Building secure file systems out of Byzantine storage

David Mazires and Dennis Shasha
NYU Department of Computer Science
{dm, shasha}@cs.nyu.edu

Abstract ees. Furthermore, network intruders often penetrate
servers to gain privileged access.
This paper shows how to implement a trusted net-Incorrect server behavior can be categorized as ei-
work file system on an untrusted server. While crygher fail-stop or Byzantine. Fail-stop behavior en-
tographic storage techniques exist that allow userssiempasses failures in which the server is unable or
keep data secret from untrusted servers, this wankwilling to perform an expected task, such as re-
concentrates on the detection of tampering attackgning a file it should be storing. People deal with
and stale data. Ideally, users of an untrusted stetrch problems through disk and server redundancy
age server would immediately and unconditionalphd backups. Byzantine behavior, by contrast, in-
notice any misbehavior on the part of the server. Thikides faulty actions that may go undetected, such as
ideal is unfortunately not achievable. However, wsibtle, malicious tampering by hackers or unscrupu-
define a notion of data integrity callddrk consis- lous employees. This work is the first to show how
tencyin which, if the server delays just one user frond render Byzantine file server failures readily de-
seeing even a single change by another, the two usetsable.
will never again see one another’s changes—a failuran an ideal network file system, if one user writes
easily detectable with on-line communication. Wgnd closes a file, the next user to open the file should
give a practical protocol for a multi-user network filgee the exact contents just written. In an untrusted
system called SUNDR, and prove that SUNDR oéetting, one can gain some assurance of data integrity
fers fork consistency whether or not the server obeygh digital signatures, but a signature cannot guar-
the protocol. antee that a user is reading the most recent version of
afile. If the last signed file update user sees from
) userus IS 24 hours old, does this mean hasn't
1 Introduction logged in for a day, or is the file system concealing
us’s updates fromu, ?
There are many reasons not to trust one’s file servenye propose a slight weakening of traditional file
An unscrupulous person with administrative accegstem consistency semantics callEgk consis-
can easily tamper with files, making modification@ncy A file system with fork consistency might
that go undetected. Yet people often entrust serveghceal users’ actions from each other, but if it does,
to people who have no role in creating or usingsers get divided into groups and the members of one
the data stored on them—for instance system afoup can no longer see any of another group’s file
ministrative consultants or data warehouse emplaystem operations. Users can detect such partitioning
through any available out-of-band communication—
*NYU computer science department technical report TR200%nm conversation (“Did you see the new file?”), to

826, May 2002. An abbreviated version of this paper will appeaﬁen,[_to_CIient 0SSi rotocols. to trusted on-line
in Proceedings of the 21st ACM Syposium on Principles of DI%- g PP !

tributed ComputingJuly 2002. version-verification devices.
This research was supported in part by National Science Foun-The remainder of this paper deS_CVibeS the data
dation awards CCR-0093361 and 11S-9988345. structures and protocol of a multi-user network

file system called SUNDR (Secure Untrusted Dataliable desktop machines. Several new distributed
Repository). We prove that SUNDR guarantees fohlash tables such as Chord [17] and Pastry [15] show
consistency, whether or not the server obeys the ptise potential to scale to millions of separately ad-
tocol. As described here, SUNDR does not providaeinistered volunteer nodes, with CFS [6] layering
data secrecy. We intend to achieve secrecy by layarread-only file system on top of such a highly dis-
ing existing cryptographic storage techniques on tajbuted architecture. These systems can all benefit
of SUNDR. However, since the consistency protoctstbm SUNDR'’s protocol, which is the first to imple-

is the more novel contribution, we will not addressient anything resembling traditional file system se-
secrecy in this paper. mantics without trusting the storage infrastructure.

Each SUNDR user has a public key for digital sig- A number of file systems in the past have used
natures. A user’s private key must remain secret fradRyptographic storage to keep data secret in the event
all other system elements, including the server agfl a server compromise. The swallow [14] dis-
other users. Because the user signs its updates, fifjuted file system used client-side cryptography to
ther the server nor any other user can forge updaggorce access control. Clients encrypted files before
from that user. SUNDR also requires every clieffriting them to the server. Any client could read any
to have a small amount of persistent storage sof@, but could only decrypt the file given the appro-
to remember some version information about the Igiate key. Unfortunately, one could not grant read-
message it has signed. only access to a file. An attacker with read access

SUNDR is based on the premise that digital sigould, by controlling the network or file server, sub-
natures can be computed faster than network roustute arbitrary data for any version of a file.
trip times and verified highly efficiently. This as- ~gg [3] allows users to keep directories of files

sumption is increasingly valid as hardware speegi$, get transparently encrypted before being written
increase (and the speed of light doesn’t). Today, flgisk. CFS does not allow sharing of files between
800 MHz Pentium Il can compute 1,024-bit Rabifjsers nor does it guarantee freshness or integrity of
signatures in 7 msec and verify them in p8€C. yata |t is intended for users to protect their most sen-

Some patented algorithms are even faster. Esign, {afe files from prying eyes, not as a general-purpose
instance, achieves 35(5ec signatures and 2QBec e system. Cepheus [8] adds integrity and file shar-

verifications with 2,048-bit keys. In SUNDR, openyq 1o 5 CFS-like file system, but trusts the server

ing afile or closing a modified file requires the clien}; he integrity of read-shared data. SNAD [13] can
to compute two digital signatures and wait for ongse gigital signatures for integrity, but does not guar-
network round trip. A third, asynchronous messaggee freshness. PFS [16] is an elegant scheme for
is required before another user can access fresiiicking the integrity of a file system stored on an
written contents. Concurrent operations can be pigstrsted disk. With minor modifications, PFS could
gybacked into a single pair of digitally signed mesyaye strong freshness guarantees. However, PFS is
sages, allowing heavily-loaded clients to reduce tF@alIy a local file system designed to reside on un-
total number of signatures they compute. trusted, potentially remote disks. Users on multiple
clients cannot simultaneously access the same file

2 Related work system.

The Byzantine fault-tolerant file system, BFS [5],
Recently, there has been growing interest in peeses replication to ensure the integrity of a network
to-peer storage systems comprised of potentially uite system. As long as more thar3 of a server’s
trusted nodes. OceanStore [2] has envisaged datam@plicas are uncompromised, any data read from the
grating all over the world to follow users, but hafile system will have been written by a legitimate
weak consistency and security guarantees. xFS (ikpr. SUNDR, in contrast, does not require any repli-
introduced the idea of serverless network file sysation or place any trust in machines other than a
tems, while Farsite [4] investigated the possibilityser’s client. If data is replicated in SUNDR, only
of spreading such a file system across people’s wme replica need be honest for the file system to func-

2

tion properly. However, SUNDR and BFS providef the file system, SUNDR relies on a collision-
different freshness guarantees. resistant cryptographic hash function and a digital

SUNDR uses hash trees, introduced in [12], to vesignature scheme. We assume the signatures are ex-
ify a file block’s integrity without touching the entireistentially unforgeable against a chosen message at-
file system. Duchamp [7], BFS[5], SFSRO [9] anthck. Though of course there exists a finite but negli-
TDB [10] have all made use of hash trees for compayible chance of the cryptography failing, for the rest
ing data or checking the integrity of part of a largesf this paper we simply assume that no collisions oc-
collection of data. cur and no signatures are forged.

