AN ITERATIVE SUBSTRUCTURING METHOD FOR
MAXWELL’S EQUATIONS IN TWO DIMENSIONS
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Abstract. Iterative substructuring methods, also known as Schur complement methods, form an
important family of domain decomposition algorithms. They are preconditioned conjugate gradient
methods where solvers on local subregions and a solver on a coarse mesh are used to construct the
preconditioner. For conforming finite element approximations of H!, it is known that the number
of conjugate gradient steps required to reduce the residual norm by a fixed factor is independent of
the number of substructures and that it grows only as the logarithm of the dimension of the local
problem associated with an individual substructure. In this paper, the same result is established
for similar iterative methods for low—order Nédélec finite elements, which approximate H(curl; Q) in
two dimensions. Results of numerical experiments are also provided.
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1. Introduction. In this paper, we consider the following boundary value prob-
lem

(1) Ly := —curl(acurlu)+ Bu = f in Q,
nxu = 0 on 90N

Here  is a bounded polygonal domain in R? of unit diameter, and n its outward
normal. We assume that £ € (L2(£2))2, that the coefficient matrix B is a symmetric
uniformly positive matrix-valued function with b; ; € L>(2), 1 < 4,j < 2, and that
a € L*>(Q) is a positive function bounded away from zero. The unit tangential vector
t on 01 is defined such that, following its direction, 012 is traversed counterclockwise.
The tangential component of u on 9, u - t, is then equal to n x u.

The choice of Dirichlet boundary conditions is made for simplicity only; other
boundary conditions may also be considered without any new technical complications.
We could, in particular, consider reflection conditions of Neumann or Robin type,
which are connected to Silver—-Miiller radiation conditions; see [16].

Equation (1) is encountered when solving Maxwell’s equations and Stokes’ prob-
lem in the stream function—vorticity formulation; see [8, 10]. The case of time—
dependent Maxwell’s equations, discretized with an implicit time—scheme is particu-
larly important; in this case, u is the electric field and equation (1) is solved in each
time step. The coefficient a vanishes with the time step and f depends on the solution
at the previous steps, as well as the electric current density; see [8, 15].
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The spaces H(curl; Q) and H(div ;Q), and special finite element approximations,
have been introduced to analyze equations such as (1); see [10]. In recent years, a con-
siderable effort has begun to develop optimal or quasi—optimal, scalable precondition-
ers for these finite element approximations of problems in H(curl; Q) and H(div; Q).
Two-level overlapping Schwarz preconditioners for H(div;) and H(curl; Q) have
been developed for two ([4]) and three ([19, 13]) dimensions, respectively. Multigrid
and multilevel methods are considered in [4, 3, 12, 11, 13, 5]. However, we know of no
previous work on iterative substructuring methods for H(div ;) and only a few pa-
pers on the H(curl; Q) case; see [2], where optimality is proven for a two—subdomain
iterative substructuring preconditioner, combined with Richardson’s method, for a
low—frequency approximation of time—harmonic Maxwell’s equations in three dimen-
sions.

Tterative substructuring algorithms are iterative methods, where the precondi-
tioner is built from solvers defined on the substructures which form a non—overlapping
partition of the original domain. When a coarse solver is added, the rate of conver-
gence can be made independent of the number of subregions. convergence. The
method considered here has its roots in the early work by Bramble, Pasciak, and
Schatz [6]; see also [20]. That work is all for the H' case. There has been extensive
work on the three dimensional case as well; see, e.g. Dryja, Smith, and Widlund [9]
and the many references therein. We note that for all these iterative substructuring
methods, the condition number of the relevant iteration operator grows polylogarith-
mically in H/h. Here H represents the diameter of a substructure and h the diameter
of the elements into which the substructure has been divided. The bounds are in-
dependent of the number of subregions and also of possible jumps in the coefficients
across the interface between substructures.

