underlying. The parameters

for the shock scenarios are �min = �0 = 0:15, �max = 0:5, d = 3, p = 1 and f = 1

Figure 8.8 plots the resulting worst-case values against the time-zero value of the

underlying. The linear scenario obviously yields the smallest value throughout. The

relation between the two non-linear scenarios is less apparent. The volatility shock sce-

nario is smoother and comes closer to the linear scenario. It may be more appealing to

practitioners.

Figure 8.9 contains an image of the top-level consolidating lattice instance. Black

regions indicate where the maximum operator in step 2(b)i in Fig. 8.5 locates the potential

start of a shock period. Conversly, any path starting at time 0 enters its shock period

when it hits one of the black regions for the �rst time. Shock periods are predominantly

entered near maturity dates.

Experiment 2: Increasing the Frequency

In experiment 2 the portfolio in Fig. 8.7 is priced again, under the same volatility shock

scenario with �min = �0 = 0:15, �max = 0:5, duration d = 3 and periodicity p = 1. The

136

0 10 20 30 40 50 60 days

60

80

100100

125

150

180

Figure 8.9: The shock front unveiled. Black regions indicate where three-day shock

periods start. The four clusters correspond to the four maturities 30, 40, 50 and 60 days.

The spatial axis is in log-scale; the labels are normalized

frequency f varies between 1 and 20. Figure 8.10 lists the running time, the number of

lattice instances created, and the worst-case value as a function of f . Figure 8.11 shows

the worst-case value graphically.

The number of lattice instances created by the dynamic creation scheme is f �
(dd=pe + 1)+ 1 = 4f +1. Here, dd=pe is the number of conventional lattice instances per
level, dd=pe + 1 is the number of overall lattice instances per level, and the additional

lattice instance L0 is used for the level-zero linear pricing. The running time mirrors the

linear growth of the number of lattice instances, discounting some noise for higher values

of f .

For f = 20 the worst-case volatility-shock value and the conventional worst-case value

obtained under an uncertain volatility scenario 0:15 � � � 0:5 coincide, for 20 volatility

shocks of 3 days length each cover the entire 60-day lifetime of the portfolio. A coverage

of 10� 3 = 30 days is, according to the data in Fig. 8.10, already suÆcient to reproduce

the conventional value to within 1.3%.

Figure 8.12 shows the shape of the shock front on the top-level lattice for f = 2; 3; 4,

respectively. In this context, the top-level lattice for f = a is a lattice instance b levels

away from the top for f = a + b. If a path hits one of the black regions in the top

picture, a three-day volatility-shock period is initiated after which the path continues on

the lattice instance shown in Fig. 8.9. Similarly, with intermediate three-day transitions

137

with high volatility oscillation, paths examined under scenarios f = 3 and f = 4 jump

from the middle respectively bottom picture to the top respectively middle picture by

passing through one of the black regions. The shock region shows a vertical pattern

because shock periods may only start on day boundaries, but the time step is 1=10 of a

day.

Experiment 3: Convergence

Experiments 1 and 2 were executed with a time step of dt = 1=(10 � 365). Worst-case

prices for d = 3, p = 1 and f = 1; 2; 3, computed with 1, 2, 5, 10, 20, 50 and 100 steps per

day and shown in Fig. 8.13, certify the stability of the results obtained. No signi�cant

improvement is achieved for dt < 1=(10 � 365).

Conclusion

The concept of re�ned volatility scenario makes direct economic sense. In particular,

volatility shock scenarios promise to remedy some of the aws of conventional uncertain

volatility scenarios based on a perpetual volatility band. Among these are too pessimistic

price bands and unrealistic mapping of market behavior.

The preceding discussion and experiments prove that the computational overhead is

linear in the granularity d=p of the volatility shock scenario, and therefore bearable. No

sacri�ces have to be made in terms of accuracy.

Figure 8.8 shows that volatility-shock prices are less extremal than prices obtained

under conventional uncertain volatility scenarios. Figure 8.11 shows that volatility shock

scenarios react gradually to an increase in the extent of volatility oscillation. Volatility

shock scenarios therefore permit to �ne-tune the market model to a great degree. They

promise to be a valuable tool in assessing volatility risk.

8.2 Volatility Shocks and Exotic Options

Exotic volatility scenarios and portfolios of exotic options can be combined. The com-

putational overhead is multiplicative. The algorithm in Fig. 8.4 creates an initial set

of lattice instances with signatures (X; �; �; �; Æ); additional lattice instances with signa-

tures (X0; �0; � 0; �0; Æ0), (X0; �0) � (X; �), may be created dynamically later (if the portfolio

138

contains American options) or statically (if the portfolio contains barrier options).

Steps 1 and 2a in Fig. 8.5 refer to the untainted rollback scheme in Fig. 5.5. In the

case of exotic options, more sophisticated operations based on dynamic programming

need to be executed instead. Chapters 6 and 7 have explained how lattice instances

with partial portfolios are maintained to locate the exercise boundary or to supply it

with data, if barrier and/or American options are part of the problem. Luckily, this

kind of data transfer between lattice instances can be con�ned to steps 1 and 2a: the

maximum operator in the expression for V̂ (j; i;L) in step 2(b)i is at the highest level and

does not interfer. (In mixed implicit/explicit schemes, however, this may create the same

problem as for American options, making iterative re�nement of the initial solution of

the underlying linear system of equations necessary.)

Figure 8.14 illustrates the distinction between the \horizontal" relationship of lattice

instances for di�erent partial portfolios, but with identical volatility shock parameters,

and the \vertical" relationship between consolidating and conventional lattice instances

with di�ering volatility shock parameters. The relationship between � and � 0, � and �0, Æ

and Æ0 is predetermined and has been discussed above. The relationship between (X; �)

and (X0; �0) depends on the makeup of the portfolio. Certain is only that (X0; �0) � (X; �).

Figure 8.15 generalizes the microscopic example of Fig. 8.14 and shows a data ow

diagram for a volatility shock scenario with frequency f = 2. Each stack of boxes repre-

sents a component scenario for a �xed partial portfolio. The component scenario imports

data at every level from a subordinate component scenario located to its left, depending

on the requirements arising from the exotic options in the portfolio.

Mtg, our pricer, is capable of handling both exotic options and volatility shock sce-

narios at the same time. We do not give experimental results in this work.

139

frequency f time [s] # lattices value

1 11.5 5 3.264

2 20.9 9 3.462

3 33.2 13 3.648

4 43.3 17 3.816

5 53.0 21 3.946

6 70.8 25 4.051

7 78.8 29 4.136

8 89.1 33 4.197

9 92.5 37 4.240

10 106.6 41 4.271

11 128.1 45 4.291

12 138.8 49 4.306

13 151.1 53 4.316

14 172.9 57 4.322

15 150.3 61 4.325

16 178.3 65 4.326

17 220.3 69 4.327

18 233.4 73 4.327

19 239.2 77 4.327

20 271.5 81 4.327

Figure 8.10: Running times, number of lattice instances and worst-case volatility-shock

values for the portfolio in Fig. 8.7, as a function of the shock frequency f

140

0

1

2

3

4

[$] 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 f

t t t t t t t t t t t t t t t t t t t t

Figure 8.11: Worst-case volatility-shock values at S = 100 for the buttery spread in

Fig. 8.7, as a function of the shock frequency f . The horizontal line represents the worst-

case value under the conventional volatility scenario 0:15 � � � 0:5

141

f = 2

0 10 20 30 40 50 60 days

60

80

100100

125

150

180

f = 3

0 10 20 30 40 50 60 days

60

80

100100

125

150

180

f = 4

0 10 20 30 40 50 60 days

60

80

100100

125

150

180

Figure 8.12: The top-level shock front unveiled for f = 2; 3; 4. Black regions indicate

where three-day shock periods start. Notice that the shock front expands to the left as

the frequency increases. (also compare with Fig. 8.9 for f = 1)

142

price

time step f = 1 f = 2 f = 3

1=365 3.3859 3.5830 3.7672

1=(2� 365) 3.2922 3.4996 3.6887

1=(5� 365) 3.2717 3.4732 3.6603

! 1=(10 � 365) 3.2637 3.4619 3.6488

1=(20 � 365) 3.2587 3.4571 3.6458

1=(50 � 365) 3.2569 3.4549 3.6437

1=(100 � 365) 3.2560 3.4541 3.6429

Figure 8.13: Worst-case prices for the call spread in Fig. 8.7 under the shock-volatility

scenarios d = 3, p = 1 and f = 1; 2; 3. Results in experiments 1 and 2 were obtained

with a time step dt = 1=(10� 365). The data shows that there are no convergence issues;

doubling the number of steps per day from 10 to 20 changes the result by 0.15, 0.13 and

0.08%, respectively

(X; �; �; �; Æ)

(X; �; � 0; �0; Æ0)

(X0; �0; �; �; Æ) -

6
2

1

exotic volatility scenario

exotic options

Figure 8.14: The lattice instance with signature (X; �; �; �; Æ) imports data from lattice

instances with signatures (X0; �0; �; �; Æ) and (X; �; � 0; �0; Æ0). The numbers indicate the

order in which data is imported

143

- -

- -

- -

- -

- -

(X; �)

consolidating

conventional

consolidating

conventional

consolidating

(X0; �0)(X00; �00)

6

6

6

6

6

6

6

6

6

6

6

6� = 2

� = 1

� = 0

Figure 8.15: A volatility shock scenario with f = 2 for a portfolio X containing some

exotic options. Each box represents one or more lattice instances; arrows represent the

data ow. The size of each box is proportional to the number of lattice instances in the

group it represents (in this case, we conjecture p < d)

144

Part III

Object-oriented Implementation

145

9 The Architecture of MtgLib

The algorithms of Chapters 6, 7 and 8 are part of a programming system for nonlinear

models in computationl �nance. The name of this system, Mtg, has already appeared

where experimental results were presented.

Mtg consists of components written in C++ and Java. Figure 9.1 arranges the com-

ponents of Mtg in a top application layer, and a bottom support layer. The support layer

also contains in dashed boxes the third party software required to run the component

immediately on top.

MtgClt MtgSvr

MtgLib

-� ServerClient

Web browser Mathematica

MtgMath- -��

Figure 9.1: Components MtgSvr and MtgLib are written in C++. MtgClt is written in

Java and runs in a Web-browser environment. MtgMath is part C++, part Mathematica

script

The main components of Mtg are:

MtgLib The core C++ library. MtgLib contains the majority of the code written for

this thesis, or about 81500 lines of code. MtgLib is platform-independent.

MtgSvr A background server process. MtgSvr receives and answers requests via TCP.

The text protocol used by MtgSvr serves mainly to transmit descriptions of object

instances of classes in MtgLib. MtgSvr is a tiny wrapper around MtgLib. Under

Unix, MtgSvr is a deamon; on Windows NT, MtgSvr is implemented as a service.

See Bu� (1999b).

146

MtgClt A Java front-end that knows how to communicate with MtgSvr. MtgClt can

act both as stand-alone application and as applet run by a Web browser. It is

powerful enough to let the user create pricing problems with barrier and American

options, under worst-case and volatility shock scenarios. It is, however, restricted

to the lattice approach for Black-Scholes. MtgClt consists of approximately 11500

lines of Java code (about half of which is general-purpose).

MtgMath A front-end that uses the symbolic and plotting capabilities of the software

system for technical computation, Mathematica. MtgMath was mainly used to do

the experiments and prepare the graphs for this thesis.

There are other components of Mtg: MtgCal by Bu� (1999c) is a model-independent

online calibrator for �xed income instruments, based on Monte Carlo simulation and

Entropy minimization. MtgGrab is a background process that collects current prices for

US treasury paper on the Internet and calibrates a Vasicek short rate model. Daily results

are published in Bu� (1999d).

The philosophy of MtgGrab and MtgCal is briey sketched in 10.2, to make the

reader familiar with our current work and give an idea of future research directions. Since

the thesis focuses on the complexity arising from exotic option portfolio and volatility

scenarios, however, the architecture of MtgLib itself is at the center of our attention.

Before we proceed, some informal remarks about lingo concerning lattice-based eval-

uation. Rollback is the term used to describe the outer loop that iterates over the time

slices tN ; tN�1; : : : ; t0 in the �nite di�erence scheme. The inner loop processing that oc-

curs for each time slice, i.e. the propagation of the solution at time slice ti+1 to the earlier

time slice ti, is called (rollback) round. Instead of time slice we sometimes say hyperplane

to emphasize the data aspect. Under a one-factor model, the hyperplane is actually a

two-dimensional plane with rows indexed sD; : : : ; s0; : : : ; sU (see Sect. 5.1), and columns

for the total value and each gradient element. The number of columns used is called the

width of the hyperplane. The current round, time slice, hyperplane, or node refers to the

current iteration of the rollback loop (forgive the cyclic de�nition, it should be clear). We

use the terms Monte Carlo and simulation interchangingly, and sometimes together.

147

9.1 The Class Hierarchy|External

The classes in MtgLib which correspond directly to input parameters and have some

intuitive \meaning" to the user are called external. Instances of these classes may be

de�ned in the scripting language in which MtgSvr communicates. The following categories

of external classes exist:

Instruments Maturity, payo� policy, knock-out policy and early-exercise policy are the

dominant orthogonal features of instruments. American/European options with or

without knock-out boundaries and with linear of digital payo� are standardized in

MtgLib (and in MtgClt, for that matter). A compact language allows to specify

other types of instruments.

Portfolios Portfolios are collections of instruments and generalize some of their proper-

ties (the longest maturity, for instance).

Models Models consist of speci�cations of factors and model coeÆcients, possibly un-

certain. With the exception of Sect. 10.2, a one-factor Black-Scholes model is used

throughout this thesis.

Model coeÆcients Model coeÆcients may have their own classes to allow term struc-

ture. At this time, piecewise constant volatility and drift coeÆcients are supported.

The volatility coeÆcient may be uncertain.

Scenarios Models and their (uncertain) coeÆcients are interpreted according to a pre-

scribed scenario. We have discussed worst-case volatility and volatility scenarios.

Their needs to be some consistency between the model and the scenario: if the

model incorporates uncertain model coeÆcients, the scenario must be able to select

concrete adaptions. Apart from that, scenarios are expressed without reference to

the model.

Numerical methods Possible numerical methods are closed-form solutions (not consid-

ered here), explicit or mixed implicit/explicit �nite di�erence schemes, or simulation

methods (Monte Carlo). The requirements diverge: while �nite di�erence schemes

are based on a collection of lattice instances, Monte Carlo methods require path

instances which are treated di�erently. In MtgLib, lattices and path spaces are

148

1 claim a {

2 type american_put, maturity 30, strike 100 }

3 claim b {

4 type european_put, maturity 25, strike 100 }

5 claim c {

6 type european_call, maturity 20, strike 100, up-and-out 110 }

7 claim d {

8 type european_put, maturity 15, strike 100, down-and-out 90 }

9

10 portfolio p { a long 200, b short 10, c long 2, d short 1 }

11

12 factor s {}

13 vol v { implied 30 10%..20% }

14 drift r { implied 30 2.5% }

15 model m { type back_scholes, vol v, discount r, s 100 }

16 scenario s { type worst_case, seller }

17

18 lattice l { model m, portfolio p, tree 3.5, time_step 0.5 }

19

20 evaluate { model m, lattice l, scenario s, portfolio p }

Figure 9.2: An example script understood by MtgSvr. Scripts like this can be transmitted

to MtgSvr manually via telnet, or indirectly through the GUI of MtgClt

indeed seperate objects, with a third entity hierarchy of compute engines providing

uni�ed access.

