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Abstract. In this paper, we present and analyze a BDDC algorithm for a class of elliptic problems
in the three-dimensional H(curl) space. Compared with existing results, our condition number
estimate requires fewer assumptions and also involves two fewer powers of log(H/h), making it
consistent with optimal estimates for other elliptic problems. Here, H/h is the maximum of Hi/hi

over all subdomains, where Hi and hi are the diameter and the smallest element diameter for the
subdomain Ωi. The analysis makes use of two recent developments. The first is a new approach
to averaging across the subdomain interfaces, while the second is a new technical tool which allows
arguments involving trace classes to be avoided. Numerical examples are presented to confirm the
theory and demonstrate the importance of the new averaging approach in certain cases.

1. Introduction. The design and analysis of domain decomposition algorithms
for problems formulated in the three-dimensional H(curl) space pose quite significant
challenges, a fact reflected in a small number of archival publications. Pioneering work
was done by Qiya Hu and Jun Zou [11, 12], who developed a wire basket algorithm for
a positive definite, self-adjoint problem and for a saddle-point problem. Their work
has been resumed more recently and has resulted in two papers, [9, 10], coauthored
with Shi Shu. Other major contributions are by Andrea Toselli [22], an important
study of FETI–DP algorithms, and by Toselli [21] and Ralf Hiptmair and Toselli [6]
on two-level overlapping Schwarz algorithms.

This paper concerns a BDDC algorithm for problems with the same positive
definite, self-adjoint bilinear form considered in Toselli [22]:

a(v,w) :=
∑

i

(αi(∇× vi,∇×wi)L2(Ωi) + βi(vi,wi)L2(Ωi)), (1.1)

where vi and wi are restrictions, to Ωi, of elements of H0(curl,Ω), the subspace
of H(curl,Ω) with a zero tangential trace on ∂Ω. The αi ≥ 0 and the βi > 0 are
constants and the Ωi are subdomains into which the domain Ω of the given problem
has been partitioned. We note that the inner product of the space H(curl,Ω), for a
domain of diameter 1, is given by (1.1) after setting all αi and βi equal to 1. Not to
complicate things further, we will assume that the Ωi are all homotopy equivalent to
a ball.

While some of our technical tools differ considerably from Toselli’s, we have been
able to draw significantly on his insights. Given that FETI–DP and BDDC algorithms
are closely related, see [18, 2, 17], our results also improve those of Toselli. We note
that we have previously published a conference paper [4] on a different and compu-
tationally less attractive BDDC algorithm, which essentially is Toselli’s Algorithm C.
Our BDDC deluxe algorithm was first introduced in that paper and has already been
used, with considerable success, for several different problem classes, see [3, 16, 20].
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In summary, we have two fewer powers of log(H/h) in our condition number
estimate than Toselli making our results the best possible. Moreover, the assumptions
on the material parameters are relaxed as well. In our technical work, we follow the
example of Dryja, Smith, and one of the authors, see [5] and [23, Chapter 4], and
develop bounds for minimal energy extensions of functions defined on subdomain
boundaries by explicitly constructing extensions with comparable energy. In this
way, arguments involving trace classes can be avoided. We note that trace theorems
for H(curl) are more complicated than those for H1; cf., e.g., the discussion in [22].
We also hope that our strategy will make our paper more accessible.

Given that we aim at developing bounds that are independent of the values of
the material coefficients, we also strive at finding arguments that can be reduced to
work on individual subdomains. This has been accomplished except, like Toselli’s, our
bound contains a factor η := (1+maxi βiH

2
i /αi), whereHi denotes the diameter of the

subdomain Ωi. Thus, if we have any mass-dominated subdomains for which βiH
2
i /αi

is large, our bound and the performance of the algorithm will be less satisfactory.
Subdomains that are not mass-dominated are said to be curl-dominated.

The rest of the paper is organized as follows. In Section 2, we introduce our
problem and review the Nédélec finite element space. We also introduce our deluxe
version of the BDDC domain decomposition algorithm. In Section 3, we collect some
technical tools that are well known from the study of elliptic problems posed inH1(Ω).
We also formulate and prove new bounds for H(curl,Ω) and cite a result by Hiptmair
and Xu [8] that is important for our development of the theory, which is given in
Section 4. We note that their algorithm has formed the basis of important software
and that has been extensively tested; see Kolev and Vassilevski [15]. Implementation
details, for our algorithm, in particular for problems with irregular subdomains ob-
tained from mesh partitioners, are discussed in Section 5. Finally, results of numerical
experiments are given in Section 6.

2. Our Problem and Our Algorithm. We will focus on developing and ana-
lyzing a domain decomposition method for problems discretized by the lowest order
Nédélec elements, introduced in [19], with unknowns given for the edges of the tetra-
hedral elements into which the given domain Ω has been partitioned. We will also
introduce our BDDC variant in this section.

2.1. The Finite Element Space. The space of Nédélec finite element functions
can be represented as the range of an interpolation operator Πh which is well defined,
for sufficiently smooth elements of w ∈ H(curl,Ω), by

Πh(w) :=
∑

e

λe(w)Ne where λe(w) :=
1

|e|

∫

e

w · teds.

Here te is a unit vector in the direction of the element edge e. The restriction of the
basis function Ne(x) to an element K is of the form Ne(x) := aK

e +bKe ×x where the
six real parameters of aK

e and bKe of each element are determined so that λe(Ne) = 1
while λe′(Ne) = 0 for any other edge e′ of the triangulation. For the element edges
along a subdomain edge E, we will always assume that the unit vectors te all point
in the same direction as a unit vector tE of the subdomain edge E. In subsection 4.2,
we also need to make sure that the unit vectors tE do not change direction when we
move from one subdomain edge to the next following the boundary of a subdomain
face.

The interface between the subdomains is Γ := ∪N
i=i∂Ωi \ ∂Ω. Similarly, Γi :=

∂Ωi \ ∂Ω. We will always assume that the Γi do not cut through any elements and,
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when developing the theory, that the Ωi are polyhedra with planar faces. A subdomain
face F is the interior of the intersection of two subdomain boundaries ∂Ωi and ∂Ωj ;
it thus is a face of the polyhedron Ωi or the union of several such faces and the
subdomain edges between them. We note that a subdomain face need not necessarily
be planar. In our technical work, we will assume that our subdomain faces satisfy the
following assumption:

Assumption 1. Each subdomain face satisfies one of the following conditions:
• It is a star-shaped polygon, i.e., a polygon in the plane which is a star domain.
There then exists a point cF ∈ F such that the line segment between cF and any other
point of F belongs to F .
• There is a unique subdomain vertex cF in the interior of F.
In all cases, we further assume that the triangles created by connecting the point cF
and the vertices of the boundary ∂F are shape regular.

More general subdomain faces could also be considered but we have chosen to
confine our proofs to those satisfying this assumption in the interest of simplicity.

We will denote by MΓi
, MF , and M∂F the sets of finite element edges on Γi, F,

and ∂F , respectively. The set MFb
contains all element edges on F which have an

endpoint on ∂F. We also denote by NE and N∂F , the set of nodes on E and ∂F ,
respectively.

