QUASI-OPTIMAL SCHWARZ METHODS FOR THE
CONFORMING SPECTRAL ELEMENT DISCRETIZATION

MARIO A. CASARIN*

Abstract. The spectral element method is used to discretize self-adjoint elliptic equations in
three dimensional domains. The domain is decomposed into hexahedral elements, and in each of the
elements the discretization space is the set of polynomials of degree N in each variable. A conforming
Galerkin formulation is used, the corresponding integrals are computed approximately with Gauss-
Lobatto-Legendre (GLL) quadrature rules of order N, and a Lagrange interpolation basis associated
with the GLL nodes is used. Fast methods are developed for solving the resulting linear system by the
preconditioned conjugate gradient method. The conforming finite element space on the GLL mesh,
consisting of piecewise 1 or P; functions, produces a stiffness matrix K, that is known to be spectrally
equivalent to the spectral element stiffness matrix Kn. K}, is replaced by a preconditioner K} which
is well adapted to parallel computer architectures. The preconditioned operator is then R'h_ 'K

Our techniques for non-regular meshes make it possible to estimate the condition number of
[Z’h_ 1KN, where Rh is a standard finite element preconditioner of Kp, based on the GLL mesh. The
analysis of two finite element based preconditioners: the wirebasket method of Smith, and the over-
lapping Schwarz algorithm for the spectral element method, are given as examples of the use of these
tools. Numerical experiments performed by Pahl are briefly discussed to illustrate the efficiency of
these methods in two dimensions.
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1. Introduction. The spectral element method has been used extensively to dis-
cretize a variety of partial differential equations, and its efficiency has been demon-
strated both analytically and numerically; see [18, 19], and references therein. It uses
polynomials of high degree in each element, and a particular choice of basis and numer-
ical quadrature rules. In large scale problems, long range interactions between the basis
elements within each substructure produce quite dense and expensive factorizations of
the stiffness matrix, and the use of direct methods is often not economical because of the
large memory requirements [14]. In the past decade, many preconditioners have been
developed for finite element discretizations of these equations; see e.g. [16, 17, 29].
For both families of discretizations, the design of preconditioners for three dimensional
problems is especially challenging.

Early work on preconditioners for spectral methods was carried out by Canuto
and Funaro [7] and Pavarino [24, 25, 26]. Some of the algorithms studied by Pavarino
are numerically scalable (i.e., the number of iterations is independent of the number of
substructures) and optimal (the number of iterations does not grow or grows only slowly
with the degree of the polynomials). However, each application of his preconditioners
can be very expensive.

Several iterative substructuring methods, which preserve quasi-optimality and scal-
ability, were later introduced by Pavarino and Widlund [27, 28]. These preconditioners
can be viewed as block-Jacobi methods after the stiffness matrix has been transformed
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by using a certain basis. The subspaces used are the analogues of those proposed by
Smith [31] for piecewise linear finite element discretizations. The bound for the con-
dition number of the preconditioned operator grows only slowly with the polynomial
degree, and is independent of the number of substructures.

The tensorial character of the spectral element matrix can be exploited when eval-
uating its action on a vector [19], but does not help when evaluating the action of the
inverse of blocks of this matrix, as required when using these preconditioners. Orzag
[21] and Deville and Mund [8] proposed the use of a finite difference and a ¢ or P
finite element model, respectively, as preconditioners for the spectral element matrix.
The triangulation for this finite element method is based on the hexahedrals of the
Gauss-Lobatto-Legendre (GLL) mesh of one element. This preconditioner has been
demonstrated both numerically, in [8], and theoretically, by Canuto [6], to have a condi-
tion number independent of the degree of the polynomials. We note that ideas similar to
those in [6] and [8] also appear in Quarteroni and Zampieri [30] and references therein.
The spectral equivalence results of Canuto [6] and generalizations for other boundary
conditions were also obtained independently by Parter and Rothman [23].