Evaluaters MtgSvr collects objects in a repository without initiating concrete pricing

operations itself. This is done by specifying an evaluator object which lives only

while the particular portfolio/model/scenario combination is evaluated. Evaluators

format the result and send it back through the TCP or MathLink pipe.

Figure 9.2 shows an example script that, when submitted to the MtgSvr deamon via

TCP, initiates the computation of the worst-case price of a portfolio of three puts and

one call, under a volatility scenarion 0:1 � � � 0:2. The script describes instances of all

the classes listed above.

149

The following sections discuss each category in more detail. Although code fragments

are included, this overview is not a tutorial on how to use MtgLib. Instead, design ideas

are emphasized.

9.1.1 Instruments

The class hierarchy into which instruments are organized is shown in Fig. 9.3. The parent

class tClaim is abstract and needs to be instantiated in subclasses.

Class name Purpose

tClaim Parent class (abstract)

tStdClaim Standard calls and puts

tCustomClaim Customizable in a mini-language

tCashflow Supporting class (abstract)

Figure 9.3: The hierarchy of instrument classes. Indentation indicates inheritance. Stan-

dard instruments are calls and puts, American or European, with linear or digital payo�,

with or without barriers

tClaim provides a uni�ed interface to relevant instrument properties. Its de�nition is

shown in Fig. 9.4. The scalar properties listed in the private section are initialized from

script declarations common for all instrument types. The virtual functions in the public

section must be overridden in subclasses to create the unique outlook of the particular

instrument type. The middle section contains two functions that are used during the

construction of the �nite di�erence lattice: getEvents() must deliver the location of

all relevant events (maturity, cashow, barrier, early exercise or otherwise) on the time

axis. The lattice is then guaranteed to match these events. getBarriers() may (but is

not forced to) return the location in space of eventual knock-out barriers. Designing the

lattice to match those increases numerical accuracy, but is not absolutely mandatory.

The semantic of the member variables and functions is summarized in the following

paragraphs.

m nMaturity indicates the number of days to maturity. No real calendar dates are sup-

ported yet by MtgLib for lattice-based evaluation.

150

1 class tClaim : public tObject {

2

3 int m_nMaturity;

4

5 double m_gMultiplier;

6

7 bool m_bHasUpBarrier;

8 double m_gUpBarrier;

9

10 bool m_bHasDownBarrier;

11 double m_gDownBarrier;

12

13 bool m_bMonitor;

14

15 tCashflow* m_Cashflow[...];

16

17 protected:

18

19 virtual void getEvents(...) const;

20 virtual void getBarriers(...) const;

21

22 public:

23

24 virtual double payoff(tEngine& Engine);

25 virtual double knockoutPayoff(tEngine& Engine);

26 virtual double exercisePayoff(tEngine& Engine);

27

28 virtual bool upBarrier(tEngine& Engine, double& gBarrier);

29 virtual bool downBarrier(tEngine& Engine, double& gBarrier);

30

31 virtual tExPolicy monitor(tEngine& Engine, double gUnitValue);

32 };

Figure 9.4: A crude sketch of the class de�nition of tClaim. Possible values of the

enumeration type tExPolicy are DontExercise, ForceExercise and MayExercise

151

m gMultiplier represents the position in the instrument and corresponds to �.

m bMonitor is a boolean ag that indicates whether the virtual member function moni-

tor() should be used or not. This ag is set for American options.

m Cashflow is a list of objects derived from the abstract class tCashflow, whose de�nition

is given in Fig. 9.5. Each cashow object implements additional, possibly space-

dependent cashow on a �xed date.

payoff() computes the payo� at maturity. The tEngine object whose reference is passed

to payoff() and all other functions in tClaim provides information about the

current state. For lattice instances, the Engine contains the current node instance

(j; i;L) on which payoff() must base its calculation. The values of sj and ti can be

queried with Engine.day() and Engine.factor(), respectively. (Here we assume

a one-factor model. Multi-factor models are also supported.) Engines are discussed

below, in Sect. 9.2.1.

knockoutPayoff() computes the premium at knock-out. Unless overridden, this func-

tion always returns 0.

exercisePayoff() computes the payo� received at early exercise. By default, this func-

tion calls and returns the result of payoff().

upBarrier() returns true if there is an up-and-out barrier for the current time slice,

as determined by Engine. If also returns the barrier itself. Unless overridden,

upBarrier() is de�ned as

1 bool tClaim::upBarrier(tEngine& Engine, double& gBarrier) {

2 if(m_bHasBarrier) {

3 gBarrier = m_gUpBarrier;

4 return true;

5 }

6 return false;

7 }

downBarrier() works in an analoguous way for down-and-out barriers.

monitor() returns a safe estimate (!) of the local early-exercise policy. Possible return

values are

152

� DontExercise if the instrument must not be exercised under the current state.

� ForceExercise if the instruments must be exercised at once.

� MayExercise if the instrument may or may not be exercised. Any further

decision depends on the entire outlook and cannot be determined by the in-

strument alone.

Note the analogy with the concepts of continuation, exercise and corridor of un-

certainty developed in Chapter 7. It is not, however, the task of monitor() to

implement any of the speed-up techniques of Sect. 7.2. This is done by the com-

pute engine in cooperation with the scenario object (see Sect. 9.1.5). The proper

implementation for standard American options is thus simply

1 tExPolicy monitor(tEngine& Engine, double gUnitValue) {

2 return MayExercise;

3 }

monitor() can also be used to implement irregular barriers, bypassing the upBar-

rier() and downBarrier() member functions. In this case, continuation and

knock-out regions are deterministic. They are implicitly located through the Dont-

Exercise and ForceExercise return values.

The de�nition of the supporting class tCashflow is given in Fig. 9.5. The member

array m Cashflow is examined during rollback just like the functions upBarrier() and

downBarrier() are called for each time slice. The simplest instantiation of tCashflow

would override the generate() member function with

1 double generate(tEngine& Engine) {

2 return c;

3 }

where c is some �xed coupon payment.

tStdClaim instantiates tClaim and supports instruments with the following orthog-

onal features:

� Call or put option?

� Linear or digital payo�?

153

1 class tCashflow {

2

3 int m_nDay;

4

5 protected:

6

7 virtual double generate(tEngine& Engine);

8 };

Figure 9.5: The de�nition of abstract class tCashflow. Cashows are generated on day

boundaries

� American or European?

� Up-and-out and/or down-and-out barrier?

Strike and maturity are the remaining properties. Its implementation is straightforward.

tCustomClaim also instantiates tClaim, but does so in a customizable manner by parsing

exible script expressions for

� The payo� at maturity,

� the payo� at knock-out (if relevant),

� the payo� at early exercise (if relevant),

� the location of the knock-out barrier (time-dependent),

� a policy for determining early exercise,

� optional cashows at �xed dates.

Figure 9.6 shows how these expressions are embedded into the parent class tClaim. The

classes tNumericalExpr and tExPolicyExpression are not shown here; we merely note

that both classes provide a member function apply() which is used to evaluate the

expression. payoff(), for instance, is de�ned as follows:

1 double tCustomClaim::payoff(tEngine& Engine) {

2 if(m_pPayoff != 0)

154

3 return m_pPayoff->apply(Engine);

4 return 0;

5 }

Expressions have access to the state information contained in Engine, through key-

words such as time. The following script fragment, for instance, de�nes an up-and-out

barrier call with strike 110 and barrier 120, where the barrier is only active for the �rst

50 days after settlement.

1 claim x {

2 type custom, maturity 100,

3 payoff { max(s - 110, 0 },

4 up_and_out { if time < 50 then 125 endif }

5 }

9.1.2 Portfolios

Portfolios are collections of instruments. As such, they provide a generalized interface

to some of the properties of instruments. The class tPortfolio is �nal; there are no

subclasses.

A de�nition is given in Fig. 9.7. The meaning of the individual class members is as

follows:

m Claim References to all claims are collected here.

m Factor In a multi-factor setting, di�erent instruments may refer to di�erent factors,

or to the same factors in a di�erent order. To establish a unique order of factors,

the factors referenced in any of the instruments are collected in the array m Factor.

maturity() The longest maturity of any of the instruments in the portfolio.

claim() To access individual instruments, this function must be used. The argument

refers to the position of the instrument in m Claim, which is sorted by maturity.

getEvents() This function in turn calls tClaim::getEvents() for each instrument and

amalgamates the result, which is used in another place to calculate the discretization

of the time axis for the lattice.

155

1 class tCustomClaim : public tClaim {

2

3 class tCustomCashflow : public tCashflow {

4 public:

5 tNumericalExpr* m_pExpr;

6 double generate(tEngine& Engine);

7 };

8

9 tNumericalExpr *m_pPayoff;

10 tNumericalExpr *m_pKnockoutPayoff;

11 tNumericalExpr *m_pExercisePayoff;

12

13 tNumericalExpr *m_pUpBarrier;

14 tNumericalExpr *m_pDownBarrier;

15

16 tExPolicyExpr *m_pMonitor;

17

18 double payoff(tEngine& Engine);

19 double knockoutPayoff(tEngine& Engine);

20 double exercisePayoff(tEngine& Engine);

21

22 bool upBarrier(tEngine& Engine, double& gBarrier);

23 bool downBarrier(tEngine& Engine, double& gBarrier);

24

25 tExPolicy monitor(tEngine& Engine, double gUnitValue);

26 };

Figure 9.6: The de�nition of tCustomClaim, an instantiation of tClaim. The correspond-

ing extension of tCashflow is de�ned locally

156

1 class tPortfolio {

2

3 tClaim* m_Claim[...];

4 tFactor* m_Factor[...];

5

6 public:

7

8 int maturity() const;

9 tClaim& claim(int nPos) const;

10

11 void getEvents(...) const;

12

13 void getBarriers(const tFactor* pFactor,

14 double Barrier[...]) const;

15

16 tRetCode matchFactors(const tModel& Model) const;

17 };

Figure 9.7: A very condensed de�nition of tPortfolio

getBarriers() Calls tClaim::getBarriers for each instrument and combines the re-

sult, which is used by the algorithm in Fig. 5.4 to place the spatial levels of the

lattice.

matchFactors() The factors in m Factor are collected without knowledge of the particu-

lar model under which the portfolio is to be evaluated. If the elements of m Factor

are the factors S1; : : : ; Sn, and the model makes use of factors S01; : : : ; S
0
m, then

n = m must be asserted and the correct mapping found. This task is done by

matchFactors().

The functionality of portfolio objects is mostly used in the preparatory stage of evalua-

tion. During actual rollback or simulation, instruments are directly accessed through the

claim() member function.

9.1.3 Models

Just like instruments, models are supported through an abstract parent class, tModel, and

child classes which provide the model-speci�c body. Figure 9.8 shows the dependencies.

157

The child class tBSModel is only used for lattice-based evaluation under the Black-Scholes

model. The child classes tHJMGaussianModel and tVasicekModel (two levels removed

from the parent class) support only Monte Carlo methods for �xed-income instruments.

They are mentioned here only for the sake of completeness.

Class name Purpose

tModel Parent class (abstract)

tBSModel One-factor Black-Scholes model

(tHJMGaussianModel) For �xed-income

(tShortRateModel) For �xed-income

(tVasicekModel) For �xed-income

Figure 9.8: The model hierarchy. Fixed-income models are not discussed here and there-

fore parenthesized. They are, however, implemented for the calibrator whose architecture

is briey surveyed in Sect. 10.2

The de�nition of the class tModel is shown in Fig. 9.9. The semantics of the member

components of tModel are as follows:

m Factor The number of factors in the model is not predetermined. Factors are registered

at creation by the child class. However, the number of factors must be known at

the level of the parent class tModel (functions to query the number of factors and

other trivial information are not included in the �gure). For this reason, references

to factors are stored in m Factor. (Initial values of factors, however, are stored in

the child class.)

m pCalendar The calendar object is optional and at this time only supplies the scaling

factor for the conversion between day and year-based quantities: the time-unit used

in lattice calculations is one day, while model coeÆcients are usually quoted in their

annualized form. If no calendar object is speci�ed, a year of 365 days is assumed.

Before we proceed to describe public member functions, a remark on compute engines.

The knowledge about the factor dynamics is encapsulated in the model. In particular,

information about PDE's (for lattice-based methods) and SDE's (for simulation methods)

158

1 class tModel {

2

3 tFactor* m_Factor[...];

4 tCalendar* m_pCalendar;

5

6 public:

7

8 // Functions for lattice-base methods:
9

10 virtual tRetCode createEngine(const tScenario* pScenario,

11 tFDEngine*& pEngine, tAccuracy m_nAccuracy);

12

13 virtual tRetCode createSpaceAxis(tFDMethod nMethod,

14 double gMaxDt, tSpaceAxis* Space[...],

15 const tPortfolio* pPf = 0);

16

17 // Functions for simulation methods:
18

19 virtual tRetCode createEngine(tMCEngine*& pEngine);

20

21 virtual tRetCode createEvolution(const tPathSpace& PathSpace,

22 tMCEngine::tEvolutionStub*& pEvolution) const;

23 };

Figure 9.9: The fundamental members of the class tModel. A model that supports lattice-

based methods must implement the �rst two virtual functions (FD = finite di�erences). A

model that supports simulation methods must implement the last two virtual functions

(MC = Monte Carlo)

159

can only be found in the model speci�cation. The model provides this information by

creating model-speci�c compute engines, which are based on the parent class tEngine

and maintain and make accessible all the necessary runtime information during rollback

or simulation. In some sense, the run() member function of tFDEngine or tMCEngine

corresponds to the main() function in C++ programs, and its member variables contain

the current global state of the computation.

Engines are discussed in more detail below, in Sect. 9.2.1. At this point we merely

observe that di�erent types of engines are created for lattice-based and simulation-based

computation: tFDEngine and tMCEngine are the respective child classes.

createEngine(), �rst version Creates a compute engine for lattice-based evaluation.

To create the proper engine, the model must know the scenario. Volatility shock

scenarios, for instance, require a more complicated regimen for lattice instance

creation than worst-case volatility scenarios (see Chapter 8). It is the engine which

creates and maintains lattice instances.

The model must also know the selected speed-up technique for American options.

This parameter, nAccuracy, is forwarded to the created engine. The name nAccu-

racy reects the generality of the parameter; the engine chooses the speed-up tech-

nique that matches the parameter. Possible values are Exact (corresponding to the

maintainance of corridors of uncertainty) and Low (corresponding to the collapsing

of corridors of uncertainty).

createSpaceAxis() Creates the spatial discretization for lattice-based models, based on

the algorithms in Figs. 5.4 and 5.5, and returns it in Space. Space is an array

with one entry per factor. The parameter nMethod can take the values Explicit

and Implicit and controls to what extent stability is a concern. gMaxDt corre-

sponds to the input parameter dtmax in Fig. 5.4. The optional parameter pPf

references a portfolio object. If present, the portfolio barriers are retrieved with

pPf->getBarriers() and passed to the algorithm in Fig. 5.4.

createEngine(), second version This version creates a compute engine for simulation

methods. At this point, simulation methods are not scenario based and therefore

no additional arguments are required.

160

createEvolution() Simulation methods work by shooting one random path at a time

in the so called \path space." The random path is then converted into the corre-

sponding factor paths by calling createEvolution(). Evolutions are organized in

their own separate class hierarchies, not shown here.

A historical note concerning the class tCalendar: lattice-base evaluation was imple-

mented before actual calendar dates could be processed. In a future version, tCalendar

will yield to features in MtgLib that already support true dates for Monte Carlo methods.

