
Building secure file systems out of Byzantine storage∗

David Mazìeres and Dennis Shasha
NYU Department of Computer Science

{dm,shasha}@cs.nyu.edu

Abstract

This paper shows how to implement a trusted net-
work file system on an untrusted server. While cryp-
tographic storage techniques exist that allow users to
keep data secret from untrusted servers, this work
concentrates on the detection of tampering attacks
and stale data. Ideally, users of an untrusted stor-
age server would immediately and unconditionally
notice any misbehavior on the part of the server. This
ideal is unfortunately not achievable. However, we
define a notion of data integrity calledfork consis-
tencyin which, if the server delays just one user from
seeing even a single change by another, the two users
will never again see one another’s changes—a failure
easily detectable with on-line communication. We
give a practical protocol for a multi-user network file
system called SUNDR, and prove that SUNDR of-
fers fork consistency whether or not the server obeys
the protocol.

1 Introduction

There are many reasons not to trust one’s file server.
An unscrupulous person with administrative access
can easily tamper with files, making modifications
that go undetected. Yet people often entrust servers
to people who have no role in creating or using
the data stored on them—for instance system ad-
ministrative consultants or data warehouse employ-

*NYU computer science department technical report TR2002–
826, May 2002. An abbreviated version of this paper will appear
in Proceedings of the 21st ACM Syposium on Principles of Dis-
tributed Computing, July 2002.

This research was supported in part by National Science Foun-
dation awards CCR–0093361 and IIS–9988345.

ees. Furthermore, network intruders often penetrate
servers to gain privileged access.

Incorrect server behavior can be categorized as ei-
ther fail-stop or Byzantine. Fail-stop behavior en-
compasses failures in which the server is unable or
unwilling to perform an expected task, such as re-
turning a file it should be storing. People deal with
such problems through disk and server redundancy
and backups. Byzantine behavior, by contrast, in-
cludes faulty actions that may go undetected, such as
subtle, malicious tampering by hackers or unscrupu-
lous employees. This work is the first to show how
to render Byzantine file server failures readily de-
tectable.

In an ideal network file system, if one user writes
and closes a file, the next user to open the file should
see the exact contents just written. In an untrusted
setting, one can gain some assurance of data integrity
with digital signatures, but a signature cannot guar-
antee that a user is reading the most recent version of
a file. If the last signed file update useru1 sees from
useru2 is 24 hours old, does this meanu2 hasn’t
logged in for a day, or is the file system concealing
u2’s updates fromu1?

We propose a slight weakening of traditional file
system consistency semantics calledfork consis-
tency. A file system with fork consistency might
conceal users’ actions from each other, but if it does,
users get divided into groups and the members of one
group can no longer see any of another group’s file
system operations. Users can detect such partitioning
through any available out-of-band communication—
from conversation (“Did you see the new file?”), to
client-to-client gossip protocols, to trusted on-line
version-verification devices.

The remainder of this paper describes the data
structures and protocol of a multi-user network

1



file system called SUNDR (Secure Untrusted Data
Repository). We prove that SUNDR guarantees fork
consistency, whether or not the server obeys the pro-
tocol. As described here, SUNDR does not provide
data secrecy. We intend to achieve secrecy by layer-
ing existing cryptographic storage techniques on top
of SUNDR. However, since the consistency protocol
is the more novel contribution, we will not address
secrecy in this paper.

Each SUNDR user has a public key for digital sig-
natures. A user’s private key must remain secret from
all other system elements, including the server and
other users. Because the user signs its updates, nei-
ther the server nor any other user can forge updates
from that user. SUNDR also requires every client
to have a small amount of persistent storage so as
to remember some version information about the last
message it has signed.

SUNDR is based on the premise that digital sig-
natures can be computed faster than network round
trip times and verified highly efficiently. This as-
sumption is increasingly valid as hardware speeds
increase (and the speed of light doesn’t). Today, an
800 MHz Pentium III can compute 1,024-bit Rabin
signatures in 7 msec and verify them in 50µsec.
Some patented algorithms are even faster. Esign, for
instance, achieves 350µsec signatures and 200µsec
verifications with 2,048-bit keys. In SUNDR, open-
ing a file or closing a modified file requires the client
to compute two digital signatures and wait for one
network round trip. A third, asynchronous message
is required before another user can access freshly
written contents. Concurrent operations can be pig-
gybacked into a single pair of digitally signed mes-
sages, allowing heavily-loaded clients to reduce the
total number of signatures they compute.

2 Related work

Recently, there has been growing interest in peer-
to-peer storage systems comprised of potentially un-
trusted nodes. OceanStore [2] has envisaged data mi-
grating all over the world to follow users, but has
weak consistency and security guarantees. xFS [1]
introduced the idea of serverless network file sys-
tems, while Farsite [4] investigated the possibility
of spreading such a file system across people’s un-

reliable desktop machines. Several new distributed
hash tables such as Chord [17] and Pastry [15] show
the potential to scale to millions of separately ad-
ministered volunteer nodes, with CFS [6] layering
a read-only file system on top of such a highly dis-
tributed architecture. These systems can all benefit
from SUNDR’s protocol, which is the first to imple-
ment anything resembling traditional file system se-
mantics without trusting the storage infrastructure.

A number of file systems in the past have used
cryptographic storage to keep data secret in the event
of a server compromise. The swallow [14] dis-
tributed file system used client-side cryptography to
enforce access control. Clients encrypted files before
writing them to the server. Any client could read any
file, but could only decrypt the file given the appro-
priate key. Unfortunately, one could not grant read-
only access to a file. An attacker with read access
could, by controlling the network or file server, sub-
stitute arbitrary data for any version of a file.

CFS [3] allows users to keep directories of files
that get transparently encrypted before being written
to disk. CFS does not allow sharing of files between
users, nor does it guarantee freshness or integrity of
data. It is intended for users to protect their most sen-
sitive files from prying eyes, not as a general-purpose
file system. Cepheus [8] adds integrity and file shar-
ing to a CFS-like file system, but trusts the server
for the integrity of read-shared data. SNAD [13] can
use digital signatures for integrity, but does not guar-
antee freshness. PFS [16] is an elegant scheme for
checking the integrity of a file system stored on an
untrusted disk. With minor modifications, PFS could
make strong freshness guarantees. However, PFS is
really a local file system designed to reside on un-
trusted, potentially remote disks. Users on multiple
clients cannot simultaneously access the same file
system.

The Byzantine fault-tolerant file system, BFS [5],
uses replication to ensure the integrity of a network
file system. As long as more than2/3 of a server’s
replicas are uncompromised, any data read from the
file system will have been written by a legitimate
user. SUNDR, in contrast, does not require any repli-
cation or place any trust in machines other than a
user’s client. If data is replicated in SUNDR, only
one replica need be honest for the file system to func-

2



tion properly. However, SUNDR and BFS provide
different freshness guarantees.

SUNDR uses hash trees, introduced in [12], to ver-
ify a file block’s integrity without touching the entire
file system. Duchamp [7], BFS[5], SFSRO [9] and
TDB [10] have all made use of hash trees for compar-
ing data or checking the integrity of part of a larger
collection of data.