Every user of a SUNDR file system has a pub-
lic key. For the purposes of this paper, we do not
care how these keys are managed, so long as all
p%qrties agree on every user’s public key. One pos-
ibility is to embed the superuser’s public key in
e file system’s pathname, as in SFS [11], and for

3 Architecture

SUNDR decomposes the problem of reading pro
file data into two parts. First, starting with a bit strin

known as a user’s i-handle and a file identifier call = J
the i-number, a SUNDR client can retrive and verifif'€ keys of other users to reside in some fie.c/

the integrity of any block in the file. Second, thergndr-users owned by the superuser and which the
is a protocol for users to update their i-handles af"ver @lso knows how to retrieve. There is also a
for each user to ensure she has the latest i-handIdil§f/ etc/group indicating which users are in which
every other user. We describe the first proceduredfPuPs. The SUNDR server authenticates the users

this section, deferring the tougher problem problefffommunicates with, so as to prevent one user from
of i-handle consistency to the next section. unreferencing another’s blocks. The server might

We begin with a brief overview of SUNDR’s@Iso provide some mechanism to enforce disk quo-

client-server architecture and file system metad4® On users. Finally, the server itself has a public
structures. We simplify the description somewhat &6 known to users (for instance certified by the su-
as to leave room for the a detailed description aR§ruSer's public key), so that clients can authenticate
proof of the consistency protocol in the next sefl€ server. We assume that all RPCs are authenti-
tion. The particular file system we describe provid&@ted, so that users can hold the server responsible
a practical and concrete use of the consistency prdf@-any incorrect replies.
col, though our technique is potentially of more gen- In addition to Storing blocks, the server stores a
eral applicability. signeadversion structurdor each user and group, and
SUNDR is organized as a server and a set &0 some information about operations in progress.
clients. The server operates at a lower level thAnversion structure consists of version data (which
conventional file servers. It stores blocks of dage Will describe in the next section) and ielnandle
for users, but neither understands nor interprets thee i-handle is a single cryptographic hash with
blocks that it stores. The basic interface to the servéfich one can verify the integrity of any block of any
consists of three RPCSTORE RETRIEVE, anduN- file owned by a particular user. i-handles are the re-
REFERENCE STORESstores a chunk of data on th&ult of recursively hashing file system data structures
server. RETRIEVE retrieves a block by its collision-in @ manner similar to the SFSRO file system [9]. We
resistant cryptographic hash. In case a block is stof&scribe these data structures from the ground up.
multiple times, the server keeps a count for each useiThe lowest-level data structure in SUNDR is the
of how many times the user has stored the block. Thietual inode shown in Figure 1, with which one can
UNREFERENCERPC decrements a user’s referenedficiently retrieve and verify any portion of a file or
count (if not already zero), and reclaims the storad@ectory. The virtual inode contains a file's metadata
when a block’s count goes to zero for all users. and the size and cryptographic hashes of its blocks.
SUNDR clients are responsible for interpretingor large files, the inode also contains the hash of
the data chunks stored at servers as inodes, diracindirect block which in turn contains hashes and
tory blocks, and file data. To ensure the integrisizes of file blocks. For larger files, an inode can

3

File Data Blocks

Virtual Inode BO||B1| --- | B7|| B8
metadata «’J
H
H(BO), size
H
H(B1), size

Indirect Block

H H(BT7), size
H(H(BT7),...),size| <—— -
H(BS), size

Figure 1: The SUNDR virtual inode structure

point to double-, triple-, or even quadruple-indirecd Consistency pI’OtOCO|
blocks. The hash of a virtual inode is known as a
file handle Given a file handle, one can retrieve anype goal of SUNDR’s consistency protocol is to
block of the file withRETRIEVE RPCs, first retriev- n5ke it as easy as possible to detect whether the
ing the inode by the file handle, then retrieving dalgyer has faithfully provided a consistent view of
and/or indirect blocks by the hashes in the inode. e file system to all clients. As we will show, if a
SUNDR server fails to show one user another’s up-
dates, either user will detect the attack upon seeing
Each user and group also has an ordered lighy subsequent file system operation by the other,
known as the-table, mapping 64-bit per-user virtualeven if through a third user. We call this property
inode numbers, oknumbers to file handles. An i- fork consistency This section begins with a formal
table lists every file belonging to a particular user definition of fork consistency. We then list and prove
group. The i-table is broken into blocks, convertealset of criteria sufficient for any protocol to achieve
to a hash tree, and each node of the tree storedosk consistency. Finally, we develop three succes-
the SUNDR server. The hash of the tree’s root $svely more efficient and general protocols and show
the i-handle of the user or group. Given an i-handihat they satisfy the criteria for fork consistency.

one can retrieve and verify the file handle of any i- The file system literature uses the techse-to-
number by retrieving the appropriate intermediaghen consistencyo speak of the consistency of a
blocks from the server. Directories also use virtugjige variety of operations. In practice, some file sys-
inodes. The data blocks of a directory contain a ligty, calls (such as truncate) synchronously modify a
of (file nameuseri-numbey triples, sorted by file fjje without opening or closing it, and must also be
name. By convention, inode number 2 in the supgymediately visible to other users. Thus, for the pur-
ruser’s i-table is the root directory of the file systemyoses of this paper, we will speakfetchesandmod-

ificationsrather than opens and closes, and we will

concern ourselves with fetch-modify consistency. A

To modify the file system, a client computes a nefgtch is the process by which a client either validates

i-handle, stores new blocks at the SUNDR servés cached copy of a file or downloads new contents
and computes and signs a new version structure. Tram the server. Modification is the process through
client then updates its version structure on the servdnich a client makes new file system content visi-
using two more RPCs)PDATE and coMMIT, de- ble to other clients. (Modification can occur on file
scribed in the next section. Finally, the client unretloses, but also ofsynccalls and certain metadata
erences any blocks it no longer needs. operations).