1 class tBSModel : public tModel {

2

3 tDrift* m_pDiscount;

4 tDrift* m_pCarry;

5 tDrift* m_pMu;

6

7 tVol* m_pVol;

8

9 double m_gRoot;

10

11 public:

12

13 tRetCode createSpaceAxis(tFDMethod nMethod, double gMaxDt,

14 tSpaceAxis Space[...], const tPortfolio* pPf = 0);

15

16 tRetCode createEngine(const tScenario* pScenario,

17 tFDEngine*& pEngine, tAccuracy nAccuracy);

18 };

Figure 9.10: The class tBSModel, the model body for one-factor Black-Scholes. Only

lattice-based evaluation is supported

One instantiation of tModel is shown in Fig. 9.10. tBSModel only supports lattice-

base evaluation for one-factor Black-Scholes with time-varying coeÆcients. The member

components have the following interpretation:

m pDiscount References an interest-rate term structure for the parameter r of (4.4.8).

The class tDrift is explained in Sect. 9.1.4.

161

m pCarry References a term structure for the dividend rate or foreign interest rate, de-

pending on whether the underlying asset is a stock or an exchange rate.

m pMu The no-arbitrage drift parameter. References a term structure for the di�erence

between m pDiscount and m pCarry.

m pVol References a volatility term structure that may exhibit uncertainty. The object

*m pVol contains upper and lower bounds for the local volatility for each time slice.

m gRoot The initial value S0 of the underlying asset. The lattice is constructed such that

s0 = S0.

createSpaceAxis() Finds the stable spatial discretization that matches the barriers of

the (optional) portfolio parameter and returns exactly one object instance of the

class tGeoSpaceAxis. The pre�x \Geo" means geometric Brownian motion. The

member function prepare() of this class, called in createSpaceAxis(), uses the

algorithm in Fig. 5.4. Figure 9.11 contains a skeleton of createSpaceAxis().

createEngine() Creates the lattice-based compute engine appropriate for the scenario

parameter. Two types of compute engines for one-factor Black-Scholes are currently

implemented: tGeoEngine for worst-case volatility scenarios (class tWorstCase)

and tShockEngine for volatility shock scenarios (class tShockScenario). Run-

time type information (RTTI) is used to distinguish these cases. The function is

outlined in Fig. 9.12.

(Remark: the way createEngine() is coded leads to an extensibility problem.

Prolongued sequences of conditional statements guarded by dynamic down-casts

should be avoided. There are a handful of spots in MtgLib where this problem

occurs.)

9.1.4 Model coeÆcients

Constant model coeÆcients such as the initial value of the underlying asset are handled

by the model class itself: tBSModel::m gRoot is an example. Other model coeÆcients

have more structure and deserve their own classes. As coeÆcients depend on the actual

162

1 tRetCode tBSModel::createSpaceAxis(tFDMethod nMethod,

2 double gMaxDt, tSpaceAxis Space[...], const tPortfolio* pPf)

3

4 {

5 double gMinVol, gMaxVol, gMinMu, gMaxMu;

6

7 m_pVol->getFwdRange(gMinVol, gMaxVol);

8 m_pMu->getFwdRange(gMinMu, gMaxMu);

9

10 tGeoSpaceAxis* p = new tGeoSpaceAxis;

11

12 if(pPf != 0) {

13 double Barrier[...];

14

15 pPf->getBarriers(m_Factor[0], Barrier);

16 p->prepare(nMethod, m_gRoot, gMinVol, gMaxVol,

17 gMinMu, gMaxMu, Barrier);

18 }

19 else {

20 p->prepare(nMethod, m_gRoot, gMinVol, gMaxVol,

21 gMinMu, gMaxMu);

22 }

23

24 Space.append(p);

25 return OK;

26 }

Figure 9.11: A sketch of the member function tBSModel::createSpace(). The class

tGeoSpaceAxis is derived from tSpaceAxis and supports geometric Brownian motion

models. It calls tGeoSpaceAxis::prepare(), which implements the algorithm in Fig. 5.4

163

1 tRetCode tBSModel::createEngine(const tScenario* pScenario,

2 tFDEngine*& pEngine, tAccuracy nAccuracy)

3

4 {

5 if(dynamic_cast<const tShockScenario*>(pScenario) != 0) {

6 pEngine = new tShockEngine;

7 }

8 else

9 if(dynamic_cast<const tWorstCase*>(pScenario) != 0) {

10 pEngine = new tGeoEngine;

11 }

12 else {

13 return NOT_AVAILABLE;

14 }

15

16 pEngine->setAccuracy(nAccuracy);

17 return OK;

18 }

Figure 9.12: The member function tBSModel::createEngine(). tShockEngine and

tGeoEngine are both derived from tFDEngine. Both classes support one-factor geometric

Brownian motion models (the \Geo" pre�x)

model, corresponding classes may be quite diverse, and form a collection rather than a

strictly hierarchical class tree.

Figure 9.13 shows the inheritance relations for the model coeÆcient classes currently

supported in MtgLib. The tTermStruct hierarchy was developed �rst and does not

support real calendar dates; real calendar dates are only handled on the level of tDrift

and tVol and below. The classes tHJMTermStruct and tShortRateTermStruct, on the

other hand, were developed with support for real calendar dates already in mind. They

are used as model coeÆcient classes for interest-rate models and not discussed further in

this thesis.

164

Class name Purpose

tTermStruct Parent term structure class (abstract)

tLinTermStruct Term structure for linear coeÆcient

tSqTermStruct Term structure for quadratic coeÆient

tDrift General term structure class for drift (abstract)

tStepDrift Piece-wise constant drift

tVol General term structure class for volatility (abstract)

tStepVol Piece-wise constant volatility

(tHJMTermStruct) For �xed-income

(tShortRateTermStruct) For �xed-income

Figure 9.13: Classes for model coeÆcients. These classes are model-dependent; they do

not share a common base class

The Base Class tTermStruct

tTermStruct is the core class for piece-wise constant time-varying model coeÆcients. If

� is a model coeÆcient for an n-factor model with factors X1; : : : ;Xn, then

�(X1(t); : : : ;Xn(t); t) = �(t) = ck (9.9.1)

with k such that t 2 [tk�1; tk] for some times slices tk�1 and tk.

The basic functionality of tTermStruct is to compute the values

�(t) (9.9.2)

and

1

b� a

Z b

a
�(t) dt (9.9.3)

fast. The granularity of t, a and b is assumed to be one day.

tTermStruct can be used for both linear and quadratic parameters, such as drift and

volatility. This generality is achieved by introducing a scaling function � and replacing

(9.9.3) with

��1
�

1

b� a

Z b

a
�(�(t)) dt

�
(9.9.4)

165

For linear term structures, � is the identity. For quadratic term structures such as

volatility, �(x) = x2.

Assume jumps occur at jump points u0; u1; : : : ; uM , where each u matches some time

sline ti (most likelyM � N). To compute (9.9.2) and (9.9.4) fast, the following quantities

are maintained for each jump point u:

m gFwd = �u

m gFwd2 = �(�u)

m gImp =

Z u

0
�(�(t)) dt

(9.9.5)

(9.9.4) can then be computed for all intermediate time slices t with O(1) overhead, by

using m gImp of the previous sample point u as a base and adding m gFwd2, multiplied by

the number of days between u and t. Subsequent normalization is straightforward.

The remaining problem is to locate the previous jump point u for a given intermediate

time slice t, if t is not also a jump point. A shallow forest of bounded depth does

the trick for tTermStruct. At the highest level of the forest, each node represents 100

consecutive days. Only if such a period contains a jump point is re�nement necessary: the

corresponding node branches into 10 child nodes, each covering a period of 10 days, and

so on. The memory requirements for this data structure are still linear in the number

of days covered by the term structure, but nevertheless reduced 100-fold compared to

day-by-day storage if the number of jumps is small.

Figure 9.14 summarizes the important components of class tTermStruct. Their in-

terpretation is as follows:

m Spec The nested type tSpec describes one jump point. The member variable m nUnit

locates the jump point in time. m gFwd, m gFwd2 and m gImp are de�ned in (9.9.5).

tMap is a template for the eÆcient implementation of the shallow forest data struc-

ture mentioned above. m Spec is built as jump points are added with addForward()

and addImplied().

scaleUp() The scaling function �.

scaleDown() The inverse of the scaling function �.

addForward() and addImplied() The term structure object is constructed by calling

addForward() or addImplied() for each jump point. When all jump points have

166

1 class tTermStruct {

2

3 struct tSpec {

4 int m_nUnit;

5 double m_gFwd;

6 double m_gFwd2;

7 double m_gImp2;

8 };

9

10 tMap<tSpec> m_Spec;

11

12 protected:

13

14 virtual double scaleUp(double gFwd) const;

15 virtual double scaleDown(double gFwd) const;

16

17 public:

18

19 tRetCode addForward(int nMaturity, double gFwd);

20 tRetCode addImplied(int nMaturity, double gImp);

21

22 void getFwdRange(double& gMin, double& gMax) const;

23

24 double forward(int nUnit) const;

25 double forward(int nFromUnit, int nToUnit) const;

26

27 int constantUntil() const;

28 int certainUntil(const tTermStruct& TS) const;

29 };

Figure 9.14: The skeleton of class tTermStruct. Although the basic time unit is one

day in most cases, the code itself is independent of the concrete time unit. m nUnit,

nUnit, nFromUnit and nToUnit are therefore used instead of m nDay, nDay, nFromDay

and nToDay

167

been speci�ed, the constant term structure rate between each pair of jump points

is determined as follows:

� If the jump point u = tk has been added with addForward(), then the rate

between the previous jump point and u is simply set to the actual value of the

gFwd parameter.

� If the jump point u = tk has been added with addImplied(), then the rate

between the previous jump point and u is set to the rate which makes the

integrated rate equal to the actual value of gImp, i.e.

��1
�
1

u

Z u

0
�(�(t)) dt

�
= gImp

Note that this calculation can fail if � is not the identity!

The parameters nUnit, nFromUnit and nToUnit indicate the endpoint of the respec-

tive time unit, where time units are counted from zero. This makes the extension

to fractional parameters consistent.

getFwdRange() Once all jump points have been added and the term structure has been

�nalized, the oscillation of the term structure can be determined by calling get-

FwdRange(). This information is important for the construction of a stable lattice

under the explicit �nite di�erence scheme.

forward() The one- and two-parameter versions correspond to (9.9.2) and (9.9.4), re-

spectively.

constantUntil() It may be useful to know the length of the initial constant segment of

the term structure. constantUntil() returns this information.

certainUntil() It is also useful to know wether a certain con�guration of model coef-

�cients exhibits uncertainty at all. certainUntil() tests this by comparing the

current term structure with the argument TS, and returning the length of the initial

segment on which they agree.

The term structure extrapolates beyond the �rst and last jump points by propagating

the rates of the �rst and last constant segment to �1 and 1.

168

Classes Derived from tTermStruct

The child class tLinTermStruct is a straightforward instantiation of tTermStruct, with �

being the identity. The child class tSqTermStruct is mildly more complicated; Figure 9.15

shows its de�nition, together with the implementation of the scaling function and its

inverse.

1 class tSqTermStruct : public tTermStruct {

2

3 double scaleUp(double gFwd) const {

4 return gFwd * gFwd;

5 }

6

7 double scaleDown(double gFwd) const {

8 return sqrt(gFwd);

9 }

10 };

Figure 9.15: The child class tSqTermStruct. Shown are both declaration and de�nition

of the scaling function and its inverse

Classes with tTermStruct Components

The classes tDrift and tVol are more interesting. They are independent of any actual

implementation of the drift or volatility term structure and o�er a standard query inter-

face for forward rates or volatilities. Piece-wise constant realizations of drift or volatility

term structure are obtained by combining the tDrift or tVol shell with tTermStruct as

\meat." The formula is

tDrift+ tLinTermStruct = tStepDrift

and

tVol+ 2� tSqTermStruct= tStepVol

tLinTermStruct and tSqTermStruct contribute as member components. The class

tStepDrift contains a tLinTermStruct object and forwars queries to it; tStepVol con-

tains two tSqTermStruct objects to allow for uncertainty, and forwards queries to them.

169

Composition makes more sense than multiple inheritance in this case, because the number

of term structure objects is variable.

1 class tDrift {

2

3 public:

4

5 tDrift();

6

7 virtual void getFwdRange(double& gMin, double& gMax) const;

8

9 virtual double forward(int nUnit) const;

10 virtual double forward(int nFromUnit, int nToUnit) const;

11

12 virtual double implied(int nMaturity) const;

13

14 virtual int constantUntil() const;

15 };

Figure 9.16: Class tDrift is an abstract interface for drift coeÆcients. Piece-wise con-

stant drift term-structures are one possible instantiation of tDrift

Figure 9.16 shows the abstract tDrift interface. All virtual functions are pure. A

call to implied() is equivalent to a call to forward() with the �rst parameter set to

zero.

Figure 9.17 shows the tVol interface. Again, all virtual functions are pure. However,

any concrete instantiation of tVol is expected to initialize the following member variables

correctly:

m nConstantUntil The length of the initial period during which the volatility is constant

(there is no uncertainty during that period!).

m nCertainUntil The length of the initial period during which the volatility is certain.

Necessarily, m nConstantUntil� m nCertainUntil.

Both m nConstantUntil and m nCertainUntil can be retrieved from the object with

trivial functions not shown in the �gure.

170

1 class tVol {

2

3 int m_nConstantUntil;

4 int m_nCertainUntil;

5

6 public:

7

8 virtual void getFwdRange(double& gMin, double& gMax) const;

9

10 // Return a single value:
11 virtual double forward(int nUnit) const;

12 virtual double forward(int nFromUnit, int nToUnit) const;

13

14 virtual double implied(int nMaturity) const;

15

16 // Return a range of value:
17 virtual void forward(int nUnit, double& gMin,

18 double& gMax) const;

19 virtual void forward(int nFromUnit, int nToUnit, double& gMin,

20 double& gMax) const;

21

22 virtual void implied(int nMaturity, double& gMin,

23 double& gMax) const;

24 };

Figure 9.17: Class tVol is an abstract interface for volatility coeÆcients. Piece-wise

constant volatility term-structures are one possible instantiation of tVol

171

tVol has two sets of volatility retrieval functions: the �rst set returns a single value,

the second a range of values in reference parameters gMin and gMax. If there is no uncer-

tainty, both versions are equivalent. If there is uncertainty, however, and the volatility

bounds di�er, then only the second set of retrieval functions is required to return the orig-

inal volatility bounds de�ned during construction of the object faithfully. The �rst set of

retrieval functions may return any value, the arithmetic average between the minimum

and maximum being one example and some additional prior volatility another.

It was mentioned earlier that tDrift and tVol are capable of handling real calendar

dates. These features are ommitted in Figs. 9.16 and 9.17.

Piece-wise linear drift and volatility coeÆcients are �nally realized in the classes

tStepDrift and tStepVol (\Step" for step function). Figure 9.18 shows the de�nition

and implementation of tStepDrift, which basically acts as a proxy for its tLinTerm-

Struct member object. Figure 9.19 shows the de�nition of tStepVol, whose implemen-

tation is only slightly less trivial. The two-parameter forward() function, for instance,

is implemented as

1 void tStepVol::forward(int nFromUnit, int nToUnit, double& gMin,

2 double& gMax) const

3

4 {

5 gMin = m_MinTermStruct.forward(nFromUnit, nToUnit);

6 gMax = m_MaxTermStruct.forward(nFromUnit, nToUnit);

7 }

The objects v and r in the script shown in Fig. 9.2 are automatically mplemented as

tStepVol and tStepDrift instances, respectively. tStepVol and tStepDrift instances

are also used to model the volatility, interest rate, and dividend rate or foreign exchange

rate in class tBSModel (see Fig. 9.10).

