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Abstract

Advances in computing and networking technology, and
an explosion in information sources has resulted in a grow-
ing number of distributed systems getting constructed out
of resources contributed by multiple sources. Use of such
resources is typically governed by sharing agreements be-
tween owning principals, which limit both who can access a
resource and in what quantity. Despite their increasing im-
portance, existing resource management infrastructures of-
fer only limited support for the expression and enforcement
of sharing agreements, typically restricting themselves to
identifying compatible resources. In this paper, we present
a novel approach building on the concepts of tickets and
currencies to express resource sharing agreements in an
abstract, dynamic, and uniform fashion. We also formu-
late the allocation problem of enforcing these agreements as
a linear-programming model, automatically factoring the
transitive availability of resources via chained agreements.
A case study modeling resource sharing among ISP-level
web proxies shows the benefits of enforcing transitive agree-
ments: worst-case waiting times of clients accessing these
proxies improves by up to two orders of magnitude.

1 Introduction

With advances in computing and networking technol-
ogy, more and more distributed computers are being inter-
connected to provide a large collection of computing and
communication resources. There is an increasing desire
to make this resource collection sharable by participating
entities. Although current uses of such sharing focus on
distributed systems built from components belonging to ei-
ther a single or a small number of administrative domains
(e.g., US supercomputer sites), the growth of the internet
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has resulted in newer models of resource sharing that span
multiple domains. For example, an increasing number of
companies find themselves having to share information in
their databases with others. Companies with limited bud-
gets may want to share hardware (e.g., network bandwidth
and disk capacity) with others. The growing popularity of
application-specific providers (ASPs) exemplifies a situa-
tion where the ASP is sharing its resources with several
client organizations.

In each of the above scenarios, resources are owned by
different organizations and span multiple administrative do-
mains. Consequently, resource sharing is governed by shar-
ing agreements between participating entities. For example,
organization A and B have resource sharing agreements be-
tween them so that A can use 30% of B’s network band-
width, and in return B can use 20% of the CPU power
of A’s supercomputer. These agreements specify both the
obligations and privileges of participants, and executions
of applications should follow or be forced to follow those
agreements. Moreover, agreements must be enforced in
the presence of heterogeneous resource types and dynam-
ically changing user set and resource availability. Also,
sharing agreements can be transitive, i. e., one principal is
able to share resources from another via a chain of shar-
ing agreements even though the two principals do not have
any direct sharing agreements. Unfortunately, most ex-
isting resource management infrastructures such as Con-
dor [11], Globus [6], Legion [5], and others [2, 13, 15]
provide very limited support for expressing and efficiently
enforcing such sharing agreements. This support typically
takes the form of “matching” up requests with compatible
resource types and does not factor in any capacity restric-
tions implied by the agreements. The enforcement of ca-
pacity constraints is usually the responsibility of end points
in those systems.

In this paper, we present a novel approach for express-
ing resource sharing agreements, which extends the con-
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cepts of tickets and currencies originally proposed in the
context of uniprocessor operating system scheduling [14].
Our approach abstracts out resource heterogeneity by uni-
formly representing resource capacities in terms of tickets
with differing values. Thus, diverse resources such as an In-
tel Pentium II CPU and an Intel Pentium III CPU can both
be represented as a CPU ticket with different value. Agree-
ments themselves are captured in terms of other kinds of
tickets that are issued by currencies. The value of a cur-
rency fluctuates dynamically as a function of changing re-
source availability and affects the actual value of the tickets.
This allows capturing of both absolute and relative sharing
agreements. The scheme is complemented by a global re-
source allocation algorithm that uses linear programming
techniques to enforce these agreements, automatically fac-
toring the transitive availability of resources via chained
agreements. When multiple scheduling choices are avail-
able, the algorithm chooses the one that perturbs global re-
source availability the least. By exposing resource sharing
agreements to the resource scheduler, the scheduler is able
to make more informed decisions that take both the resource
availability and resource sharing agreements into account.