In this paper, we restrict ourselves to two dimensions and develop an iterative
substructuring method for equation (1). The condition number bound and the per-
formance are very similar to those previously known for the H! case. The bounds
are independent of the number of substructures; they are developed locally for one
substructure at a time and they are therefore insensitive to even large changes in the
coeflicients from one substructure to its neighbors. We will also discuss the impact
on the performance when the coefficients a and B change relative to each other; see
Sections 4 and 5. Only one class of algorithms will be considered, but we note that the
extension of our results to other iterative substructuring methods would not present
any real difficulty. in (1).

This paper is organized as follows. In Section 2, we recall some properties of
the space H(curl; Q) and introduce a variational formulation of (1). In Section 3, we
describe the finite element spaces employed for the approximation of (1) and prove a
stability lemma for an interpolation operator. Finally, in Section 4, we describe our
substructuring preconditioner and prove an upper bound for its condition number.
The last section is devoted to the discussion of some numerical results.

2. Problem setting and functional spaces. Given a bounded open Lipschitz
domain D C R?, let (-,-)s,p denote the scalar product in the Sobolev space H*(D). We
use || - ||s;p and | - |s;p to denote the corresponding norm and semi-norm, respectively,
dropping the subscript D if D = Q. For a general reference on Sobolev spaces, see [1].

The weak formulation of problem (1) is defined in

H(curl; Q) := {v € (L*())?| curlv e L*(Q)}.

This is a Hilbert space with the inner product and the associated graph norm defined
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by

(W, V)eunt := (0, V)o + (curlu, curlv)g,  ||ul|2,q := (u,u)o + (curlu, curlu)y ;

see [10] for a discussion of basic properties of H(curl; Q). In particular, we recall a
trace theorem:
Given a vector u € H(curl;(), then its tangential component on the boundary,
n x u=u-t, belongs to the space H-3 (09Q). The subspace of vectors in H (curl; )
with vanishing tangential component on 91 is denoted by Hg(curl; Q).

Equation (1) can be given the following variational form:

Find u € Hy(curl; Q) such that

(2) a(u,v) = (f,v)e, v € Hy(curl; ),

where the bilinear form a(-,-) is given by

a(u,v) := /(a curlucurlv + Buv) dz, u,v € H(curl;Q).
Q

Associated with the bilinear form a(-,) is the energy norm || - ||, defined by ||v||? :=
a(v,v). Our assumptions on the coefficients guarantee that the energy norm is equiv-
alent to the graph norm.

A central result, valid for any Lipschitz domain, is a Helmholtz type decomposi-
tion of Hy(curl; Q) which is orthogonal with respect to the graph norm; see [8, vol. 3,
Proposition 1, p. 215]:

(3) Hy(curl; Q) = grad H} (Q) @ Hy (curl; Q).

4) Hi (curl; Q) := H(div; Q) N Ho(curl; Q) = curl H(Q) N Hy(curl ; ),
and
H(div; Q) := {u € H(div; Q)| divu = 0},

where H(div; Q) := {u € (L?(2))?| divu € L*(Q)} .
If © is simply connected, the kernel of the curl operator in Hy(curl; Q) is grad H} (Q2)
(see [8, vol. 3, Proposition 2, p. 219] ), and the following inequality holds:

(5) lullo < C diam(R) ||curlul|o, u € Hy(curl; Q),

with a constant C' independent of u.

3. Nédélec finite element discretizations. We first introduce a simplicial
triangulation 7g and then a family of quasi-uniform and shape-regular triangulations
Tn, h < H, obtained by refining Tp in some standard way. Let Tg = {T}, k =
1,---,K} and Hy, = diam(T},), with H = max{H}}. The coarse elements T}, are also
called substructures. We denote the set of edges associated with the triangulations
T and Ty, by £ and &, respectively. We consider, in full detail, only triangulations
based on triangles but note that the results of this paper are equally valid for finite
element spaces built on quadrilaterals.
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We assume that the coefficients a and B in equation (1) are constant in each
substructure Ty, € Ty and denote them by a; and By, respectively. We also assume
that

(6) 0 < Bl < xTBix < mlxf?, x € R?,

fork=1,---,K.