Definition 1 A clientis an entity that produces a seDefinition 4 A set of fetch and modify operations is
of fetch and modify requests and sends them to fhech-modify consisteniff the operations are order-
server. Each request has a wall-clock time assoable and any fetcli’ of a file f returns the contents
ated with it called thessue time of the file produced by exactly the modifications that

happened beforé’, in the order specified by the hap-
Conceptually, the issue time corresponds to the tifggns before relation.

at which software invoked the file system’s fetch or
modify routine. If all goes well, the routine will re-Fetch-modify consistency relates the order of opera-
turn at some later time we call the completion timé&ons to the results of fetch operations, but leaves the
Note we do not assume that clients have synchprecise semantics of a modification open. If modifi-
nized clocks. Thus, a client will not know the issueations always overwrite the entire contents of a file
time of its own operations. (as in SUNDR), a fetch-modify consistent file system
need only return the result of the last modification to
Definition 2 A principal is an entity authorized t0 5 fetched file. File systems in which modifications
access the file system. Each principal has a publifange only part of a file must return the effect of

signature key, the private half of which we assumedgmposing all previous modifications in happens be-
unknown to the server. fore order.

Examples of principals include a user, a user actifgfinition 5 Given a set of operations that have
as amember of a group, and a client acting on behé@hmpleted on a file system farking tree is a tree
of a user. Note one private key may speak for mulily which each node has an associated set of opera-

ple principals, as when a user is a member of sevejghs called dorking group, and the forking groups
groups. have the following properties:

Definition 3 A set of fetch and modify operations on 1. Every forking group is fetch-modify consistent.
a file system irderableif each operation has a _ . _
completion timelater than its issue time and there 2- FOr every client, there is at least one forking

exists a partial orderhappens beforeon the opera- group that contains every operation by
tions such that: 3. For any operationO, the set of nodes whose
1. If the completion time of operatiof; is ear- forking groups contairO includes a common
lier than the issue time of operatiof,, then ancestory, and all descendents of
Oy happens before, . 4. If two nodes’ forking groups both contain oper-

2. Happens before orders any two operations by ~ationsO; and O, and O happens beforé),
the same client (even if both operations are is- N the first forking group, thew; also happens
sued before either Completes). beforeOQ in the second fOI’kIng group.

3. Happens before totally orders all modifications 5- Every operation in a node’s forking group ei-
to any given file. ther occurred in the parent node’s forking group

or else happened after every operation in the
4. Happens before orders any fetch of a file with parent node’s forking group.

respect to all modifications to the same file.
Definition 6 A file system i$ork consistentiff it al-

Orderability restricts but does not completely spegrays guarantees the existence of a forking tree on
ify the order of operations. Once an operation coffe set of completed operations.

pletes, it happens before any subsequently issued op-

eration. For concurrent operations, however, the filelnformally, each branch of a forking tree repre-
system is free to choose any order, so long as depsents a failure of the server to deliver fetch-modify
dent operations have a definite order. consistency. Initially, the operations of all clients are

in the same (root) forking grougsy. Then, if, sayg¢y

AB
makes a modificatiod/ to file f, M completes, and / \
co subsequently issues a fetEhithat returns an older

version of f, M and F' must occur in two new fork- A B, C A BC,D, F
ing groups—¢& for M and subsequent operations by

c1, andG,, for F' and subsequent operationsdyy At / \

this point,c; can never see another operationdy

and vice versa (that's why we want a tree topology). A,B,C,D,E, F A,B,C D’ E"’

Moreover, no later operations by other clients can go

in Gy. Thus, the set of clients is partitioned into tweigure 2: Tree resulting from the three maximal
groups that will never again see each others’ opetmins.

tions. This situation is very likely to be noticed soon

through out-of-band communication between cIientﬁ :
or USErs e tree’s leaves, and the least common ancestor of

any two nodes is their greatest common prefix.
For example, consider three maximal chains:

4.1 Protocol correctness theorem

s1 = AB,C,D,E,F

s9 = A B,CD" E"

A B,C',D E

Protocol correctness theorem: A set of (com-
pleted) operations on a file system is fork consistent
if there exists a partial ordet on operations with the 83
following two properties:

1. Every two distinct operations created by a sigigure 2 shows the resulting tree.

gle client are ordered by. Now let us verify the five required properties of

) the forking tree:
2. For any operation, the set{o | o < ¢} of all

operations (by any client) less than or equal to1. Every forking group is fetch-modify consistent.
q is totally ordered and fetch-modify consistent

with < as the happens-before relation. Since chains are totally ordered, and each fork-

ing group is a prefix of a chain, every forking

Proof: Recall that a file system ferk consistentiff group consists of a maximum element,and
it always guarantees the existence of a forking tree €Very operatiom < ¢. Thus, itis fetch-modify
on all completed operations of all clients. consistent by condition 2.

Consider the seX = {z1,...,z;} of maximal

operations by<. (If the file system has been fetch- 2. For every cllentc_, there is at Ieas_t one forking
group that contains every operation by

modify consistent and hasn’t stopped completing op-
erations, the set will have only one element.) Con- Since all operations formed hyare totally or-
sider the collectiorC = {C1, ..., Cy} of sets of op- dered by condition 1, they form part of a leaf
erations such thaf; = {y | y < z;}. By condi- forking group by construction.

tion 2, the operations in eacl} are totally ordered.
For that reason, we will reinterpret tli¢s to be se-
guences of operations ordered iy We call these
sequences chains.

We now construct a forking tree. The nodes of the By construction, the intersection of any set of
tree, the forking groups, consist of the chains and the forking groups is also a forking group. Letbe
greatest common prefix of every pair of chains. A the intersection of all the forking groups con-
noden’s parent is simply the the longest strict prefix taining O. n obviously containg). = is also
of n that is also a node. Thus, the chains constitute a prefix of any other node containir@, and

3. For any operationO, the set of nodes whose
forking groups contair0O includes a common
ancestorn, and all descendents of

thus must be a common ancestor. It also falata. The version data contains the name of the user
lows from our construction that any descendenhose version structure it is (the structuretsner,
of n is a superset af, and hence containg. by whose private key the structure should be signed),
,)) and a list of user-version pairs.
4. If two nodes’ forking groups both contain oper- In all the SUNDR protocols, every signed i-

gtlonsQl and _02’ and O, happens before, handle has a monotonically increasing version num-
in the first forking group, thew; also happens o, \oreover, users sign not just their own ver-
beforeO; in the second forking group. sion numbers, but also their view of other users’ ver-
Since all forking groups use the same orderirgjon numbers. We will define an ordering on version
relation, they will order any common operationstructures such that with an honest server, all opera-
in the same way. tions are totally ordered. However, any fetch-modify
_consistency failure results in two unordered version

5. Every operation in a node’s forking group eigycryres. Since any client would detect the attack if

ther occurred in the parent node’s forking grouy oy the unordered structures, clients are split into
or else hapPened_ after every operation in gy groups that can no longer see each other's
parent node’s forking group. updates. We formalize the idea as follows.