Based on these ideas, extended to the case of several elements, Pahl [22] proposed
efficient, easily parallelizable preconditioners for the spectral element method using
iterative substructuring or overlapping Schwarz methods applied to the GLL finite ele-
ment model. Pahl also performed experiments for a model problem in two dimensions,
demonstrating that this kind of preconditioner can be very efficient. In other words,
high order accuracy is combined with efficient and inexpensive low-order precondition-
ing. The work of Pahl, however, did not contain any rigorous theoretical justification
for the experimental results he obtained.

The previous analysis of Schwarz preconditioners for the h-method has relied upon
the shape-regularity of the mesh, see [3, 10, 12], which does not hold at all for the
GLL mesh. In this paper, we analyze some Schwarz finite element preconditioners
defined on this mesh, and derive polylogarithmic bounds on the condition number of the
preconditioned operators for iterative substructuring methods, and a result analogous
to the standard finite element bound for overlapping Schwarz algorithms. Then, by
applying Canuto’s result, [6], we propose and analyze a new overlapping preconditioner
that uses only blocks of the spectral element matrix to define the local contributions
of the preconditioner. We also give a new proof of one of the estimates in [27]. In
summary, the equivalence between the spectral and finite element matrices, and the tools
we develop here, allow us to extend the analysis available for the domain decomposition
preconditioners of the standard finite element case to the spectral element case. We
remark that our techniques may also be used to estimate the convergence of a large
class of domain decomposition preconditioners on some non-regular meshes.

The remainder of the paper is organized as follows. The next section contains some
notation and a precise description of the discrete problem. The motivation and strategy
of this paper are presented in detail in Section 3. In Section 4, we state and prove our
technical results. In sections 5 and 6, we formulate and analyze several representative
iterative substructuring and overlapping algorithms. Section 7 briefly describes some
numerical experiments performed by Pahl [22].

2. Differential and Discrete Model Problems. Let {2 be a bounded polyhe-
dral region in R?® with diameter of order 1. We consider the following elliptic self-adjoint
problem:



Find u € HJ () such that
(1) a(u,v) = f(v) Vv e Hy(Q),
where

a(u,v):/gk(ac) Vu-Vvdzr and f(v):/gfvd.ac for fe L*(Q).

Our results are also valid for mixed Neumann—Dirichlet boundary conditions, but we
restrict ourselves to homogeneous Dirichlet conditions. The extension to other self-
adjoint cases is routine, and would only add distracting complications to our description.
This problem is discretized by the spectral element method (SEM); see [19]. In what
follows, the elements of the SEM are denoted by substructures or subdomains. Later
on, we will further divide the substructures into hexahedrals, which will then be called
elements. They form the triangulation for a finite element space which will be defined
momentarily.

We triangulate Q into non-overlapping substructures {Q;}M, of diameter on the
order of H. Each € is the image of the reference substructure Q = [-1,+1]> under a
mapping F; = D;oG; where D; is an isotropic dilation and G; a C* mapping such that
its Jacobian and inverse of its Jacobian are uniformly bounded by a constant. In Section
3, we show that the bounds that we derive depend on this constant, and are better the
closer this constant is to one, i.e. the closer the substructures are to a cube. Moreover,
we suppose that the intersection between the closures of two distinct substructures is
either empty, a vertex, a whole edge or a whole face. Some additional properties of the
mappings F; are required to guarantee an optimal convergence rate. We refer to [1],
problem 2, and references therein for further further details on this issue, but remark
that affine mappings are covered by the available convergence theory for these methods.
We assume for simplicity that k(z) has the constant value k; > 0 in the substructure
Q;, with possibly large jumps occurring only across substructure boundaries. The
bounds for the iterative substructuring methods are independent of these jumps. For
the overlapping methods, we need to introduce more stringent restrictions on k(z) to
obtain bounds that are independent of the jumps; see the discussion after Lemma 4.