We consider finite element discretizations based on the lowest order Nédélec ele-
ments, also known as Whitney finite elements; see [7, 10, 14]. With P,(D), D C Q,
£ > 0, the set of polynomials of degree < £ on D , and with

R(T) :=Po(T)? + Po(T) (2, —71)",
we define the following spaces:
Xu(Q):={u€ H(ewl; Q)| u, e R(T), T€Tu},
and
Xp(2) :={ue H(curl;Q)| u, €eR(T), TeTh}.

The degrees of freedom are given by averages over the edges e of the triangulations:
1

(7 Ae(u) = —/n x u do,
he

where h, is the length of the edge e.
Subspaces of vectors with a vanishing tangential component are defined by

Xo,n(Q) := X5 (Q) N Ho(curl;Q), Xo,u(Q) := Xu(Q) N Hy(curl; Q).

As in the case of Lagrangian finite elements the L?-norm of the Nédélec elements can
be bounded from above and below by means of the values of their degrees of freedom.
The proof in [17, Proposition 6.3.1] for Lagrangian elements can easily be adapted to
establish the following lemma.

LEMMA 3.1. There exist constants 0 < ¢ < Ci, which depend only on the
minimal angle of T, (Twr), such that for allu € R(T), T € Ty, (Tu)

®) a Y (heAe(w)® < ullfy <C1 Yo (heAe(w)’.

eCoT eCoT

An essential tool in our proof for the Schwarz methods is an interpolation operator
pu onto X (Q), defined in terms of the degrees of freedom of Xy (), i.e.

1
Ae(pgu) == h—/nxudo, e €f&y.

e
e

We note that these quantities depend solely on the values of u on the boundary of T
this will allow us to develop our bounds locally, one subregion at a time.

It is easy to show that curl (pgu) = Ilgcurl (u), where Iy is the L2-projection
onto the space of piecewise constant functions associated with the triangulation Ty,
since for each T' € Ty

(curl (pgu)) |r = %fcurl (ppu)dx = % f pHu) x ndo
T
) = % uxndo = %f u) dz = (IIgcurl (u)) |r.
aT T
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The following lemma establishes the stability of the interpolant pg.
LEMMA 3.2. There exists a constant C' > 0, which depends only on the minimal
angle of the triangulations Ty, and Tw, such that for all u € Xp(Q)

(10) leutl (pru)l[§ < [leurlulfg,

H
) lomally < ¢ (1108 () lulf + 22)curtul).

Proof. Inequality (10) is obtained by using (9) and summing over the contributions
from the different substructures.

The proof of (11) uses arguments similar to those of [21] in which a multilevel
splitting of the div-operator was considered. We consider one subdomain at a time.
Given Ty € T, let e be an edge of 0T}, of length H,, and let v; and vs be its
endpoints. The restriction of the fine triangulation 7 to e splits e into a union of
nonoverlapping edges of the fine triangulation. Let e; and es be the edges, which end
at v; and v, respectively, and let ¢; and t2 be the elements in 7, to which e; and
ez belong. We now define a continuous, piecewise linear function, 9, on 0T} which
satisfies: ¥, is equal to one on e, except on e; and ez, where it decreases linearly to
zero; it is extended by zero on 9T} \ e. As shown in [18, Section 5.3.2], ¥, can be
extended to T}, as a continuous piecewise linear function, still denoted by 9., with an
absolute value less than or equal to 1, and with a gradient which is bounded by C/h
on t; and ¢y and by C/r elsewhere. Here r is the distance to the closest of v; or vs.