To assess the advantages of sharing agreements and the
benefits from global allocation decisions, we describe a
case study modeling resource sharing among ISP-level web
proxies. Our results, based on trace-driven simulation of
client request streams, show that sharing agreements re-
sult in higher performance at each proxy without requiring
increased capacity investments, particularly when partici-
pants exhibit resource utilization profiles that are skewed
in time (as might happen with geographically-distant prox-
ies). Moreover, enforcing transitive agreements can result
in performance improvements that compensate for the cost
of redirecting requests to available resources: worst-case
client waiting times improve by up to two orders of mag-
nitude. Simulation results also show that with global in-
formation about resource availability and resource sharing
agreements, a resource scheduler can make better schedul-
ing decisions.

The techniques described in this paper are part of a flex-
ible execution substrate for distributed applications that we
are constructing in the Computing Communities project [3]
at New York University. Other techniques (e.g., resource-
constrained sandboxing [4]) being developed as part of this
project focus on the complementary problem of security
concerns, e. g., ensuring that a malicious application does
not misuse a resource that it has been allocated.

In the rest of this paper, we describe in turn agreement
expression (Section 2), agreement enforcement (Section 3),
and the case study (Section 4). Section 5 discusses related
work and we conclude in Section 6.

2 Expressing Sharing Agreements

A resource management system requires precise expres-
sion of three kinds of information: resource availability, re-
source requests, and agreements between users. Resources
refer to both physical entities such as CPU and disk, as
well as logical entities such as access rights. Both resource
availability and resource requests are represented as vec-
tors, with entries quantifying the quantity or need for each
different kind of resource. Our approach expresses actual
resource capacities and agreements between participants us-
ing a uniform framework, permitting the convenient compu-
tation of dynamic resource availability for each individual
participant.

2.1 A Taxonomy of Agreements

Sharing agreements between the owner of a resource and
its users define both which users can access the resource and
any capacity constraints governing such access. For exam-
ple, an owner A might specify that its resources are avail-
able for use by users B and C but not by user D. Moreover,
A might enable B to use a larger fraction of the resource as
compared to C.

Agreements can be either granting or sharing in nature,
according to who can use the resources after the agreement
is applied. The former refers to the case where the grantor
gives up the resource to the grantee, i.e., the grantor can-
not use the resource itself after granting unless it revokes
the resource from the grantee (agreement ends). With shar-
ing agreements, both the grantor and grantee have the rights
to use the resource. In this paper, we restrict our attention
to consumable resources such as CPU and disk bandwidth,
which can only be used by one principal at a time.

Another dimension along which agreements can be clas-
sified is the expression of the quantity constraints on shar-
ing agreements. Agreements can be either absolute or rela-
tive. In absolute agreements, the quantity is a constant (e. g.
10MB disk space), while in relative agreements, the quan-
tity varies as a function of available resources (e. g. 50% of
the available CPU). Relative agreements are useful for en-
suring that a certain fraction of a principal’s resources are
always available for its own use, even when the available
resources decrease a lot due to intensive usage.

2.2 Tickets and Currencies

The primary challenge with expressing sharing agree-
ments is to capture the heterogeneous nature and dynam-
ically changing availability of resources that impact both
which resources are accessible using an agreement and in
what quantity. We use the concepts of tickets and cur-
rencies, originally proposed in the context of a random-
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ized uniprocessor scheduling mechanism called Lottery
Scheduling [14], to address this challenge.

Tickets are abstract entities that differ in type and value.
In our approach, tickets are used to encapsulate both access
and capacity constraints governing resource usage. Possess-
ing the right ticket type permits access to the resource and
the ticket value determines the resource quantity that can be
accessed. Tickets can be either absolute or relative. An ab-
solute ticket captures the right to use an absolute quantity of
resource (e.g., 10MB of disk), while the value of a relative
ticket depends on the issuing currency. Currencies denom-
inate tickets. Each currency is backed (or funded) by tickets
and in turn issue its own tickets. Agreements between two
entities A and B can be represented by A’s currency issuing
a ticket to support B’s currency, which means B can use part
of the resources of A (see Figure 1).

The value of an absolute ticket is its face value. And a
relative ticket’s real value is computed by multiplying the
value of the currency from which it is issued by its share
of all the amount issued by that currency. The value of a
currency is determined by the summation of all the backing
tickets (both absolute ones and relative ones).

Currency A
1000

A-Ticket3
3

R-Ticket4
500

A-Ticket1
10

Currency B
100

R-Ticket5
60A-Ticket2

15

10TB Disk 15TB Disk

Currency C
100

User A User B User C

Currency D
100

User D

Figure 1. Use of tickets and currencies to express
sharing agreements.