We define the space PN(Q) as the space of polynomials of degree at most N in
each of the variables separately. The space PN (;) is the space of functions vy such
that vy o F; belongs to PN (). The conforming discretization space P () C H ()
is the space of continuous functions the restrictions of which to Q; belong to PN (9;).

The discrete L? inner product is defined by

K N
(2) (w,o)v= " > ki-(uoFy)-(voF)-|Ji|(&, & &) - piprpi,
=1 j7,k,l1=0

where £; and p; are, respectively, the Gauss-Lobatto-Legendre quadrature points and
weights of degree N in the interval [—1, +1]; see [1]. We define a discrete bilinear form
for u,v € HY(Q) by

(3) ag(u,v) = (Vu, Vv)n,

where (-, ) is computed componentwise.



The discrete problem is:
Find ux € PY(Q), such that

(4) ag(un,vn) = (f,on)ny Youn € PN(Q).

We number the GLL nodes of all the substructures, and choose as basis functions the
functions ¢§V of PV () that are one at the GLL node j and zero at all the others. This
basis gives rise, in the standard way, to the linear system Kyz = b. Note that the mass
matrix of this nodal basis, generated by the discrete L? inner product (2), is diagonal.
The analysis and experimental evidence show that the SEM method just described
achieves very good accuracy for reasonably small N for a wide range of problems; see
[1, 18, 19] and references therein. The practical application of this method for large
scale problems, however, depends on fast and reliable solution methods for the system
Kyz = b. A direct method is often not an economical choice, because of long range
interactions between the basis elements, and because this is a discretization of a three
dimensional problem, which demands large computer resources even for the seven-point
finite difference stencil; see [13].

The condition number of Ky is very large even for moderate values of N; see [1].
Our approach is to solve this system by a preconditioned conjugate gradient algorithm.
The following low-order discretization is used to define several preconditioners in the
next sections.

The GLL points of degree N, denoted GLL(N), define, in a natural way, a trian-
gulation Th of 2 into N3 parallelepipeds, and on this triangulation we define the space
P"() of continuous functions that are trilinear (Q;) in each parallelepiped of 7%. The
spaces P"(Q;) and Pl (Q) are defined by mapping in the same way as for PV (€;) and
PN (Q). The finite element discrete problem associated with (1) is:

Find uj, € P}(Q), such that

(5) a(up,vp) = f(vn) YV op € Fy(Q).

The standard nodal basis {(%L} of Ph(Q) is mapped by the F; into a basis for P*($;),
for 1 < i < M. These bases and the bilinear form a(-, -) give rise to a system Kz = b.

We could also define a finite element system generated by dividing each hexahedral
of 7" into tetrahedrals, and using P, finite elements on this new triangulation. The
analysis for P, elements carries over immediately from the analysis for ); elements,
since the L?- and Hi-norms are equivalent element by element. We remark that the
P, elements have been shown to produce smaller condition numbers when used as a
preconditioner, and should be prefered in a practical implementation. For the sake of
simplicity, we restrict ourselves to the case of (J; elements.

We use the following notations: x <y, z = u, and v < w to express that there are
strictly positive constants C' and ¢ such that

r<Cy, z>cu, and cw<v<Cw, respectively.

Here and elsewhere ¢ and C' are moderate constants independent of H, N, and k(z).
Let i be the distance between the two leftmost GLL(N) points & and & in the

interval [—1, +1]; h is on the order of 1/N?, while the distance between two consecutive

GLL points increases to a maximum, close to the origin, which is on the order of 1/N;



see [1]. Hence, the aspect ratios of some of the elements of the triangulation 7" grow
in proportion to N.

For a region of diameter H, such as a substructure {2;, we use a norm with weights
generated by dilation starting from a region of unit diameter,

”uH%Il(Q]) = |U|12111(QJ) + mHUH%Q(QJy

where | - |1 stands for the H!'-semi-norm.