Because of Lemma 3.1, it is enough to bound H.(n x pyu) , for each edge
e C 0T}, Since the function n x (pgu)|, is constant, we can use Stokes’ theorem, (7)
and (8), and find that

H.(n x pyu)|, = / (n x u)do

e
h h
= / Ye(n x u)do + % (n x u|21) + % (n x u|e2)
7 h h
/(ﬁecurlu—|— grad ¥, x u)dz + f (n X ulq) 4 ez (n x u‘q)
T
< C(H|lcurlulloyr, + [Je e, [[ulloyz, + [[ullost, + llallose,) -

We next consider the second term on the right hand side of (12) in more detail.
To obtain an upper bound for |.|1,1,, we split T}, into t1 U s and Ty \ (¢1 U t2)

|19e|iTk: / lgrad 9, |* dz + / lgrad ¥, |* dz

t1Uto T \(t1Ut2)
H 27w
(13) 1 1 .
< C /mdx+ / T—2da: <C 1+//;d¢dr
t1Ut2 Tk\(tlutz) h O
< C(1+1log(%)).

Taking (8), (12), and (13) into account, we find, by summing over all e C 9T}, that

. H
lomullz, < FPlcurtull g, + B, € (1410 (35 ) ) Iz,
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The final result is obtained by summing over all T}, € Tg. O
Remark: We can obtain a similar estimate for the energy norm. However in
this case, the constant also depends on the ratio of the coefficients

k H
{j;B (pgu) (pgu)dz < Clg}casxKﬁ (1+log (F))S{B u udz

H2
+ C max Z—:’“fa curlu curludz.
1<k<K o

We will need an orthogonal splitting for the discrete spaces, similar to that of (3).
We refer to [10, 7, 4] for details and note that the results given in [7, Section III.3],
[7, Section IV.1] and [4] for the H(div;) case are also valid for H(curl; ), since
the vectors in H(curl;Q) can be obtained from those in H(div;{) by a 90-degree
rotation. Let T' € Ty be an element of the coarse triangulation and let Xo,,(T) be
the finite element space Hg(curl; T") N X}, defined on T and with vanishing tangential
component. Furthermore, let Sy, (7T") denote the space of functions which are constant
on each element of 7;, and with mean value zero on T', and let Wy, (T') be the space
of continuous functions which are linear on each element in 75 and vanish on OT.

It is well-known, see [7, 10], that, since T is simply connected,

{u € Xo;p(T) | curlu =0} = {gradp | p € Won(T)},
and that
(14) curl Xo;p(T) = So;n(T)-
We define the following orthogonal decomposition
(15) Xo;n(T) = grad Won(T) @ X3, (T).

The pair of subspaces Xo,,(T") and So,»(T") also satisfies a Babuska-Brezzi condi-
tion, see [7],

(p, curlu)o

n sup —p—
PES;R(T)  uexg,,(T) ”u“curl;T ||p||0;T
p#0 u#0

(16) c> 0.

The constant ¢ is independent of A but depends on the shape of T. An immediate
consequence of (16) is that for each u € Xo,,(T), there is a unique v € Xd;-h(T) with
curl v = curlu such that

(17) [vllo;r < CH ||curlvllo;r

with a constant independent of v; see [10, Proposition 5.1].

4. Schwarz methods and stable splittings. Schwarz theory provides pow-
erful tools for the study of many classes of preconditioners for partial differential
equations; see, e.g. [18]. Applications are particularly well developed for conforming
finite element approximations of elliptic problems. A Schwarz algorithm is an iteration
scheme defined in terms of a family of subspaces {V;, i = 0,---, J}, projection-like
operators {T;,4 = 0,---,J } onto these subspaces, and a scalar product a(-,-) on a
relevant finite dimensional space V.

An additive Schwarz method provides a new operator equation

Tasu = ZTiu =8
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which can be much better conditioned than the original discrete elliptic problem; it
can often be solved effectively by the conjugate gradient method, without further
preconditioning, employing a(-,-) as the inner product. The right hand side g can
be chosen so that the new problem has the same solution as the original one; it is
possible to compute T;u from the data given by the original problem.