3 Architecture

SUNDR decomposes the problem of reading proper
file data into two parts. First, starting with a bit string
known as a user’s i-handle and a file identifier called
the i-number, a SUNDR client can retrive and verify
the integrity of any block in the file. Second, there
is a protocol for users to update their i-handles and
for each user to ensure she has the latest i-handle of
every other user. We describe the first procedure in
this section, deferring the tougher problem problem
of i-handle consistency to the next section.

We begin with a brief overview of SUNDR’s
client-server architecture and file system metadata
structures. We simplify the description somewhat so
as to leave room for the a detailed description and
proof of the consistency protocol in the next sec-
tion. The particular file system we describe provides
a practical and concrete use of the consistency proto-
col, though our technique is potentially of more gen-
eral applicability.

SUNDR is organized as a server and a set of
clients. The server operates at a lower level than
conventional file servers. It stores blocks of data
for users, but neither understands nor interprets the
blocks that it stores. The basic interface to the server
consists of three RPCs,STORE, RETRIEVE, andUN-
REFERENCE. STORE stores a chunk of data on the
server. RETRIEVE retrieves a block by its collision-
resistant cryptographic hash. In case a block is stored
multiple times, the server keeps a count for each user
of how many times the user has stored the block. The
UNREFERENCERPC decrements a user’s reference
count (if not already zero), and reclaims the storage
when a block’s count goes to zero for all users.

SUNDR clients are responsible for interpreting
the data chunks stored at servers as inodes, direc-
tory blocks, and file data. To ensure the integrity

of the file system, SUNDR relies on a collision-
resistant cryptographic hash function and a digital
signature scheme. We assume the signatures are ex-
istentially unforgeable against a chosen message at-
tack. Though of course there exists a finite but negli-
gible chance of the cryptography failing, for the rest
of this paper we simply assume that no collisions oc-
cur and no signatures are forged.

Every user of a SUNDR file system has a pub-
lic key. For the purposes of this paper, we do not
care how these keys are managed, so long as all
parties agree on every user’s public key. One pos-
sibility is to embed the superuser’s public key in
the file system’s pathname, as in SFS [11], and for
the keys of other users to reside in some file/etc/
sundr users owned by the superuser and which the
server also knows how to retrieve. There is also a
file /etc/group indicating which users are in which
groups. The SUNDR server authenticates the users
it communicates with, so as to prevent one user from
unreferencing another’s blocks. The server might
also provide some mechanism to enforce disk quo-
tas on users. Finally, the server itself has a public
key known to users (for instance certified by the su-
peruser’s public key), so that clients can authenticate
the server. We assume that all RPCs are authenti-
cated, so that users can hold the server responsible
for any incorrect replies.

In addition to storing blocks, the server stores a
signedversion structurefor each user and group, and
also some information about operations in progress.
A version structure consists of version data (which
we will describe in the next section) and ani-handle.
The i-handle is a single cryptographic hash with
which one can verify the integrity of any block of any
file owned by a particular user. i-handles are the re-
sult of recursively hashing file system data structures
in a manner similar to the SFSRO file system [9]. We
describe these data structures from the ground up.

The lowest-level data structure in SUNDR is the
virtual inode, shown in Figure 1, with which one can
efficiently retrieve and verify any portion of a file or
directory. The virtual inode contains a file’s metadata
and the size and cryptographic hashes of its blocks.
For large files, the inode also contains the hash of
an indirect block, which in turn contains hashes and
sizes of file blocks. For larger files, an inode can

3



metadata

Indirect Block

B0 B1 B7 B8

H

...

H

H

File Data Blocks

· · ·Virtual Inode

H(B0), size

H(H(B7), . . .), size

H(B1), size

H(B8), size

H(B7), size

...

Figure 1: The SUNDR virtual inode structure

point to double-, triple-, or even quadruple-indirect
blocks. The hash of a virtual inode is known as a
file handle. Given a file handle, one can retrieve any
block of the file withRETRIEVE RPCs, first retriev-
ing the inode by the file handle, then retrieving data
and/or indirect blocks by the hashes in the inode.

Each user and group also has an ordered list,
known as thei-table, mapping 64-bit per-user virtual
inode numbers, ori-numbers, to file handles. An i-
table lists every file belonging to a particular user or
group. The i-table is broken into blocks, converted
to a hash tree, and each node of the tree stored at
the SUNDR server. The hash of the tree’s root is
the i-handle of the user or group. Given an i-handle,
one can retrieve and verify the file handle of any i-
number by retrieving the appropriate intermediary
blocks from the server. Directories also use virtual
inodes. The data blocks of a directory contain a list
of 〈file name, user, i-number〉 triples, sorted by file
name. By convention, inode number 2 in the supe-
ruser’s i-table is the root directory of the file system.

To modify the file system, a client computes a new
i-handle, stores new blocks at the SUNDR server,
and computes and signs a new version structure. The
client then updates its version structure on the server
using two more RPCs,UPDATE and COMMIT, de-
scribed in the next section. Finally, the client unref-
erences any blocks it no longer needs.

4 Consistency protocol

The goal of SUNDR’s consistency protocol is to
make it as easy as possible to detect whether the
server has faithfully provided a consistent view of
the file system to all clients. As we will show, if a
SUNDR server fails to show one user another’s up-
dates, either user will detect the attack upon seeing
any subsequent file system operation by the other,
even if through a third user. We call this property
fork consistency. This section begins with a formal
definition of fork consistency. We then list and prove
a set of criteria sufficient for any protocol to achieve
fork consistency. Finally, we develop three succes-
sively more efficient and general protocols and show
that they satisfy the criteria for fork consistency.

The file system literature uses the termclose-to-
open consistencyto speak of the consistency of a
wide variety of operations. In practice, some file sys-
tem calls (such as truncate) synchronously modify a
file without opening or closing it, and must also be
immediately visible to other users. Thus, for the pur-
poses of this paper, we will speak offetchesandmod-
ifications rather than opens and closes, and we will
concern ourselves with fetch-modify consistency. A
fetch is the process by which a client either validates
its cached copy of a file or downloads new contents
from the server. Modification is the process through
which a client makes new file system content visi-
ble to other clients. (Modification can occur on file
closes, but also onfsynccalls and certain metadata
operations).

4



Definition 1 A client is an entity that produces a set
of fetch and modify requests and sends them to the
server. Each request has a wall-clock time associ-
ated with it called theissue time.

Conceptually, the issue time corresponds to the time
at which software invoked the file system’s fetch or
modify routine. If all goes well, the routine will re-
turn at some later time we call the completion time.
Note we do not assume that clients have synchro-
nized clocks. Thus, a client will not know the issue
time of its own operations.

Definition 2 A principal is an entity authorized to
access the file system. Each principal has a public
signature key, the private half of which we assume is
unknown to the server.

Examples of principals include a user, a user acting
as a member of a group, and a client acting on behalf
of a user. Note one private key may speak for multi-
ple principals, as when a user is a member of several
groups.