We will denote by Whi

curl the space of lowest order Nédélec elements, just intro-

duced, and by Whi

grad the space of continuous, piecewise linear finite element functions
on the subdomain Ωi for the same triangulation. We note that the gradient operator
∇ maps Whi

grad into a subspace of Whi

curl and that it is also well known that any element

of the form Πh∇p, p ∈ H1(Ωi), is curl-free and that there are positive constants c
and C, which depend only on the shape-regularity of the elements, such that

c
∑

e∈∂K

h3
i |λe(wh)|

2 ≤ ‖wh‖
2
L2(K) ≤ C

∑

e∈∂K

h3
i |λe(wh)|

2, ∀wh ∈ Whi

curl (2.1)

‖∇×wh‖
2
L2(K) ≤ C

∑

e∈∂K

hi|λe(wh)|
2, ∀wh ∈ Whi

curl, (2.2)

and

‖∇×Πh(uh)‖L2(K) ≤ C‖uh‖H1(K), ∀uh ∈ Whi

grad. (2.3)

These bounds can be derived easily by working on an individual element K and by
using an elementary inverse inequality.

Certain index sets are important when developing and implementing iterative
substructuring algorithms. We divide the element edges on Γi into equivalence classes
determined by the sets of Γj to which they belong. Thus, for the case at hand, we
have an equivalence class for each subdomain edge and one for each subdomain face;
that for a subdomain face has two indices and that for a subdomain edge typically has
three or more. We note that for irregular subdomains such as those obtained by mesh
partitioners, there can be good reasons to divide some of the equivalence classes; see
further Section 5.

The success of any iterative substructuring algorithm depends significantly on the
existence of a stable decomposition of any finite element function, defined by its values
on Γ, into a sum of functions each associated exclusively with the degrees of freedom
of one equivalence class. As is convincingly argued by Toselli [22], there is a strong
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coupling between subdomain faces and subdomain edges, which precludes a good
decomposition and fast algorithms, if the original basis of the Nédélec space is used.
We will therefore use an alternative basis, as in [22]. Thus, for each subdomain edge
E, we will use two functions ΦE and ∇φiE , the constant and the gradient components
associated with the subdomain edge E. Here, ΦE · te = 1 for all element edges e ⊂ E
while it vanishes on all other element edges on Γ and φiE is a linear combination of
the standard basis functions of Whi

grad for the nodes in the interior of the edge E. We
then find that

wi · te = aE(wi)ΦE · te +∇φiE · te = aE(wi) +∇φiE · te, ∀e ∈ E, (2.4)

where aE(wi) is the average of wi · te over E.
Remark 1. While we will fully develop our theory only for polyhedral subdomains,

for which the subdomain edges are straight, we have also developed our algorithm for
a more general case. Thus, for an edge E that is not straight, we define the function
ΦE by the alternative formula ΦE · te := dE · te, where dE is a unit vector pointing
in direction from one endpoint of E to the other. We note that the integral of the
gradient component associated with the edge E, over the edge, will always vanish.

2.2. BDDC deluxe. We will primarily consider a recently introduced variant of
BDDC known as BDDC deluxe. The BDDC and FETI–DP algorithms are iterative
substructuring algorithms, i.e., they are based on non-overlapping decompositions
{Ωi}Ni=1 of the domain Ω on which the problem is posed.

Any BDDC or FETI–DP algorithm is determined by a set of primal constraints
and by an average or a jump operator, respectively. We will focus exclusively on a
primal constraint set given by two moments for each subdomain edge. Thus,

s0E(wi) := (1/|E|)

∫

E

wi · te ds, (2.5)

s1E(wi) := (1/|E|)

∫

E

swi · te ds, (2.6)

will take on the same values for any two subdomains which share a subdomain edge
E. Here s ∈ [−|E|/2, |E|/2] is an arc length parameter. This choice of constraints
is also used for Toselli’s Algorithm B. Toselli also demonstrated that using only the
first constraint, defined by (2.5), results in a considerably much slower algorithm. We
note that s0E(ΦE) = 1 and that s0E(∇φiE) = 0, since φiE vanishes at the endpoints
of the edge. Given that s0E(wi) = s0E(wk) for two subdomains Ωi and Ωk sharing
E, it then follows that aE(wi) = aE(wk). Again by using that the nodal function φiE

vanishes at the endpoints of E, we see, by using (2.4) and by integrating by parts,
that

s1E(∇φiE) = −φ̄iE (2.7)

where φ̄iE is the average of φiE over E. Thus, since s1E(ΦE) = 0 and s1E(wi) =
s1E(wk), it follows that φ̄iE = φ̄kE .

In order to simplify the description of the algorithm, we will make a further change
of variables, as in [17]. This change of basis is confined to the variables associated with
the subdomain edges. In addition to the degree of freedom associated with the average
aE(wi), we introduce a variable given in terms of (2.6), the other moment over the
subdomain edge, and a complementary set of variables, with basis functions for which
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the two moments vanish. We next group the two special variables for each subdomain
edge, for which the primal constraints are enforced, into the primal subspace while
the subspace of the remaining degrees of freedom of Γi is called the dual subspace.

We will work with three spaces, WΓ, the direct sum of the spaces of subdomain

traces W
(i)
Γi

of the Nédélec functions, without any continuity across the interface, the

partially assembled space W̃Γ, i.e., the product space with common values of the
primal variables, and ŴΓ with common values of all tangential components across the
interface.

Let us now consider the stiffness matrix associated with the subdomain Ωi :

A(i) :=




A
(i)
II A

(i)
I∆ A

(i)
IΠ

A
(i)
∆I A

(i)
∆∆ A

(i)
∆Π

A
(i)
ΠI A

(i)
Π∆ A

(i)
ΠΠ


 .

Here I represents the degrees of freedom of the element edges in the interior of Ωi, i.e.,
those of the set MΩi

, ∆ those of the dual variables on Γi, and Π those of the primal
variables. After eliminating the interior degrees of freedom, by Gaussian elimination,
we obtain the subdomain Schur complement

S(i) :=

(
S
(i)
∆∆ S

(i)
∆Π

S
(i)
Π∆ S

(i)
ΠΠ

)
:=

(
A

(i)
∆∆ A

(i)
∆Π

A
(i)
Π∆ A

(i)
ΠΠ

)
−

(
A

(i)
∆I

A
(i)
ΠI

)(
A

(i)
II

)−1 (
A

(i)
I∆ A

(i)
IΠ

)
.

We have thus partitioned wiΓ into two subvectors, the dual wi∆ and the primal wiΠ.
We note that we do not need to compute the elements of S(i) explicitly, since we can
instead use the formula for the Schur complement, to compute the product of S(i)

times a vector and that we similarly can compute the action of its inverse on a vector
by solving a linear system with the matrix A(i). The right hand side f (i) of such a

system then should satisfy f
(i)
I = 0.