An estimate for the lowest eigenvalue of Ty, is given by the following lemma;
see [18, Secton 5.2].

LEMMA 4.1. If a representation, u =Y u;, u; € V;, can be found, such that

Za(uiaui) < Cg a(“‘i ll), Vue VJ

then the lowest eigenvalue of the additive Schwarz operator Tys is bounded from below
by Cy 2.

We proceed by first introducing an auxiliary decomposition of the Nédélec space
Xo;n(2), related to the Laplace operator, and prove, in Lemma 4.2, that a stable
splitting can be found. We then use this result to prove a lower bound for the smallest
eigenvalue of an additive iterative substructuring method. We conclude this section
by showing that there is also a bound that is independent of the the ratio of the
coefficients B and a in (1). As is often the case, a good bound for the largest eigenvalue
is routine and can be obtained by a standard coloring argument; see, e.g. [18, Page
165].

In preparation for the first step, we introduce a Schwarz method based on a direct
sum decomposition of the finite element space. For each edge in Tm, we define the
region T; such that T;; := T; U Tj.

We consider the following splitting of X := Xo,,(Q) into subspaces:

K K
(18) X=Xo+ Y Xp+ ) Xy

k=1 ig=1

i<J
Here X := X0,z () is the finite element space of the coarse triangulation Tg. X}
is the subspace of vectors with support in Tj: X := {v € X | v|o\gragientT, = 0}-
Finally, the space X;; consists of the gradient of functions in Wy,;(T};), which are
discrete harmonic with respect to the Laplace operator on T; and T}, i.e. the extension
with smallest H' semi-norm of all finite element functions with the given boundary
values.
It is then easy to see that

XoﬂXk:XoﬂXij:XijﬂXk:{O}, 1<k, <K, i<]j.

Furthermore, the space X}, and X; as well as X;; and X,,,, have an empty intersection
for different sets of indices. Counting the degrees of freedom then guarantees that
(18) is a direct sum.

We remark that X;; is not defined by solving a homogeneous Maxwell equation
with boundary data given by piecewise constant functions, with zero averages over
the edges; see below for a discussion of that case.

LEMMA 4.2. For each u € X, there exists a unique decomposition

K K
(19) u=u0+2uk+2u,~j,
k=1

i,j=1
i<j



8 F. BEN BELGACEM, A. TOSELLI, O. WIDLUND, B. WOHLMUTH

such that
K K 7\ 2
a(ug, ug) + ; a(ug,ug) + JZ=1 a(u;j,u5) < C (1 + log (E)) a(u,u),

i<j

with a constant C > 0, independent of h, H, and u.
Proof. We obtain pgu = ug since the decomposition is unique and pg(u—ug) = 0.
Using Lemma 3.2, we immediately obtain an upper bound on the first term;

H
a(ug,u9) < Cn (1 + log ﬁ) a(u,u)
where 1 depends on the coefficients. An upper bound for 7 is given by

2
k. Hi vk
max max | 2k k)
1<k<K By’ ag

The upper bound for the remaining terms is established on the subdomain level, and
the global result is obtained by summing over all subdomains. For an upper bound of
[|usj]lo, we proceed by further decomposing the subspaces Xy, X;;, and X, restricted
to a substructure into gradient spaces and orthogonal complements.

We recall that Xg restricted to T; is equal to R(T;) and thus each uy € Xy can be
written on T; € Ty as

1; = grad ¢y + o ( Z;—_y;

up ) = grad ¢y + ug

where ¢p is a linear function and (x;,y;) is the center of gravity of the subdomain
T;. Then, it can be easily seen that this is a L?-orthogonal decomposition and that

(20) llumlo;; < CH||curlugl|o,r;-

For the local subspace X;, we use the orthogonal splitting already introduced in (15).
Each u; € X; can be written as

u; =grad ¢; +u, .