Definition 3 A set of fetch and modify operations on
a file system isorderable if each operation has a
completion timelater than its issue time and there
exists a partial order,happens before, on the opera-
tions such that:

1. If the completion time of operationO1 is ear-
lier than the issue time of operationO2, then
O1 happens beforeO2.

2. Happens before orders any two operations by
the same client (even if both operations are is-
sued before either completes).

3. Happens before totally orders all modifications
to any given file.

4. Happens before orders any fetch of a file with
respect to all modifications to the same file.

Orderability restricts but does not completely spec-
ify the order of operations. Once an operation com-
pletes, it happens before any subsequently issued op-
eration. For concurrent operations, however, the file
system is free to choose any order, so long as depen-
dent operations have a definite order.

Definition 4 A set of fetch and modify operations is
fetch-modify consistentiff the operations are order-
able and any fetchF of a filef returns the contents
of the file produced by exactly the modifications that
happened beforeF , in the order specified by the hap-
pens before relation.

Fetch-modify consistency relates the order of opera-
tions to the results of fetch operations, but leaves the
precise semantics of a modification open. If modifi-
cations always overwrite the entire contents of a file
(as in SUNDR), a fetch-modify consistent file system
need only return the result of the last modification to
a fetched file. File systems in which modifications
change only part of a file must return the effect of
composing all previous modifications in happens be-
fore order.

Definition 5 Given a set of operations that have
completed on a file system, aforking tree is a tree
in which each node has an associated set of opera-
tions, called aforking group, and the forking groups
have the following properties:

1. Every forking group is fetch-modify consistent.

2. For every clientc, there is at least one forking
group that contains every operation byc.

3. For any operationO, the set of nodes whose
forking groups containO includes a common
ancestor,n, and all descendents ofn.

4. If two nodes’ forking groups both contain oper-
ationsO1 and O2, andO1 happens beforeO2

in the first forking group, thenO1 also happens
beforeO2 in the second forking group.

5. Every operation in a node’s forking group ei-
ther occurred in the parent node’s forking group
or else happened after every operation in the
parent node’s forking group.

Definition 6 A file system isfork consistentiff it al-
ways guarantees the existence of a forking tree on
the set of completed operations.

Informally, each branch of a forking tree repre-
sents a failure of the server to deliver fetch-modify
consistency. Initially, the operations of all clients are

5



in the same (root) forking group,G0. Then, if, say,c1

makes a modificationM to file f , M completes, and
c2 subsequently issues a fetchF that returns an older
version off , M andF must occur in two new fork-
ing groups—G1 for M and subsequent operations by
c1, andG2 for F and subsequent operations byc2. At
this point,c1 can never see another operation byc2

and vice versa (that’s why we want a tree topology).
Moreover, no later operations by other clients can go
in G0. Thus, the set of clients is partitioned into two
groups that will never again see each others’ opera-
tions. This situation is very likely to be noticed soon
through out-of-band communication between clients
or users.

4.1 Protocol correctness theorem

Protocol correctness theorem: A set of (com-
pleted) operations on a file system is fork consistent
if there exists a partial order< on operations with the
following two properties:

1. Every two distinct operations created by a sin-
gle client are ordered by<.

2. For any operationq, the set{o | o ≤ q} of all
operations (by any client) less than or equal to
q is totally ordered and fetch-modify consistent
with < as the happens-before relation.

Proof: Recall that a file system isfork consistent iff
it always guarantees the existence of a forking tree
on all completed operations of all clients.

Consider the setX = {x1, . . . , xk} of maximal
operations by<. (If the file system has been fetch-
modify consistent and hasn’t stopped completing op-
erations, the set will have only one element.) Con-
sider the collectionC = {C1, . . . , Ck} of sets of op-
erations such thatCi = {y | y ≤ xi}. By condi-
tion 2, the operations in eachCi are totally ordered.
For that reason, we will reinterpret theCis to be se-
quences of operations ordered by<. We call these
sequences chains.

We now construct a forking tree. The nodes of the
tree, the forking groups, consist of the chains and the
greatest common prefix of every pair of chains. A
noden’s parent is simply the the longest strict prefix
of n that is also a node. Thus, the chains constitute

A, B, C’, D’, E’

A, B, C, D’’, E’’A, B, C, D, E, F

A,B

A, B, C

Figure 2: Tree resulting from the three maximal
chains.

the tree’s leaves, and the least common ancestor of
any two nodes is their greatest common prefix.

For example, consider three maximal chains:

s1 = A, B, C, D, E, F

s2 = A, B, C, D′′, E′′

s3 = A, B, C ′, D′, E′

Figure 2 shows the resulting tree.
Now let us verify the five required properties of

the forking tree:

1. Every forking group is fetch-modify consistent.

Since chains are totally ordered, and each fork-
ing group is a prefix of a chain, every forking
group consists of a maximum element,q, and
every operationo ≤ q. Thus, it is fetch-modify
consistent by condition 2.

2. For every clientc, there is at least one forking
group that contains every operation byc.

Since all operations formed byc are totally or-
dered by condition 1, they form part of a leaf
forking group by construction.

3. For any operationO, the set of nodes whose
forking groups containO includes a common
ancestor,n, and all descendents ofn.

By construction, the intersection of any set of
forking groups is also a forking group. Letn be
the intersection of all the forking groups con-
taining O. n obviously containsO. n is also
a prefix of any other node containingO, and

6



thus must be a common ancestor. It also fol-
lows from our construction that any descendent
of n is a superset ofn, and hence containsO.

4. If two nodes’ forking groups both contain oper-
ationsO1 and O2, andO1 happens beforeO2

in the first forking group, thenO1 also happens
beforeO2 in the second forking group.

Since all forking groups use the same ordering
relation, they will order any common operations
in the same way.

5. Every operation in a node’s forking group ei-
ther occurred in the parent node’s forking group
or else happened after every operation in the
parent node’s forking group.

By construction, a child of noden contains an
extension of the operations inn. Any member
of the proper extension follows every operation
in n by the ordering relation that corresponds to
happens before.

4.2 Bare-bones protocol

We describe the SUNDR protocol in stages. We be-
gin with a bare-bones protocol that provides fork
consistency for an unrealistically simple usage sce-
nario. We then extend this bare-bones protocol, us-
ing the same intuition, to achieve a practical, fork-
consistent file system protocol.

In the bare-bones scenario, there is a single client
per user producing all of that user’s requests. Thus,
we can employ the terms user and client somewhat
interchangeably. We also assume that each file can
be written by only one user; there are no group-
writable files. Finally, we assume a low degree of
concurrent file system access. Subsequent sections
show how to handle concurrency efficiently and and
how to deal with group-writable files. Finally, Sec-
tion 4.5 describes how the mechanism for group-
writable files can also allow one user to employ sev-
eral clients. We also discuss several further optimiza-
tions of the protocol.

Recall that each user of the file system has a ver-
sion structure, consisting of an i-handle and version

data. The version data contains the name of the user
whose version structure it is (the structure’sowner,
by whose private key the structure should be signed),
and a list of user-version pairs.