The stiffness matrix of the original linear system of equations, Â, is obtained
by subassembling the subdomain stiffness matrices A(i). By locally eliminating the
interior variables of all the subdomains, we obtain a reduced linear system with all
components, interior to the subdomains, no longer present, and with a matrix ŜΓ

which can also be obtained by subassembling the subdomain Schur complements S(i).
When building our preconditioner, we will also use a partially subassembled Schur

complement S̃Γ defined on the intermediate space W̃Γ. We note that when solving a
linear system with that matrix, we can take advantage of the fact that the dual
variables effectively are local variables allowing them to take on multiple values; the
number of variables that couple the subdomain problems together globally is thus
much smaller than for a fully assembled model. We also note that when we need to
solve a linear system with the matrix S̃Γ, we can equally well solve a linear system of
equations with the matrix Ã obtained by partially subassembling the matrices A(i),
again allowing the dual variables on Γ to take on multiple values.

At the end of each BDDC iteration step, the approximate solution is made con-
tinuous across the interface with continuity restored by applying a weighted average
operator ED, which maps W̃Γ into ŴΓ.

A step of our BDDC algorithm is as follows: In each iteration, we first compute
the residual of the fully assembled Schur complement equation. We then apply ET

D to
obtain the right-hand side of the partially subassembled Schur complement system of
equations with the matrix S̃Γ. We then solve this system and apply ED to the solution.
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Averaging will change the values on Γ, and unless the iteration already has converged,
and if the averaging only involves values on Γ, this gives rise to non-zero residuals
at nodes next to those on Γ. Finally, these new residuals are eliminated by solving
Dirichlet problems on each of the subdomains. This last step will not be required
for the new variant of the BDDC algorithm since no such residuals will appear. We
accelerate the iteration by using the preconditioned conjugate gradient method.

The average w̄ := EDw of an element in w ∈ W̃ , is computed separately for
the interface degrees of freedom of the different equivalence classes. We recall that
each of these classes is defined by the index set of the subdomain interfaces Γj to
which the interface degrees of freedom belong. For a class with only two elements,
i and j, associated with a subdomain face F , we define minors of two subdomain

Schur complements by S
(i)
F := R

(i)
F S(i)R

(i)T
F and S

(j)
F := R

(j)
F S(j)R

(j)T
F , where R

(i)
F is

the restriction operator from MΓi
to MF , etc. The average across the face, for the

BDDC deluxe algorithm, is then defined by

w̄F := (S
(i)
F + S

(j)
F )−1(S

(i)
F w

(i)
F + S

(j)
F w

(j)
F ).

We note that a more computationally efficient version of this averaging (scaling) can
be obtained using approximate Schur complements as described in Section 6.

Instead of estimating (R
(i)
F w̄F )

TS(i)R
(i)T
F w̄F , we can estimate the S(i)−norm of

R
(i)T
F (w(i) − w̄F ). We easily find that

w
(i)
F − w̄F = (S

(i)
F + S

(j)
F )−1S

(j)
F (w

(i)
F −w

(j)
F ).

By some more algebra, we find, after recalling that R
(i)
F S(i)R

(i)T
F = S

(i)
F , that

(RT
F (w

(i)
F − w̄F ))

TS(i)(RT
F (w

(i)
F − w̄F )) =

(w
(i)
F −w

(j)
F )TS

(j)
F (S

(i)
F + S

(j)
F )−1S

(i)
F (S

(i)
F + S

(j)
F )−1S

(j)
F (w

(i)
F −w

(j)
F ) ≤

2(w
(i)
F )TS

(j)
F (S

(i)
F + S

(j)
F )−1S

(i)
F (S

(i)
F + S

(j)
F )−1S

(j)
F w

(i)
F +

2(w
(j)
F )TS

(j)
F (S

(i)
F + S

(j)
F )−1S

(i)
F (S

(i)
F + S

(j)
F )−1S

(j)
F w

(j)
F .

We can now prove two inequalities for the same left hand side:

S
(j)
F (S

(i)
F + S

(j)
F )−1S

(i)
F (S

(i)
F + S

(j)
F )−1S

(j)
F ≤ S

(i)
F

and also

S
(j)
F (S

(i)
F + S

(j)
F )−1S

(i)
F (S

(i)
F + S

(j)
F )−1S

(j)
F ≤ 1/4S

(j)
F .

These bounds follow easily by considering the action of these operators on any eigen-

vector of the generalized eigenvalue problem S
(i)
F φ = λS

(j)
F φ and just using that all

its eigenvalues are strictly positive.

Thus, also writing down a bound for (R
(j)
F (w

(j)
F − w̄F ))

TS(j)R
(j)T
F (w

(j)
F − w̄F ),

we find

(R
(i)T
F (w

(i)
F − w̄F ))

TS(i)R
(i)T
F (w

(i)
F − w̄F ) + (R

(j)T
F (w

(j)
F − w̄F ))

TS(j)R
(j)T
F (w

(j)
F − w̄F )

≤ 2.5(w
(i)
F )TS

(i)
F w

(i)
F + 2.5(w

(j)
F )TS

(j)
F w

(j)
F . (2.8)

All that is now required are bounds which are local to individual subdomains, i.e.,

a bound of (w
(i)
F )TS

(i)
F w

(i)
F in terms of (w(i))TS(i)w(i), etc. This observation is key
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and allows us to derive estimates that work very well even for problems with a pair of
material coefficients. We note that in our particular context, the primal constraints
will not come into play for any face since these constraints are related to the subdomain
edges only.

Each of the relevant equivalence classes, associated with the subdomain Ωi, will
contribute to the value of EDw; the contribution from the face F equals RT

F w̄F , where

RF is the restriction operator from MΓ to MF . These elements all belong to Ŵ .
We also need to consider averages across subdomain edges. We now introduce a

restriction matrix R
(i)
E which maps the values on the interface Γ onto those on the

element edges of E. If this subdomain edge is common to three subdomains Ωi,Ωj ,
and Ωk, the edge average w̄E is defined by

w̄E := (S
(i)
E + S

(j)
E + S

(k)
E )−1(S

(i)
E w

(i)
E + S

(j)
E w

(j)
E + S

(k)
E w

(k)
E ).

Here S
(i)
E := R

(i)
E S(i)R

(i)T
E , etc.

By arguments similar to those for faces, we can show that

(R
(i)T
E (w

(i)
E − w̄E))

TS(i)R
(i)T
E (w

(i)
E − w̄E) ≤ 3(w

(i)
E −wEΠ)

TS
(i)
E (w

(i)
E −wEΠ) +

3/4(w
(j)
E −wEΠ)

TS
(j)
E (w

(j)
E −wEΠ)+3/4(w

(k)
E −wEΠ)

TS
(k)
E (w

(k)
E −wEΠ).(2.9)

Here wEΠ is a restriction to the edge E of any element in the primal space. We can
also develop similar bounds for any edge, common to more than three subdomains,
using the same kinds of arguments; for some more details see [3].

The S̃-norm of the averaging operator ED provides an estimate of the condition
number of the BDDC algorithm:

κ(M−1
BDDC Ŝ) ≤ ‖ED‖2

S̃
. (2.10)

This type of result has been known for a decade for the closely related FETI–DP
algorithms; see [14]. For a detailed proof for BDDC algorithms, see, e.g., [18, Theorem
25]. The proof of a bound on ‖ED‖2

S̃
can be developed for one subdomain at a time,

and each of these bounds is established by developing a good enough bound for each
of the equivalence classes of the interface of the subdomain.