Example 1. Figure 1 shows an example of the use of tick-
ets and currencies for expressing sharing agreements. This
system has four principals, A, B, C, and D, and two disk
resources of 10 TB and 15 TB capacity owned by princi-
pals A and B respectively. These resources are represented
by two absolute tickets (A-Ticket1 and A-Ticket2), which
fund currencies A and B, respectively. Principal A has an
absolute agreement with principal C to share 3 TB of its re-
sources, and a relative agreement with principal B to share
50% of its available resources. The former is captured by
an absolute ticket (A-Ticket3) with value 3 and the latter by
a relative ticket (R-Ticket4) with a face value of 500 issued
by currency A, which has a face value of 1000. Thus, the
real value of R-Ticket4 is 10�500=1000= 5. This relative

ticket boosts the value of currency B to 5+15= 20, increas-
ing the amount of disk resources available to jobs submitted
by principal B. Principal B in turn has a relative agreement
with principal D, captured via relative ticket R-Ticket5 of
face value 60 issued by currency B with a face value of 100.
Note that the true value of this ticket is 20� 60=100= 12,
which implicitly integrates the resources available to princi-
pal D via its direct agreement with B, as well as its transitive
agreement with A (via B).

Thus, the actual resource capacities in a system are ex-
pressed using absolute tickets funding the owner’s currency
and agreements between participants take the form of abso-
lute or relative tickets issued by one and backing the other’s
currency. The quantity constraint of this sharing agree-
ment is the value of the ticket. Notice that the real value
of relative tickets can change dynamically as more support-
ing tickets join the issuing currency or as some supporting
tickets leave as a consequence of changing resource sharing
agreements. Also we can inflate or deflate the currencies by
increasing or decreasing the number of units in the currency,
similar to inflation caused by the government printing more
paper money. Also, new currencies can be created in addi-
tion to the default per-participant currencies: these permit a
participant to decouple the quantity of resources transferred
along some subset of its agreements from fluctuations in an-
other subset.

Currency A
1000

R-Ticket3
300

R-Ticket4
500

A-Ticket1
10

Currency B
100

R-Ticket5
50A-Ticket2

15

10TB Disk 15TB Disk

Currency C
100

User A User B User C

Currency D
100

User D

Currency A1
500

Currency A2
100

R-Ticket6
300

R-Ticket8
60

R-Ticket7
40

Figure 2. Use of virtual currencies.

Example 2. Figure 2 shows an example of the use of vir-
tual currencies to isolate one subset of agreements from
fluctuations of another subset. As in Example 1, the system
has four principals, A, B, C, and D. In addition to four de-
fault currencies representing their resources, two new cur-
rencies are created from tickets issued by currency A: A 1
and A2, shown shaded in the figure. We call these cur-
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rencies virtual currencies, distinguished from default per-
participant currencies. The value of virtual currencies is
calculated the same way as normal currencies. So in Figure
2, virtual currency A1 has the value of R-Ticket3, which is 3,
and virtual currency A2 has the value of R-Ticket4, which is
5. Both virtual currencies issue tickets, R-Ticket6 from A1,
and R-Ticket7 and R-Ticket8 from A2. These tickets in turn
fund currencies C, D, and B respectively, representing three
agreements between A and each of B, C, and D. The agree-
ments are divided into two subsets: one comprising B and
D, and the other C. A can make change to one of the agree-
ment subsets (e.g. by inflating the face value of currency
A1, or by issuing another ticket from A1) without having
any influence on the other subset. Therefore, by creating
virtual currencies, A can effectively decouple the quantity
of resources transferred along one subset of its agreements
from fluctuations in another one.

As illustrated in the above two examples, using tick-
ets and currencies permits us to express resource capaci-
ties and sharing agreements in an abstract, dynamic, and
uniform fashion. Abstract, because tickets and currencies
quantify resource rights independent from resource details.
Dynamic, since the fraction of a resource that tickets rep-
resent varies dynamically in proportion to the currency that
issues the tickets. And uniform, because tickets homoge-
neously represent rights for heterogeneous resources.