3. General Strategy and Simplifications. Let @y belong to PN(Q)7 and let
i, = I (i) be the unique function of P*(Q) for which

in(zg) = in(zq),

for every GLL(N) point z¢g € Q. Then, by corollary 1.13, page 75 of [1] and the results
in [6], we have:

ﬁh”?y(@) = |'&N||22(Q) = ('&Ny'&N)]\H

uhlip(@) = |I&N|i11(§2) = a5 (4N, ),

where ag is given by (2) and (3) with J; = 1 and k; = 1. The basis of the proof of
this last result is the H'-stability of the polynomial interpolation operator at the GLL
nodes for functions in H'([—1,+1]), proved by Bernardi and Maday [2, 1]. The L2-
stability of the GLL quadrature of order N for polynomials of degree N, and properties
of the GLL nodes and weights are also important in the argument. We remark that the
first equivalence of (7) and generalizations to other boundary conditions were obtained
independently by Parter and Rothman [23].

Consider now a finite element function u defined in a substructure 2; with diameter
of order H. Changing variables to the reference substructure by (&) = v(F;(2)), and
using the bounds on the Jacobian of F;, we obtain

2

(5) el < Y22 0

2

(9) |u|?{1(91) = Hd_2 HY(Q)’

]

where d is the dimension and is equal to 1, 2, or 3.

These estimates can be viewed as spectral equivalences of the stiffness and mass
matrices generated by the norms and the basis introduced above. Indeed, the nodal
basis {qB;L} is mapped, by interpolation at the GLL nodes, to the nodal basis of PN(Q).
Then, (7) can be written as

(10) Wl Kpa < a! Kyi,

where 4 is the vector of nodal values of both @y or 4y, and R’h and I%N are the stiffness

matrices associated with | - and ag(., ).

2
|H1(Q)
5



Let K}(LZ) and K](\Z,) be the stiffness matrices generated by the bases {qbg”} and {qﬁj\[},
respectively, for all nodes j in the closure of €2;, and by using | - |?{1(Qi) and ag o, (-, "),
respectively. Here, ag g, (+,) is the restriction of ag(-,-) to the subdomain ;. If u is
the vector of nodal values, and u?) is its restriction to €;, then

y(i)TK,(f) u = y(i)TK](é)y(i),

by (7) and (9). The stiffness matrices K and K} are formed by subassembly [10]:
(11) ul Kpu =3 uTKDu;
an analogous expression holds for K. These last two relations imply that

(12) w Kpu= u' Kyu.

This shows that K} is an optimal preconditioner for K in terms of number of iterations.
All these matrix equivalences, and their analogues in terms of norms, are hereafter called
the FEM-SEM equivalence.

We next show that the same results also hold for the Schur complements S} and
Sn. The interface of the decomposition is defined as I' = UM, 0Q; \ Q. The Schur
complement matrices S, and Sy are obtained by the elimination of the interior nodes
of each €; by Cholesky’s algorithm; see [10]. A function uy is said to be (piecewise)
Q-discrete harmonic if ag g, (un,vn) = 0, for all i and all vy belonging to PY (€;) N
H}(€;). The definition of (piecewise) h-discrete harmonic functions is analogous. It is
clear that QII:SNQF = ag(un,un) and that @?Sh@r‘ = a(up, up), where up, and uy are
respectively h— and )—discrete harmonic and ut is the vector of nodal values on I' of
up, and up.

The matrices S, and Sy are spectrally equivalent. Indeed, by subassembly (11),
it is enough to verify the spectral equivalence for each substructure separately. For the
substructure €2;, we find:

. WOTSDUD 0w > ao (1 () T () >
(13) uy Sy uy =aqgq,(un,un) = ag,(IN(un), IN(un)) >

)T i G

ag, (Hn (Irun), Hi(Ihun)) = ag, (un, up) = uf) Sial?,

where Hj, is the h-discrete harmonic extension of the interface values, and I]}{; is the
composition of IA]}{; with F;. Here, we have used the FEM-SEM equivalence and the well-
known minimizing property of the discrete harmonic extension. The reverse inequality
is obtained in the same way.