In all the SUNDR protocols, every signed i-
handle has a monotonically increasing version num-
ber. Moreover, users sign not just their own ver-
sion numbers, but also their view of other users’ ver-
sion numbers. We will define an ordering on version
structures such that with an honest server, all opera-
tions are totally ordered. However, any fetch-modify
consistency failure results in two unordered version
structures. Since any client would detect the attack if
it saw the unordered structures, clients are split into
forking groups that can no longer see each other’s
updates. We formalize the idea as follows.

Definition 7 We use the following notation for ver-
sion structures:

{VRS, h, u, u1-n1 u2-n2 . . .}K−1
u

VRS is just a constant identifying the type of the
signed data.h is the i-handle.u is the owner of the
version structure. We use a hyphen to denote user-
version pairs, so thatui-ni means that userui is at
version numberni. We use the subscriptK−1

u to de-
note that the structure has been signed by useru’s
private key.

Definition 8 For any version structurex and useru,
we letx[u] designate eitheru’s version number inx,
or else0 if u does not appear inx.

Definition 9 If x and y are two version structures,
we say thatx ≤ y iff for all usersu, x[u] ≤ y[u].
x < y iff x ≤ y and there exists a userv such that
x[v] < y[v].

The server maintains the latest version structure
signed by each user. We call this collection of signed
structures theversion structure list, or VSL. The
server is responsible for sending the latest VSL to
anyone performing a fetch or modify operation. Each
time a user fetches or modifies a file, it must update
its entry in the VSL on the server with RPCs. Useru
updates its VSL entry as follows:

7



1. u obtains an exclusive lock on and downloads
the VSL. (The lock is coordinated by the server,
and thus is not trusted.) For each userv with a
signed entry in the VSL, letyv be that user’s
version structure.

2. u verifies thatyu is its current version structure,
and verifies the signatures on other entries of the
VSL.

3. u creates a new version structure,x, initializing
it with yu. u updates the i-handle inx if neces-
sary.

4. For each userv in the VSL,u setsx[v] to that
user’s signed version number,x[v]← yv[v].

5. u increments its own version numberx[u] ←
x[u] + 1.

6. u verifies that all entries in the previous VSL
(including its old entryyu) are totally ordered,
and thatx is greater than all VSL entries. (Note
that this verification will fail if for some some
usersv andw, yv[w] > yw[w], because thenx
will not exceedyv.)

7. u signsx and sends it to the server, releasing the
lock.

8. The server checks thatx is totally ordered with
respect to the other version structures in the
VSL. (This is protection against malicious
clients.)

The issue time of an operation is the moment the
client begins step 1 of the protocol. The completion
time is when the last step finishes.

We illustrate the protocol with an example. Con-
sider two file system users,u andv, both initially at
version number1. The VSL will contain the follow-
ing entries:

yu = {VRS, hu, u, u-1 . . .}K−1
u

yv = {VRS, hv, v, u-1 v-1 . . .}K−1
v

If u follows the protocol to update its i-handle toh′u,
its version number will also increase in the VSL:

yu =
{

VRS, h′u, u, u-2 v-1 . . .
}

K−1
u

yv = {VRS, hv, v, u-1 v-1 . . .}K−1
v

At this pointyu ≥ yv. If v now updates its version
structure (for instance by fetching a file),v’s new ver-
sion structure will reflectu’s new version number:

yu =
{

VRS, h′u, u, u-2 v-1 . . .
}

K−1
u

yv = {VRS, hv, v, u-2 v-2 . . .}K−1
v

At this point,yv ≥ yu. If, however, the server failed
to providev with u’s latest version structure,v would
not reflectu’s new version, and the VSL would con-
tain:

yu =
{

VRS, h′u, u, u-2 v-1 . . .
}

K−1
u

yv = {VRS, hv, v, u-1 v-2 . . .}K−1
v

Now the VSL is unordered (yu 6≤ yv andyv 6≤ yu).
Proposition one client: All version structures cre-
ated by a single client that obeys the bare-bones pro-
tocol are totally ordered.
Proof: Immediate by steps 2-6 of the protocol.

Fetch-modify lemma: Suppose all clients follow the
bare-bones protocol. Letq be a version structure.
Let O be the set of all completed operations by all
clients satisfyingO = {o | vs(o) ≤ q}, wherevs(o)
designates the version structure ofo. Whether or not
the server obeys the protocol, ifO is totally ordered
by <, thenO is fetch-modify consistent with< as
the happens-before relation.
Proof: We first must show thatO is orderable using
< as the happens before relation. The execution of
the protocol gives each operation a completion time
after its issue time. Moreover, since< totally or-
dersO, it satisfies requirements 2–4 of orderability.
For the first requirement of orderability, suppose two
version structuresx andy are ordered andx’s oper-
ation completed beforey’s was issued. Letu be the
user that signedx, andv be the user that signedy.
If u = v, then the protocol ensuresx < y. Other-
wise, lety′ bev’s version structure in the VSLu re-
ceived while creatingx. y′ must have completed be-
forex (it had already been signed whenu signedx).
By assumption,x completed beforey issued. Thus,
y′ completed beforey issued. Sincey andy′ both
come from the same client, it follows thaty′ < y and
y′[v] < y[v]. By step 4 of the protocol,x[v] = y′[v],
implying x[v] < y[v]. Thus, sincex andy are or-
dered, it must be thatx < y.

8



Now, we show that the file semantics are correct
with respect to<. Let y, signed byv, be the version
structure corresponding to a fetch inO of file f .
By assumption,O must contain all operations with
version structures less thany. Thus, any VSL entries
that could have passed step 6 of the protocol whenv
signedy must be inO. Let x, signed byu, be the
greatest version structure less thany (and therefore
in O) associated with a modification off . It follows
that for anyx′ signed byu, if x ≤ x′ < y, then
x′ designates the same contents forf as x. In
particular, letx′ beu’s entry in the VSL upon which
y is based. Sincex′[u] = y[u] and users sign at most
one version structure for each of their own version
numbers,x′ must be the greatest version structure
signed byu less thany. Thus,x ≤ x′ < y andv’s
fetch must have returned the same contents forf as
designated byx’s i-handle.

No join lemma: Suppose there are two version
structuresx andy such thatx 6≤ y andy 6≤ x. If
clients follow the protocol, no client will sign any
version structure greater than bothx andy.
Proof: First note that for any clientc and number
n, c will sign at most one version structuret with
t[c] = n. Moreover, any two version structurest and
t′ signed byc are ordered, andt < t′ iff t[c] < t′[c].

Assume that there exists a version structurew such
thatx < w andy < w. There must be at least one
minimal version structurez ≤ w such thatx ≤ z and
y ≤ z. In fact, sincex andy are unordered,z cannot
be either of them, and we must havex < z andy <
z. Let L be the VSL that was sent to the client that
signedz and from which this client calculatedz.

Let u be the user that signedx, and letx′ beu’s
entry inL. It must be the case thatx ≤ x′. We show
this by contradiction. Assumex′ < x < z.