We denote by M(i) the set of all indices 1 < j < K, j # i, such that := T; and Tj
have a common edge and define u;; := uy; in case that j < ¢. By the definition of
Xij, each uy; is the gradient of a continuous piecewise linear function ¢;;.

By defining

i=dp+éit Y, iy, Wi=ug+ur

jeM(@)
we obtain the following decomposition for u on Tj
(21) u=grady + w.

We remark that this is not an orthogonal decomposition.
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It follows, by definition, that ¢m + > jeM(i) ¢;; is a discrete harmonic function.
Applying [20, Lemma 3.3], we obtain

2
1:

H\?2
(22) Z +|¢z’j|§{1/2(3Ti) <C (1‘*‘10%%) |¢H+ Z bij

JEM() jeM(i)

;T

Using (22), the equivalence between the H'/2-semi-norm on dT; and the | - |1-semi-
norm on 7; for discrete harmonic functions, we obtain

(23) Z ||uz'j||g;Ti <C Z |¢ij|§{1/2(8T,-)‘

JEM(3) JEM(i)
Since grad ¢; and grad (¢m + _;c uq(;) $ij) are orthogonal in L?, (22) and (23) yield
7\ 2
5 Mol < (1+10g 7 ) llgrad wlBr
FEM(4)

In a last step, we have to bound ||grad ¢|[5.;, by [[ullcurr;- Using inequality (17)
applied on u; and (20), we obtain

w3z, < CLE?([lcurlu||§,q, + [lcurl ug|[f,)-
Since curlugy is constant and curlu; has mean value zero on T;, we finally find
(24) w3z, < CLH?|lcurl w57,
Using (21), we obtain
||u”zur1;Ti = |¢|iT, + ||w||(2:ur1;T,- + 2(w,grad ¢)0;Ti-
Applying Young’s inequality and (24), we get
||u||zur1;Ti 2 (1 - e)lzbliﬂ + (1 + (1 - G_I)CJ-H)chrlw”g;ﬂ-?

for 0 < € < 1. The choice e = C1 H/(C1 H + 1) gives

|1/)|%;T,- S C”u”gurl;T;
and thus

A H\?

> il <€ (141087 ) HulEr
JEM(H)
Summing over all subdomains, we finally get

K K H 2
i+ 3 el + 3 s s < € (14108 () )l
k=1

i,j=1
i<j

Lemma 4.2 is now a consequence of the norm equivalence of the graph norm || - [|cur
and the energy norm || - ||4. O
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A detailed analysis of the constant C' shows that it depends on 7 but not on jumps
of the coefficients. In case of time-dependent Maxwell’s equations 7 tends to infinity
if the time step tends to zero, and then the constant C' in Lemma 4.2 deteriorates.
This is due to the interpolation operator pg which is not logarithmically stable with
respect of the L2-norm. In fact the best bound for the L2-norm alone is

H
loullozr < O llorullor-

To obtain good results in this important case, we have to modify the decomposition
appropriately and find a stable splitting of u with respect to the L?-norm.

We consider the case where the space X;; in (18) is replaced by the space X'ij of
discrete Maxwell extensions with respect to the bilinear form a(-, -)

Xij = {V € X| CL(V,W) =0, we X@',X]‘, suppv € Tz UTJ'}.

We note that an element v € X’ij is uniquely defined by its values v x n on I';;. The
decomposition

K K
(25) X=Xo+ > Xp+ > Xy
k=1 ij=1

i<j

is now stable with respect to the L?-norm as we will show after the proof of the
following main theorem. We remark that

K

Xo C Z Xz'j
i,i=1
i<j

and thus (25), in contrast to (18), is not a direct sum. It follows from Lemma 4.1
that it is sufficient to find one adequate splitting for u.
THEOREM 4.3. For each u € X, there exists a decomposition

K K
u =14y -+ E ug -+ E flij,
k=1 i,j=1

i<j

corresponding to (25) such that

K K H 2
a(llo,ll()) + ; a(uk,uk) =+ l; a(ﬁij,ﬁij) < C (1 + IOg (F)) a(u, 11),
i<j

with a constant C > 0, independent of h and u.