9.1.5 Scenarios

Scenario objects perform an \advisory" function for lattice-based evaluation. They are

used by compute engines derived from tFDEngine to determine locally how to select

the uncertain model coeÆcients. They also control the assignment of lattice nodes to

continuation and exercise regions, and the corridor of uncertainty. Figure 9.20 shows the

class hierarchy.

172

1 class tStepDrift : public tDrift {

2

3 tLinTermStruct m_TermStruct;

4

5 public:

6

7 void getFwdRange(double& gMin, double& gMax) const {

8 m_TermStruct.getFwdRange(gMin, gMax);

9 }

10

11 double forward(int nUnit) const {

12 return m_TermStruct.forward(nUnit);

13 }

14

15 double forward(int nFromUnit, int nToUnit) const {

16 return m_TermStruct.forward(nFromUnit, nToUnit);

17 }

18

19 double implied(int nMaturity) const {

20 return m_TermStruct.implied(nMaturity);

21 }

22

23 int constantUntil() const {

24 return m_TermStruct.constantUntil();

25 }

26 };

Figure 9.18: Piece-wise linear drift coeÆcients are of type tStepDrift, essentially based

on the functionality of tLinTermStruct

173

1 class tStepVol : public tVol {

2

3 tSqTermStruct m_MinTermStruct;

4 tSqTermStruct m_MaxTermStruct;

5

6 public:

7

8 void getFwdRange(double& gMin, double& gMax) const;

9

10 double forward(int nUnit) const;

11 double forward(int nFromUnit, int nToUnit) const;

12 double implied(int nMaturity) const;

13

14 void forward(int nUnit, double& gMin, double& gMax) const;

15 void forward(int nFromUnit, int nToUnit,

16 double& gMin, double& gMax) const;

17

18 void implied(int nMaturity, double& gMin, double& gMax) const;

19 };

Figure 9.19: Piece-wise linear, possibly uncertain volatility coeÆcients are of type

tStepVol. The implementation of the member functions is almost as trivial is those

of tStepDrift

The Base Class

Figure 9.21 shows how these two tasks are reected in the class de�nition. Before indiviual

components are discussed, however, we need to clarify the usage of tags.

In Defs. 5.1 and 8.3, the notion of (extended) lattice signatures has been introduced

to uniquely identify individual lattice instances in the collection of lattice instances main-

tained for the particular problem. To be able to handle a wide set of scenarios, a con-

crete scenario must provide a way to translate a scenario-dependent lattice signature

(X; �; optseq) into a regularized signature which is easier to process.

De�nition 9.1 (Regularized lattice signature). Let (X; �; optseq) be the pattern of

signatures for lattice instances for a concrete scenario, with optseq denoting an optional

sequence of coeÆcients. Then triples of the form (X; �; 2m), m � 0, are called regularized

174

Class name Purpose

tScenario Parent class (abstract)

tWorstCase Worst-case volatility scenario

tShockScenario Volatility shock scenario

Figure 9.20: Scenario classes. Each class extends the functionality of its parent

lattice signatures for the scenario if there is an unambiguous mapping between the two

patterns. Furthermore, for the root lattice instance from which the �nal result is retrieved,

2m = 0 must hold. 2m is called the signature tag.

Compute engines use this regularized form to manage the storage of lattice instances.

For worst-case volatility scenarios, optseq is empty, and the tag is always zero. For

volatility shock scenarios, optseq = (�; �; Æ). It is straightforward to translate triples

(�; �; Æ) into integer tags 2m. Arranging lattice instances as shown in Fig. 8.3 and counting

them from top to bottom, and from left to right, yields a valid sequence.

Tags are even-numbered. Odd-numbered tags are also used internally, reversing the

evaluation view-point from sell-side to buy-side, or vice versa. Thus, if F̂ (L) is computed

on a lattice instance with regularized lattice signature (X; �; 2m), then �F̂ (L0) is com-
puted on lattice instance L0 with signature (X;��; 2m+1). This reversal is necessary to

compute the boundaries of corridors of uncertainty, namely F̂ (LUn) and �F̂ (LnD). (Recall
that the signatures of LUn and LDn are (Xn; 1) and (Xn;�1), respectively. See Sect.7.2.1.)

With this information, the member elements of tScenario are as follows:

m nPosition The nested type tPosition allows to ip the evaluation view-point glob-

ally. So far in this thesis, worst-case scenarios have always beed regarded from

the seller's point of view, and prices have been maximized to cover the worst-case

liability. To take the buyer's position, on the other hand, means to seek the small-

est price to pay, in order to avoid loosing when the market behaves adversely.

This changes the maximization to a minimization procedure: the \sup�2C" turns

into an \inf�2C" in (4.4.10) and all the similar equations that follow. Simlarly,

the \minA�A(L)maxB�B(L)" �rst introduced in Def. 7.8 and occuring throughout

Chapter 7 changes to \maxA�A(L)minB�B(L)." This is because the interpretation

175

1 class tScenario {

2

3 public:

4

5 enum tPosition {

6 Buyer,

7 Seller

8 };

9

10 private:

11

12 tPosition m_nPosition;

13

14 public:

15

16 virtual bool underControl(double gMultiplier);

17

18 virtual void refineExPolicy(tFDEngine& Engine, int nBaseTag,

19 int nIndex, double gDontExValue, double gExValue,

20 double gMultiplier, tExPolicy& nExPolicy);

21

22 virtual double selectVol(int nTag, double gGamma,

23 double gMin, double gMax);

24

25 virtual bool endureOver(int nTag, double gNewTotal,

26 double gOldTotal);

27

28 virtual bool chooseOver(int nTag, double gNewTotal,

29 double gOldTotal);

30 };

Figure 9.21: The de�nition of the abstract class tScenario. In general, worst-case sce-

narios are asymmetric for the buy- and sell-side. Which particular viewpoint is to be

adopted is indicated by the value of m nPosition

176

of � changes: positive � now indicates a long position, whereas negative � indicates

a short position.

Any child class of tScenario is expected to initialize m nPosition. For consistency

with the earlier text, we assume here and below that m nPosition = Seller.

underControl() If, for a given instrument Xn in the portfolio under consideration,

�n > 0, then Xn is held short and not under the control of the agent. If �n < 0

the instrument is held long; potential early exercise is under control of the agent.

underControl() interpretes its parameter gMultiplier as �n and returns whether

the corresponding position enables the agent to exercise control.

Since the situation is reversed if the global view-point changes from the sell-side to

the buy-side, a separate function is justi�ed.

refineExPolicy() The class tClaim relies on the member function monitor() to pro-

duce an initial assessment of the local early exercise options for an individual instru-

ment (see Sect. 9.1.1). If monitor() returns DontExercise or ForceExercise, the

current lattice-instance node is assigned to the continuation respectively exercise

region of the instrument for good. If monitor() returns MayExercise, as it does

for standard American options, then the tScenario object is asked in turn to try to

make a de�nite statement. Only when the tScenario object returns MayExercise

as well is the current node assigned to the corridor of uncertainty of the instrument.

The safest policy is thus to return MayExercise throughout. However, as the

tScenario object has access to other lattice instances through the Engine argu-

ment, a more advanced strategy such as described in Sects. 7.2.1 and 7.2.2 may be

employed. This must be done in tScenario's child classes by overriding refine-

ExPolicy().

The argument nBaseTag corresponds to the tag 2m of the regularized signature

of the current lattice L. nIndex is the index of the claim in the portfolio, to be

used as argument for tPortfolio::claim(). gDontExValue is the unit value of the

instrument obtained through rollback. gExValue is the unit value of the instrument

returned by tClaim::exercisePayoff() for the current node. gMultiplier is

the number of contracts, and nExPolicy is an in-out parameter, initially set to

MayExercise.

177

selectVol() The local volatility is selected between gMin and gMax. The actual imple-

mentation of the prototype in Fig. 9.21 may base its selection on gGamma, the �nite

di�erence approximation of @2

@S2
f̂ , where f̂(St; t;L) = F̂t(L j St). The regularized

tag of L is nTag. Two restrictions are immediately obvious:

� selectVol() works only for a one-factor model;

� selection schemes that require information beyond gamma cannot be realized.

The uncertain volatility models of Sects. 4.2.1, 4.2.2 and, with the introduction of

a prior volatility parameter, 4.2.3, are all feasible, though.

endureOver() and chooseOver() This pair of functions is substituted for the max and

min operators in the expression \minA�A(L)maxB�B(L)" that occurs throughout

Chapter 7 and in Figs. 7.4 and 7.6. The functions are folded over a sequence of

values; gOldTotal represents the value selected thus far, and gNewTotal represents

the new candidate. If the new value is to be selected over the old value, the function

returns true.

Formula (7.7.95) of Sect 7.2.3 is used as a recipe for folding endureOver() over the

arguments of the max operator and chooseOver() over the arguments of the min

operator. The function names reect the absence respectively presence of control

by the agent.

Derived Classes

tWorstCase is immediately derived from tScenario. Its de�nition is shown in Fig. 9.22.

Figure 9.23 shows a listing of the member function selectVol(), and Fig. 9.24 shows the

implementation of endureOver(). chooseOver() is implemented in an analogue fashion.

Figure 9.25, �nally, contains an outline of the function refineExPolicy(). The

function consists of two branches, the �rst being executed if the pricing problem is linear

or the corridors of uncertainty ought to be collapsed (in which case gDontExValue is the

partial derivative of the worst-case value with respect to �nIndex). The second branch

maintains the corridor of uncertainty by looking up the singleton portfolios (XnIndex; 1)

and (XnIndex;�1). The function getClaim() of class tFDEngine does just that. This

branch is an implementation of the algorithm in Fig. 7.7. Note that in addition to

178

1 class tWorstCase : public tScenario {

2

3 public:

4

5 bool underControl(double gMultiplier);

6

7 void refineExPolicy(tFDEngine& Engine, int nBaseTag,

8 int nIndex, double gDontExValue, double gExValue,

9 double gMultiplier, tExPolicy& nExPolicy);

10

11 double selectVol(int nTag, double gGamma, double gPrior,

12 double gMin, double gMax);

13

14 bool endureOver(int nTag, double gNewTotal, double gOldTotal);

15 bool chooseOver(int nTag, double gNewTotal, double gOldTotal);

16 };

Figure 9.22: tWorstCase instantiates the abstract member functions of tScenario

implementing the algorithm, refineExPolicy() must reverse all selection criteria if the

global view-point is changed to the buy-side. This is done by setting the corrective

constant nTag in line 16.

Only the case where gMultiplier is non-negative is shown in Fig. 9.25. THe other

case is handled symmetrically.

The class tShockScenario is a true extension of tWorstCase. No function of tWorst-

Case is overridden, as volatility-shock scenarios essentially only broaden the candidate

set of volatilities. Figure 9.26 shows the de�nition of tShockScenario.

The interpretation of the member variables of tShockScenario follows Def. 8.2:

m nDuration The duration parameter d � 1.

m nPeriodicity The periodicity parameter p � 1.

m nFrequency The frequency parameter f � 1

These variables are retrieved during rollback by a specialized compute engine of class

tShockEngine. Since engines are passed only base references to objects of class tScenario

179

1 double tWorstCase::selectVol(int nTag, double gGamma,

2 double gMin, double gMax)

3

4 {

5 if(nTag % 2 == 0) {

6 switch(position()) {

7 case Buyer :

8 return (gGamma <= 0) ? gMax : gMin;

9 case Seller :

10 return (gGamma >= 0) ? gMax : gMin;

11 }

12 }

13 switch(position()) {

14 case Buyer :

15 return (gGamma >= 0) ? gMax : gMin;

16 case Seller :

17 return (gGamma <= 0) ? gMax : gMin;

18 }

19 }

Figure 9.23: The body of the function tWorstCase::selectVol(). Depending on tag

and global view-point, the function bases its decision on convexity respectively concavity.

Recall that odd nTag indicates that �F̂ (L0) is being computed, where the signature of

L0 is (X;��; nTag) and there exists a lattice instance L with signature (X; �; nTag� 1).

Since the negative signs are not actually applied, all comparisons need to be inverted

during initialization, a down-cast must be performed by tShockEngine to access these

values. This is done safely with RTTI support.

Remark: the volatility shock scenario introduces additional events which should be

matched by the lattice. For that purpose, tScenario provides an (initially empty) method

getEvGenerator() that is overridden by tShockScenario. This function is not shown

in the �gures.

9.1.6 Numerical methods

MtgLib provides two ways to evaluate portfolios numerically: based on lattices, and with

Monte Carlo simulation. Lattice-based evaluation is better supported at the time of this

180

1 bool tWorstCase::endureOver(int nTag, double gNewTotal,

2 double gOldTotal)

3

4 {

5 if(nTag % 2 == 0) {

6 switch(position()) {

7 case Buyer : // minimize
8 return gNewTotal < gOldTotal;

9 case Seller : // maximize
10 return gNewTotal > gOldTotal;

11 }

12 }

13 switch(position()) {

14 case Buyer : // maximize
15 return gNewTotal > gOldTotal;

16 case Seller : // minimize
17 return gNewTotal < gOldTotal;

18 }

19 }

Figure 9.24: The body of the function tWorstCase::endureOver(). Depending on tag

and global view-point, the function mimicks a max or min operator

writing and the exclusive topic in the earlier parts of this thesis. For this reason, we focus

exclusively on the lattice-based facilities of MtgLib in the following paragraphs.

The classes that support lattice-based numerical evaluation fall into two categories:

those that de�ne the lattice template and manage lattice instances, and those that actu-

ally perform the �nite di�erence rollback. Figure 9.27 shows both categories. The �rst

group is capable of handling multi-factor models; the second group is not.

Some of the classes in Fig. 9.27 might as well be labeled \internal", since they are

not directly visible through the scripting interface. They are listed here because of their

proximity to the hierarchy of lattice-related classes, which is visible through the scripting

interface.

181

1 void tWorstCase::refineExPolicy(tFDEngine& Engine, int nBaseTag,

2 int nIndex, double gDontExValue, double gExValue,

3 double gMultiplier, tExPolicy& nExPolicy)

4

5 {

6 double gValue;

7

8 if(Engine.isLinear() || Engine.accuracy() == Low) {

9 if(gExValue > gDontExValue)

10 nExPolicy = xForceExercise;

11 else

12 nExPolicy = xDontExercise;

13 }

14 else {

15 if(gMultiplier >= 0) {

16 int nTag = (position() == Buyer) ? 0 : 1;

17

18 if(gExValue > gDontExValue) {

19 Engine.getClaim(nIndex,

20 nBaseTag + 1 - nTag, gValue);

21 if(gExValue > gValue)

22 nExPolicy = xForceExercise;

23 }

24 else {

25 Engine.getClaim(nIndex, nBaseTag + nTag, gValue);

26 if(gExValue <= gValue)

27 nExPolicy = xDontExercise;

28 }

29 }

30 else {

31 // the other case is symmetric
32 }

33 }

34 }

Figure 9.25: An outline of the function refineExPolicy() of class tWorstCase. The

constant Low in line 8 corresponds to the strategy to collapse corridors of uncertainty;

the else branch maintains corridors of uncertainty

182

1 class tShockScenario : public tWorstCase {

2

3 int m_nDuration;

4 int m_nPeriodicity;

5 int m_nFrequency;

6 };

Figure 9.26: The class tShockScenario merely adds the parameters of a volatility shock

scenario as de�ned in Def. 8.2

Lattice Templates and Instances

The class tLattice describes the layout of the lattice. Number of factors, time discretiza-

tion, space discretization, shape (tree or box) and space trimming determine the layout.

Figure 9.28 shows how tLattice is de�ned.