• It cannot be the case thatz was signed byu, be-
cause then it would follow thatx′[u] < x[u] <
z[u] and hencez[u] ≥ x′[u] + 2, which is im-
possible since the protocol setsz[u] = x′[u]+1.

• On the other hand, ifz were signed by a dif-
ferent user fromu, then the protocol would set
z[u] = x′[u]. Sincex < z, x[u] ≤ z[u] = x′[u],
implying x ≤ x′.

By a similar argument, the structurey′ in L

signed by the same user asy must satisfyy ≤ y′.
Since all version structures inL must be ordered,
we also have thatx′ and y′ are ordered. Assume
without loss of generality thatx′ < y′. We then have
x ≤ x′ < y′ < z andy ≤ y′, but theny′ contradicts
the assumption thatz is minimal. Hence no suchz
exists.

Bare-bones theorem: When clients follow the
bare-bones protocol, they achieve fork consistency
whether or not the server obeys the protocol.
Proof: Using the< relation on version structures
to order their corresponding operations, the two
conditions of the Protocol correctness theorem
hold. Condition 1 holds by Proposition one client.
condition 2 holds for the following reason. For
any version structureq, the set{o | o ≤ q} of
all version structures less thanq is totally ordered
by the No-join lemma. Therefore, the associated
operations are fetch-modify consistent with< as
the happens-before relation by the Fetch-modify
lemma.

4.3 Increasing concurrency

The bare-bones protocol serializes all version struc-
ture updates with a global lock on the VSL—an un-
acceptable restriction for a real distributed file sys-
tem. The full protocol therefore uses an additional
mechanism to support concurrent version structure
updates. The basic approach is for users to declare
pending updates to their version structures (result-
ing from either file fetches or modifications) with
signedupdate certificates. Other users can then con-
currently perform non-conflicting operations on the
file system.

An update certificate issued by useru has the
form {UPD, u, n, H(yu), inode-list}K−1

u
. UPD is just

a constant (the type of the signed message).n is
u’s new version number in the forthcoming version
structure.H(yu) is a collision-resistant hash ofu’s
current entry in the VSL. Note thatn = yu[u] + 1,
except when pipelining several updates. Finally, the
update certificate also contains a list of i-table entries
of the form〈i-number, file handle〉 for any file inodes
modified by the update, and〈i-number, delta〉 for di-
rectory inodes. In the case of a fetch, inode-list is

9



empty.
We now extend the version structure so that, in

addition to client-version pairs, a version structure
contains a (possibly empty) list of client-version-
hash triples that reflect concurrent updates by other
clients. A version structure must still contain one
user-version pair for each user, but may also con-
tain user-version-hash triples for consecutive version
numbers up to and including the version number in
any user-version pair.

The hash values are either a reserved value,⊥, or
else the output of a functionV whose domain is ver-
sion structures. Informally,V puts the elements of
a version structure into canonical form, removes the
i-handle, and computes a collision resistant hash of
the result. Specifically, given a version structure

x = {VRS, u, h, u1-n1 u2-n2 . . . , uk-nk-hk . . .}
we computeV (x) as follows: First remove the i-
handle,h. Then sort the user-version pairs by user,
and the user-version-hash triples by user and version.
Finally output a collision-resistant hashH of the re-
maining, sorted fields ofx.

To simplify the proof, we shall from now on as-
sume that every version structurex owned byu con-
tains the tripleu-x[u]-⊥.

Definition 10 We define the≤ relation on extended
version structures as follows. Given two version
structures,x and y, we sayx ≤ y iff the following
two conditions hold:

1. For all usersu, x[u] ≤ y[u] (i.e., x ≤ y by the
old definition).

2. For each user-version-hash tripleu-n-h in y,
one of the following conditions must hold:

(a) x[u] < n (x happened before the pending
operation thatu-n-h represents), or

(b) x also containsu-n-h (x happened after
the pending operation and reflects the fact
the operation was pending), or

(c) x containsu-n-⊥ andh = V (x) (x was
the pending operation).

We sayx = y if x andy have identical contents ex-
cept possibly for the i-handle. We sayx < y iff x ≤ y
andx 6= y.

Proposition: The≤ relation on version structures is
transitive.
Proof: Let x ≤ y andy ≤ z. If x = y or y = z, then
the proposition is trivially true. Assumex < y and
y < z. Condition 1 follows from the fact that (using
numerical≤) x[u] ≤ y[u] ≤ z[u] for all u. For each
user-version-hashu-n-h in z, if y[u] < n, then we
havex[u] ≤ y[u] < n. On the other hand, ify also
containsu-n-h, then eitherx[u] < n, or x contains
u-n-h, or x containsu-n-⊥ andV (x) = h.

The server now maintains apending version list,
or PVL, in addition to the VSL. The PVL con-
sists of a set of update-certificate, unsigned-version-
structure pairs,〈{UPD, u, n, H(yu), inode-list}, `〉.
An update certificate declares an upcoming version
structure that will become part of the VSL, at which
point the update certificate will be removed from the
PVL. The unsigned version structure,`, has the same
contents asu’s upcoming version structure, except
that` has the value⊥ instead of an i-handle.

Useru now performs the following steps to update
its entry in the VSL, depicted graphically in Figure 3:

1. u sends the server an update certificate,p, in-
cluding its new version number and any mod-
ified inodes. The server makes surep’s ver-
sion number is one greater thanu’s own version
number inu’s last version structure, or, in the
case of pipelined updates, one greater than the
version number inu’s previous update certifi-
cate.

2. The server computes a new version structure`p

for u (by emulating steps 4–5 below), and adds
〈p, `p〉 to the PVL. The server then sends the
VSL and PVL tou, along with any old ver-
sion structures no longer in the VSL but still
referenced by update certificates in the PVL.
(These old version structures are needed only
when pipelining updates.)

3. u sanity-checks all data received from the server
in the previous step. All digital signatures must
verify. All hashes in update certificates must
match version structures signed by the same
user. All version structures (signed and un-
signed) must be totally ordered by the new<

10



in VSL.

Client Server

Update Certificate

Client computes
new version structure.

Server sends current Version Structure
List plusall pending updates.

Version Structure List (VSL)
Pending Version List (PVL)

version structure

Server puts new version structure 

Figure 3: The concurrent bare-bones protocol.

relation. All old version structures must be
less than the same user’s entry in the VSL.
All version numbers in a particular client’s up-
date certificates must be consecutive and start
at one greater than the version structure in the
VSL. The PVL must include the update certifi-
cateu signed in step 1 (and none signed byu
with greater version numbers—such certificates
might exist if there are pipelined updates).

4. u initializes a new version structurex, by pro-
cessing the VSL as in the bare-bones proto-
col. Then, for each client with an update certifi-
cate,u increases the corresponding user’s ver-
sion number inx to match the version number
n in the update certificate. If one client has mul-
tiple update certificates,u takes the one with the
highest version number. Sinceu’s own update
certificate is in the PVL,x[u] will contain the
version number from step 1.