3. Technical Tools. We first collect four lemmas, Lemmas 4.16, 4.19, and vari-
ants of Lemmas 4.23 and 4.24, on Whi

grad from [23, Chap. 4]. We note that the proof
of [23, Lemma 4.16] is not satisfactory and that we therefore include a complete proof
of Lemma 3.1. We will use the abbreviation ωi := 1 + log(Hi/hi) and denote by Ih

the standard nodal interpolation operator onto Whi

grad. All our norms are scaled with
relative weights determined by the diameter of the subdomain. Thus,

‖u‖2H1(Ωi)
:= |u|2H1(Ωi)

+H−2
i ‖u‖2L2(Ωi)

. (3.1)

Lemma 3.1.

‖uh‖
2
L2(E) ≤ Cωi‖uh‖

2
H1(Ωi)

, ∀uh ∈ Whi

grad ,

and

‖uh − ūE‖
2
L2(E) ≤ Cωi|uh|

2
H1(Ωi)

, ∀uh ∈ Whi

grad .

Here ūE is the average of uh over the edge E. The same estimates also hold for any
line segment that belongs to Ωi.
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Proof. Our proof will be modeled on that of [1, Lemma 4.92], which provides
a proof of a well-known finite element Sobolev inequality in two dimensions; cf. [23,
Lemma 4.15] for a very different proof.

Let us consider a shape-regular tetrahedron TE with a diameter on the order of
Hi and which might be only a subset of Ωi. Consider the centroid cK of any element K
with at least one vertex on the edge E and construct a plane through this point with
an intersection with TE with a relatively large area AK . This can be accomplished by
using only two sets of parallel planes. For cK , we use a plane parallel to the face of
TE which intersects E only at the endpoint of E closest to cK .

Inspecting the proof in [1], we see that the fact that the mesh on AK , inherited
from the three dimensional mesh of TE, can be quite irregular, with some very small
elements, does not matter. What matters is that a sphere with a radius on the order
of h and centered at cK is contained in the element K. We can therefore use the
two-dimensional finite element Sobolev inequality of [1, Lemma 4.92] to obtain the
bound

|uh(cK)|2 ≤ Cwi‖uh‖
2
H1(AK).

A bound of similar quality for uh(x), x ∈ E ∩ K can be obtained by also using [1,
Lemma 4.5.3] to obtain

|uh(x) − uh(cK)| ≤ hK |uh|W 1
∞

(K) ≤ h
−1/2
K ‖uh‖H1(K).

The proof of the first inequality is completed by estimating
∑

x∈NE
hK |uh(x)|2.

The proof of the second now follows from the first by using Poincaré’s inequality.
Our arguments can also easily be extended to an arbitrary line segment.

The following lemma has an elementary proof.

Lemma 3.2. Let ϑE ∈ Whi

grad be the function which equals 1 at all nodes on E
and vanishes at all other nodes of the closure of Ωi. Then,

|Ih(ϑEuh)|
2
H1(Ωi)

≤ C‖uh‖
2
L2(E), ∀uh ∈ Whi

grad .

The following lemma has previously been established for triangular and rectan-
gular subdomain faces.

Lemma 3.3. There exists a function ϑF ∈ Whi

grad, which equals 1 at each node of
a subdomain face F, which satisfies Assumption 1, of a subdomain and which vanishes
at all other nodes of ∂Ωi, such that

0 ≤ ϑF ≤ 1, and |∇ϑF | ≤ C/r(x).

Here r(x) is the distance from x to ∂F.

Proof. This result is established by explicitly constructing a function, with these
boundary values, and then estimating its gradient. We will use similar techniques
when establishing a new technical tool in Lemma 3.5.

For each subdomain edge E of the face F , we construct a tetrahedron TE with a
triangular base defined by E and the special point cF of Assumption 1. TE also has
a vertex V located on the normal, through cF , to the face and at a distance on the
order of Hi from cF . In case F is not planar, we will use an average of the normal
vectors of the triangles which define F. We also assume that TE ⊂ Ωi.
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For each TE , we now introduce a cylindrical coordinate system, (r, θ, z), with r
the distance from the edge E and the z-axis along E. The angular variable 0 ≤ θ ≤ θE
is 0 on the face of TE defined by E and V , while θ = θE on the face F .

We now construct the function ϑF which is constant on each plane through the
edge E and defined by its values on the line segment between cF and V. It equals 1
at cF and decreases linearly along the line segment to the value 0 at the vertex V.
The resulting function is not well defined on ∂F but is otherwise continuous in all of
Ωi once that its value is set to 0 outside the tetrahedra TE. We finally let ϑF vanish
on the boundary ∂F of the face F and replace this function by its piece-wise linear
interpolant. The bound of the lemma can now easily be established.

No new ideas are now required to modify the proof of [23, Lemma 4.24] for the
more general subdomain faces allowed by Assumption 1.

Lemma 3.4. Let ϑF be the function defined in Lemma 3.3 for a subdomain face
satisfying Assumption 1. Then,

|Ih(ϑFuh)|
2
H1(Ωi)

≤ Cω2
i ‖uh‖

2
H1(Ωi)

, ∀uh ∈ Whi

grad. (3.2)

The next lemma is of crucial importance to our theory and is believed to be new.
It allows us to obtain a good estimate of certain elements ofWhi

curl, obtained by zeroing
out the Nédélec coefficients on the boundary of a face F and on the faces adjacent to
F .

Lemma 3.5. Let F be a subdomain face, of the polyhedron Ωi, which satisfies
Assumption 1. Further, let f∂F ∈ Whi

grad have vanishing nodal values everywhere in

Ωi except on ∂F . There then exists a giF ∈ Whi

curl such that λe(giF ) = λe(∇f∂F ), ∀e ∈
MFb

, λe(giF ) = 0 for all other element edges of Γi, and

‖giF ‖
2
L2(Ωi)

≤ C(ωi‖f∂F‖
2
L2(∂F ) +H2

i ‖∇f∂F · t∂F ‖
2
L2(∂F )), (3.3)

‖∇× giF ‖
2
L2(Ωi)

≤ Cωi‖∇f∂F · t∂F ‖
2
L2(∂F ). (3.4)

Proof. In the proof of this lemma, we will construct two functions ∇fh
iF and fh

iF

such that giF := ∇f∂F −∇fh
iF + fh

iF has the desired properties. The need for these
two functions became apparent when initial attempts to prove the lemma by directly
estimating the contributions from the edges of MFb

were unsuccessful.
We note that both ∇f∂F and ∇fh

iF are curl-free, and thus ∇×giF = ∇×fh
iF . The

nodal values of fh
iF ∈ Whi

grad are chosen to be identical to those of f∂F along ∂F and

to vanish at all other nodes on Γi not in the closure of F . Thus, λe(∇f∂F −∇fh
iF ) =

0, ∀e ∈ MΓi
\MF . The function fh

iF ∈ Whi

curl will have λe(f
h
iF ) = 0 for the same set

of element edges while λe(f
h
iF ) = λe(∇fh

iF ), ∀e ∈ MF .
We will develop estimates consistent with those of the lemma for each of the

three functions, which define giF , separately. We first consider the given function
f∂F ∈ Whi

grad which has vanishing nodal values in the closure of Ωi except on ∂F . By
Lemma 3.2, we have

‖∇f∂F‖
2
L2(Ωi)

≤ C‖f∂F ‖
2
L2(∂F ). (3.5)

We start our construction of the other two functions by triangulating the face F
into long triangles. Each of them has two vertices at two consecutive nodes on ∂F
and a third at cF , the centroid of F . We then introduce a continuous, piecewise linear
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function defined on F , call it fF , using the nodal values of f∂F at the nodes on ∂F
and f̄∂F , the average of f∂F over ∂F, at cF . The motivating goal here is to obtain a
function that is identical to f∂F along ∂F , but does not change as rapidly near ∂F in
the direction orthogonal to ∂F .