The interpretation of the individual member components of tLattice is as follows:

m pModel The lattice template needs to know about the model in order to create the

entries for m Space. It uses the function tModel::createSpaceAxis() for that

purpose.

m bIsBox The lattice can have the shape of a rectangular grid, or that of a tree, with

the root labeled with S0. This ag determines whether the rectangular grid shape

is used.

m bIsTrimmed and m gTrimDev In order to reduce the running time, the lattice may be

trimmed symmetrically at the outer regions. m bIsTrimmed determines whether

this is done. m gTrimDev indicates the number of standard deviations after which

the trimming should occur. The default values are true and 3.5. See Par�as (1995)

and the comment at the beginning of Sect. 5.1 for more details.

m nMethod Can be either Explicit or Implicit and is used, among other things, as

argument in calls to tModel::createSpaceAxis(), where it is used to ensure sta-

bility.

m Bounds Determines the dimensions of the lattice layout when viewed as (n + 2)-di-

mensional hypercube, where n is the number of factors, the (n + 1)-st dimen-

183

Class name Purpose

tLattice Lattice template

tTimeAxis Discretization of time

tSpaceAxis Discretization of space for one factor (abstract)

tGeoSpaceAxis Discretization of space based on geometric

Brownian motion

tLatticeInstance Lattice instance, what else?

tOFSolver One-factor �nite di�erence solver (abstract)

tOFExplicit Explicit �nite di�erence solver

tGeoExplicit Explicit solver for models based on

geometric Brownian motion

tOFImplicit Crank-Nicholson �nite di�erence solver

tGeoImplicit Crank-Nicholson solver for models based on

geometric Brownian motion

tGeoSolver Additional base class for tGeoExplicit and

tGeoImplicit (abstract)

Figure 9.27: The collection of classes that work together to support lattice-based evalua-

tion. The pre�x \OF" stands for one-factor. tGeoExplicit and tGeoImplicit have two

parent classes and are thus a case of multiple inheritance

sion is time and the last dimension is the combined gradient + total value-vector.

m Bounds is basically a sequence of pairs of upper and lower index bounds; the class

tArrayBounds is not shown.

m Space An array with one entry per factor. tSpaceAxis is an abstract class; con-

crete instantiations work with particular models. Currently implemented is only

tGeoSpaceAxis, which complements the model class tBSModel. Note that the di-

mension of each space axis must be consistent with the corresponding information

in m Bounds.

m pTime The discretization of the time axis, which may be non-uniform. The time axis is

only �nalized after all the space axes have been created, for the required cap on the

184

1 class tLattice {

2

3 tModel* m_pModel;

4

5 bool m_bIsBox;

6 bool m_bIsTrimmed;

7 double m_gTrimDev;

8

9 tFDMethod m_nMethod;

10

11 tArrayBounds m_Bounds;

12

13 tSpaceAxis* m_Space[...];

14 tTimeAxis* m_pTime;

15

16 public:

17

18 tOFSolver* createOFSolver();

19

20 tRetCode createInstance(tPortfolio* pPf,

21 const tSignature* pSig, int nTag,

22 tLatticeInstance*& pInstance) const;

23 };

Figure 9.28: The class tLattice de�nes the layout of the lattice (the lattice template),

from which lattice instances are created by calling createInstance()

size of the largest time step can only then be known. (See output dt of the algorithm

in Fig. 5.4.) The class tTimeAxis is �nal. tTimeAxis is purely mathematical and

does not support real calendar dates.

createOFSolver() Finite di�erence solvers are discussed in the next section. This func-

tion creates a solver for one-factor models. Its implementation is simple: since the

�nite di�erence approximation to partial derivatives depend on the geometry of the

discretization as well as the underlying stochastic process, the request is forwarded

to the space axis, which knows about these properties:

1 tOFSolver* tLattice::createOFSolver()

185

2

3 {

4 return m_Space[0]->createOFSolver();

5 }

Multi-factor solvers are not implemented.

createInstance() The lattice template is also used to create lattice instances of it. The

signature of the new lattice instance is implied by the arguments pPf, pSig and

nTag. tSignature is implemented as a bit�eld; its precise de�nition is not shown.

The lattice instances created by createInstance() in tLattice belong to the class

tLatticeInstance, a very condensed de�nition of which is shown in Fig. 9.29.

Lattice instances do not allocate memory for the entire grid, but only for two ad-

jacent hyperplanes, cut perpendicular to the time axis. This is standard procedure for

memory-aware implementations of one-level �nite-di�erence schemes and tree methods.

One hyperplane contains the values for the previously processed time slice ti+1, the other

receives the result of the current rollback round for time slice ti. (In Sect. 7.2.3 we have

seen that this can lead to considerable slowdown due to restart.)

Additional temporary space may be necessary. In Sect. 7.2.3, a scheme to save inter-

mediate results of the minmax calculation has been proposed to increase the eÆciency

slightly. m Prep is used for this purpose. Also, some �nite di�erence solvers may need

their own scratch space; Crank-Nicholson, for instance, requires extra storage for the

decomposed coeÆcient matrix and the right-side vector of the linear system which it has

to solve. m Temp1 and m Temp2 can be activated for that purpose.

In summary, the components of tLatticeInstance shown in Fig. 9.29 have the fol-

lowing meaning:

m Slot The portfolio/signature argument pair supplied to createInstance() of class

tLattice is converted in a compact array m Slot of references to instruments.

The de�nition of m Slot as array of references to instruments is incomplete, how-

ever. Instruments have di�erent maturity dates and thus enter into the computa-

tion at di�erent times during the rollback, therefore widening the lattice instance

dynamically (of course, all memory is allocated before-hand, and the widening is

186

1 class tLatticeInstance {

2

3 tClaim* m_Slot[...];

4

5 int m_nCurrent;

6

7 tMultiArray<double> m_Buffer[2];

8

9 tMultiArray<double> m_Prep;

10 tMultiArray<double> m_Temp1;

11 tMultiArray<double> m_Temp2;

12

13 public:

14

15 void beforeRollback(int nDay);

16 void afterRollback(int nDay);

17

18 void rotate();

19

20 tMultiArray<double>& current() {

21 return m_Buffer[m_nCurrent];

22 }

23

24 tMultiArray<double>& last() {

25 return m_Buffer[m_nLast];

26 }

27 };

Figure 9.29: A very condensed summary of the essential elements of tLatticeInstance.

The template tMultiArray allows arrays whose dimensions are determined by objects

of class tArrayBounds. m Prep, m Temp1 and m Temp2 can, but must not be used during

rollback

187

only logical). m Slot has additional features to allow this process to occur eÆ-

ciently. Their are also some additionl supporting members, for instance for index

translation between m Slot and tPortfolio::m Claim. All this is not shown for

simplicity.

m nCurrent The index in m Buffer of the multi-array representing the current hyper-

plane. \Current" refers to the time slice, say ti, that is being computed in the

current rollback round. The \last" hyperplane refers to the hyperplane of time slice

ti+1.

m Buffer This bu�er holds two hyperplanes of the total space of the lattice instance.

m Buffer[m nCurrent] contains the current hyperplane; m Buffer[m nCurrent�1]
contains the last hyperplane. We stress again that the innermost coordinate of each

hyperplane loops through the gradient v̂k plus the total worst-cast value V̂ .

m Prep Temporary space used for intermediate results (see Sect. 7.2.3).

m Temp1 and m Temp2 Temporary space, mainly used by mixed explicit/implicit schemes

such as Crank-Nicholson.

beforeRollback() and afterRollback() These functions are called before and after

rollback rounds when the current time slice ti falls on a day boundary. These

functions take care of maturing instruments and adjust the (logical) width of the

lattice instance.

rotate() Replaces m nCurrent with m nCurrent � 1 and thus rotates the current and

last hyperplanes.

current() Returns a reference to the current hyperplane.

last() Returns a reference to the last hyperplane.

current() and last() are not the only functions to access the elements of the lattice

instance. Their are additional functions to read and write m Prep, m Temp1 and m Temp2.

There are also functions to access not entire multi-arrays, but single innermost rows

or entries. The list of actual member functions exceeds the list of functions shown in

Fig. 9.29 several times.

188

The classes tTimeAxis and tSpaceAxis are less interesting. We only note that

tSpaceAxis contains the virtual member createOFSolver() mentioned above, and that

the derived class tGeoSpaceAxis implements this function as follows:

1 tOFSolver* tGeoSpaceAxis::createOFSolver()

2

3 {

4 if(isImplicit())

5 return new tGeoImplicit(this);

6 return new tGeoExplicit(this);

7 }

tGeoSpaceAxis also implements the algorithm in Fig. 5.4 to �nd a stable discretiza-

tion.

Finite Di�erence Solvers

Figure 9.27 shows the hierarchy of �nite di�erence solvers, but does not emphasize the

multiple-inheritance relationship very strongly. This is done in Fig. 9.30, which shows the

dependency graph. Doubly framed classes are abstract base classes which are ultimately

used as interfaces to access the functionality of the concrete solver.

The purpose of each class is as follows:

tOFSolver This base class is general in the sense that its member functions rely on

the assembly of the tridiagonal coeÆcient matrix and the right-side vector for one

rollback round at some other place. (Both explicit and mixed explicit/implicit

methods can be expressed in this manner.) Once the linear system of equations has

been set up, its solution can be computed independently from the concrete �nancial

model or spatial lattice geometry. The most visible feature of tOFSolver is the pure

virtual member function solve().

tOFExplicit Provides a body for the prototype solve() in tOFSolver. Uses an explicit

forward Euler one-level scheme.

tOFImplicit Provides a body for the prototype solve() in tOFSolver. Uses a mixed ex-

plicit/implicit Crank-Nicholson scheme. In addition, allows incremental re�nement,

which is necessary for American options.

189

tOFExplicit tOFImplicit tGeoSolver

tOFSolver

tGeoExplicit tGeoImplicit

6 6

6 6 6

��
��

��
���1

used by tOFEngine

used by tGeoEngine

Figure 9.30: The class hierarchy for �nite di�erence solvers. The abstract base class

tOFSolver is used by member functions of tOFEngine to access the functionality of a

particular solver. Similarly, the abstract base class tGeoSolver is used by tGeoEngine

tGeoSolver This abstract class contains a reference to the tGeoSpaceAxis object that

has created the solver. It also has access to the model drift and volatility coeÆ-

cients from which to build the tridiagonal transition matrix. tGeoSolver acts as

pheripheral source of information.

tGeoExplicit This class is the bridge between tGeoSolver and tOFExplicit. If re-

trieves model coeÆcients form the former and instantiates the transition weights

for the latter. The simpli�ed nature of the linear system of equations in the explicit

case is taken into account.

tGeoImplicit This class is the bridge between tGeoSolver and tOFImplicit. If re-

trieves model coeÆcients form the former and instantiates the transition matrix

and right-side vector for the latter.

tOFSolver and Child Classes Some of the essential features of tOFSolver are shown

in Fig. 9.31. A description follows:

tProcessParamsStub This empty type provides a handle to whatever process parameters

need to be transferred in order to compute the transition matrix. This type is public.

190

1 class tOFSolver {

2

3 public:

4

5 struct tProcessParamsStub {

6 };

7

8 class tIncrement {

9 public:

10 virtual void beginIncrement(...);

11 virtual void doIncrement(...);

12 virtual void endIncrement(...);

13 };

14

15 protected:

16

17 virtual void calcWeights(int nFromLevel, int nToLevel,

18 const tProcessParamsStub& Params);

19

20 public:

21

22 virtual void solve();

23 virtual tRetCode refine(tIncrement& Incr);

24 };

Figure 9.31: Some of the features of tOFSolver. The virtual functions and the local

types must be expanded in child or otherwise related classes

191

In our case, it is expanded by tGeoSolver to provide the local drift and volatility

coeÆcients.

tIncrement If American options are involved and a mixed explicit/implicit scheme is

used, the solution of the linear system of equations needs to be re�ned. Iterative

re�nement proceeds in alternatingly reevaluating early-exercise decisions and per-

forming a subsequent over-relaxation step. This loop may require additional mem-

ory space or knowledge, which is encapsulated in a class derived from tIncrement.

The loop is then executed by calling the virtual member functions of tIncrement.

calcWeights() This function must compute the transition weights. The arguments

nFromLevel and nToLevel indicate the location of the interval of nodes in the

lattice for which the rollback is being performed (the interval may change due to

knock-out or a tree-shaped lattice). The function also gets to see the process pa-

rameters in the argument Params, after a proper down-cast.

solve() The top-level function that initiates the current rollback round. This function

contains the numeric part of the code.

refine() If solve() has successfully �nished and the portfolio contains American op-

tions, refine()must be called repeatedly to adjust the result. This function makes

use of the tIncrement interface.

tOFExplicit is a straightforward instantiation of tOFSolver. calcWeights() re-

mains still unresolved, since tOFExplicit is a general explicit solver that does not

know about the concrete model coeÆcients. solve() is implemented, but the function

refine() is ignored.

The class tOFImplicit is more complex. It implements both solve() and refine().

solve() performs a LU decomposition based on the LAPACK modules DGTTRF and

DGTTRFS, which were translated and adapted from Fortran. The code allows for partial

pivoting. See LAPACK (1999) for more details.

The function refine() reuses the decomposition of solve() to modify the current

result. It does so in an over-relaxation step where the relaxation parameter ! lies between

1 and 2 and is dynamically adapted, based on the previous iteration count.

192

tGeoSolver and Child Classes The auxiliary class tGeoSolver is de�ned in Fig. 9.32.

It mainly expands the empty type tProcessParamsStub de�ned in class tOFSolver. The

elements m gVol, m gDrift and m gDiscount are the local values of the model coeÆcients

in class tBSModel. The process parameters are retrieved from the model by the compute

engine, which is an instance of type tGeoEngine (more on compute engines below).

1 class tGeoSolver {

2

3 public:

4

5 struct tProcessParams :

6 public tOFSolver::tProcessParamsStub {

7 double m_gVol;

8 double m_gDrift;

9 double m_gDiscount;

10 };

11 };

Figure 9.32: The class tGeoSolver expands the stub class tProcessParamsStub, de�ned

in tOFSolver. Objects of class tProcessParams will be supplied by the compute engine

The classes tGeoExplicit and tGeoImplicit combine the model speci�c information

captured in tGeoSolver and the numerical functionality of tOFExplicit and tOFImp-

licit. Solvers actually created by the program belong to either class, whose de�nition

is shown in Fig. 9.33. The implementation of calcWeights() in either case is without

surprises and therefore ommitted.

9.1.7 Evaluaters

Evaluaters collect portfolio, model, scenario and numerical method, make sure they all

�t together and initiate the evaluation process. Evaluaters are short-lived, contrary to

objects of other external classes which can be reused (note that the evaluater object in

Fig. 9.2 does not need a name). They are used once and then thrown away. Figure 9.34

shows the de�nition.

The individual components of tEvaluate have the following semantics:

m pPortfolio A reference to the portfolio to be evaluated.

193

1 class tGeoExplicit : public tOFExplicit, public tGeoSolver {

2

3 void calcWeights(int nFromLevel, int nToLevel,

4 const tProcessParamsStub& Params);

5 };

6

7 class tGeoImplicit : public tOFImplicit, public tGeoSolver {

8

9 void calcWeights(int nFromLevel, int nToLevel,

10 const tProcessParamsStub& Params);

11 };

Figure 9.33: Actual solvers belong either to class tGeoExplicit or tGeoImplicit. They

compute the transition matrix from information provided in Params

m pModel A reference to the mode under which the portfolio is to be evaluated.

m pScenario A reference to the scenario for the evaluation. This parameter is ignored if

Monte-Carlo is the numerical method of choice.

m pOptimizer At the time of this writing, calibration through optimization is only pos-

sible for Monte-Carlo methods. The optimizer object adds an outer loop to the

evaluation process, which the compute engine must know about. Ignored if lattice-

based evaluation is selected.

m pLattice If this pointer is set, the evaluation is lattice-based.

m pPathSpace If this pointer is set, the evaluation is done with Monte-Carlo simulation.