Although we have restricted our discussion here to the
case where one resource is represented by a single ticket
type, this mechanism can be extended to handle multiple
views of the same resources by enabling resources backing
multiple ticket types. This is useful in several situations.
For example, the disk bandwidth resource can be viewed
as two kinds of resources: read bandwidth and write band-
width. This more complex case is a subject of future work
and is not dealt with further in this paper.

Despite the generality afforded by our expression mech-
anism, in practice, we expect most sharing agreements to
fall into one of the following structures:

Complete Each participant has sharing agreements with
every other participant. This situation is most likely to
happen when there are a small number of participants.

Sparse Every participant only has sharing agreements with
a relatively small number other participants. This
structure happens in situations where the number of
participants is relative large.

Hierarchical In this structure, users are divided into
groups. Inside a group, users have complete resource
sharing. Between groups there are higher level sparse
sharing agreements.

3 Enforcing Sharing Agreements

Most existing resource management infrastructures pro-
vide only limited support for enforcing agreements, typi-
cally providing a matching service that permits a request
to use compatible and accessible resources. Enforcing con-
straints on resource capacity has typically been the respon-
sibility of the end points. To enforce sharing agreements,
the scheduler must keep track of dynamically changing re-
source availability via both direct and transitive agreements,
and optimize a global criterion when faced with multiple
choices for how to allocate resources.

We have constructed a linear equation model for the
problem of allocating resources to a request in a distributed
system in the presence of sharing agreements. This model
works with the abstract notion of resources in the form of
tickets and currencies described earlier. A request for spe-
cific quantities of one or more resources is viewed as a re-
quest for the set of ticket types representing these resources
with ticket values capturing the desired quantities. Coupled
resources, which must be allocated as a group, can be bound
together and viewed as a new type of resource. The linear
equation model permits the scheduler to easily determine
(a) whether the principal submitting the job has sufficient
resources available to it either directly or transitively (i.e.,
sufficient-valued tickets of the requisite type), and (b) in
the event of there being multiple options, which actual re-
sources to allocate the needed capacity from.

3.1 Basic Model

We first describe a simple form of this model, which only
considers a single resource type and only relative sharing
agreements. Suppose there are n users, each of whom own
a resource with actual capacity Vi � 0. The matrix S cap-
tures all of the agreements between principals; Si j indicates
the value of the relative ticket issued by currency i and back-
ing currency j. For example, Si j = 0:3 signifies that user i
agrees to share 30% of its available resources with user j.
Three constraints on the elements of matrix S are: Sii = 0,
Si j � 0 and ∑1�k�n Sik � 1.

To determine whether or not a user has sufficient re-
sources available to satisfy its job request, we first calculate
the resource flow from one currency node to another. Let
I(m)
i j

denote the resource amount that issues from currency
node i and backs currency node j through at most m levels
of transitive agreements. We have (see Figure 3):

I(m)
i j

= I(m�1)
i j

+Vi � ∑
1 � k1; � � � ;km�1 � n

kp 6= kq(8p 6= q)
kp 6= i; j(8p)

Sik1
Sk1k2

� � �Skm�1 j

The constraints under the summation ensure that there is
no cycle along the transitive agreement path.
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i j

Flow along one path with length m:
Vi x Sik1 x Sk1k2... x Skm-1j

k1

k2

km-2

km-1

Flows along all paths with
length <=m-1: I (m-1)

ij
Vi

Figure 3. Flow of resources between node i and node
j via a transitive chain of agreements involving inter-
mediate nodes k1;k2; : : : ;km�1.

Although the formula appears very involved, it can be
rewritten as:

I(m)
i j

=Vi�T (m)
i j

where T (m)
i j

is a constant which involves only terms of ele-

ments in agreement matrix S.
The transitive closure of agreements is given by I (n�1)

i j
for all i; j. Thus, user i has access to a resource amount Ci
where

Ci =Vi+∑
k 6=i

I(n�1)
ki

Having determined that there are sufficient resources
available to the user to satisfy its job request, the second
scheduling problem is to determine which actual resources
to obtain the required capacity from. In general this deci-
sion depends on several factors such as the cost of borrow-
ing resources from a different site and concerns of fairness.
Here, we restrict our attention to optimizing a global metric
that captures the notion of perturbing future resource avail-
ability in the system the least. Intuitively, the goal here is to
leave the system in a state where it has sufficient resources
to satisfy future requests independent of which principal is
making the request.