The long triangles just introduced can naturally be regarded as subsets of larger
triangles each with a side equal to a subdomain edge E and with a vertex at cF . We
will construct a function fiF on the set of tetrahedra TE , introduced in the proof of
Lemma 3.3, each with one of these larger triangles as a base.

For the tetrahedron TE associated with the edge E, we introduce two coordinate
systems. The first one is Cartesian, (x, y, z), with the x-axis orthogonal to E and in
the plane of F , the y-axis parallel to the normal of F , and the z-axis along E. The
second one is the cylindrical coordinate system, (r, θ, z), as in the proof of Lemma
3.3, with r being the distance from the edge E and the z-axis again along E. The
angular variable 0 ≤ θ ≤ θE is 0 on the face of TE defined by E and V , while θ = θE
on the face F .

We now construct a function fiF (x, y, z), which equals fF on the closure of the
face F and which vanishes on the rest of the boundary of the union of the closures
of the tetrahedra TE and in the rest of the subdomain. For the tetrahedra TE , this
function is a product of fF and a function φE(θ) which is constant on each plane
through the edge E and defined by its values on the line segment between cF and V.
The value of φE(θ) equals 1 at cF and its values decreases linearly to 0 at the vertex
V. The resulting function is not well defined on ∂F but is otherwise continuous in all
of Ωi once that fiF (x, y, z) is set to 0 outside the tetrahedra TE .

On ∂F , we set fiF = fF . We finally obtain the function fh
iF ∈ Whi

grad by interpo-
lating:

fh
iF (x, y, z) := Ihi(fiF (x, y, z)).

The next task is to estimate the gradient of fiF (x, y, z); once we have done so,
we can use the fact that for each element K,

|∇Ih(fiF )| ≤ Cmax
x∈K

|∇fiF |.

We first compute the derivatives of fF (x, z) with respect to x and z for one long
triangle at a time. Since fF = f∂F along ∂F and the derivative with respect to z
constant, we have

|∂fF /∂z|
2
= |∇f∂F · t∂F |

2. (3.6)

The square of the derivative of fF with respect to x can, after considering the simple
geometry, be bounded by

|∂fF /∂x|
2 ≤ C(|∇f∂F · t∂F |

2 +H−2
i (|f∂Fe1

− f̄∂F |
2 + |f∂Fe2

− f̄∂F |
2)), (3.7)

where f∂Fe1
and f∂Fe2

are the values at the endpoints of the element edge, on ∂F, of
the long triangle. When we add the contributions from all the long triangles, we can
use the Poincaré inequality and conclude that

‖f∂F − f̄∂F‖L2(∂F ) ≤ CHi‖∇f∂F · tF ‖L2(∂F )

Finally, it is easy to prove that |∇φE(θ)| ≤ C/r.
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Integrating |∇fh
iF |

2 over TE using cylindrical coordinates, while excluding all
elements of the triangulation which touch E, summing over all subdomain edges of
∂F , and using the Cauchy-Schwarz inequality gives us

‖∇fh
iF ‖

2
L2(Ωi\Ωi∂F ) ≤ C(H2

i ‖∇f∂F · t∂F ‖
2
L2(∂F ) + ωi‖f∂F‖

2
L2(∂F )), (3.8)

where Ωi∂F is the union of all elements in Ωi that touch ∂F . From elementary
estimates, we also obtain

‖∇fh
iF ‖

2
L2(Ωi∂F ) ≤ C(h2

i ‖∇f∂F · t∂F ‖
2
L2(∂F ) + ‖f∂F ‖

2
L2(∂F )). (3.9)

We next construct an edge finite element function fh
iF ∈ Whi

curl with the same
tangential data as ∇fh

iF for all the edges of F , while vanishing along ∂F and on all
other edges of Γi. To this end, we first define

f̃h
iF := Πhi(∇fF (x, z)) =

∑

e∈MΩ̄i

λe(∇fF )Ne,

whereMΩ̄i
is the set of all finite element edges in the closure of Ωi. Here, fF is defined

for the three-dimensional space by making it constant as a function of y. Notice that
the curl of f̃h

iF vanishes since it is the finite element interpolant of a gradient. Again,
looking at one tetrahedron at a time, we next define

fh
iF :=

∑

e∈MΩ̄i
\M∂F

φ(θe)λe(∇fF )Ne,

where θe is the value of θ at the center of edge e. The restriction of the function φ
to the tetrahedron TE equals φE and the value of θe refers to that of the cylindrical
coordinate system of TE . Similarly to what was done for fiF , we have set λe(f

h
iF ) = 0

in all parts of Ωi outside all the tetrahedra. Notice that since φ(θ) = 1 on F that
λe(f

h
iF ) = λe(∇fh

iF ) for all e ∈ MF and λe(f
h
iF ) = 0 for all remaining edges of Γi.

Using (3.6) and (3.7), |φ(θ)| ≤ 1, and (2.1) gives us

‖fh
iF ‖

2
L2(Ωi)

≤ CH2
i ‖∇f∂F · tf‖

2
L2(∂F ). (3.10)

We next obtain an estimate for the curl of fh
iF . Considering an individual element

K and the definition of fh
iF , we have

fh
iF = φK f̃h

iF +
∑

e∈MK

(φ(θe)− φK)λe(∇fF )Ne, (3.11)

where φK is the value of φ(θ) at the centroid of K and MK is the set of edges for
K. Since the curl of the first term on the right-hand-side of (3.11) vanishes, it follows
from (2.2) and

‖φ(θ) − φK‖L∞(K) ≤ ChK/rK

that

‖∇ × fh
iF ‖

2
L∞(K) ≤ (C/r2K)‖∇fF ‖

2
L∞(K), (3.12)

where hK is the diameter of K and rK is the value of r at the centroid of K. Similar
to what was done to obtain the estimate in (3.8), we use cylindrical coordinates to
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sum the estimate in (3.12) for all elements not touching ∂F . Combining this result
with an estimate for elements touching ∂F obtained using (3.6), (3.7), and (2.2), we
find

‖∇× fh
iF ‖

2
L2(Ωi)

≤ Cωi‖∇f∂F · t∂F ‖
2
L2(∂F ). (3.13)

With giF := ∇f∂F − ∇fh
iF + fh

iF , we see by construction that λe(giF ) = λe(∇f∂F )
for all e ∈ MFb

and λe(giF ) = 0 for all other edges of ∂Ωi. The estimate in (3.3)
now follows directly from (3.5), (3.8), (3.9), and (3.10), while (3.4) follows from (3.13)
since ∇× giF = ∇× fh

iF .
Remark 2. We note that in an earlier, much longer proof, a bound as in (3.4)

without the factor ωi has been established. However, this factor for one term of our
bound, does not have any effect on our final condition number estimate.