5. For every entry 〈{UPD, v, n, H(yv), inode-
list}, `〉 in the PVL except the one signed in
step 1,u adds the triplev-n-V (`) to x. For the

update certificate in step 1,u addsu-x[u]-⊥ to
x. Intuitively, this encodes the history of opera-
tions in the PVL intox.

6. For every version structurey in the VSL, u
checks thaty < x. For all unsigned version
structures` in the PVL, u checks that either
` < x or ` = x and corresponds to the update
certificate from step 1.

7. u signsx and sends it to the server. The server
makes sure thatx = `p from step 2 (to guard
against misbehaving clients).

8. u checks for a modify-fetch conflict. Ifu is
fetching a file and the file is listed in one of the
PVL’s update certificates, there must be a pend-
ing modification to the file. In this case,u does
not return from the fetch call immediately, but
instead requests and waits for the server to send
it the version structure corresponding to the lat-
est version of the file.u checks that this version
structure matches the unsigned structure in the
PVL.

11



Proposition concurrent one client: All version
structures created by a single client that obeys the
concurrent bare-bones protocol are totally ordered.
Proof: Immediate by step 4 of the protocol.

Concurrent fetch-modify lemma: Suppose all
clients follow the concurrent bare-bones protocol.
Let q be a version structure. LetO be the set
of all completed operations by all clients satisfying
O = {o | vs(o) ≤ q}, wherevs(o) designates the
version structure ofo. Whether or not the server
obeys the protocol, ifO is totally ordered by<, then
O is fetch-modify consistent with< as the happens-
before relation.
Proof: We first must show thatO is orderable using
< as the happens before relation. The execution of
the protocol gives each operation a completion time
after its issue time. Moreover, since< totally orders
O, it satisfies requirements 2–4 of a happens before
relation. For the first requirement of happens before,
suppose two version structuresx andy are ordered
andx’s operation completed beforey’s was issued.
Let u be the user that signedx, andv be the user that
signedy. If u = v, then the protocol ensuresx < y.
Otherwise, sincey was issued afterx completed,u
had already signedx at the timev signed the update
certificate for the operation associated withy. No up-
date certificate or version structure ofy could have
a version≥ y[v] beforev signed its update certifi-
cate. So, ifx followed the protocol, thenx[v] < y[v].
Sincex andy are ordered, it must be thatx < y.

Let y, signed byv, be the version structure corre-
sponding to a fetchF ∈ O of file f . By assumption,
O must contain all operations with version structures
less thany. Thus, any VSL entries that could have
passed step 6 of the protocol whenv signedy must
be inO. Let x, signed byu, be the greatest version
structure less thany (and therefore inO) associated
with a modification off . It follows that for anyx′

signed byu, if x ≤ x′ < y, thenx′ designates the
same contents forf asx. Let x′ beu’s entry in the
VSL upon whichy is based. Ifx ≤ x′, thenF must
have returned the same contents forf as designated
by x’s i-handle. If, on the other hand,x′ < x < y,
y must have seen an update certificate for version
x[u] of useru. But then by step 8 of the protocol,
the fetch would have waited forx before returning,

and thus would base the file contents returned onx’s
i-handle.

Concurrent no join lemma: Suppose there are two
version structuresx andy such thatx 6≤ y andy 6≤ x.
If clients follow the protocol, no client will sign any
version structure greater than bothx andy.
Proof: As before, for any clientc and numbern, c
will sign at most one version structuret with t[c] =
n. Moreover, any two version structures signed byc
are ordered.

Assume that there exists a version structurew such
thatx < w andy < w. There must be at least one
minimal version structurez ≤ w such thatx ≤ z
andy ≤ z. Let L be the VSL andP be the PVL that
were sent to the client that signedz and from which
this client calculatedz.

We first note that there must exist somex′ in L or
P such thatx ≤ x′ < z. To see this, letu be the
user that signedx, and letx′′ be u’s entry in L. If
x ≤ x′′, then we just letx′ = x′′. On the other hand,
if x′′ < x, thenx′′[u] < x[u], and hencez must
contain some tripleu-x[u]-V (x), which the signer of
z would have included only if somèx = x appeared
in P . In this case we setx′ = `x.

By a similar argument, there exists somey′ in L
or P such thaty ≤ y′ < z. All version structures in
L andP must be ordered by the sanity check step of
the protocol, so in particularx′ andy′ are ordered.
Assume without loss of generality thatx′ < y′. We
then havex ≤ x′ < y′ < z andy ≤ y′, but then
y′ contradicts the assumption thatz is minimal, and
hence no suchz exists.

Concurrent Bare-Bones theorem: When clients
follow the concurrent bare-bones protocol, they
achieve fork consistency whether or not the server
obeys the protocol.
Proof: Using the< relation on version structures
to order their corresponding operations, the two
conditions of the Protocol correctness theorem hold.
Condition 1 holds by Proposition concurrent one
client. Condition 2 holds for the following reason.
For any version structureq, the set{o | o ≤ q} of
all version structures less thanq is totally ordered by
the Concurrent no-join lemma. Therefore, the asso-
ciated operations are fetch-modify consistent with

12



< as the happens-before relation by the Concurrent
fetch-modify lemma.

4.4 Generalizing to Groups

Until now, we have assumed that each user modi-
fies files only in his own i-table. In practice, sys-
tems often contain group-writable files and directo-
ries that might be modified by several users. Groups
in SUNDR are treated similarly to users. Every ver-
sion structure has a version number for every group.
Every group has its own associated i-table. While
users may still sign version structures as before con-
taining just their own i-handles, then can also sign
version structures that include the i-handle for a
group they are a member of. However, every ver-
sion structure must contain the latest i-handle of the
user signing it. A new version structure looks like
this:

{VRS, u, hu, g, hg, u-nu g-ng u′-n′ . . . , u′′-n′′-h′′ . . .}

Version structures are compared as in the concur-
rent bare-bones protocol (with groups treated just
like users). TheV hash function is as before, but
removes all i-handles. Note that inu-n-h triples,u
is still only a user, not a group. Version structurex
signed by useru still containsu-x[u]-⊥.

The VSL now contains the latest version struc-
ture of each user, and the latest version structure for
each group. The latest version structure of a group
may also be the latest version structure of the user
who signed it. If the user subsequently signs a ver-
sion structure for only his own i-handle, or for the
i-handle of a different group, then the old version
structure must remain in the VSL so that people still
have access to the group’s latest i-handle.

In the new protocol, each user still increments his
own version number on every update. However, now
when a user is updating a group, the user will in-
crement both his own version number and the ver-
sion number of the group. We therefore extend up-
date certificates so as to be able to reflect updates to
groups. A new update certificate contains not just
the user signing it and the user’s new version num-
ber, but also the group being updated, if this update
will change a group. Note, however, that the update

certificate does not contain the new version number
of the group (the client would not know this infor-
mation at the time it was signing an update certifi-
cate). The inode-list in an update certificate now
contains〈principal, i-number, file handle〉 triples, in-
stead of just〈i-number, file handle〉 pairs, so as to be
able to reflect changes to multiple i-handles.