Adding additional constraints to the linear programming
model helps solve this problem. Let V 0

i be the amount
of resources left with principal i after the current allo-
cation has taken place, changing the resource availability
for user i from Ci to C0

i . Our objective is to minimize
θ = max1�i�n(Ci�C0

i). The additional constraints can be

expressed as below, where I (n�1)0

i j
refers to I(n�1)

i j
after allo-

cation, A refers to the principal making the current request,
and x to the requested amount:

I(n�1)0

i j
=V 0

i �T (n�1)
i j

(1)

C0
i =V 0

i +∑
k 6=i

I(n�1)0

ki
(2)

C0
A =CA� x (3)

0� (Vi�V 0
i )� I(n�1)

iA
(4)

∑(Vi�V 0
i ) = x (5)

(Ci�θ )�C0
i �Ci (6)

The variable θ is the global metric we want to minimize.
There are n�(n�1) variables I (n�1)0

i j
, n variables C0

i , n vari-

ables V 0
i and 1 variable θ , leading to a total of (n2

+n+1)
variables. Using linear programming [8], we can minimize
θ and thereby obtain the allocation schedule. The com-
plexity of the linear programming model can be reduced
by exploiting additional structure in commonly encountered
agreement graphs as described in the following section.

3.2 Extensions to the Basic Model

In the above model, we only consider a single resource
type in a resource request. In practice, resource requests
usually include multiple resource types at the same time. In
this case, a request for k types of resources is in the form of a
vector < r1;r2; :::;rk >, in which ri is the amount requested
for resource type i. To schedule this request,we need to
solve k linear systems, one for each resource requested, and
allocate resources according to the results. One problem
with this scheme is that it does not handle resources that
must be allocated together. For example, CPU and memory
resources need to be on the same machine and cannot be
allocated separately. One way to solve the latter is to bind
these types of resources into a new type of resource so that
they are always allocated together.

In the basic model, we have a restriction on the agree-
ment matrix: ∑1�k�n Sik � 1. This restriction is to prevent
a participant from sharing more resources with others than
it possesses. For example, suppose A has 10 units of re-
sources. If there were no such restriction, A could share
60% of its resources with B and 60% with C. If B shared
100% of its resource with C, C would have 6 units resources
directly from A and another 6 via B, which exceeds what A
has in total! But in some situations it is desirable to have this
kind of “overdraft” and it does not conflict with the seman-
tics of sharing. In order to lift the restriction, we need to
modify our calculations slightly, namely, change the equa-
tion:

I(m)
i j

=Vi�T (m)
i j

to
I(m)
i j

=Vi�K(m)
i j

where

K(m)
i j

=

(
T (m)

i j
: T (m)

i j
< 1

1 : T (m)
i j

� 1

Therefore, in the above example the quantity of resources C
can obtain is limited to 10 instead of 12.
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The basic model considers only relative sharing agree-
ments. To take absolute sharing agreements into account,
we need an absolute agreement matrix A in addition to the
relative agreement matrix S. Ai j indicates the value of the
absolute ticket issued by currency i and backing currency j.
We extend formulas in the basic model to deal with absolute
tickets in the system as follows.

Let

Uki =

(
I(n�1)
ki

+Aki : I(n�1)
ki

+Aki <Vk

Vk : I(n�1)
ki

+Aki �Vk

The resource capacity of user i then becomes

Ci =Vi+∑
k 6=i

Uki

In practice, the complexity of the linear programming
model can be reduced by exploiting additional structure in
the agreement graph. For example, one can use faster al-
gorithms to deal with sparse matrices when the agreement
structure is sparse. In the case of a hierarchical agreement
structure, we can use techniques motivated by multi-grid re-
finement: once a request comes to a group, and that group
cannot satisfy the request, we use LP to find the distribution
of resources among groups; based on the distribution result,
we run LP inside each group to further refine the resource
allocation, iterating this process as required.