We finally recall a result from Hiptmair and Xu [8, Lemma 5.1]. We note that
paper was preceded by [7], with a similar lemma applied to an iterative method quite
different from ours.

Lemma 3.6. For any polyhedral subdomain Ωi and any wi ∈ Whi

curl, there is a

qi ∈ Whi

curl, Ψi ∈ (Whi

grad)
3, and pi ∈ Whi

grad such that

wi = qi + Πhi(Ψi) +∇pi, (3.14)

‖∇pi‖
2
L2(Ωi)

≤ C(‖wi‖
2
L2(Ωi)

+H2
i ‖∇×wi‖

2
L2(Ωi)

), (3.15)

‖h−1
i qi‖

2
L2(Ωi)

+ ‖Ψi‖
2
H1(Ωi)

≤ C‖∇ ×wi‖
2
L2(Ωi)

. (3.16)

We note that

‖Ψi‖
2
L2(Ωi)

≤ CH2
i ‖∇×wi‖

2
L2(Ωi)

(3.17)

follows directly from (3.16) and (3.1).

4. The Main Result. In this section, we will obtain bounds for the right hand
sides of (2.9) and (2.8), and thus complete the proof of our main result:

Theorem 4.1. The BDDC preconditioned operator for Algorithm B has a con-
dition number bound of

κ(M−1A) ≤ Cω2 min(η, (H/h)2), (4.1)

where ω := maxi ωi, η := maxi ηi, where ηi := 1+βiH
2
i /αi, and H/h := maxiHi/hi.

4.1. Edge Analysis. In this subsection, we will develop estimates related to the
subdomain edges, in particular, an estimate of wi−wEΠ, which can then be combined
with formula (2.9).

Let E denote a subdomain edge common to Ωi and Ωk as well as to other sub-
domains. With reference to (2.4) and the decomposition in (3.14), we have along
E

aE(wi) +∇φiE · te = (si +∇pi) · te, (4.2)

where si := qi +Πhi(Ψi). Integration of (4.2) gives

pi(s) = p̄iE + φiE(s)− φ̄iE −

∫ s

−|E|/2

si · te ds+ aE(wi)s+ s̄i, (4.3)
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where p̄iE is the average of pi over E, φ̄iE that of φiE , and

s̄i = 1/|E|

∫ |E|/2

−|E|/2

∫ s

−|E|/2

si · te ds̃ ds. (4.4)

(We can easily check that the average of the right hand side of (4.3) over E equals
p̄iE as required.)

By (2.9), and the two primal constraints, φ̄iE = φ̄kE and aE(wi) = aE(wk), we
only need to estimate the S(i)−norm of the dual part of wi · te given by ∇φi∆ · te
where

φi∆ = pi − p̄iE − s̄i +

∫ s

−|E|/2

si · te ds. (4.5)

From the triangle and Cauchy-Schwarz inequalities, we then find that

|φi∆| ≤ |pi − p̄iE |+ 2|E|1/2‖si‖L2(E). (4.6)

We can estimate the L2(E)−norm of the first term by using Lemma 3.1 and (3.15).
Using the estimate of (3.16) and again applying Lemma 3.1, we then find that

‖si‖
2
L2(E) ≤ Cωi‖∇×wi‖

2
L2(Ωi)

. (4.7)

Thus,

βi‖∇φi∆‖
2
L2(Ωi)

≤Cβi‖φi∆‖
2
L2(E)

≤Cωi(βi‖wi‖
2
L2(Ωi)

+ βiH
2
i ‖∇×wi‖

2
L2(Ωi)

). (4.8)

We can now easily express the right hand side of this estimate in terms of

Ei(wi) = αi‖∇×wi‖
2
L2(Ωi)

+ βi‖wi‖
2
L2(Ωi)

and the factor ηi.
We note that the resulting estimate has one fewer ωi factors than the related

estimate [22, (8.4)]. In summary, we get a single factor of ωi when estimating the
edge components. Since ‖∇×wi‖L2(Ωi) ≤ Ch−1

i ‖wi‖L2(Ωi), we see that our estimate
can be generalized slightly to read

Ei(∇(φi∆)) ≤ Cωi min(ηi, (Hi/hi)
2)Ei(wi). (4.9)

4.2. Face Analysis. We next turn to an estimate of the face components of the
decomposition of our finite element functions defined on the interface Γi. All we need
to do is to estimate one of the terms of the right hand side of (2.8).

We will no longer work with the edge averages aE(wi), for which no satisfactory
estimates can be developed. Instead, following Toselli [22, Sect. 7], we will work with
an average a∂F (wi) over the boundary of the face F. The average circulation of wi

about ∂F is defined, as on [22, page 121], by

a∂F (wi) := |∂F |−1

∫

∂F

wi · t∂F ds,

where t∂F is a unit tangent vector along ∂F . Decomposing wi according to (3.14)
and noting that a∂F (∇pi) = 0, we find that

a∂F (wi) = |∂F |−1

∫

∂F

si · t∂F ds,
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and by using the estimate for ‖si‖L2(E) given in (4.7), that

|a∂F (wi)|
2 ≤ CH−1

i ωi‖∇ ×wi‖
2
L2(Ωi)

. (4.10)

We note that this estimate has one fewer factors of ωi than in [22, Lemma 7.5]. A
comment following that lemma suggests that an estimate the same as ours already is
available in the proof of [24, Lemma 4.1].

Returning to the decomposition in (3.14), we have on ∂F

wi − a∂F (wi)Φ∂F = ∇pi + (si − a∂F (wi)Φ∂F ), (4.11)

where Φ∂F =
∑

E⊂∂F ΦE . We note that the average circulation of the term in paren-
thesis on the right hand side of (4.11) vanishes. Thus, there is a nodal function p̃i∂F ,
which vanishes except at the nodes on ∂F, such that for e ∈ ∂F

∇p̃i∂F · te = (si − a∂F (wi)Φ∂F ) · te. (4.12)

From (4.11), we thus have for e ∈ ∂F,

wi · te = a∂F (wi) + (∇pi∂F +∇p̃i∂F ) · te, (4.13)

where p̃i∂F :=
∑

n∈N∂F
p̃i(n)φn, with p̃i(n) the value of p̃i at node n, and φn the

nodal basis function for node n. Integration of (4.12) along ∂F for 0 < s < |∂F | and
choosing p̃i∂F (0) = 0 gives

p̃i∂F (s) = −a∂F (wi)s+

∫ s

0

(si · t∂F ) ds. (4.14)

From the estimates in (4.10), (3.16), the Cauchy-Schwarz inequality, and Lemma 3.1,
we obtain

|p̃i∂F |
2 ≤ CHiωi‖∇×wi‖

2
L2(Ωi)

, (4.15)

and thus by Lemma 3.2,

‖∇p̃i∂F ‖
2
L2(Ωi)

≤ CH2
i ωi‖∇×wi‖

2
L2(Ωi)

. (4.16)

Comparing the decomposition in (2.4) with (4.13), it follows that on ∂F

wi∂F := wi =
∑

E⊂∂F

(aE(wi)ΦE +∇φiE) = a∂F (wi)Φ∂F +∇pi∂F +∇p̃i∂F . (4.17)

We now obtain the contribution wiF from the face by subtracting the function wi∂F ,
attributed to the boundary of the face, from wi. Thus, we see that since Φ∂F vanishes
on F

wiF · te = (wi −∇pi∂F −∇p̃i∂F ) · te ∀e ∈ MF .