By construction, a child of node contains an

extension of the operations in Any member pefinition 7 We use the following notation for ver-
of the proper extension follows every operatiogon structures:

in n by the ordering relation that corresponds to

happens before. {VRS, h,u, u1-ny ug-ny ...} p—1

VRS is just a constant identifying the type of the

signed data.h is the i-handle.u is the owner of the

version structure. We use a hyphen to denote user-
4.2 Bare-bones protocol version pairs, so that,;-n; means that useu; is at

We describe the SUNDR protocol in stages. We b&Ersion numben;. We use the subscript; " to de-
gin with a bare-bones protocol that provides fofk0te that the structure has been signed by user
consistency for an unrealistically simple usage sd¥ivate key.
nario. We then extend this bare-bones protocol, us-
ing the same intuition, to achieve a practical, fork2€finition 8 For any version structure and useru,
consistent file system protocol. we letz[u] designate eithet’s version number i,
In the bare-bones scenario, there is a single cliéfte!se0 if u does not appear im.
per user producing all of that user’s requests. Thus,
we can employ the terms user and client somewtgfinition 9 If x and y are two version structures,
interchangeably. We also assume that each file ¢¥@ say thate < y iff for all usersu, z[u] < y[u].
be written by only one user; there are no group-< y iff z < y and there exists a usersuch that
writable files. Finally, we assume a low degree eflv] < y[v].
concurrent file system access. Subsequent sections
show how to handle concurrency efficiently and and The server maintains the latest version structure
how to deal with group-writable files. Finally, Secsigned by each user. We call this collection of signed
tion 4.5 describes how the mechanism for grougptructures theversion structure listor VSL. The
writable files can also allow one user to employ seserver is responsible for sending the latest VSL to
eral clients. We also discuss several further optimizaayone performing a fetch or modify operation. Each
tions of the protocol. time a user fetches or modifies a file, it must update
Recall that each user of the file system has a vés-entry in the VSL on the server with RPCs. User
sion structure, consisting of an i-handle and versiopdates its VSL entry as follows:

7

The issue time of an operation is the moment tta%
client begins step 1 of the protocol. The completiqgO
time is when the last step finishes.

We illustrate the protocol with an example. Con-
sider two file system users,andv, both initially at
version numbet. The VSL will contain the follow-
ing entries:

. u obtains an exclusive lock on and downloadst this pointy, > v,. If v now updates its version
the VSL. (The lock is coordinated by the servestructure (for instance by fetching a file)s new ver-
and thus is not trusted.) For each usewith a sion structure will reflect’'s new version number:
signed entry in the VSL, ley, be that user's

version structure. Yu = {VRS I, u,u-20-1 .}

ifi P . Yo = VRS hy,v,u-2v-2 ...},.—1
. u verifies thaty,, is its current version structure, ! VRS, hu, v, }KU

and verifies the signatures on other entries of ta@ this point,y, > v,,. If, however, the server failed
VSL. to providev with u’s latest version structure,would
not reflectu’s new version, and the VSL would con-

. u creates a new version structuseg jnitializing tain:

it with y,,. v updates the i-handle inif neces-
sary. Yo = {VRS hy,u,u-2v-1 ...},

) u?
. For each user in the VSL, u setsz[v] to that Yo = {VRS hy,v,u-1v-2 .. }p

user’s signed version numbetfy| < y,[v]. Now the VSL is unordereds, £ v, andy, £ 1.)

. u increments its own version numbefu] < Proposition one client: All version structures cre-
xu] + 1. ated by a single client that obeys the bare-bones pro-
tocol are totally ordered.

. u verifies that all entries in the previous VS roof: Immediate by steps 2-6 of the protocol.

(including its old entryy,) are totally ordered,

and th‘fm IS g,reat_er tha}n aI.I \,/SL entries. (NOIq:etch—modify lemma: Suppose all clients follow the

that this verification will fail if for some SOMe . e _bones protocol. Let be a version structure.

usersv andw, yo[w] > yu[w], because them | o o pe the set of all completed operations by all

will not exceedy,) clients satisfyindd = {o | vs(o) < ¢}, wherevs(o)

. usignsz and sends it to the server, releasing tif€signates the version structurevofWhether or not

lock. the server obeys the protocol,(F is totally ordered
by <, thenO is fetch-modify consistent witk: as

. The server checks thatis totally ordered with the happens-before relation.

respect to the other version structures in tgoof: We first must show thad is orderable using

VSL. (This is protection against malicious: as the happens before relation. The execution of

clients.) the protocol gives each operation a completion time
after its issue time. Moreover, singe totally or-

rsO, it satisfies requirements 2—4 of orderability.

r the first requirement of orderability, suppose two

version structures andy are ordered and’s oper-

ation completed beforg’s was issued. Let be the

user that signed, andv be the user that signed

If w = v, then the protocol ensuras < y. Other-

wise, lety’ bew’s version structure in the VSL re-

Yu = {VRS by, u,u-l ..} ceived yvhile creating. v/ must have completed be-

“ fore z (it had already been signed whersignedz).

= {VRS,h lo-1 .- . .
Jo {VRS, ho, v, u-1w by By assumptiongz completed beforg issued. Thus,

If u follows the protocol to update its i-handle/fy, ' completed beforg issued. Sincg/ andy’ both
its version number will also increase in the VSL: come from the same client, it follows thgt < y and

) y'[v] < y[v]. By step 4 of the protocok;[v] = y/[v],
Yu = {VRS hy,u,u-20-1 ...} implying z[v] < y[v]. Thus, sincer andy are or-
Yy = {VRS,hy,v,u-10v-1 .. .}K;1 dered, it must be that < .

Now, we show that the file semantics are corresigned by the same user asnust satisfyy < /.
with respect to<. Lety, signed byv, be the version Since all version structures ih must be ordered,
structure corresponding to a fetch @ of file f. we also have that’ andy’ are ordered. Assume
By assumptionO must contain all operations withwithout loss of generality that' < . We then have
version structures less thgnThus, any VSL entriesz < 2’/ < ¢/ < z andy < 3/, but theny’ contradicts
that could have passed step 6 of the protocol wihethe assumption that is minimal. Hence no such
signedy must be inO. Let z, signed byu, be the exists. |
greatest version structure less thafand therefore

in O) associated with a modification ¢f It follows Bare-bones theorem: When clients follow the

that for anyz’ signed byu, if z < 2/ < y, then bare-bones protocol, they achieve fork consistency
2 designates the same ’conten_ts foras m In whether or not the server obeys the protocol.

particular, let’ bew's entry in the VSL upon which Proof: Using the < relation on version structures
y is based. Since’[u] = y[u] and users sign at most® or_d_er their corresponding operations, the two
one version structure for each of their own versigpnditions of the Protocol correctness theorem
numbers,z’ must be the greatest version structu@ld' Condition 1 holds by Proposition one client.
signed byu less thany. Thus,z < / < y andv's condition 2 holds for the following reason. For

fetch must have returned the same contentsffas 27 Version structure, the set{_o | o < g} of
designated by:'s i-handle. i all version structures less thanis totally ordered

by the No-join lemma. Therefore, the associated

No join lemma: Suppose there are two versiogPerations are fetch-mod.ify consistent with as _
structuresz andy such thatr & y andy % . If the happens-before relation by the Fetch-modify

clients follow the protocol, no client will sign anylemma. i

version structure greater than batlandy.