This equivalence implies that Sy is an optimal preconditioner for Sy, in terms of
number of iterations. However, as before, the action of the inverse of Sy, is too expensive
to produce an efficient preconditioner for large problems.

In his Master’s thesis [22], Pahl proposed the replacement of K and S, by pre-
conditioners K, and Sy, respectively. If the condition number satisfies

(14) k(K Ky) < C(N),

with a moderately increasing function C'(N), then a simple Rayleigh quotient argument
shows that #(K;'Kx) < C(N); an analogous bound can be derived for S;' and Sy.
K}, and S are domain decomposition preconditioners based on 7", and are designed
so that the action of their inverse on a vector is inexpensive to evaluate.

6



In the next three sections, we define our preconditioners and then establish (14) and
its analogue for S and SN'h_l We note that the triangulation 7} is not shape-regular, and
that all the bounds of this form for Schwarz preconditioners established in the literature
require some kind of inverse condition, or regularity of the triangulation, which, as
pointed out in Section 2, does not hold for the GLL mesh.

4. Technical Results. In this section, we present the technical lemmas needed
to prove our results. As is clear from the start, we draw heavily upon the results and
techniques of Dryja, Smith, and Widlund [10].

4.1. Some estimates for non-regular triangulations. In this section, we de-
velop all the estimates necessary to extend the technical tools developed in [10] to
the case of non-regular hexahedral triangulations. We recall that Q = [-1,+1]° is
the reference substructure, and T" its triangulation generated by the GLL mesh. Let
K= [-1, —|—1]3 be the reference element, and let K C  be a parallelepiped of 7" with
sides hy, hy and h3; these mesh parameters are not necessarily comparable in size. The
function @ is a trilinear (Q1) function defined in K. In this subsection, we use hats to
represent functions defined in I%', and no superscript for points of K.

Our first result concerns expressions of the L2(K)- and H'(K)-norms of a trilinear
function @ in terms of its nodal values. Let e; be one of the coordinate directions of Ig',
and let a, b, ¢ and d be the vertices of one of the faces that are perpendicular to e;. Let
a', b, ', and d' be the corresponding points on the parallel face. z, denotes a generic
vertex of K.

LEMMA 1. Let @ be trilinear in K. Then,

(15) u| 22(1{,) = hlhghg Z (ﬂ(ﬁa))2,
xaER'
and
) hihoh . .
(16) 1002y = 202 S (e — i(a))

rq=a,b,c,d

Proof. These formulas follow by changing variables, and by using the equivalence
of any pair of norms in the finite dimensional space Ql(lz) O

In the next lemma, we give a bound on the gradient of a trilinear function in terms
of bounds on the differences of the nodal values. Its proof is routine.

LEMMA 2. Let i be trilinear in K such that |a(a) — a(b)| < Cla — b|/r for some
constant C' and parameter r, and for any two vertices a and b belonging to one face of
K. Then

. C
Vi < —,
r

where C' is independent of the parameter r.

LEMMA 3. Let @ be a trilinear function defined in K, and let D be a C1 function
such that |V9| < C/r, and |9 < C for some constant C' and parameter r. Then

(17) |8$zlh(1§ﬂ) : < C( i]l([{'

L2(K) g

y+r

ﬂ”?ﬁ([{'))'
7



Here C' is independent of N and r, and 1% is the Q1 -interpolant using the values at the
vertices of K.
Proof. By equation (16), and letting hq, hq, and hs be the sides of the element K:

hoa hihah s . 5
102 1" (D172 ) = =5 zbj d<u(xw<x>—u(x'w(x'>)2

Each term in the sum above can be bounded by

TN
=
—_
&8
~—
<>
—_
&8
~—
|
=
—_
&8
~—
<>
—_
&
—
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=
—_
&
~—
X
—_
&
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|
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—_
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—
<>
—_
)
—
Ne—
IA