Proof. The proof is based on the stability of the splitting (18). Each function in
X;; can be written as the gradient of a piecewise discrete harmonic function ¢;; with
respect to the Laplace operator, a function @;; € X’ij cannot in general be written
in this way. However, it is characterized as the solution of a minimization problem.
Choosing ug = ppru, which assures us that u;; x n|r,; = @;; X n|r,;, we obtain

ij?

a(ty, ;) = min o a(Vi, Vi) < aug, ug).
i O;h( 1_7)
Vij Xn\pij=ﬁi]->(n|ri].
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We remark that the coarse space contribution, we have chosen for ug is exactly the
same as in the direct decomposition of Lemma 4.2. O

Finally, we consider the splitting (25) for the limit case a = 0. In this case, the
bilinear form a(-,-) is just a weighted IL2-scalar product

a(v,w) =/Bwvdx.
Q

Let us decompose u for the moment in

K K
w=Sar
k=1 =1
i<j
where 61;; € X with A.(1;;) := Ae(ui;), e C T'y; and A.(1;;) = O elsewhere, and
uy € Xj. Then Lemma 3.1 guarantees that

K
L2 2
> lagllg < Cllulfs:
i,j=1
i<j
We remark that 1;; is an extension by zero to the interior of the substructures and
in general not contained in X;;. Taking now the unique decomposition of u into

K K
u= E ug + E ﬁz’j
k=1 i,j=1

i<j

where 1, € X and 1;; € Xz’j: we get because of the minimization property of ii;;

K

> [yl < Clfulf3.

i,j=1

i<
This proves the stability of the decomposition of u with respect to the L?-norm.
Thus as n becomes large, we get an upper bound for the condition number which is
independent of the ratio H/h. We remark that this result cannot be obtained with
the splitting (18).

In the second limit case, B = 0, the bilinear form a(-,-) is no longer positive
definite. However, we can still work with a preconditioned cg-iteration in a subspace,
if the right hand side f is consistent. Then the stability of pg with respect to the
L2-norm of the curl, (10), gives us optimal results, i.e. a condition number which is
independent of the ratio H/h.

Remark: We recall that H(div;Q) is the space of square—summable vectors u
over Q, with div u square—summable. In two dimensions, any vector in H(div ;) can
be obtained from a vectors in H(curl; Q) by a 90—degree rotation; see [10]. Our results
and analysis carried out for the space H(curl; Q) and Nédélec elements are therefore
also valid for H(div;Q) and the lowest-order Raviart—-Thomas elements.

Remark: In the multilevel context, we can immediately get an additive Schwarz
method by using a decomposition of X in terms of the hierarchical surplus spaces as-
sociated with the different levels and a vertical splitting into curl -free and complement
spaces. Using Lemma 3.2 and a strengthened Cauchy-Schwarz inequality [21], we get
an O(1%) method where 1 is the number of refinement levels.
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5. Numerical results. In this section, we present some numerical results on
the performance of the iterative substructuring method based on the decomposition
(25), when varying the diameters of the coarse and fine meshes, and the coefficients a
and B. We refer to [18], for a general discussion of practical issues concerning Schwarz
methods.

We have considered the domain Q = (0,1)2 and a uniform rectangular triangu-
lations 7, and 7z. The fine triangulation 7; consists of n? square elements, with
h =1/n. The matrix B is given by

B = diag{b, b}.

TABLE 1
Estimated condition number and number of CG iterations for a residual norm reduction of
106 (in parentheses), versus H/h and n. Case ofa =1, b= 1.