Proof: First note that for any client and number

n, ¢ will sign at most one version structurewith 4.3 Increasing concurrency

t[c] = n. Moreover, any two version structureand

t’ signed byc are ordered, ant< t' iff ¢[c] < t'[c].
Assume that there exists a version structumaich

thatz < w andy < w. There must be at least on

The bare-bones protocol serializes all version struc-
ture updates with a global lock on the VSL—an un-
acceptable restriction for a real distributed file sys-
. : fem. The full protocol therefore uses an additional
minimal version structure < w such that: < z and . .

: mechanism to support concurrent version structure
y < z. Infact, sincer andy are unordered; cannot . .

updates. The basic approach is for users to declare

be either of them, and we must hawes z andy < ending updates to their version structures (result-
z. Let L be the VSL that was sent to the client theﬁ gup

sianed: and from which this client calculated ing from either file fetches or modifications) with
gned: . | ., signedupdate certificatesOther users can then con-
Let » be the user that signed and letz’ be u’s

. currently perform non-conflicting operations on the
entry in L. It must be the case that< z’. We show yp gop

. _ file system.
this by contradiction. Assume’ <z < z. An update certificate issued by userhas the

e It cannot be the case thawas signed by, be- form {uPD, u,n, H(y.), inode-lisi}K;L UPDIs just
cause then it would follow that'[u] < z[u] < a constant (the type of the signed message)is
z[u] and hences[u] > z'[u] + 2, which is im- u’s new version number in the forthcoming version
possible since the protocol sefs] = z'[u]+1. structure. H(y,) is a collision-resistant hash afs

e On the other hand, it were signed by a dif- current entry n th? YSL' Note that = yu[u]. +1,
ferent user fromu, then the protocol would Setexcept whe.n_ pipelining seve_ral up_date_s. Finally, t_he

, : p update certificate also contains a list of i-table entries
.Z[u] — [l Sl/ncex <zl < zlu] = 2'lul, of the form(i-numbet file handlg for any file inodes
mplying z < ', modified by the update, an@number delta for di-
By a similar argument, the structur¢g in L rectory inodes. In the case of a fetch, inode-list is

empty. Proposition: The < relation on version structures is
We now extend the version structure so that, fransitive.
addition to client-version pairs, a version structuieroof: Letz < yandy < z. If z = y ory = z, then
contains a (possibly empty) list of client-versiorthe proposition is trivially true. Assume < y and
hash triples that reflect concurrent updates by othek z. Condition 1 follows from the fact that (using
clients. A version structure must still contain oneumerical<) z[u] < y[u] < z[u] for all u. For each
user-version pair for each user, but may also camser-version-hash-n-h in z, if y[u] < n, then we
tain user-version-hash triples for consecutive versibavex[u] < y[u] < n. On the other hand, if also
numbers up to and including the version number gontainsu-n-h, then eitherz[u] < n, or z contains
any user-version pair. u-n-h, or z containsu-n- L andV (x) = h. |
The hash values are either a reserved valyegr
else the output of a functiovi whose domain is ver- The server now maintains @ending version list
sion structures. Informallyl” puts the elements ofor PVL, in addition to the VSL. The PVL con-
a version structure into canonical form, removes thests of a set of update-certificate, unsigned-version-
i-handle, and computes a collision resistant hashstfucture pairs,({UPD, u, n, H(y,,), inode-lisg, ¢).
the result. Specifically, given a version structure An update certificate declares an upcoming version
structure that will become part of the VSL, at which
point the update certificate will be removed from the
we computeV (z) as follows: First remove the i-PVL. The unsigned version structurghas the same
handle,h. Then sort the user-version pairs by usegontents as,’s upcoming version structure, except
and the user-version-hash triples by user and versiitat/ has the valuel. instead of an i-handle.
Finally output a collision-resistant hagh of the re- Useru now performs the following steps to update
maining, sorted fields of. its entry in the VSL, depicted graphically in Figure 3:
To simplify the proof, we shall from now on as-

sume that every version structurewned byu con- 1. u sends the server an update certificaiein-
tains the tripleu-z[u]- L. cluding its new version number and any mod-

ified inodes. The server makes syrs ver-
Definition 10 We define thg relation on extended sion number is one greater thals own version

VerSion structures as fO”OWS. Given two VerSion number inu’s |ast Version Structure’ or, in the

x = {VRS,u, h,u1-nq ug-ng ..., up-ng-hi ...}

structures,z andy, we sayz < y iff the following case of pipelined updates, one greater than the
two conditions hold: version number in/'s previous update certifi-
1. For all usersu, z[u] < y[u] (i.e.,z < y by the cate.

old definition). 2. The server computes a new version structyre

2. For each user-version-hash triplen-h in v, for u (by emulating steps 4-5 below), and adds
one of the following conditions must hold: (p, £p) to the PVL. The server then sends the
_ VSL and PVL towu, along with any old ver-
(@) a[u] < n (x happened before the pending sjon structures no longer in the VSL but stil
operation that-n-h represents), or referenced by update certificates in the PVL.
(b) = also containsu-n-h (x happened after (These old version structures are needed only
the pending operation and reflects the fact ~ when pipelining updates.)
the operation was pending), or

(c) x containsu-n-L andh = V(z) (z was
the pending operation).

3. u sanity-checks all data received from the server
in the previous step. All digital signatures must
verify. All hashes in update certificates must

We sayr = y if andy have identical contents ex- match version structures signed by the same

cept possibly for the i-handle. We say yiff z <y user. All version structures (signed and un-

andz # y. signed) must be totally ordered by the new

10

Client

Update Certificate

\

Server

Server sends current Version Structure

List plusall pending updates.

Version Structure List (VSL)
Pending Version List (PVL)

Client computes
New version structure.

Version structure

Server puts new version structure
inVSL.

Figure 3: The concurrent bare-bones protocol.

relation. All old version structures must be
less than the same user’'s entry in the VSL.
All version numbers in a particular client’'s up-
date certificates must be consecutive and start
at one greater than the version structure in the6'
VSL. The PVL must include the update certifi-
cateu signed in step 1 (and none signed dby
with greater version numbers—such certificates
might exist if there are pipelined updates).

update certificate in step 4,addsu-z[ul-L to
x. Intuitively, this encodes the history of opera-
tions in the PVL intar.

For every version structurg in the VSL, u
checks thaty < z. For all unsigned version
structures? in the PVL, v checks that either
¢ < x or ¢ = z and corresponds to the update
certificate from step 1.