The server constructs the PVL out of
〈update-certificate, `〉 pairs as before, though
when a group is being updated the unsigned update
certificatè must contain⊥ for both the user and the
group i-handle.

The protocol now proceeds as follows:

1. u sends the server an update certificate,p. The
server checks the update certificate; it makes
sure the user is not modifying a group she is not
a member of and verifies the version number—
ensuring the version is one greater than the
client’s version number in its last version struc-
ture, or, in the case of pipelined updates, one
greater than the version number in its previous
update certificate.

2. The server computesu’s new version structure,
`p, adds〈p, `p〉 to the PVL, and sends the VSL
and PVL tou, along with any old version struc-
tures still referenced by update certificates.

3. u sanity-checks all data received from the server
in the previous step. This is the same as in the
concurrent bare-bones protocol.

4. u initializes a new version structurex process-
ing user VSL entries as in the bare-bones proto-
col. u then processes group entries in the VSL.
If yg is groupg’s entry in the VSL, thenu sets
x[g] ← yg[g]. u then processes the PVL for
updates to user version numbers as in the con-
current bare-bones protocol. Finally,u counts
the number of timesng each groupg appears in
the PVL, and adds this number to the number in
x, i.e.,x[g]← x[g] + ng.

5. For every entry〈{UPD, v, n, g, H(yv), inode-
list}, `〉 in the PVL except the one signed in
step 1,u adds the triplev-n-V (`) to x. For the
update certificate in step 1,u addsu-x[u]-⊥ to
x.

13



6. For every version structurey in the VSL, u
checks thaty < x. For all unsigned version
structures` in the PVL, u checks that either
` < x or ` = x and corresponds to the update
certificate from step 1. So far this is as in the
concurrent bare-bones protocol.

7. u checks for modify-modify conflicts. Ifu is
modifying a file in a group, and there are other
modifications to the group, thenu applies these
modification to the group’s i-table (in the order
by which < sorts thè fields of PVL entries).
u then recomputes the group’s i-handle and in-
cludes the i-handle in the version structurex.

8. u signsx and sends it to the server. The server
checks thatx = `p from step 2.

9. u checks for a modify-fetch conflict. Ifu is
fetching a file and the file is listed in one of the
PVL’s update certificates, there must be a pend-
ing modification to the file. In this case,u does
not return from the fetch call immediately, but
instead requests and waits for the server to send
it the version structure corresponding to the lat-
est version of the file.u checks that this version
structure matches the unsigned structure in the
PVL.

Proposition group one client:All version structures
created by a single client that obeys the concurrent
group protocol are totally ordered.
Proof: Immediate by step 4 or 6 of the protocol.

PVL preservation lemma: Assume clients obey the
protocol but the server might not. Letx be an update
certificate signed byu; let L be the VSL andP the
PVL thatu received when signingx; let yv designate
userv’s entry inL. For every user-version-hash triple
v-n-h appearing in somez ∈ L, eitheryv[v] ≥ n or
P contains an update certificate numbern signed by
userv.
Proof: By contradiction. SupposeL contained a
version structurez containingv-n-h, yet yv[v] < n
and P has no corresponding update certificate
signed byv for versionn. Because update certifi-
cates signed byv in P must be consecutive starting
at yv[v] and because there is no update certificate

signed byv for version n, P cannot contain any
other update certificate signed byv with a version
greater thann. It follows from the protocol that
x[v] < n ≤ z[v]. But thenz 6< x and step 6 of the
protocol would fail, preventingu from signingx.

Group fetch-modify lemma: Suppose all clients
follow the concurrent group protocol. Letq be a ver-
sion structure. LetO be the set of all completed oper-
ations by all clients satisfyingO = {o | vs(o) ≤ q},
wherevs(o) designates the version structure ofo.
Whether or not the server obeys the protocol, ifO
is totally ordered by<, thenO is fetch-modify con-
sistent with< as the happens-before relation.
Proof: We first note thatO is orderable using< as
the happens before relation by the same argument as
in the concurrent fetch-modify lemma.

Let y, signed byv, be the version structure corre-
sponding to a fetchF ∈ O of file f . Letx, signed by
u, be the greatest version structure less thany asso-
ciated with a modificationM of f . By assumption,
x will be in O. If f is in a user i-table (that isf is
writable only by a single user, but no groups), theny
will see the version inM by the same argument as in
the concurrent fetch-modify lemma.

Suppose thatf is in some groupg’s i-table. Letz,
signed byw, beg’s entry in the VSL upon whichy is
based. Ifx = z, then clearlyF returned the contents
written byM . Otherwise, eitherz < x or x < z.

Case 1.Supposez < x. z andx both contain i-
handles forg. We first wish to show thatz[g] < x[g].
Let z′ bew’s VSL entry upon whichx is based. If
z ≤ z′, then, sinceu incremented the group ver-
sion number when creatingx, it must be thatz[g] ≤
z′[g] < x[g]. On the other hand, sayz > z′. There
must have been somèz with `z[w] = z[w] in the
PVL on whichx is based, andx must contain some
w-z[w]-V (`z) triple. Sincez < x, the definition
of < requires thatV (`z) = V (z). By collision re-
sistance, and sincex incremented the group version
number, we havez[g] = `z[g] < x[g].

Now, sincez[g] < x[g] ≤ y[g], v must have seen
a PVL entry corresponding tox, and would have
waited to receivex in step 9 of the protocol. Thus,
v’s fetchF must have been performed using the very
i-handle inx.

Case 2.Suppose thatx < z. Let x′ beu’s entry

14



in the VSL upon whichz is based. Ifx ≤ x′, then
the i-handlez signs will reflect the contents off des-
ignated byx, and hencev will read this contents in
F .

Suppose instead thatx′ < x. Now since,x < z,
g’s i-handle inz will reflect the value off in the
inode-list of u’s update certificate corresponding
to x. Note thatz includes this new contents off
without having seenx. Having seen the update
certificate,w must also include someu-x[u]-V (x)
triple in z. By the PVL preservation lemma, sincez
was in the VSL wheny was signed, either that VSL
also containedx or a more recent version structure
signed byu, or else the PVL still containedu’s
signed update certificate for versionx[u]. In the
former case, the VSL entry contains an i-handle that
reflects the contents written byM . In the later case,
v will wait to seex in step 9 of the protocol.

Group no join lemma: Suppose there are two ver-
sion structuresx andy such thatx 6≤ y andy 6≤ x.
If clients follow the concurrent group protocol, no
client will sign any version structure greater than
bothx andy.

Proof: The proof of this lemma is identical to the
proof of the concurrent no join lemma.

Group Bare-Bones theorem: When clients fol-
low the concurrent bare-bones protocol, they achieve
fork consistency whether or not the server obeys the
protocol.

Proof: Using the< relation on version structures
to order their corresponding operations, the two
conditions of the Protocol correctness theorem hold.
Condition 1 holds by Proposition group one client.
Condition 2 holds for the following reason. For
any version structureq, the set{o | o ≤ q} of all
version structures less thanq is totally ordered by
the Group no-join lemma. Therefore, the associated
operations are fetch-modify consistent with< as the
happens-before relation by the Group fetch-modify
lemma.