[/ [ 32 [ 1 [ 8 [ 4 [ 2 |
n=32 - 20.23 (11) | 26.50 (20) | 19.10 (20) | 12.86 (17)
n=64 | 26.27 (11) | 35.94 (20) | 27.16 (21) | 19.00 (17) | 12.90 (16)
n=128 | 46.83 (20) | 36.68 (18) | 27.06 (17) | 18.92 (16) x
n=192 - 36.71 (17) | 27.00 (17) | 18.90 (16) x
n=256 | 47.80 (18) | 36.66 (17) | 26.97 (16) | 18.89 (16) x

In Table 1, we show the estimated condition number and the number of iterations in
order to obtain a reduction of the residual norm by a factor 1078, as a function of the
dimensions of the fine and coarse meshes. For fixed ratios H/h, the condition number
is quite insensitive to the dimension of the fine mesh. The number of iterations
varies slowly with H/h and our results compare well with those for finite element
approximations in H' of Laplace’s equation; see, e.g. [18]. We remark that the largest
eigenvalue is bounded by 5 in all the cases in Table 1, except for (n = 32, H/h = 16)
and (n = 64, H/h = 32); the latter cases correspond to a partition of 2 by 2 subregions
and, consequently, the bound for the largest eigenvalue is 3.

condition number
N
(%)

* calculated condition number
- least square fitting

0 5 10 15 20 25 30 35 40
H/h

Fi1G. 1. Estimated condition number from Table 1 (asterisk) and least-square second order
logarithmic polynomial (solid line), versus H/h; relative fitting error about 1.8 per cent.

In Figure 1, we plot the results of Table 1, together with the best least—square fit
second order logarithmic polynomial. The relative fitting error is about 1.8 per cent.
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Our numerical results are therefore in good agreement with the theoretical bound
obtained in the previous section and confirm that our bound is sharp.

TABLE 2
Estimated condition number and number of CG iterations for a residual norm reduction of
10~ (in parentheses), versus H/h and b. Case of n = 128 and a = 1.

| H/h | 32 | 16 | 8 | 4 |
b=1e-05 [ 3.87 (10) [ 4.68 (13) | 4.86 (13) [ 4. 92 (13)
b=0.0001 | 3.87 (10) | 36.3 (16) | 26.2 (16) | 13 (15)
b=0.001 | 16.9 (11) | 36.5 (16) | 27 (16) | 18.7 (16)
b=0.01 46.9 (14) | 36.7 (17) | 27.1 (16) | 18.9 (16)
b=0.1 46.9 (14) | 36.7 (17) | 27.1 (17) | 18.9 (16)
b=1 46.8 (20) | 36.7 (18) | 27.1 (17) | 18.9 (16)
b= 10 45.3 (22) | 36.4 (22) | 27 (18) | 18.9 (17)
b=1e+02 | 40.8 (25) | 34.8 (23) | 26.7 (20) | 18.9 (19)
b=1e+03 | 29.8 (24) | 28.4 (23) | 24.5 (21) | 18.4 (19)
b=1e+04 | 17.4 (18) | 17.3 (17) | 16.8 (18) | 15.3 (17)
b=1e+05 | 9.41 (14) | 9.37 (14) | 9.3 (14) [ 9.15 (14)

In Table 2, we show some results when the ratio of the coefficients b and a is
changed. For a fixed value of n = 128 and a = 1, the estimated condition number
and the number of iterations are shown as functions of H/h and b. The numerical
results also confirm the theoretical results in the limit cases b = 0 and b = co. More
precisely, we remark that the condition number tends to be independent of the ratio
H/h when the ratio b/a is very small or very large. We recall that when Maxwell’s
equations are discretized with an implicit time—scheme, the time step is related to
the ratio b/a. The iterative substructuring method presented in this paper therefore
appears very attractive for the solution of linear systems arising from the finite element
approximation of time—dependent Maxwell’s equations.
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