7. u signsx and sends it to the server. The server

. w initializes a new version structure by pro-
cessing the VSL as in the bare-bones proto-
col. Then, for each client with an update certifi-
cate,u increases the corresponding user’s ver-8.
sion number inx to match the version number

n in the update certificate. If one client has mul-
tiple update certificates, takes the one with the
highest version number. Sineés own update
certificate is in the PVLx[u] will contain the
version number from step 1.

. For every entry ({uPD,v,n, H(y,),inode-
list},) in the PVL except the one signed in
step 1,u adds the triple--n-V () to 2. For the

11

makes sure that = ¢, from step 2 (to guard
against misbehaving clients).

u checks for a modify-fetch conflict. I is
fetching a file and the file is listed in one of the
PVL's update certificates, there must be a pend-
ing modification to the file. In this case,does

not return from the fetch call immediately, but
instead requests and waits for the server to send
it the version structure corresponding to the lat-
est version of the filew checks that this version
structure matches the unsigned structure in the
PVL.

Proposition concurrent one client: All version and thus would base the file contents returned’sn

structures created by a single client that obeys tHeandle. |
concurrent bare-bones protocol are totally ordered.
Proof: Immediate by step 4 of the protocol. B Concurrent no join lemma: Suppose there are two

version structures andy such thatr £ y andy £ .

Concurrent fetch-modify lemma: Suppose all If clients follow the protocol, no client will sign any
clients follow the concurrent bare-bones protocafersion structure greater than batiandy.

Let ¢ be a version structure. LeD be the set Proof. As before, for any client and numben, c
of all completed operations by all clients satisfyingill sign at most one version structutewith t[c] =

O = {o | vs(o) < ¢}, wherevs(o) designates then. Moreover, any two version structures signedcby
version structure ob. Whether or not the serverare ordered.

obeys the protocol, i© is totally ordered by, then Assume that there exists a version structusaich
O is fetch-modify consistent witk: as the happens-thatz < w andy < w. There must be at least one
before relation. minimal version structure < w such thatz < z

Proof: We first must show tha is orderable using andy < z. Let L be the VSL and” be the PVL that
< as the happens before relation. The executionVsgre sent to the client that signecand from which
the protocol gives each operation a completion tinffais client calculated.

after its issue time. Moreover, sineetotally orders ~ We first note that there must exist sonfen L or
O, it satisfies requirements 2—4 of a happens befdresuch thatr < 2z’ < 2. To see this, let be the
relation. For the first requirement of happens beforgser that signed, and letz” be u's entry in L. If
suppose two version structuresandy are ordered = < z”, then we just let” = 2”. On the other hand,
andz’s operation completed beforgs was issued. if z” < z, thenz"[u] < z[u], and hence: must
Let v be the user that signed andv be the user that contain some triple-z[u]-V (x), which the signer of
signedy. If u = v, then the protocol ensures< y. zwould have included only if som&g = x appeared
Otherwise, since was issued after completed,u in P. In this case we set’ = /,.

had already signed at the timev signed the update By a similar argument, there exists somfein L
certificate for the operation associated wjttNo up- or P such thaty < 3/ < 2. All version structures in
date certificate or version structure gitould have L andP must be ordered by the sanity check step of
a version> y[v] beforev signed its update certifi-the protocol, so in particulat’ andy’ are ordered.
cate. So, if followed the protocol, them[v] < y[v]. Assume without loss of generality that < y'. We

Sincex andy are ordered, it must be that< y. then haver < 2/ < v/ < z andy < ¢/, but then
Let y, signed byv, be the version structure correy’ contradicts the assumption thats minimal, and
sponding to a fetcli” € O of file f. By assumption, hence no such exists. |

O must contain all operations with version structures

less thany. Thus, any VSL entries that could hav€oncurrent Bare-Bones theorem: When clients
passed step 6 of the protocol whersignedy must follow the concurrent bare-bones protocol, they
be inO. Letz, signed byu, be the greatest versioraichieve fork consistency whether or not the server
structure less than (and therefore irQ) associated obeys the protocol.

with a modification off. It follows that for anyz’ Proof: Using the< relation on version structures
signed byu, if x < 2’ < y, thenz’ designates theto order their corresponding operations, the two
same contents fof asx. Let2’ bew's entry in the conditions of the Protocol correctness theorem hold.
VSL upon whichy is based. lfr < 2/, thenF must Condition 1 holds by Proposition concurrent one
have returned the same contents foas designatedclient. Condition 2 holds for the following reason.
by z’s i-handle. If, on the other hand/ < = < y, For any version structure, the set{o | o < ¢} of

y must have seen an update certificate for versialhversion structures less thans totally ordered by
x[u] of useru. But then by step 8 of the protocolthe Concurrent no-join lemma. Therefore, the asso-
the fetch would have waited far before returning, ciated operations are fetch-modify consistent with

12

< as the happens-before relation by the Concurreettificate does not contain the new version number
fetch-modify lemma. B of the group (the client would not know this infor-
mation at the time it was signing an update certifi-
cate). The inode-list in an update certificate now
contains(principal i-number file handle triples, in-
stead of justi-number file handlé pairs, so as to be
Until now, we have assumed that each user mogpje to reflect changes to multiple i-handles.

fies files Only in his own i-table. In pl’aCtice, SYS- The server constructs the PVL out of
tems often contain group-writable files and directQupdate-certificate’) pairs as before, though
ries that might be modified by several users. Groupgen a group is being updated the unsigned update

4.4 Generalizing to Groups

in SUNDR are treated similarly to users. Every vegertificater must containl for both the user and the
sion structure has a version number for every groltoup i-handle.

Every group has its own associated i-table. While The protocol now proceeds as follows:

users may still sign version structures as before con-

taining just their own i-handles, then can also signi.

version structures that include the i-handle for a
group they are a member of. However, every ver-
sion structure must contain the latest i-handle of the
user signing it. A new version structure looks like

this:

{VRS,u, hy, g, hg,u-ny, g-ng u'-n' ... u"-n"-n" ..}

Version structures are compared as in the concur-
rent bare-bones protocol (with groups treated jusp.
like users). Thel” hash function is as before, but
removes all i-handles. Note that inn-h triples, u

is still only a user, not a group. Version structure
signed by useu still containsu-z[ul-L.

The VSL now contains the latest version struc-3:
ture of each user, and the latest version structure for
each group. The latest version structure of a group
may also be the latest version structure of the usey
who signed it. If the user subsequently signs a ver-
sion structure for only his own i-handle, or for the
i-handle of a different group, then the old version
structure must remain in the VSL so that people still
have access to the group’s latest i-handle.

In the new protocol, each user still increments his
own version number on every update. However, now
when a user is updating a group, the user will in-
crement both his own version number and the ver-
sion number of the group. We therefore extend up-
date certificates so as to be able to reflect updates @
groups. A new update certificate contains not just
the user signing it and the user’s new version num-
ber, but also the group being updated, if this update
will change a group. Note, however, that the update

13

u sends the server an update certificateThe
server checks the update certificate; it makes
sure the user is not modifying a group she is not
a member of and verifies the version number—
ensuring the version is one greater than the
client’'s version number in its last version struc-
ture, or, in the case of pipelined updates, one
greater than the version number in its previous
update certificate.