The bound on V4 implies that [J(z) — 9(z')| < h;/r, and therefore

Brasy2 hihahs . o0 NN 2 . 2h22
10, " (Wi)ll72 5y = —33( (i(z) —a(a)*+ Y (a(z)) )
? r=a,b,c,d r=a,b,c,d
12 —215112
(18) = il gy + g

since 9 is bounded. O

4.2. Further technical tools. The iterative substructuring algorithms are based
on subspaces directly related to the interiors of the substructures, and the faces, edges
and vertices. Let €;; be the union of two substructures €2;, €2;, and their common
face Fj. Let W, represent the wirebasket of the subdomain €2;, i.e. the union of all its
edges and vertices. We note that a face in the interior of the region € is common to
exactly two substructures, an interior edge is shared by more than two, and an interior
vertex is common to still more substructures. All the substructures, faces, and edges
are regarded as open sets.

The following observations greatly simplify our analysis in the next sections. The
preconditioner Sj, that we propose is defined by subassembly of the matrices 5‘}(;); see
Section 5. We then restrict our analysis to one substructure. The results for the whole
region follow by a standard Rayleigh quotient argument. The assumption that the
{F;}M, are arbitrary smooth mappings improves the flexibility of the triangulation,
but does not make the analysis essentially different from the case of affine mappings.
This is seen from the estimates in Section 3, where we have used only bounds on the
Jacobian and inverse of the Jacobian of F;. Therefore, without loss of generality, we
assume, from now on, that the F; are affine mappings. Throughout this subsection, u
is a finite element function belonging to P".

For a proof of Lemma 4 and a general discussion, see Bramble and Xu [5].

LEMMA 4. Let Q7w be the L? projection of u € P"(Q) onto the coarse space V.
Then,

llu = Q% ul| 20y < H|ulip ),
and
QT ult () = lulinq)-

8



We remark that these bounds are not necessarily independent of the values k; of the
coeflicient. A sufficient condition to guarantee this independence is that the coefficients
k; satisfy a quasi-monotone condition; see [9].

In what follows, some of the results are stated for substructures of diameter pro-
portional to H, but the arguments are given only for a reference substructure. The
introduction of the scaling factors into the final formulas is, by the results of Section 3,
routine.

LEMMA 5. Let uyy, be the average value of w on W;, the wirebasket of subdomain
;. Then

ul 32y, = (14 log(N)) [l By .

and

[|u — ﬂW]H%?(W]) = (1 + log(‘w)”ul%ﬂ(ﬂj)‘

Similar bounds also hold for an individual substructure edge. A

Proof. In the reference substructure, we know that P" c V" where P was defined
in Section 2, and V" is a (1 finite element space defined on a shape-regular triangulation
that is a refinement of 7"; we can refine all the elements of 7" with sides bigger than,
say, 33/27 where h = 1/N2. Now we apply Lemma 4.3 in [10], a well-known result for
shape-regular triangulations, to get both estimates. O

In the abstract Schwarz convergence theory, the crucial point in the estimate of
the rate of convergence of a two-level algorithm is the proof that all functions in the
finite element space can be decomposed into components belonging to the subspaces,
in such a way that the sum of the resulting energies are uniformly, or almost uniformly,
bounded with respect to the parameters H and N. The main technique for deriving
such a decomposition is the use of a suitable partition of unity. In the next two lemmas,
we construct functions that are used to define such partitions of unity.

LEMMA 6. Let Fj, be the face common to §2; and Q;, and let 07, be the function
in P"(QQ) that is equal to one at the interior nodes of Fy,, zero at the remaining nodes

of 0§2; U 0Q;, and discrete harmonic in §); and Q;. Then

|07, 171, = (1+log(N))H.

The same bound also holds for the other subregion €2;.