Only one of m pLattice and m pPathSpace can be set. The class tPathSpace is

not explained here.

m pFDEngine The compute engine created with the call

m_pModel->createEngine(m_pScenario, m_pFDEngine, m_nAccuracy);

if m pLattice is set. See also Fig. 9.9.

m pMCEngine The compute engine created with the call

194

1 class tEvaluate {

2

3 tPortfolio* m_pPortfolio;

4 tModel* m_pModel;

5 tScenario* m_pScenario;

6 tOptimizer* m_pOptimizer;

7 tLattice* m_pLattice;

8 tPathSpace* m_pPathSpace;

9

10 tFDEngine* m_pFDEngine;

11 tMCEngine* m_pMCEngine;

12

13 tCurveContainer m_CurveContainer;

14 tImageContainer m_ImageContainer;

15

16 tAccuracy m_nAccuracy;

17

18 public:

19

20 tRetCode run();

21 };

Figure 9.34: Evaluaters know about all the objects that make up a particular pricing

problem, cross-reference them and oversee the evaluation process

m_pModel->createEngine(m_pMCEngine);

if m pPathSpace is set.

m CurveContainer Besides pricing and optimization (under Monte-Carlo), MtgLib also

o�ers curve-generating functionality from calibrated path spaces. Curves can be

written to �les, to be used in subsequent pricing rounds.

m ImageContainer Calibrated curves can also be converted into images. Currently sup-

ported is the GIF format popular on the World Wide Web. Curves and images

appear in Sect. 10.2. No implementation details are provided.

m nAccuracy This parameter applies to lattice-based evaluation only and controls which

of the speed-up techniques of Sect. 7.2 should be used. Possible values are Low (col-

195

lapsing the corridors of uncertainty for American options) and Exact (maintaining

the corridors of uncertainty). See also Sect. 9.1.3.

run() This functions initiates the evaluation process. It transfers control to the run()

member function of either *m pFDEngine or *m pMCEngine.

9.2 The Class Hierarchy|Internal

The vast majority of the classes in MtgLib are internal|not visible through the scripting

language, of which an example is given in Fig. 9.2. The solver classes in Fig. 9.27,

although listed together with the hierarchy of lattice classes, may be considered internal,

for instance. In this section, we restrict ourselves to the discussion of the most important

category of internal classes: compute engines.

9.2.1 Compute Engines

Figure 9.35 shows the current hierarchy of compute engines. We discuss only the branch

that forks of tFDEngine, since all algorithmic aspects dealt with in the earlier parts of

this thesis occur in classes derived from tFDEngine. tMCEngine and its subclasses are

based on Monte-Carlo simulation.

tEngine, tFDEngine and tOFEngine are all abstract; they do not function by them-

selves. Instances are created from tGeoEngine and tShockEngine, depending on the

scenario as shown in Fig. 9.12. The classes are used as follows:

tEngine This class has several purposes:

� It contains references to objects used by all types of compute engines, like the

model or portfolio.

� It performs some initialization that can be done on that high a level; for

instance, it matches factors referenced in the portfolio with factors de�ned in

the model.

� It de�nes an interface to retrieve singleton portfolios. This is important for

corridors of uncertainty.

196

Class name Purpose

tEngine Base class (abstract)

tFDEngine Extended base class for lattice-based

evaluation (abstract)

tOFEngine Extended base class for one-factor

lattice-based evaluation (abstract)

tGeoEngine Worst-case evaluation for geometric

Brownian motion models

tShockEngine Evaluation under volatility shock

scenarios

tMCEngine Extended base class for Monte-Carlo

simulation (abstract)

tHJMEngine For �xed income

tShortRateEngine For �xed income

Figure 9.35: The hierarchy of compute engines. tShockEngine extends tGeoEngine by

overriding some functions that handle administrative tasks between rollback rounds

Many functions that need to access the current state (the payo� functions in Fig. 9.4,

for instance) do so either through the tEngine or through the tFDEngine interface,

after a proper down-cast.

tFDEngine This class extends tEngine in several regards:

� It contains more references to objects de�ned for the current problem, for

instance the lattice template and the scenario.

� It implements the main run() function of any compute engine derived from it.

tFDEngine contains local data structures for the dynamic lookup mechanism

of lattice instances through (regularized) signatures. In some sense, tFDEngine

implements the \outer loop" over the time axis of the �nite di�erence scheme.

� It contains more information about the current state than tEngine. It knows

which time slice ti is currently being processed (since it drives the loop!),

and provides variables, to be set by subclasses, that locate individual nodes

197

in the corresponding hyperplane. It provides functions to access this state

information.

tFDEngine is equipped to handle multi-factor models. This class implements the

core of the multi-lattice dynamic programming paradigm introduced in Sect. 5.1.

tOFEngine While tFDEngine works for multi-factor models, tOFEngine does not. tOF-

Engine adds inner-loop functionality to tFDEngine. (For the inner loop for �xed

ti, the number of factors must be known.)

tGeoEngine This class instantiates tOFEngine to support one-factor geometric Brownian

motion models under worst-case volatility scenarios.

tShockEngine This class extends tGeoEngine to support volatility shock scenarios.

The following paragraphs go into some implementation details.

The Abstract Class tEngine

A shortened de�nition of tEngine is shown in Fig. 9.36. The meaning of the individual

member components is as follows:

m pPortfolio A reference to the portfolio object under investigation.

m pModel A reference to the model used for the evaluation.

m FactorXlat The class tPortfolio has a member function matchFactors() that uni-

�es the factor tables in the portfolio and model objects (see Fig. 9.7). The resulting

index permutation is stored in m FactorXlat.

beforeRun() This function takes care of initialization issues that can be handled with

limited information. Factor matching is an example. If this function is overridden

in child class tXYZEngine, the original function must always be called �rst:

1 tRetCode tXYZEngine::beforeRun() {

2 if(tEngine::beforeRun() != OK) ...

3 ...

4 return OK;

5 }

198

1 class tEngine {

2

3 tPortfolio* m_pPortfolio;

4 tModel* m_pModel;

5

6 int m_FactorXlat[...];

7

8 protected:

9

10 virtual tRetCode beforeRun();

11 virtual tRetCode afterRun();

12

13 public:

14

15 virtual void getClaim(int nIndex, int nTag,

16 double& gUnitValue);

17 };

Figure 9.36: The abstract base class tEngine performs some preparation and cleanup

tasks before and after evaluation. It also de�nes the interface for the retrieval of singleton

portfolios, which is important to �nd the corridors of uncertainty for American options

As the class hierarchy builds up, each class contributes to initialization by overriding

beforeRun(), but still calling the function in the parent class.

afterRun() Performs cleanup jobs, mostly related to memory management, after evalu-

ation has been completed. (Curve and image generation are also possible aspects.)

Again, overriding functions must make sure to call the original eventually:

1 tRetCode tXYZEngine::afterRun() {

2 ...

3 return tEngine::afterRun();

4 }

getClaim() This function is a pure virtual interface to retrieve the current value of the

singleton portfolio with signature (XnIndex; �), where � = �1, depending on nTag

and scenario settings such as sell-side or buy-side point-of-view. The function is

called, for instance, in tWorstCase::refineExPolicy(), shown in Fig. 9.25

199

The Abstract Class tFDEngine

tFDEngine implements the loop over the time axis and handles the repository of

lattice instances. It works independently of the number of factors. Figure 9.37 shows the

relevant fragment of its de�nition. Individual members are used as follows:

m nDay and m gFractionOfDay The value of ti in days, where ti is the current time slice.

More precisely,

ti = m nDay+ m gFractionOfDay

The distinction between days and fractions of days is convenient, because the gran-

ularity for events connected with instruments or scenarios is at the level of days.

m pLattice A reference to the lattice template.

m pScenario A reference to the scenario object.

m Pos This variable is not maintained by tFDEngine, only provided in order to be acces-

sible through it. Any subclass that loops over the nodes of the current time slice

ti must update m Pos during the preparatory phase of each loop iteration. The

preparatory phase ends once the �nite di�erence solver takes over.

To keep m Pos consistent is important, since functions like tClaim::payoff()must

know exactly which node is currently being processed.

doRound() Executes exactly one rollback round, for all currently known lattice instances.

This function is �nal; it calls the function doTask(), which must be instantiated in

any subclass, to process each lattice instance. doRound() observes the rule proposed

in 5.1.1 for external consistency, augmented by provisions that guarantee that lattice

instances are processed in the correct order under volatility shock scenarios (in fact,

any scenario that uses a consistent pattern for regularizing signatures).

doTask() The pure virtual prototype that is called by doRound().

getLatticeInstance() Accesses the lattice instance whose regularized signature is de-

termined from the pair Sig/nTag. If the lattice instance does not exist, get-

LatticeInstance() creates it and interrupts the current iteration of doRound()

through the C++ exception mechanism.

200

1 class tFDEngine : public tEngine {

2

3 int m_nDay;

4 double m_gFractionOfDay;

5

6 tLattice* m_pLattice;

7 tScenario* m_pScenario;

8

9 int m_Pos[...];

10

11 tRetCode doRound();

12

13 protected:

14

15 virtual void doTask(tLatticeInstance& Instance);

16

17 void getLatticeInstance(const tSignature& Sig, int nTag,

18 tLatticeInstance*& pInstance);

19

20 tRetCode beforeRun();

21 tRetCode afterRun();

22

23 public:

24

25 tRetCode run();

26

27 void getClaim(int nIndex, int nTag, double& gUnitValue);

28 };

Figure 9.37: A small part of the de�nition of tFDEngine. Shown are the state information,

the interface to access lattice instances, and the main run() function

201

beforeRun() After successful completion of the parent function, beforeRun() initializes

the repository of lattice instances and creates the top-level instance.

afterRun() Merely calls the parent functions, and does not do any additional processing.

run() This function contains the central control loop over the time domain, as shown in

Fig. 9.38.

getClaim() Instantiates the virtual function getClaim() whose prototype is de�ned in

Fig. 9.36.

1 tRetCode tFDEngine::run()

2

3 {

4 if((nRet = beforeRun()) != OK)

5 return nRet;

6

7 int nNumOfRounds = m_pLattice->numOfSlices();

8

9 for(int k = 0; k < nNumOfRounds; ++k) {

10 if((nRet = doRound()) != OK) {

11 cleanup();

12 return nRet;

13 }

14 }

15

16 return afterRun();

17 }

Figure 9.38: A schematized listing of the central control loop in the function run() of

class tFDEngine. numOfSlices() is not included in Fig. 9.28; it returns the number of

discretization points in the time domain. doRound() belongs to tFDEngine and executes

one rollback round

The Abstract Class tOFEngine

tOFEngine is the last abstract class in the chain of ever more specialized classes for

compute engines. Subclasses of tOFEngine can be used to created concrete engines.

202

1 class tOFEngine : public tFDEngine {

2

3 class tIncrement : public tOFSolver::tIncrement {

4 tOFEngine& m_Engine;

5

6 tIncrement(tOFEngine& Engine) : m_Engine(Engine) {}

7

8 void beginIncrement(int nAdjDown, int nAdjUp) {

9 m_Engine.beginIncrement(nAdjDown, nAdjUp); }

10 void doIncrement(const int Pos[...]) {

11 m_Engine.doIncrement(Pos); }

12 void endIncrement(int nAdjDown, int nAdjUp) {

13 m_Engine.endIncrement(nAdjDown, nAdjUp); }

14 };

15

16 tOFSolver* m_pSolver;

17

18 void doBarriers(int& nAdjDown, int& nAdjUp);

19 void doBoundary(int nAdjDown, int nAdjUp);

20 void doRollback(int nAdjDown, int nAdjUp);

21 void doMonitor(int nAdjDown, int nAdjUp);

22 void doPayoff();

23

24 void beginIncrement(int nAdjDown, int nAdjUp);

25 void doIncrement(const int Pos[...]);

26 void endIncrement(int nAdjDown, int nAdjUp);

27

28 protected:

29

30 virtual const tOFSolver::tProcessParamsStub& getProcessParams();

31 virtual tRetCode createSolver(tOFSolver*& pSolver);

32

33 void doTask(tLatticeInstance& Instance);

34

35 tRetCode beforeRun();

36 tRetCode afterRun();

37 };

Figure 9.39: The class tOFEngine: a compute engine for one-factor models

203

tOFEngine provides the inner-loop functionality for one-factor models. The member

function doTask() performs one rollback-round for the lattice instance passed as argu-

ment. What is missing to make tOFEngine a full-edged compute engine is the calculation

of the local model coeÆcients for the solver.

Figure 9.39 shows the de�nition of tOFEngine. The members of tOFEngine have the

following semantics:

tIncrement The empty interface tIncrement has been de�ned in Fig. 9.31 for class

tOFSolver to support incremental re�nement for mixed explicit/implicit schemes.

Here, the interface is instantiated as a proxy that forwards all requests to the parent

compute engine. nAdjUp and nAdjDown are the adjusted number of nodes above and

below the centered root node of the lattice. Adjustments occur when instruments

knock out and therefore set up a new boundary.

m pSolver The �nite di�erence solver created with a call to createSolver(), see below.

doBarriers() The rollback round is executed in stages. Each stage is dedicated to

a sub-task. doBarriers() locates all the barriers and initializes temporary data

structures that guide the subsequent sub-tasks. It also returns the location of the

adjusted boundary in nAdjUp and nAdjDown. These values are used in all subsequent

sub-tasks.

doBoundary() Performs the second sub-task. If barriers have been found, lattice in-

stances for subordinate partial portfolios must be accessed to set the boundary

data. This is done by calling getLatticeInstance().

doRollback() Once the boundary has been taken care of, the \numerical" part of the

rollback (i.e., what is commonly associated with the term) is done for the contin-

uation region. After some preparation, this function essentially calls m pSolver->-

solve().

doMonitor() If American options are present, early exercise policies are gathered for

each node by calling tClaim::monitor() for all relevant instruments and re�ning

estimates with m pScenario->refineExPolicy(). Then, early exercise combina-

tions are evaluated where alternatives exist. This is the minmax calculation, with

exploitation of intermediate results as outlined in Sect. 7.2.3.

204

beginIncrement(), doIncrement(), endIncrement() These functions repeat the mon-

itoring of American options, given the current result. They contribute to the incre-

mental re�nement in the over-relaxation method used under mixed explict/implicit

schemes. Re�nement is started with m pSolver->refine() before doPayoff() is

called.

doPayoff() In the �nal sub-task, payo�s of maturing instruments and �xed cashows

are added. doPayoff() is only called after incremental re�nement through the

tIncrement proxy has been completed.

getProcessParams() This pure virtual function must be instantiated by a subclass. It

supplies the missing information on which evaluation relies. To defer the instanti-

ation of getProcessParams() makes tOFEngine general.

createSolver() This function creates the �nite di�erence solver: it calls m pLattice->-

createOFSolver(). (The lattice template, in turn, relays the request to the space

axis, as described in Sect. 9.1.6.)

doTask() The main function of the class. It calls doBarriers(), doBoundary(), do-

Rollback(), doMonitor(), re�nes, and calls doPayoff(), in that order.

beforeRun() After calling the parent version, this function creates the solver by calling

createSolver().

afterRun() Deletes the solver and jumps to the parent version.

tFDEngine and tOFEngine together are the logistic heart of lattice-based evaluation (the

solver and lattice class hierarchies are the numerical one), comprising combined about

2800 lines of code.

The Class tGeoEngine

Not much remains to do to complete tOFEngine to a working compute engine for one-

factor geometric Brownian motion models. Figure 9.40 shows the rather short de�nition.