The present goal is to obtain estimates for a function w̃iF with the same boundary
data as wiF on F, namely,

λe(w̃iF ) =

{
λe(wiF ) for e ∈ MF

0 for e ∈ M∂Ωi
\MF .

(4.18)
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We note that a bound of the energy of any function with this boundary data will

provide an upper bound for (w
(i)
F )TS

(i)
F w

(i)
F as required. With this in mind, we define

riF to be the function giF of Lemma 3.5 for f∂F = p̃i∂F . From (4.12), (4.10), and
(3.16), we obtain

‖∇p̃i∂F · t∂F ‖
2
L2(∂F ) ≤ Cωi‖∇×wi‖

2
L2(Ωi)

, (4.19)

and then find from (4.15) and Lemma 3.5 that

‖riF ‖
2
L2(Ωi)

≤ CH2
i ω

2
i ‖∇ ×wi‖

2
L2(Ωi)

, (4.20)

‖∇× riF ‖
2
L2(Ωi)

≤ Cω2
i ‖∇ ×wi‖

2
L2(Ωi)

. (4.21)

We note that, by construction,

λe(riF ) =

{
λe(∇p̃i∂F ) for e ∈ MF

0 for e ∈ M∂Ωi
\MF .

(4.22)

We next obtain estimates related to the various terms in the decomposition of wi

given by (3.14). We will use the function ϑF of Lemmas 3.3 and 3.4 and define
ΨiF := Πhi(Ihi(ϑFΨ)). We find from (3.17), 0 ≤ ϑF ≤ 1, (3.16), (3.2), and standard
estimates for edge element interpolations that

‖ΨiF ‖
2
L2(Ωi)

≤ CH2
i ‖∇×wi‖

2
L2(Ωi)

, (4.23)

‖∇×ΨiF ‖
2
L2(Ωi)

≤ Cω2
i ‖∇ ×wi‖

2
L2(Ωi)

. (4.24)

Let ϑWi
denote a nodal function which is 1 at all subdomain edges and vertices

of Ωi and 0 at all other nodes of Ωi. We next define a function in Whi

curl by Ψi∂F :=∑
e∈MF

λe(ΨWi
)Ne where ΨWi

:= Πhi(Ihi(ϑWi
Ψi)). From (2.1) and (3.17), we find

that

‖Ψi∂F ‖
2
L2(Ωi)

≤ C
∑

e∈MF

h3
i λ

2
e(Ψi∂F ) ≤ C‖Ψi‖

2
L2(Ωi)

≤ CH2
i ‖∇×wi‖

2
L2(Ωi)

, (4.25)

and from (2.2), Lemma 3.1, and (3.16), that

‖∇×Ψi∂F ‖
2
L2(Ωi)

≤ Cωi‖∇×wi‖
2
L2(Ωi)

. (4.26)

For qiF :=
∑

e∈MF
λe(qi)Ne, we find from elementary estimates and (3.16) that

‖qiF ‖
2
L2(Ωi)

≤ C
∑

e∈MF

h3
iλ

2
e(qi) ≤ C‖qi‖

2
L2(Ωi)

≤ Ch2
i ‖∇ ×wi‖

2
L2(Ωi)

≤ C‖wi‖
2
L2(Ωi)

, (4.27)

‖∇ × qiF ‖
2
L2(Ωi)

≤ C
∑

e∈MF

hiλ
2
e(qi) ≤ C‖h−1

i qi‖
2
L2(Ωi)

≤ C‖∇×wi‖
2
L2(Ωi)

. (4.28)

Defining piF := Ihi(ϑF pi) and choosing the mean of pi over Ωi to vanish, it follows
from (3.15), (3.2), and Lemma 3.4 that

‖∇piF ‖
2
L2(Ωi)

≤ Cω2
i (‖wi‖

2
L2(Ωi)

+H2
i ‖∇×wi‖

2
L2(Ωi)

), (4.29)

We note that piF = pi − pi∂F . For

g̃iF := ΨiF +Ψi∂F + qiF +∇piF ,
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we find from the estimates in (4.23-4.29) that

Ei(g̃iF ) ≤ Cω2
iEi(wi), (4.30)

and, by construction, that

λe(g̃iF ) =

{
λe(wi −∇pi∂F ) for e ∈ MF

0 for e ∈ M∂Ωi
\MF .

(4.31)

We now choose

w̃iF = g̃iF − riF , (4.32)

and can confirm from (4.31), (4.2), and (4.22), that w̃iF satisfies (4.18). In other
words, w̃i has the same boundary values as wi on F .

From the estimates in (4.30), (4.16), (4.20), (4.21), and noting that Ei(wiF ) ≤
Ei(w̃iF ), we find

Ei(wiF ) ≤ Cω2
i min(ηi, (Hi/hi)

2)Ei(wi). (4.33)

5. Implementation Details. In the course of generating numerical results for
irregular-shaped subdomains (see Table 6.4), it became apparent that certain care
must be taken in the specification of subdomain edges. Namely, the simple definition
of a subdomain edge consisting of all the element edges shared by the same set of
three or more subdomains is not always sufficient. Specifically, we identified three
different cases where this definition led to problems. The good news is that a simple
solution was identified for each of these cases.

The first problematic case is when a subdomain edge consists of two or more
disconnected components. Here we say that two edges of a subdomain edge are
connected if they have a single endpoint node in common. Notice for two or more
components that the subdomain edge will have more than two endpoints. The solution
in this case is to simply treat each of the components as a separate subdomain edge.
We note that this practice has also been used previously for scalar elliptic and elasticity
problems.

The next problematic case is related specifically to the transformation of variables
used for subdomain edges. An example case is shown in Figure 5.1 and originated
from a decomposition of a cube domain into 64 subdomains obtained using the graph
partitioner Metis [13]. The subdomain edge E common to subdomains 3, 31, and
32 is shown as a solid line, while a finite element edge common to only subdomains
3 and 5 is shown as a dashed line. Notice that one of the endpoints of this edge
is also an internal node of E. Recall that a transformation of variables is made
for the edge degrees of freedom (dofs) of E so that two of them are explicitly primal.
An unanticipated consequence of this transformation is that the subject finite element
edge is now coupled to all the internal nodal dofs for E even though it is only connected
to one of the nodes of E. This later led to a singularity in the partially assembled
matrix S̃Γ. The solution here is to simply split the original edge into two at the node
common to E and the problematic finite element edge. We note for this example there
were originally 660 subdomain edges. Of these, 7 had two disconnected components
while only 2 had this problematic case.

An example of the third problematic case is shown in Figure 5.2 and was observed
for a decomposition of a cube into 514 subdomains (512 subdomains requested, but
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Fig. 5.1. Second problematic subdomain edge case.