Proof. We define functions é}'k and 1§fk in the reference cube; 67, and 97, are
obtained, as usual, by mapping; see Section 3. We construct the function 1§fk with
the same boundary values as éfk, and then prove that the bound given in the Lemma
holds for ﬁfk The standard energy minimizing property of discrete harmonic functions
then gives the estimate for ka The six functions 19k which correspond to the six faces
of the cube also form a partition of unity at all nodes belonging to the closure of the
substructure except those on the wirebasket; this property is used in the next lemma.

We divide the substructure into twenty-four subtetrahedra by connecting its center
C' to all the vertices and to all the six centers C}, of the faces, and by drawing the
diagonals of the faces of ; see Fig. 1.

The function 1§fk associated with the face Fy is defined to be 1/6 at the point C.
The values at the centers of the faces are 1§‘fk (C;) = b, for j = 1,...,6, where 6;;,
is the Kronecker symbol. 1§fk is linear on the segments C'C’;. The values inside each

9



F1G. 1. One of the segments CCy

C

Qo

) G

F1G. 2. Geometry underlying equation (18)

subtetrahedron formed by a segment C'C’; and one edge of F; are defined to be constant
on the intersection of any plane through that edge, and are given by the value, already
known, on the segment C'C';. Next, the whole function 9 £, is modified to be a piecewise

@ function on 7" by interpolating at the GLL nodes; the values of this finite element
function at the nodes on the wirebasket are defined to be equal to zero.

We claim that V£, (z)| < C/r, where z is a point belonging to any element K
that does not touch any edge of the cube, and r is the distance from the center of K to
the closest edge of the cube. Let ab be a side of K. We analyze in detail the situation
depicted in Fig. 2, where ab is parallel to C'C}. Let e be the intersection of the plane
containing these two segments with the edge of the cube that is closest to ab. Then
[9£,(b) — 9, (a)] <= D, by the construction of 9x,, where D is the size of the radial
projection with center e of ab onto CC%. By similarity of triangles, we may write:

dist(a, b)

T'/

(19) 97, (b) = V7, ()] 2 :
where 7’ is the distance between e and the midpoint of ab. Here we have used that the
distance between e and C'C}, is of order 1. If the segment ab is not parallel to CCy,
the difference |0, (b) — V£, (a)| is even smaller, and (19) is still valid. Notice that r/ is
within a multiple of 2 of r. Therefore Lemma 2 implies that |Viz, ()] < C/r.

In order to estimate the energy of 1§fk, we start with the elements K that touch an
edge £ of the cube. Let h3 be the side of K which is parallel to £. Then hs is greater
than or equal to the other sides of K, by the properties of the GLL nodes, as explained
in Section 2. Since the nodal values of 1§]:k in K are bounded by 1, by the construction
of ’l§}'k7 we have:

|rl§fk|Hl(1§') = h37

10



by using equation (16). Summing over K, we conclude that the energy of 1§‘fk is bounded
independently of N for the union of all elements that touch the edges of the cube.

To estimate the contribution to the energy from the other elements of the substruc-
ture, we consider one subtetrahedron at a time and introduce cylindrical coordinates
using the substructure edge, that belongs to the subtetrahedron, as the z-axis. The
bound now follows from the bound on the gradient of ’léfk given above and elementary
considerations. We refer to [10] for more details, and also to the proof of the next
lemma, where a similar computation is performed. O

The following lemma corresponds to Lemma 4.5 in [10]. This lemma and the
previous one are the keys to avoiding the use of HégQ estimates and extension theorems
in the analysis of our algorithms.