The task of tGeoEngine is to ensure that the solver receives the correct model co-

eÆcients for the current time slice. The function getProcessParams() reads the drift

and volatility bounds from the model (to which a reference is provided in tEngine). It

205

1 class tGeoEngine : public tOFEngine {

2

3 tGeoSolver::tProcessParams m_Params;

4 const tOFSolver::tProcessParamsStub& getProcessParams();

5 };

Figure 9.40: The class tGeoEngine prepares the model coeÆcients for tOFEngine and

tGeoSolver

computes the local gamma and uses the scenario object (to which a reference is kept in

tFDEngine) to select the scenario volatility, by calling the member function selectVol().

Process parameters are then stored in m Params and returned.

The Class tShockEngine

1 class tShockEngine : public tGeoEngine {

2

3 int m_nDepth;

4

5 int m_nCurTag;

6 tLatticeInstance* m_pCurCoInstance;

7

8 tRetCode beforeRun();

9 };

Figure 9.41: The class tShockEngine and some of its members

The class tShockEngine extends tGeoEngine for volatility shock scenarios, which

require periodic data transfers between lattice instances. Figure 9.41 shows some of the

members of tShockEngine. They are interpreted as follows:

m nDepth The number of conventional lattice instances per consolidating lattice instance.

If d is the duration of the volatility shock scenario, and p its periodicity, then

m nDepth = dd=pe. See Sect. 8.1.1 for motivation.

m nCurTag The regularized tag of the lattice instance being processed. m nCurTag and

206

the scenario parameters d, p and f imply the extended signature variables � , � and

Æ as de�ned in Def. 8.3.

m pCurCoInstance If the extended-signature parameter � of the current lattice instance

is \conventional", then m pCurCoInstance references the consolidating lattice in-

stance of the same level. If the current lattice instance is consolidating, then

m pCurCoInstance points to the conventional lattice instance from which data

might have to be imported. (Data is only compared and possibly imported on

certain dates, and only with with respect to one conventional lattice instance at a

time.)

beforeRun() Creates all the extra lattice instances needed for the volatility shock sce-

nario. This function implements the algorithm in Fig. 8.4.

9.2.2 Other Groups of Classes

MtgLib contains about 135 classes, of which only those that form the combinatorial and

mathematical kernel have been discussed in the previous sections. Other classes �ll in

the infrastructure to create actual applications.

These categories of classes are also part of MtgLib:

� Figure 9.2 shows an example of the scripting language in which MtgSvr communi-

cates. In general, each object class knows how to parse itself. Each object class con-

tains a static member function parse() that creates a new object from a script de�-

nition. There is a central class tParser, and peripheral classes tScanner, tSource,

tFileSource, tStringSource and tNetSource for support. For customized claims,

classes tExpression, tNumericalExpr and tExPolicyExpr provide the necessary

extension to the scripting language. The parser is of the recursive-descent variety.

� MtgSvr resides as a service on Windows NT PC's. The classes tSocket, tService,

tJobServer support this background operation.

� MtgCal, to be discussed briey in Sect. 10.2, uses the CGI protocol, aided by classes

tCgi and tTclCgi.

207

� Some low-level classes provid special data structures: tHeap and tHeap2 for one- and

two-dimensional dynamic arrays; tMultiArray; tMap for one-dimensional, highly

homogeneous arrays; and tSignature, which is implemented as a bit�eld.

Future work will deal with additional support for actually traded instruments, calibra-

tion and hedging capabilities based on Monte Carlo simulation, and improved remote

accessibility.

208

10 Towards Web-based Applications

We consider it a worthwhile undertaking to use contemporary technology to disseminate

results in a way that proves their applicability empirically and at the same time cre-

ates potentially useful tools for the community. We think the World Wide Web and its

standard technologies like CGI, Java or Javascript enable us to do just that. In our ex-

perimental web site, pricers and calibration tools make it possible for everyone to apply

the results of our research, in particular with regard to uncertain volatility scenarios.

The following sections briey discuss MtgClt/MtgSvr and MtgCal, two online applica-

tions. The client-server application MtgClt/MtgSvr discussed in Sect. 10.1 prices vanilla,

barrier and American options portfolios under worst-case and volatility shock scenarios.

MtgCal, discussed in Sect. 10.2 is an online calibration-tool for �xed income and the focus

of our current research e�orts.

10.1 Example 1: a Client/Server UVM Pricer

The UVM (Uncertain Volatility Model for historical reasons) pricer consists of two com-

ponents. MtgClt is a Java applet that is anchored in an HTML page in our website.

MtgSvr is a C++ program that physically resides on the machine that serves the applet,

but is logically separated from the web server (we use the Apache server for Windows

NT).

The pair MtgClt/MtgSvr implements all algorithms discussed in this thesis, and is

therefore empirical proof for their practical applicability.

MtgClt contains a GUI (graphical user interface) that lets the user enter data in three

categories:

� In the portfolio category, up to eight vanilla, barrier, American and customized

options can be entered. Precon�gured option types include options with linear and

digital payo�.

� In the scenario category, model coeÆcients such as volatility, interest rate and

dividend rate (respectively foreign interest rate) are speci�ed. All coeÆcients can

have term structure format (tStepDrift and tStepVol are used to represent the

coeÆcients). In addition, the volatility may exhibit uncertainty.

209

MtgClt

HTML page

MtgClt

HTML page

MtgSvr

MtgSvr

MtgSvr

?

6
new thread

new thread

server (website)client (browser)

bidirectional TCP

bidirectional TCP-�

-�

PPPPPPPPPPPPPq

��
��

��
��

��
��
�1

connect

connect

Internet

�

�
	

 	

6

HTTP protocol *.html

*.class

Figure 10.1: The architecture of MtgClt/MtgSvr. MtgSvr accepts incoming connections

and processes requests in separate threads (Windows NT) or forked-o� processes (Unix).

The *.html and *.class �les are served by the Apache web server

210

The user also selects between the worst-case volatility scenario and the volatility

shock scenario. In the latter case duration, periodicity and frequency are entered.

Another data �eld determines whether the global point of view is sell-side or buy-

side oriented. The distinction has been briey made in Sect. 9.1.5.

� In the advanced settings category, �nite di�erence scheme (explicit or Crank-Ni-

cholson), trimming parameters (see Sect. 9.1.6), speedup techniques for American

options (maintaining/collapsing of corridors of uncertainty) and time steps are se-

lected.

In order to give a better idea of the convergence behavior of the program for the

particular pricing problem, more than one time step can be entered. The result is

then computed and listed for all time steps.

Graphically, MtgClt distinguishes between \One-Click" mode in which all categories

(slightly down-sized) are combined in a single entry form, and \Wizard" mode in which

each category is assigned its own form.

Once all entries have been made, the user presses the \Start" button and MtgClt

connects to the MtgSvr via TCP. MtgSvr handles the incoming connection by creating a

new thread (under Windows NT) or by forking o� a copy of itself (under Unix). Thus,

several incoming requests can be handled at the same time.

MtgClt converts the data in the entry �elds into a script in the proprietary script-

ing language of MtgSvr (an example is shown in Fig. 9.2) and sends the script. The

new thread created by MtgSvr parses the script, creates the objects it de�nes and exe-

cutes the evaluate statements (of which there must be at least one). The result is sent

back to MtgClt as soon as it becomes available. MtgClt/MtgSvr therefore use a simply

request/response scheme to communicate.

This architecture is shown in Fig. 10.1. Figures 10.2, 10.3 and 10.4 contain some screen

snapshots of MtgClt in action. Only the MtgClt entry forms are shown; the browser that

runs MtgClt is hidden.

211

Figure 10.2: A European call option, evaluated with dt = 1=365 and dt = 1=(5 � 365)

212

Figure 10.3: A customized 90-day down-and-out put. The barrier exists only for 50 days.

The knock-out premium is $1

213

Figure 10.4: The put of Fig. 10.3 evaluated under the worst case scenario in which

0:1 � � � 0:2

214

10.2 Example 2: Remote Calibration Sketched

Calibration has been very shortly introduced in Sect. 4.2.3, in connection with uncertain

volatility models. In this section, we present an online, i.e. \remote", calibrator that

allows users to choose their own model preferences.

The calibrator di�ers from the UVM pricer presented in the last section in two im-

portant aspects:

� It uses a Monte-Carlo simulation method;

� it calibrates �xed income models to �xed income instruments (currently to US

treasury bonds).

Thus, it seems, all algorithms presented in this thesis become useless. This is indeed so

for the multi-lattice dynamic programming algorithms and the algorithms for barrier and

American options. The object-oriented software framework discussed in Chapter 9, how-

ever, allows to embed the new components in a preserving manner. Classes for �xed in-

come instruments are derived from tClaim just the same (tUSTBond for the US treasuries);

so are classes for models (tHJMGaussianModel, tShortRateModel and tVasicekModel,

based on tModel) and compute engines (tHJMEngine and tShortRateEngine, based on

tMCEngine). Throughout chapter 9 we have included hints in places where such exten-

sions have been made.

The following exposition should therefore be viewed as addendum to the core topics

of this thesis. It stresses the importance of sound software design that leads to extensible

software. It emphasizes our vision of �nancial computing on the Internet (or Intranets)

and throws some light on ongoing research and possible future directions.

10.2.1 Theoretical Foundations

The following paragraphs are necessarily incomplete. By no means do we give an exhaus-

tive account of the theory. The interested reader is referred to Cover and Thomas (1991)

and Avellaneda (1998).

Let �X and �� be a vector of �k contingent claims and a corresponding price vector,

respectively. The position �̂ 2 R
�k that minimizes (4.4.19) in Fact 4.9 implies a calibrated

volatility �̂ which prices �X correctly.

215

�̂ and �̂ may be found with lattice-based dynamic programming, as stated in Fact 4.10.

Here we follow a di�erent approach.

For simplicity, assume the Vasicek model

dr = (� � �r)dt+ �dX (10.10.1)

for the short rate process r = frtg (any other model will do, too). dX is the random

shock, � the speed of mean reversion, and �
� the level of mean reversion.

In the Monte-Carlo setting, the process r is simulated for N paths !1; : : : ; !N . The

value of any instrument X can then be evaluated by approximating its discounted ex-

pected payo�:

F0(X) _=
1

N

NX
i=1

exp

�
�
Z T

0
rt(!i)dt

�
X(!i) (10.10.2)

The summation in (10.10.2) amounts to assigning to each path the weight 1
N . This

uniform probability distribution P of paths is consistent with the prior model (10.10.1).

Now assume a di�erent probability distribution Q for the paths !1; : : : ; !N , i.e. 0 <

q1; : : : ; qN < 1 and
PN

i=1 qi = 1. The Kullback-Leibler distance of the new distribution

Q to the original, uniform distribution P is

H(QjP) =
NX
i=1

Q(!i) log

�
Q(!i)

P (!i)

�

=
NX
i=1

Q(!i) log

�
Q(!i)

1=N

�

= logN +

NX
i=1

Q(!i) logQ(!i) = logN +

NX
i=1

qi log qi

(10.10.3)

0 � H(QjP) � logN , and H(QjP) = 0 if Q = P . A measure Q 6= P implicitely changes

the price of the instrument X:

F0(X j Q) _=

NX
i=1

qi exp

�
�
Z T

0
rt(!i)dt

�
X(!i) (10.10.4)

If N is much greater than �k, it makes sense to ask for Q which correctly prices �X, given

��. It is furthermore reasonable to assume that the model builder prefers Q that mini-

mizes H(QjP). Given (10.10.3), this is equivalent to maximizing the entropy H(Q) =

216

�PN
i=1 qi log qi. Avellaneda (1998) shows that under certain assumptions, this con-

strained entropy optimization problem has a unique solution, which can be found by

the method of Lagrange multipliers:

inf
��2R�k

(
sup
Q

�
H(Q) + F0(�� � �X j Q)�� �� � ��

)
(10.10.5)

This formula corresponds to (4.4.19) in Fact 4.9.

The supremal Q can be found directly for �xed �. The optimal �̂ is found with a

gradient-based optimization algorithm (L-BFGS-B in our case).

10.2.2 Extensions to MtgLib

Compute engines for Monte Carlo have already been listed as members of MtgLib in

Fig. 9.35. Classes for interest rate models are listed in Fig. 9.8. Figure 10.5 shows some

additional classes that contribute to the outer optimization loop (recall that tEvaluate

in Fig. 9.34 contains a member variable m pOptimizer).

Class name Purpose

tOptimizer optimizer template (abstract)

tEntropyOpt minimum entropy optimizer template

tOptInstance optimizer instance (abstract)

tMCOptInstance optimizer instance for

Monte Carlo (abstract)

tMCEntropyOptInstance optimizer instance for

minimum entropy optimization

(also inherits from tMinimizer)

tMinimizer wrapper for L-BFGS-B

Figure 10.5: Extensions to MtgLib. Not shown in this picture are the compute engines

derived from tMCEngine; these are mentioned in Sect. 9.2.1

The purpose of each class in Fig. 10.5 is as follows:

tOptimizer The abstract base class for optimizer templates. Just as for lattices, we

distinguish between optimizer templates that contain information on the type of the

217

optimizer, and actual optimizer instances which are created by optimizer templates

as requested by compute engines and used only once. Optimizer instances contain

the \dirty" variables used during the actual computation.

The main feature of tOptimizer is the member function createInstance(), which

is pure virtual.

tEntropyOpt Supports minimum entropy optimizer templates. createInstance() re-

turns objects of type tMCEntropyOptInstance. In addition, minimum entropy

optimizer templates specify the upper and lower bound for Lagrange multipliers.

The following fragment would be a valid de�nition of a minimum entropy optimizer

in the scripting language used by MtgCal:

1 optimizer xyz {

2 type entropy,

3 low -100, high 100

4 }

(MtgCal uses the same scripting language as MtgSvr.)

tOptInstance The abstract base class for optimizer instances. This class is designed

with both lattice-based and simulation methods in mind, although optimization

right now is supported only for simulation methods.

tOptInstance contains basic member variables such as m Price (the price vector

��), m Lambda (the output vector holding the optimal �̂'s) and m Gradient (used by

the gradient-based minimization routine).

tMCOptInstance A specialization of tOptInstance for Monte Carlo simulation. The

member variable m Weight is the vector that holds the alternative distribution Q

for the Monte Carlo paths. This class also precomputes the discounted cashows

for each instrument and path, since this information needs to be computed only

once. It then calls a pure virtual member function minimize() to do the actual

optimization.

tMCEntropyOptInstance Inherits from both tMCOptInstance and tMinimizer; imple-

ments minimize() de�ned in tMCOptInstance by passing control to tMinimizer::-

minimize(), which in turn calls back a member function eval() in each iteration.

218

eval() is the partition function for the minimum entropy problem (see Avellaneda

(1998)).

tMinimizer A wrapper to the L-BFGS-B code that has been translated from Fortran

to C (see Zhu et al. (1994)).

There are other extensions to MtgLib that deal with the generation of curves and

their output as GIF images. These extensions are ommitted to keep this chapter short.

10.2.3 Architecture

The requirements on the client environment posed by MtgCal are less stringent than those

necessary for MtgClt/MtgSvr. In particular, the client only needs to support Javascript

instead of Java. Communication between the client and the server uses the CGI protocol.

This avoids low-level TCP and thus solves the �rewall problem.

Calibration does not always �t into the request-response pattern of the HTTP proto-

col, because it may require a long time to complete. Calibration is therefore split into a

sequence of steps:

1. The user enters data into a form and submits it by clicking the \Calibrate" button.

2. The web server receives the request, reads the data and passes it to MtgCal, which

is installed as CGI handler.