4.5 Pragmatic considerations

Client failures. In the concurrent protocols, a fetch
waits for a conflicting modification. If the modifi-
cation never completes, then the fetch waits forever.
However, this is not necessary. The fetch could time
out and return an error code, and the user could then
sign the same version structure it would have signed
had it gotten the version structure it was waiting for.
With this change, we could still construct a forking
tree on all completed operations except the fetches
that returned error codes.

When a client failure causes an incomplete modify
operation, the user can repair the situation by logging
into a working client and reissuing the modification.
All information necessary to reissue the modification
is included in the inode-list of the update certificate.

Malicious clients can write spurious data to files
that they own, but signatures prevent them from
writing data to any other files. They can send the
server version structures that destroy the total order-
ing of the VSL, but a well-behaved server will refuse
such updates. Even when bad clients collude with a
bad server, the set of completed operations by good
clients on files that no bad client has permission to
write will still have fork consistency. In particular,
If c1 andc2 follow the protocol,c1 misses an update
of file f by c2, and no bad client can writef , then
as before,c1 andc2 can never again see each other’s
updates.

Users logged into multiple clients.We have as-
sumed so far that each user runs on a single client.
This is not realistic. However, the relationship be-
tween clients and users is analogous to the one be-
tween users and groups. So, one approach would
be to create a version structure entry for each client
a user is logged into. There is an optimization in
which, while each user’s version structure must still
contain a version number for every client that user
is logged into, for users other than the signer, the
version structure need only contain a version num-
ber for one client—the one to make the most recent
modification on behalf of that user. There is another
optimization that allows clients eventually to stop ap-
pearing in version structures after a user has logged
out. A full description of these optimizations is be-
yond the scope of this paper.

15



Bandwidth optimizations. Note finally that the
server does not need to send the full VSL in response
to each update certificate, but can instead send only
new version structures since the last operation by the
same client.

5 Summary

We have described SUNDR, a network file system
whose protocol makes even Byzantine file server
failures readily detectable. Through digital signa-
tures and a novel consistency protocol, SUNDR au-
tomatically detects almost any incorrect or malicious
behavior on the part of the server. The only attack
not immediately detectable is effectively to create an
exact replica of a file system and partition users so
that one group of users sees each replica and the two
groups’ operations are entirely concealed from each
other. Even this attack is detectable however, if users
have any ability to communicate out-of-band. A sim-
ple pinging protocol, a trusted version-verification
server, and even informal human communication are
sufficient to reveal such a partitioning attack.

6 Acknowledgments

We’d like to thank Allan Gottlieb, M. Frans
Kaashoek, David Molnar, Robert Morris, and Marc
Waldman for their helpful comments.

References

[1] Thomas E. Anderson, Michael D. Dahlin,
Jeanna M. Neefe, David A. Patterson, Drew S.
Roseli, and Randolph Y. Wang. Serverless net-
work file systems.ACM Transactions on Com-
puter Systems, 14(1):41–79, February 1996.
Also appears in Proceedings of the of the 15th
Symposium on Operating System Principles.

[2] David Bindel, Yan Chen, Patrick Eaton, Den-
nis Geels, Ramakrishna Gummadi, Sean Rhea,
Hakim Weatherspoon, Westley Weimer, West-
ley Weimer, Christopher Wells, Ben Zhao, and
John Kubiatowicz. Oceanstore: An exteremely
wide-area storage system. InProceedings of

the 9th International Conference on Architec-
tural Support for Programming Languages and
Operating Systems, pages 190–201, 2000.

[3] Matt Blaze. A cryptographic file system for
unix. In 1st ACM Conference on Communi-
cations and Computing Security, pages 9–16,
November 1993.

[4] William J. Bolosky, John R. Douceur, David
Ely, and Marvin Theimer. Feasibility of a
serverless distributed file system deployed on
an existing set of desktop pcs. InSIGMET-
RICS, pages 34–43, 2000.

[5] Miguel Castro and Barbara Liskov. Practical
byzantine fault tolerance. InProceedings of the
3rd Symposium on Operating Systems Design
and Implementation, pages 173–186, New Or-
leans, LA, February 1999.

[6] Frank Dabek, M. Frans Kaashoek, David
Karger, Robert Morris, and Ion Stoica. Wide-
area cooperative storage with cfs. InProceed-
ings of the 18th ACM Symposium on Operating
Systems Principles, pages 202–215, Chateau
Lake Louise, Banff, Canada, 2001. ACM.

[7] Dan Duchamp. A toolkit approach to partially
disconnected operation. InProceedings of the
1997 USENIX, pages 305–318. USENIX, Jan-
uary 1997.

[8] Kevin Fu. Group sharing and random access
in cryptographic storage file systems. Master’s
thesis, Massachusetts Institute of Technology,
May 1999.

[9] Kevin Fu, M. Frans Kaashoek, and David
Mazières. Fast and secure distributed read-only
file system. InProceedings of the 4th Sympo-
sium on Operating Systems Design and Imple-
mentation, 2000.

[10] Umesh Maheshwari and Radek Vingralek.
How to build a trusted database system on un-
trusted storage. InProceedings of the 4th Sym-
posium on Operating Systems Design and Im-
plementation, San Diego, October 2000.

16



[11] David Mazìeres, Michael Kaminsky, M. Frans
Kaashoek, and Emmett Witchel. Separating
key management from file system security. In
Proceedings of the 17th ACM Symposium on
Operating Systems Principles, pages 124–139,
Kiawa Island, SC, 1999. ACM.

[12] Ralph C. Merkle. A digital signature based
on a conventional encryption function. In Carl
Pomerance, editor,Advances in Cryptology—
CRYPTO ’87, volume 293 ofLecture Notes
in Computer Science, pages 369–378, Berlin,
1987. Springer-Verlag.

[13] Ethan Miller, Darrell Long, William Freeman,
and Benjamin Reed. Strong security for dis-
tributed file systems. InProceedings of the 20th
IEEE International Performance, Computing,
and Communications Conference, pages 34–
40, Phoenix, AZ, April 2001.

[14] David Reed and Liba Svobodova. Swallow: A
distributed data storage system for a local net-
work. In A. West and P. Janson, editors,Lo-
cal Networks for Computer Communications,
pages 355–373. North-Holland Publ., Amster-
dam, 1981.

[15] A. Rowstron and P. Druschel. Pastry: Scal-
able, distributed object location and routing for
large-scale peer-to-peer systems. InMiddle-
ware, 2001.

[16] Christopher A. Stein, John H. Howard, and
Margo I. Seltzer. Unifying file system pro-
tection. InProceedings of the 2001 USENIX.
USENIX, June 2001.

[17] Ion Stoica, Robert Morris, David Karger,
M. Frans Kaashoek, and Hari Balakrishnan.
Chord: A scalable peer-to-peer lookup service
for internet applicatio ns. InProceedings of the
ACM SIGCOMM ’01 Conference, San Diego,
California, August 2001.

17