The server computess new version structure,
¢y, adds(p, £,,) to the PVL, and sends the VSL
and PVL tou, along with any old version struc-
tures still referenced by update certificates.

u sanity-checks all data received from the server
in the previous step. This is the same as in the
concurrent bare-bones protocol.

. u initializes a new version structureprocess-

ing user VSL entries as in the bare-bones proto-
col. u then processes group entries in the VSL.
If y4 is groupg’s entry in the VSL, then: sets
xlg] < y4lg]. w then processes the PVL for
updates to user version numbers as in the con-
current bare-bones protocol. Finally,counts
the number of times,, each groupy appears in
the PVL, and adds this number to the number in
z,i.e.,z[g] — z[g] + ng.

For every entry({upD,v,n, g, H(y,), inode-
list}, /) in the PVL except the one signed in
step 1,u adds the triple--n-V'(¢) to z. For the
update certificate in step 4,addsu-x[u]-L to
x.

6. For every version structurg in the VSL, u signed bywv for versionn, P cannot contain any
checks thaty < z. For all unsigned versionother update certificate signed bywith a version
structures? in the PVL, u checks that eithergreater tham. It follows from the protocol that
¢ < z or{ = x and corresponds to the update[v] < n < z[v]. But thenz £ = and step 6 of the
certificate from step 1. So far this is as in thprotocol would fail, preventing from signingz. 1
concurrent bare-bones protocol.

_ _ _ ~ Group fetch-modify lemma: Suppose all clients

7. u checks for modify-modify conflicts. i IS fo|low the concurrent group protocol. Letoe a ver-
modifying a file in a group, and there are othefio, siructure. Le® be the set of all completed oper-
modifications to the group, thenapplies these 4tjons by all clients satisfyin® = {o | vs(0) < g},
modification to the group’s i-table (in the ordefhere vs(0) designates the version structure of
by which < sorts the/ fields of PVL entries). \whether or not the server obeys the protocolQif
u then recomputes the group’s i-handle and i 1otally ordered bys, thenO is fetch-modify con-
cludes the i-handle in the version structate gistent with< as the happens-before relation.

glroof: We first note thaD is orderable using: as

the happens before relation by the same argument as

in the concurrent fetch-modify lemma.

9. u checks for a modify-fetch conflict. I is Lety, signed byv, be the version structure corre-
fetching a file and the file is listed in one of théponding to a fetcl’ € O of file f. Letx, signed by
PVL's update certificates, there must be a pentd- be the greatest version structure less thasso-
ing modification to the file. In this case,does ciated with a modification\/ of f. By assumption,
not return from the fetch call immediately, bug Will be in O. If fis in a user i-table (that ig is
instead requests and waits for the server to seitable only by a single user, but no groups), then
it the version structure corresponding to the latill see the version in\/ by the same argument as in
est version of the fileu checks that this versionthe concurrent fetch-modify lemma.
structure matches the unsigned structure in theSuppose thaf is in some groug’s i-table. Letz,
PVL. signed byw, beg’'s entry in the VSL upon whicly is

based. Ifx = z, then clearlyF returned the contents
Proposition group one client: All version structures written by A7. Otherwise, either < z orz < z.
created by a single client that obeys the concurrentCase 1.Suppose: < z. z andx both contain i-
group protocol are totally ordered. handles for. We first wish to show that[g] < x[g].
Proof: Immediate by step 4 or 6 of the protocoll Let 2’ bew’s VSL entry upon whiche is based. If

z < 7/, then, sinceu incremented the group ver-
PVL preservation lemma: Assume clients obey thesion number when creating it must be that[g] <
protocol but the server might not. Letbe an update 2’[g] < z[g]. On the other hand, say> 2'. There
certificate signed by;; let L be the VSL andP the must have been somg with /,[w] = z[w] in the
PVL thatu received when signing; lety, designate PVL on whichz is based, and must contain some
userv's entry inL. For every user-version-hash triplev-z[w]-V (£) triple. Sincez < =z, the definition
v-n-h appearing in some € L, eithery,[v] > n or of < requires thal/(¢,) = V(z). By collision re-
P contains an update certificate numhbesigned by sistance, and sinceincremented the group version
userw. number, we have[g] = £.[g] < z[g].
Proof: By contradiction. Supposé& contained a Now, sincez[g] < z[g] < y[g], v must have seen
version structure: containingv-n-h, yety,[v] < n a PVL entry corresponding te, and would have
and P has no corresponding update certificatgaited to receiver in step 9 of the protocol. Thus,
signed byv for versionn. Because update certifi-v’s fetch /" must have been performed using the very
cates signed by in P must be consecutive starting-handle inx.
at y,[v] and because there is no update certificateCase 2.Suppose that < z. Leta’ beu’s entry

8. u signsz and sends it to the server. The serv
checks that: = ¢, from step 2.

14

in the VSL upon which: is based. Ifzx < 2/, then 4.5 Pragmatic considerations
the i-handle: signs will reflect the contents gfdes-
ignated byz, and hence will read this contents in Client failures. In the concurrent protocols, a fetch
F. waits for a conflicting modification. If the modifi-
cation never completes, then the fetch waits forever.
Suppose instead that < x. Now since,xz < 2, However, this is not necessary. The fetch could time
g’s i-handle inz will reflect the value off in the out and return an error code, and the user could then
inode-list of w's update certificate correspondingign the same version structure it would have signed
to . Note thatz includes this new contents ¢f had it gotten the version structure it was waiting for.
without having seencr. Having seen the updatéNith this change, we could still construct a forking
certificate,w must also include some-z[u]-V(z) tree on all completed operations except the fetches
triple in z. By the PVL preservation lemma, singe that returned error codes.

was in the VSL whery was signed, either that VSL \when a client failure causes an incomplete modify
also contained: or a more recent version structurgperation, the user can repair the situation by logging
signed byu, or else the PVL still contained’s jnto a working client and reissuing the modification.
signed update certificate for versianu]. In the Al information necessary to reissue the modification
former case, the VSL entry contains an i-handle thgfincluded in the inode-list of the update certificate.
reflects the contents written by In the later case, Malicious clients can write spurious data to files

v will wait to seez in step 9 of the protocol. . that they own, but signatures prevent them from
writing data to any other files. They can send the
Group no ioin lemma: Supbpose there are two Ver_server version structures that destroy the total order-
sion E’[I’UC'[JUI’GSS and .sucr?lshatr £ yandy £ « ing of the VSL, but a well-behaved server will refuse
. Y Y y " such updates. Even when bad clients collude with a
If_cllents_ fOI.IOW the conc_urrent group protocol, n%ad server, the set of completed operations by good
El(;frr:t \;V:]I:j sign any version structure greater tha(r:]lients on files that no bad client has permission to
v Y- write will still have fork consistency. In particular,
Proof: The proof of this lemma is identical to thé;fcfh:r}dgi,fOIlo;,ghic??gzcglig;tny;e;ri; utﬁiite
roof of the concurrent no join lemma. €2 _ :
P : as before¢; andes, can never again see each other’s

updates.