3. MtgCal spawns o� a separate copy of itself and passes the data to it. The new

process immediately starts calibration. The original instance of MtgCal creates a

temporary HTML page asking the user for patience (\in progress: : : "), which in

turn is returned to the client by the web server.

The user therefore experiences immediate feedback, regardless of the prospective

duration of calibration.

4. The temporary HTML page contains some Javascript code that periodically submits

a query to MtgCal. MtgCal detects that the query comes from the temporary page

and checks on the status of the current calibration, rather than initiating a new

one.

219

HTML form

in progress: : :

in progress: : :

result page

*.html

*.gif

MtgCal

MtgCal

MtgCal

MtgCal

result page

*.html

*.gif

-

?

spawn

�

XXXXXXz
������9

XXXXXXz
������9

XXXXXXz
������9

CGI

CGI

CGI

client (browser) server (website) server (background)

Figure 10.6: The architecture of MtgCal. HTML, Javascript and the CGI protocol are

used to transfer data between the client and the server. Proxies and �rewalls pose no

problem for this setup. Calibration is done in the background on the server

220

5. As soon as the background instance of MtgCal �nishes calibration, it creates a result

HTML pages with links to GIF images. The result page is detected at the next

status check, returned to the client, and the user �nally sees the result.

In addition to images, pure data such as the calibrated forward rate curve is also

written to disk on the server, to support subsequent rate calculations and, in the

future, pricing.

The client engages in a polling action to eventually �nd the result. Other approaches

are possible, but this one seems the most robust and is straightforward to implement.

Figure 10.6 shows the architecture pictorially.

It is possible to submit another calibration request even while a background copy of

MtgCal is active. Each calibration request supercedes the previous one and terminates

background copies of MtgCal prematurely.

Figures 10.7, 10.8, 10.9 and 10.10 show the layout of the HTML form into which

calibration requests are entered, and of the result page, respectively.

The result, once computed, is persistent. Figure 10.11 shows how the calibrated for-

ward rate curve can be used to compute interest rates under di�erent quoting conventions.

221

Figure 10.7: The top half of the HTML form for MtgCal

222

Figure 10.8: The bottom half of the HTML form for MtgCal

223

Figure 10.9: The top half of the HTML result page after calibration

224

Figure 10.10: The bottom half of the result page. Inuence of benchmarks is measured

by Langrange multipliers. Not shown are �5 = 0:2105, �6 = 0:0478, and �7 = �0:0778

225

Figure 10.11: The calibration result can be used to calulate rates

226

11 Conclusion

We have laid the theoretical foundation of and implemented algorithms that price port-

folios of vanilla, barrier and American options under uncertain volatility scenarios such

as the worst-case volatility and volatility shock scenarios. Our implementation follows

object-oriented principles and is modular and extensible.

In particular, our algorithmic contributions are

� a method to precompute the number of subordinate pricing problems that arise

when the portfolio under consideration contains barrier options;

� a method to arrange statically as well as dynamically the hierarchy of pricing prob-

lems that arise under nonlinear scenarios in general;

� techniques to handle portfolios that contain American options in particular;

� a heuristic that allows to cut down the number of pricing problems for portfolios

with American options;

� an extension of worst-case volatility scenarios to volatility shock scenarios in which

the volatility may experience one or several periods of high-amplitude uctuations

at unpredictable times.

Each of these theoretical achievements has a concrete representation in the class hierarchy

of the C++ class library MtgLib.

We have also demonstrated that complicated algorithms can be brought to a wider

audience by using contemporary Internet technologies. MtgClt/MtgSvr and MtgCal are

two online applications available in our website. We project that web computing for

�nance will quickly gain importance, in our own research and at other places.

227

Bibliography

Arnold, L. (1973): Stochastic Di�erential Equations: Theory and Applications, Wiley

Avellaneda, M., and R. Bu� (1998): \Combinatorial Implications of Nonlinear Models:

the Case of Barrier Options," to appear in Appl. Math. Finance

Avellaneda, M., and A. Par�as (1995): \Pricing, and Hedging Derivative Securities in

Markets with Uncertain Volatilities," Appl. Math. Finance, 2, 73{88

Avellaneda, M., and A. Par�as (1996): \Managing the Volatility Risk of Portfolios of

Derivative Securities: the Lagrangian Uncertain Volatility Model," Appl. Math. Fi-

nance, 3, 21{52

Avellaneda, M., C. Friedman, R. Holmes, and D. Samperi (1997): \Calibrating Volatility

Surfaces via Relative-entropy Minimization," to appear in Appl. Math. Finance

Avellaneda, M. (1998): \Minimum-entropy Calibration of Asset-pricing Models," to ap-

pear in International Journal of Theoretical and Applied Finance

Barraquand, J., and T. Pudet (1996): \Pricing of American Path-dependent Contingent

Claims," Math. Finance, 6, No. 1, 16{51

Baxter, M., and A. Rennie (1996): Financial Calculus, Cambridge University Press

Bensoussan, A. (1984): \On the Theory of Option Pricing," Acta Applicandae Mathe-

maticae, 2, 139{158

Black, F., and P. Karasinski (1991): \Bond and Options Pricing when Short Rates are

Lognormal," Financial Analysts Journal, July-August 1991, 52{59

Borodin, A. N., and P. Salminen (1996): Handbook of Brownian Motion|Facts and

Formulae, Basel: Birkh�auser

Breeden, D. T., and R. H. Litzenberger (1978): \Prices of State-contingent Claims Im-

plicit in Option Prices," Journal of Business, 51, No. 4, 621{651

Bu�, R. (1999a): \Worst-case Scenarios for American Options," to appear in Interna-

tional Journal of Theoretical and Applied Finance

228

Bu�, R. (1999b): \Java Pricer for Barrier and American Options,"

http://www.courant�nance.cims.nyu.edu/mtg

Bu�, R. (1999c): \Courant Remote Calibrator,"

http://www.courant�nance..cims.nyu.edu/remotecalibrator/welcome.html

Bu�, R. (1999d): \Daily Calibration Result,"

http://www.courant�nance..cims.nyu.edu/remotecalibrator/auto/result.html

Cheuk, T. H. F., and T. C. F. Vorst (1996): \Complex Barrier Options," The Journal of

Derivatives, 4, No. 1, 8{22

Conze, A., and Viswanathan (1991): \Path Dependent Options: The Case of Lookback

Options," J. Finance, 46, No. 5, 1893{1907

Cormen, T. H., C. E. Leiserson, and R. L. Rivest (1990): Introduction to Algorithms,

McGraw-Hill

Courtadon, G. (1982): \A More Accurate Finite Di�erence Approximation for the Valu-

ation of Options," J. Financial Quant. Anal., 27, 697{703

Cover, T. M., and Thomas, J. A. (1991): Elements of Information Theory, John Wiley

& Sons, New York

Cox, J. C., J. E. Ingersoll, Jr., and S. A. Ross (1985a): \A Theory of the Term Structure

of Interest Rates," Econometrica, 53, No. 2, 385{407

Cox, J. C., J. E. Ingersoll, Jr., and S. A. Ross (1985b): \An Intertemporal General

Equilibrium Model of Asset Prices," Econometrica, 53, 363{384

Cox, J. C., and M. Rubinstein (1985): Options Markets, Englewood Cli�s, NJ: Prentice-

Hall

DuÆe, D. (1996): Dynamic Asset Pricing Theory, 2nd ed., Princeton, NJ: Princeton

University Press

DuÆe, D., and R. Kan (1996): \A Yield-factor Model of Interest Rates," Math. Finance,

6, No. 4, 379{406

229

F�ollmer, H., and M. Schweizer (1991): \Hedging of Contigent Claims under Incomplete

Information," Applied Stochastic Analysis, eds. M. H. A. Davis and R. J. Elliott. New

York: Gordon and Breach, 389{414

Geman, H., and M. Yor (1996): \Pricing, and Hedging Double-barrier Options: a Prob-

abilistic Approach," Math. Finance, 6, No. 4, 365{378

Geske, R., and K. Shastri (1985): \Valuation by Approximation: A Comparison of Al-

ternative Option Valuation Techniques," J. Financial Quant. Anal., 20, 45{71

Goldman, M. B., H. B. Sosin, and M. A. Gatto (1979): \Path Dependent Options: Buy

at the High, Sell at the Low," J. Finance, 34, No. 5, 1111-1127

Heath, D., R. Jarrow, and A. Morton (1992): \Bond Pricing, and the Term Structure of

Interest Rates: a New Methodology for Contigent Claims Valuation," Econometrica,

60, No. 1, 77-105

Ho, T. S., and S. Lee (1986): \Term Structure Movements and Pricing Interest Rate

Contingent Claims," J. Finance, 41, 1011{1028

Hofmann, N., E. Platen, and M. Schweizer (1992): \Option Pricing under Incompleteness

and Stochastic Volatility," Math. Finance, 2, No. 3, 153{187

Harrison, J. M., and D. M. Kreps (1979): \Martingales and Arbitrage in Multiperiod

Securities Markets," J. Econ. Theory, 20, 381{408

Harrison, J. M., and S. R. Pliska (1981): \Martingales and Stochastic Integrals in the

Theory of Continuous Trading," Stoch. Process. Appl., 11, 215{260

Hull, J. C. (1993): Options, Futures and Other Derivative Securities, 2nd ed., Prentice

Hall

Hull, J. C., and A. White (1987): \The Pricing of Options on Assets with Stochastic

Volatilities," J. Finance, 42, 281{300

Hull, J. C., and A. White (1990): \Pricing Interest Rate Derivative Securities," Review

of Financial Studies, 3, 4, 573{592

230

Hull, J. C., and A. White (1990): \Valuing Derivative Securities Using the Explicit Finite

Di�erence Method," J. Financial Quant. Anal., 25, 87{100

Hull, J. C., and A. White (1994): Numerical Procedures for Implementing Term Structure

Models, Working paper, University of Toronto

Jackwerth, J. C., and M. Rubinstein (1996): \Recovering Probability Distributions from

Option Prices," J. Finance, 51, No. 5, 1611{1631

Jarrow, R. A. (1996): Modelling Fixed Income Securities and Interest Rate Options,

McGraw-Hill

Jeanblanc-Picque, M., N. El Karoui, and R. Viswanathan (1991): \Bounds for the Price

of Options," Applied Stochastic Analysis, eds. I. Karatzas and D. Ocone, New York:

Springer

Johnson, H., and D. Shanno (1987): \Option Pricing When the Variance is Changing,"

J. Financial Quant. Anal., 22, 143{151

Karatzas, I. (1988): \On the Pricing of American Options," Applied Mathematics and

Optimization, 17, 37{60

Karatzas, I. (1989): \Optimization Problems in the Theory of Continous Trading," SIAM

J. Control Optim., 27, 1221{1259

Kloeden, P. E., and E. Platen (1991): The Numerical Solution of Stochastic Di�erential

Equations, New York: Springer

Kunitomo, N., and M. Ikeda (1992): \Pricing Options with Curved Boundaries", Math.

Finance, 2, No. 4, 275{272

Lagnado, R., and S. Osher (1997): \A Technique for Calibrating Derivative Security

Pricing Models: Numerical Solution of an Inverse Problem," J. Comp. Finance, 1, No.

1, 13{25

Lamberton, D., and B. Lapeyre (1996): Introduction to Stochastic Calculus Applied to

Finance, London: Chapman & Hall

\LAPACK," http://gams.nist.com

231

Longsta�, F. A., and E. S. Schwartz (1998): \Valuing American Options By Simula-

tion: A Simple Least Squares Approach," Anderson Graduate School of Management

working paper, University of California, Los Angeles, 1998

Lyden, S. (1996): \Reference Check: A Bibliography of Exotic Options Models," The

Journal of Derivatives, 4, No. 1, 79{91

Par�as, A. (1995): Non-linear Partial Di�erential Equations in Finance: a Study of Volatil-

ity Risk and Transaction Costs, Ph.D. thesis, New York University

Pirkner, C. D., Weigend, A. S, and Zimmermann, H. (1999): \Extracting Risk-Neutral

Densities from Option Prices Using Mixture Binomial Trees," Proceedings of the 1999

IEEE/IAFE/INFORMS Conference on Computational Intelligence for Financial En-

gineering (CIFEr'99), 135{158

Press, H. W., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling (1988): Numerical

Recipes in C, Cambridge University Press

Roberts, C. O., and C. F. Shortland (1997): \Pricing Barrier Options with Time-

dependent CoeÆcients," Math. Finance, 7, No. 1, 93{93

Rubinstein, M. (1995): \Implied Binomial Trees," J. Finance, 49, 771{818

Rubinstein, M., and E. Reiner (1991): \Breaking Down the Barriers," RISK, 4, No. 8

Schweizer, M. (1991): \Option Hedging for Semimartingales," Stoch. Proc. Appl. 37,

339{363

Scott, L. O. (1987): \Option Pricing when the Variance Changes Randomly: Theory,

Estimation and an Application," J. Financial Quant. Anal, 22, 419-438

Roberts, G. O., and C. F. Shortland (1997): \Pricing Barrier Options with Time-

dependent CoeÆcients," Math. Finance, 7, No. 1, 83{93

Thomas, J. W. (1995): Numerical Partial Di�erential Equations: Finite Di�erence Meth-

ods, Springer Verlag, New York

Turnbull, S. M., and L. M. Wakeman (1991): \A Quick Algorithm for Pricing European

Average Options," J. Financial Quant. Anal., 26, No. 3, 377{389

232

Wiggins, J. B. (1987): \Option Values under Stochastic Volatility: Theory and Empirical

Estimates," J. Financial Econ., 19, 351{372

Vasicek, O. (1977): \An Equilibrium Characterization of the Term Structure," J. Finan-

cial Econ., 5, 177{188

Wilmott, P., J. Dewynne, and S. Howison (1993): Option Pricing: Mathematical Models

and Computation, Oxford Financial Press

Zhu, Y., and M. Avellaneda (1997): \A Risk-Neutral Stochastic Volatility Model," Work-

ing paper, New York University

Zhu, C., Boyd, R. H., Lu, P., and Nocedal, J. (1994): L-BFGS-B: Fortran Subroutines

for Large-scale Bound-constrained Optimization, Northwestern University, Department

of Electrical Engineering

233

Algorithms for Nonlinear Models in

Computational Finance

and their

Object-oriented Implementation

by

Robert Bu�

Advisor: Marco Avellaneda

Individual components of �nancial option portfolios cannot be evaluated independently

under nonlinear models in mathematical �nance. This entails increased algorithmic com-

plexity if the options under consideration are path-dependent. We describe algorithms

that price portfolios of vanilla, barrier and American options under worst-case assump-

tions in an uncertain volatility setting. We present a generalized approach to worst-case

volatility scenarios in which only the duration, but not the starting dates of periods of

high volatility risk are known. Our implementation follows object-oriented principles and

is modular and extensible. Combinatorial and numerical algorithms are separate and or-

thogonal to each other. We make our tools available to a wide audience by using standard

Internet technologies.

Algorithms for Nonlinear Models in

Computational Finance

and their

Object-oriented Implementation

by

Robert Bu�

Advisor: Marco Avellaneda

Individual components of �nancial option portfolios cannot be evaluated independently

under nonlinear models in mathematical �nance. This entails increased algorithmic com-

plexity if the options under consideration are path-dependent. We describe algorithms

that price portfolios of vanilla, barrier and American options under worst-case assump-

tions in an uncertain volatility setting. We present a generalized approach to worst-case

volatility scenarios in which only the duration, but not the starting dates of periods of

high volatility risk are known. Our implementation follows object-oriented principles and

is modular and extensible. Combinatorial and numerical algorithms are separate and or-

thogonal to each other. We make our tools available to a wide audience by using standard

Internet technologies.