We are in the progress of implementing this model in
a cluster-level resource management system built on top
of Globus, which would allows us to further validate our
model. The resource management system has two compo-
nents: a centralized global resource manager (GRM) and
multiple local resource managers (LRM). The GRM pro-
vides services to manage sharing agreements and to sched-
ule resources among local resource managers. LRMs are
responsible for providing resource availability information
to the GRM dynamically, and fulfilling resource allocation
according to the GRM’s decisions. The architecture also
permits splitting of the GRMs into multiple levels, each re-
sponsible for a subset of the LRMs.

4 Case Study: Resource Sharing among ISP-
level Web Proxies

To assess the advantages of resource sharing under
agreements and study the effects of various parameters such
as the density of agreements and the impact of transitive
agreements, we report on results obtained using a trace-
based web proxy simulator that simulates the workload of
a group of ISP-level web proxies that cooperate using re-
source sharing agreements. This simulator models an in-
frastructure for shared access to web-based services that is
being currently developed by the authors.

4.1 Simulation Model

The simulation model is depicted in Figure 4. Each
proxy serves web content to its local customers. A request
from a customer consumes resources such as CPU, disk,
memory and network bandwidth of the proxy server. To
improve their service (response time is the main concern in
this case) to customers, ISP-level resource sharing agree-
ments permit proxy servers to share each others resources.
Specifically, if the local resources of a proxy are not enough
to satisfy all the customers’ requests in time, the proxy can
redirect some of these requests to other proxy servers.

ISP 1 ISP 2 ISP 3

Front End Front End Front End

Agreement Agreement

Customer Custormer Customer Customer

Internet

Global Resource
Sheduler

Figure 4. A group of cooperating web proxy servers
with resource sharing agreements

.

A global resource scheduler stores information about the
sharing agreements and keeps track of available resources at
each proxy server using the tickets and currencies approach
described in Section 2. For simplicity, all proxy server re-
sources are collapsed together into a single “general” re-
source, that determines the processing power of the server.
A request arrives at the server front-end and asks for a spe-
cific amount of this resource. Given our focus on character-
izing the qualitative advantages of sharing agreements, we
assume a priori knowledge of per-request resource require-
ments using a simple linear model based on the response
length: a request producing a response of length x requires
server resources a+ bx (in the experiments reported here
a = 0:1 seconds and b = 10�6 seconds; also to avoid ex-
tremely long response lengths from causing spikes in the
waiting time, we set the maximum resources needed per re-
quest to be c = 30 seconds). When the resource require-
ments of requests queued up at a proxy’s front-end exceed a
threshold, the global scheduler is consulted to decide how to
redirect some of these requests to other proxies. The sched-
uler makes resource allocation decisions enforcing the shar-
ing agreements by solving the linear system described in the
previous section.
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The input to the simulator is a per-proxy stream of HTTP
requests, generated from the UC Berkeley Home IP Web
Traces [1]. The trace consists of 18 days’ worth of HTTP
traces collected in November 1996 and comprises more than
9 million references. In the results reported here, we focus
on a 24-hour period obtained by averaging the 18-day trace.

4.2 Simulation Results

The solid line in Figure 5 shows the average number of
requests during each 10-minute slot of a 24-hour period. We
can see that the proxy load is heaviest around midnight and
lightest around the early morning hours. The dotted line in
Figure 5 shows the average waiting time of a request for the
simulator parameters above; as expected the waiting time
peaks at midnight with some requests seeing a wait time of
as much as 250 seconds.
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Figure 5. The number of requests and average waiting
time per request without resource sharing.

Overall Benefits of Resource Sharing Because the re-
quest traffic fluctuates with time, if different ISPs are in dif-
ferent geographical regions so that they exhibit “rush hour”
behavior at different times, busy servers can benefit from
resource sharing by borrowing resources from idle servers.
Figure 6 shows the impact of resource sharing agreements
between a group of 10 ISPs on the average waiting time of a
client request at a particular ISP, parameterized for different
amounts of time skew between the client request streams.
The agreement structure is a complete graph where each
server shares 10% of its resources with every other server.
Figure 6 shows that with a gap of 3600 seconds, the average
waiting time drops dramatically from 250 seconds to below
2 seconds, demonstrating the ability of sharing agreements
to spread out peak loads.

ISP-4, Complete, Level=9, Share=0.1
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Figure 6. Average waiting time per request with re-
source sharing for different “gap” times (skew) be-
tween the proxy servers. The agreement structure is
a complete graph between 10 servers: each server
shares 10% of its resources with every other server.