Group Bare-Bones theorem: When clients fol- Users logged into multiple clients.We have as-
low the concurrent bare-bones protocol, they achiesémed so far that each user runs on a single client.
fork consistency whether or not the server obeys thbis is not realistic. However, the relationship be-
protocol. tween clients and users is analogous to the one be-
tween users and groups. So, one approach would
Proof: Using the< relation on version structurede to create a version structure entry for each client
to order their corresponding operations, the twaouser is logged into. There is an optimization in
conditions of the Protocol correctness theorem holghich, while each user’s version structure must still
Condition 1 holds by Proposition group one clientontain a version number for every client that user
Condition 2 holds for the following reason. Fois logged into, for users other than the signer, the
any version structure, the set{o | o < ¢} of all version structure need only contain a version num-
version structures less thanis totally ordered by ber for one client—the one to make the most recent
the Group no-join lemma. Therefore, the associatetbdification on behalf of that user. There is another
operations are fetch-modify consistent withas the optimization that allows clients eventually to stop ap-
happens-before relation by the Group fetch-modifyearing in version structures after a user has logged
lemma. I out. A full description of these optimizations is be-
yond the scope of this paper.

15

Bandwidth optimizations. Note finally that the
server does not need to send the full VSL in response
to each update certificate, but can instead send only
new version structures since the last operation by the
same client. [3]

5

Summary

We have described SUNDR, a network file systenjy]
whose protocol makes even Byzantine file server
failures readily detectable. Through digital signa-
tures and a novel consistency protocol, SUNDR au-
tomatically detects almost any incorrect or malicious
behavior on the part of the server. The only attack
not immediately detectable is effectively to create afP]
exact replica of a file system and partition users so
that one group of users sees each replica and the two
groups’ operations are entirely concealed from each
other. Even this attack is detectable however, if users
have any ability to communicate out-of-band. A sim-

ple pinging protocol, a trusted version-verificationl

server, and even informal human communication are
sufficient to reveal such a partitioning attack.

6 Acknowledgments

We'd like to thank Allan Gottlieb, M. Frans [7]
Kaashoek, David Molnar, Robert Morris, and Marc
Waldman for their helpful comments.

References

[1]

[2]

[8]

Thomas E. Anderson, Michael D. Dabhlin,
Jeanna M. Neefe, David A. Patterson, Drew S.
Roseli, and Randolph Y. Wang. Serverless net-
work file systemsACM Transactions on Com- [9]
puter Systems14(1):41-79, February 1996.
Also appears in Proceedings of the of the 15th
Symposium on Operating System Principles.

David Bindel, Yan Chen, Patrick Eaton, Den-
nis Geels, Ramakrishna Gummadi, Sean Rh¢H)]
Hakim Weatherspoon, Westley Weimer, West-
ley Weimer, Christopher Wells, Ben Zhao, and
John Kubiatowicz. Oceanstore: An exteremely
wide-area storage system. Rroceedings of

16

the 9th International Conference on Architec-
tural Support for Programming Languages and
Operating Systempages 190-201, 2000.

Matt Blaze. A cryptographic file system for
unix. In 1st ACM Conference on Communi-
cations and Computing Securjtpages 9-16,
November 1993.

William J. Bolosky, John R. Douceur, David
Ely, and Marvin Theimer. Feasibility of a
serverless distributed file system deployed on
an existing set of desktop pcs. BIGMET-
RICS pages 34-43, 2000.

Miguel Castro and Barbara Liskov. Practical
byzantine fault tolerance. IRroceedings of the
3rd Symposium on Operating Systems Design
and Implementationpages 173-186, New Or-
leans, LA, February 1999.

6] Frank Dabek, M. Frans Kaashoek, David

Karger, Robert Morris, and lon Stoica. Wide-
area cooperative storage with cfs. Pmoceed-
ings of the 18th ACM Symposium on Operating
Systems Principlespages 202-215, Chateau
Lake Louise, Banff, Canada, 2001. ACM.

Dan Duchamp. A toolkit approach to partially
disconnected operation. FProceedings of the
1997 USENIXpages 305-318. USENIX, Jan-
uary 1997.

Kevin Fu. Group sharing and random access
in cryptographic storage file systems. Master’s
thesis, Massachusetts Institute of Technology,
May 1999.

Kevin Fu, M. Frans Kaashoek, and David
Mazieres. Fast and secure distributed read-only
file system. InProceedings of the 4th Sympo-
sium on Operating Systems Design and Imple-
mentation 2000.

Umesh Maheshwari and Radek Vingralek.
How to build a trusted database system on un-
trusted storage. IRroceedings of the 4th Sym-
posium on Operating Systems Design and Im-
plementationSan Diego, October 2000.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

David Mazeres, Michael Kaminsky, M. Frans
Kaashoek, and Emmett Witchel. Separating
key management from file system security. In
Proceedings of the 17th ACM Symposium on
Operating Systems Principlegages 124-139,
Kiawa Island, SC, 1999. ACM.

Ralph C. Merkle. A digital signature based
on a conventional encryption function. In Carl
Pomerance, editohdvances in Cryptology—
CRYPTO '87 volume 293 ofLecture Notes
in Computer Sciencegpages 369-378, Berlin,
1987. Springer-Verlag.

Ethan Miller, Darrell Long, William Freeman,
and Benjamin Reed. Strong security for dis-
tributed file systems. IRroceedings of the 20th
IEEE International Performance, Computing,
and Communications Conferencpages 34—
40, Phoenix, AZ, April 2001.

David Reed and Liba Svobodova. Swallow: A

distributed data storage system for a local net-
work. In A. West and P. Janson, editotx-

cal Networks for Computer Communications

pages 355-373. North-Holland Publ., Amster-
dam, 1981.

A. Rowstron and P. Druschel. Pastry: Scal-
able, distributed object location and routing for
large-scale peer-to-peer systems. Middle-
ware, 2001.

Christopher A. Stein, John H. Howard, and
Margo |. Seltzer. Unifying file system pro-
tection. InProceedings of the 2001 USENIX
USENIX, June 2001.

lon Stoica, Robert Morris, David Karger,
M. Frans Kaashoek, and Hari Balakrishnan.
Chord: A scalable peer-to-peer lookup service
for internet applicatio ns. IRroceedings of the
ACM SIGCOMM ’'01 Conferengesan Diego,
California, August 2001.

17