Fig. 5.2. Third problematic subdomain edge case.

two had disconnected components). Notice that the subdomain edge has three rather
than two endpoints. Here the solution is to simply split the subdomain edge at any
node incident to more than two finite element edges. For the example shown, this
results in the original edge being split into three. We note for this example there were
originally 7090 subdomain edges. Of these, only 1 had this problematic case.

6. Numerical Examples. Numerical examples are presented in this section to
confirm the theory and to demonstrate the importance of deluxe scaling in certain
cases. The number of preconditioned conjugate gradient iterations and associated
condition number estimates to achieve a relative residual tolerance of 10−8 for the
solution of ŜΓx = b are denoted by iter and cond in the tables. The subdomains are
discretized using the lowest order hexahedral edge elements, and random vectors b
are used for all the examples. Unless stated otherwise deluxe scaling is used. We note
that, we easily could have developed our theory for hexahedral elements in the same
way as for tetrahedral edge elements.
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Table 6.1

Results for unit cube decomposed into smaller cubical subdomains with H/h = 4. The material
properties are constant with αi = α and βi = 1.

α = 10−4 α = 10−2 α = 1 α = 102 α = 104

Nd iter cond iter cond iter cond iter cond iter cond
2 9 2.49 8 1.59 10 1.99 10 2.03 10 2.03
4 12 2.36 10 1.79 14 2.63 15 2.70 16 2.70
6 11 2.12 12 2.07 15 2.81 16 2.88 17 2.88
8 11 2.02 13 2.25 15 2.87 16 2.95 17 2.95
10 11 1.97 13 2.35 16 2.91 17 2.98 18 2.98
12 11 1.92 14 2.44 16 2.93 17 2.99 18 2.99

Table 6.2

Results for unit cube decomposed into 27 smaller cubical subdomains. The material properties
are constant with αi = α and βi = 1.

α = 10−7 α = 10−2 α = 1 α = 102 α = 104

H/h iter cond iter cond iter cond iter cond iter cond
4 12 2.74 9 1.63 13 2.41 13 2.47 14 2.47
6 15 4.51 12 2.15 14 2.93 15 3.01 16 3.01
8 19 6.89 14 2.70 16 3.34 17 3.44 18 3.44
10 22 9.98 15 3.22 17 3.69 18 3.79 19 3.79
12 24 13.8 16 3.69 17 3.98 19 4.09 20 4.10
14 28 18.3 17 4.13 18 4.24 19 4.36 21 4.36
16 30 23.5 18 4.55 19 4.47 20 4.60 22 4.60

The first example is for a unit cube decomposed into smaller cubical subdomains.
The number of elements in each subdomain in each of the three coordinate directions
is denoted byH/h. Similarly, Nd denotes the number of subdomains in each direction.
The results in Table 6.1 confirm that condition numbers are bounded independently
of the number of subdomains.

The next example fixes Nd = 3 (27 subdomains) and varies H/h for constant
material properties. Condition numbers from Table 6.2 for α = 10−7 and α = 104,
β = 1, are plotted versus H/h in Figure 6.1. Notice the fundamentally different
dependence of condition number on H/h for very small and very large values of α.
In the case of very small α (i.e. large η), there appears to be at least a quadratic
dependence of condition number on H/h. In contrast, for very large α (small η),
condition numbers appear to be bounded by a multiple of (1 + log(H/h))2. Both of
these observations are consistent with the theory.

Remark 3. In order to address the rapid growth in the condition numbers with
respect to H/h for large values of η, we investigated the use of alternative transfor-
mations of variables for unknowns on subdomain edges. We found numerically for
constant material properties that it is possible to get a uniform bound in H/h for
η ≫ 1 while retaining the log-squared bound for η ≪ 1. Nevertheless, rapid growth of
the condition numbers was still observed for some intermediate values of η.

The next example is used to confirm the theory for a checkerboard arrangement of
material properties and to also demonstrate the importance of deluxe scaling in certain
cases. As in the previous example, we consider a unit cube with Nd = 3, but now there
are two sets of material properties. Red subdomains have (αi = 104, βi = 10−2) while
black subdomains have (αi = 102, βi = 1). We note that red subdomains share faces
with black subdomains while red subdomains only share vertices with each other (the
same holds for black subdomains). Results are shown in Table 6.3 for scaling based
on matrix diagonal entries (stiffness scaling), the inverse of the number of subdomains
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Fig. 6.1. Condition number estimates and least squares quadratic fit for α = 10−7 and α = 104.

Table 6.3

Results for unit cube decomposed into 27 smaller smaller cubical subdomains with a checkerboard
arrangement of material properties.

stiffness scaling cardinality scaling deluxe scaling e-deluxe scaling
H/h iter cond iter cond iter cond iter cond
4 50 272 80 156 6 1.06 6 1.06
6 67 342 100 207 7 1.20 7 1.20
8 78 398 117 247 8 1.33 8 1.33
10 87 445 128 281 9 1.45 9 1.45
12 95 486 140 310 10 1.55 10 1.55
14 102 522 151 336 10 1.63 10 1.63
16 109 554 160 360 11 1.71 11 1.71

sharing an edge (cardinality scaling), deluxe scaling, and an economic version of deluxe
scaling (e-deluxe scaling). With reference to Subsection 2.2, the economic version
of deluxe scaling is obtained by only considering the interior edges of Ωi directly

adjacent to the edges of F orE when determining the Schur complements S
(i)
F and S

(i)
E ,

respectively. We note this economic alternative can result in significant computational
savings. Notice that condition numbers and iterations for deluxe scaling and its
economic version are indistinguishable and much smaller than those for the other two
standard scaling options. Further, the observed growth in condition number with
H/h is consistent with the theoretical log-squared bound.

The final example is identical to the first, but now the subdomains are obtained
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Table 6.4

Counterpart of Table 6.1 for subdomains obtained using a graph partitioner. Again, the material
properties are constant with αi = α and βi = 1.

deluxe scaling
α = 10−4 α = 10−2 α = 1 α = 102 α = 104

N iter cond iter cond iter cond iter cond iter cond
8 13 2.94 10 1.83 13 2.60 13 2.65 14 2.66
64 15 2.92 12 2.07 16 3.43 17 3.52 18 3.52
217 16 3.30 14 2.74 19 3.87 20 3.91 21 3.92
514 15 2.83 15 2.94 19 4.01 20 4.04 21 4.04

e-deluxe scaling
8 13 2.94 10 1.83 13 2.70 13 2.76 14 2.76
64 15 2.93 12 2.08 16 3.50 17 3.60 18 3.60
217 16 3.30 14 2.74 19 3.94 20 3.98 21 3.98
514 15 2.83 15 2.89 19 3.93 20 3.96 21 3.96

using the graph partitioner Metis rather than using all cubical subdomains. For
example, the counterpart of Nd = 4 in Table 6.1 appears in the rows for N = 43 = 64
in Table 6.4. Comparison of these two tables indicates that good performance of the
algorithm is also possible for mesh decompositions obtained from graph partitioners.
Notice also the comparable numbers of iterations and condition number estimates for
the two deluxe scaling variants.
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