Figure 7 compares this performance with the average
waiting time obtained when sharing is disabled, but the
proxy server has more processing power (corresponding to
an increased capacity investment). We can see that 25%-
35% more resources are required to match the performance
obtained by resource sharing.
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Figure 7. Average waiting times with and without re-
source sharing for different processing capabilities of
the proxy server.

Benefits from Transitive Agreements The formulation
in Section 3 automatically factors in transitive agreements.
To assess the additional performance benefits that can result
from doing so, we compare the average waiting times ob-
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tained for different levels of transitivity in the context of two
agreement structures, a complete graph and a cyclic loop. In
the latter, each server only has a sharing agreement with one
other server. Considering only a single level of transitivity
is equivalent to enforcing only direct agreements.

ISP-4, Complete, Gap=3600, Share=0.1
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Figure 8. Average waiting time with resource sharing
for different levels of transitivity of indirect agree-
ments for a complete graph agreement structure be-
tween 10 ISPs where each ISP shares 10% of its re-
source with every other ISP.

Figure 8 shows that in the complete graph case, resource
sharing helps but the incremental improvement by consid-
ering indirect transitive agreements is small. This is ex-
plained by the fact that all of the servers are already reach-
able from the requesting server using direct agreements. To
further investigate the benefits of transitive agreements, we
ran the simulator on three different loop based agreement
structures. Figures 9, 10 and 11 show the results of these
simulations.

Although all three agreement structures are loops in
which each ISP has sharing agreement with one neighbor
ISP, the time zone gap (skip) between two neighbors are dif-
ferent in these three configurations. As we can see from the
figures, this difference is reflected in the simulation results.
The worst-case waiting time when considering only direct
agreements (level=1) is 35 seconds in Figure 9 (skip=1),
and dropped to 7 seconds in Figure 10 (skip=3) and further
to about 3 seconds in Figure 11 (skip=7). This is because
of the skip value of the loop structure. By enforcing only
direct agreements, each ISP can only use resources from its
neighbor. In Figure 9, the neighbor is only one-hour time
zone away for each ISP, it is quite likely that once one of
them is busy another is too. Thus one ISP may not get much
help from its neighbor. By pushing direct neighbor further
as in Figure 10 and Figure 11, we can get more resource
sharing benefits.

When three or more levels of transitive agreements are
considered, the worst-case waiting time drops to about 2
seconds in all three configurations. This shows that fac-
toring in transitive agreements yields robust performance.
Note that considering longer chains of agreements yields
small incremental benefit because of an exponential de-
crease in the amount of resources accessible along the
chain.

ISP-4, Loop Skip=1, Gap=3600, Share=0.8
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Figure 9. Average waiting time with resource sharing
for different levels of transitivity of indirect agree-
ments where the agreement structure is a loop with
each ISP sharing 80% of its resources with the next
one. The sharing neighbors are one-hour time zone
away.

Effect of Redirection Cost The previous results assumed
that the cost of redirection was negligible. Here we con-
sider the impact on waiting time when each redirected re-
quest must incur a fixed overhead that is either 0.1 seconds
or 0.2 seconds. These costs are approximately the same as
or double the average processing time. Figure 12 shows
that in the complete agreement graph case, the added cost
has negligible impact on the average waiting time. This is
because only a small number of requests (less than 1.5%)
are redirected. Even at peak time, this amount is less than
6%. Although the waiting time of these requests has signif-
icant penalty, this penalty has negligible impact on overall
performance. Even for the particular request, the redirec-
tion pays off because without redirection this request would
suffer much longer delay. Thus, the benefits of resource
sharing can compensate for fairly large overheads in using
remote resources.

Centralized v.s. End-point Enforcement We use a cen-
tralized resource manager and linear programming model
to schedule resources in the belief that with global resource
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ISP-4, Loop Skip=3, Gap=3600, Share=0.8
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Figure 10. Average waiting times with resource shar-
ing for different levels of transitivity of indirect agree-
ments where the agreement structure is a loop and the
sharing neighbors are three-hour time zone away.

ISP-4, Loop Skip=7, Gap=3600, Share=0.8
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Figure 11. Average waiting times with resource shar-
ing for different levels of transitivity of indirect agree-
ments where the agreement structure is a loop and the
sharing neighbors are seven-hour time zone away.
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Figure 12. Average waiting time of a request as a
function of redirection cost.

availability information and all transitive agreements infor-
mation in hand, the centralized resource scheduler can make
better decisions and improve the resource utilization. In this
experiment, we compare the performance using our scheme
with a scheme where agreement enforcement is performed
at the end points.

The agreement structure is a complete graph where each
ISP shares 20% of its resources with neighbors one-hour
time zone away, 10% with neighbors two-hour time zone
away, 5% with those three hours away and 3% with further
neighbors. The basic scheme we used redistributes requests
queued up at a proxy’s front-end to all other ISPs. The num-
ber of requests redistributed is proportional to the quantity
of sharing agreements with other ISPs. Therefore, when
an ISP is busy, it tends to redirect more requests to nearby
ISPs than faraway ISPs. Figure 13 shows a comparison of
this scheme with the linear programming scheme discussed
in Section 3.

As we can see from the figure, the linear programming
scheme reduces the average waiting time by more than
50% at traffic peak time. This is because the non-linear
scheme tends to redistribute requests to nearby ISPs no mat-
ter whether they are busy or not, while linear programming
scheme takes both the resource availability status and shar-
ing agreements into account when making decisions.

5 Related Work

Most large-scale resource management infrastructures in
current use provide only limited support for expressing and
enforcing resource sharing agreements.

Condor [11], a distributed batch processing system run-
ning on a cluster of of workstations, permits agreements
between entities to be specified as part of the requirement
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Figure 13. Average waiting time of a request using
linear programming scheme and non-linear program-
ming scheme, respectively.

expressions of classads from both the resource supplier and
the resource consumer end. The Condor MatchMaker [12]
module checks for compatibility but does not provide any
mechanisms to specify the amount of resources a user is
willing to share with others or to even change a posted clas-
sad. Globus [7] provides a toolkit for building execution
environments where application execution can span multi-
ple geographically distributed resources. The natural place
for expressing agreements in Globus is in the context of the
extensible resource specification language (RSL); however,
in its current form, it is only possible to specify access con-
straint agreements, namely whether or not a particular re-
source is accessible to a job. Legion [9, 10], which pro-
vides an object-based model for orchestrating interactions
between components in a distributed system, defines a col-
lection query language similar to Condor and Globus that
can be used to represent simple agreements, primarily ex-
pressing access constraints.

In each of the above systems, it is conceivable that agree-
ment enforcement can be done at the end-points (based
upon returned information); however, doing so restricts the
scalability of the scheme and cannot take advantage of tran-
sitive agreements. Our approach differs in providing the re-
source management system with an abstract, dynamic, and
uniform view of both resources and diverse sharing agree-
ments enabling the design of policies that can enforce these
agreements while optimizing global criteria.

There are also several systems that use models derived
from economic theory to manage sharing among distributed
resources. Spawn [13] uses auctions to allocate resources
among clients that bid monetary funds. Funds encapsulate
resource rights and serve as a form of priority. In Market-
Net [15], access to system resources is governed by a mar-

ket economy. Prices reflect a balance between supply and
demand for a resource while the budgets assigned to client
processes determine their priority in gaining QoS access
to resources. A notable difference of our approach is that
unlike the competitive environment assumed by these sys-
tems, we assume a cooperative environment where global
benefit is the common goal. In addition, a shortcoming
of economic-model based resource allocation is the diffi-
culty of achieving competitive equilibrium relative to the
dynamic perturbations of supply and demand.

6 Conclusions and Future Work

We have described a novel approach, based on the no-
tions of ticket and currency, to express and enforce resource
sharing agreements in a distributed system. It provides an
abstract, dynamic and uniform way to represent heteroge-
neous resources. We formulated the resource allocation
problem with agreements constraints using linear program-
ming model to optimize global metrics. Results based on
simulation show that resource sharing under agreements has
advantages and the structure of agreements has significant
effects on the benefits. Future work involves implement-
ing and evaluating this scheme in the context of resource
management system for the Computing Community (CC)
Project [3], which provides a distributed, collaborative envi-
ronment in which a dynamic changing set of partners work
together to share resources.
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