LEMMA 7. Let 97, () be the function introduced in the proof of Lemma 6, let Fy,
be a face of the substructure €);, and let I" denote the interpolation operator associated
with the finite element space P" and the image of the GLL points under the mapping

F;. Then,

> 1"(Wru)(r) = u(z),
k

for all nodal points x € Q; that do not belong to the wirebasket W;, and

(07,0l a,) 2 (14 log(N))lullin g, )-

Proof. The first part is trivial from the construction of 1§fk made in the previous
lemma. For the second part, we work in the reference substructure, and first estimate
the sum of the energy of all the elements K that touch an edge & of the wirebasket. We
provide a detailed argument only for K touching Fj; the other elements that touch an
edge are treated similarly. The nodal values of Ih(ﬁfk %) in such an element are 0,0,0,0,
i(a), @(b), V£, (c)i(c) and D, (d)i(d); D5, lies between 0 and 1. Moreover, let h3 be
the side of K that is parallel to £. Then hs = hy and hs = hg, by the geometrical
properties of the GLL mesh. Now, equation (16) implies:

1Dz, ) i = he(@(a) + @2 (0) + (D7, ()a(0) + (7, (d)a(d))?).

Then, applying (15) for the segments that are parallel to £, and Lemma 5, we have:

SoIT (7, )

K

?'_Il(R') = (1 + log(N))H&H}QLIl(Q]y

where this sum is taken over all elements K that touch the wirebasket of €.

We next bound the energy of the interpolant for the other elements. By the proof
of the previous lemma, |V'l§]-‘k| < C'/r, where r is the distance between the element K
and the nearest edge of Q. Then, Lemma 3 implies that

Z |Iil(1§fkﬂ) 12111(]@) = E (

KcQ Kch

i

—2115112
iy TN )
where the sum is taken over all elements K that do not touch the wirebasket of €.
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The bound of the first term in the sum is trivial. To bound the second term, we
partition the elements of Q) into groups, in accordance to the closest edge of Q; the exact
rule for the assignment of the elements that are halfway between is of no importance.
For each edge of the wirebasket, we use a local cylindrical coordinate system with the
z axis coinciding with the edge, and the radial direction, r, normal to it. The sum
restricted to each of these groups of elements can be estimated by an integral

C
211112 2 T
AE T | T2(R) > /r:}} /e /Z(u) 2 dz df dr.

Kc

The integral with respect to z can be bounded by using Lemma 5. We obtain

A C
iy % L+ lo(C/D)[all gy [ r7dr

Z r2||4
Kc
and thus
V) |Ih(1§fkﬁ)|12ql(]{') = (1+10g(0/6))2 U 3’{1(@)
KcQ

O
We note that this proof is an extension of an argument given in [10] for shape-
regular meshes, and that equation (17) replaces the use of the inverse inequality, which
if used here would introduce the bad aspect ratios of the elements into the estimates.
LEMMA 8. Let ugr,, and uw, be the averages of u on 0Fy, and W;, respectively.
Then,

) 1
(#7,)° = E||u||%2(8}'k)7

1
— 2 2
(aw,)” = llullzzw,)-

The proof is a direct consequence of the Cauchy—Schwarz inequality.
LEMMA 9. Let u € P"(Q;) be zero on the mesh points of the faces of ; and
discrete harmonic in Q;. Then,

|u|?{1(§2]) = ||U||%2(WJ)-

This result follows by estimating the energy norm of the zero extension of the boundary
values using equation (16) and by noting that the harmonic extension has a smaller
energy.

5. Iterative Substructuring Algorithms. At this point, we can propose and
analyze several iterative substructuring methods previously developed for finite ele-
ments. We choose the wirebasket algorithm proposed by Smith [31] because it is effi-
cient, and its analysis raises all the important technical issues. In a practical problem,
the choice between the many alternatives now known should be made on the basis of
the theoretical results that can be derived from our theory, as well as numerical exper-
imentation.

Smith’s algorithm is a wirebasket based method, and it is also described as Al-
gorithm 6.4 in [10] in the context of standard finite elements. It can be viewed as a

12



block-diagonal preconditioner after transforming S5 into a convenient basis, and the
same is true for our algorithm.

By the abstract framework of Schwarz methods developed for example in [10], we
know that in order to describe the algorithm we only need to prescribe subspaces, the
sum of which spans the whole space of h-discrete harmonic functions of P(£2), and one
bilinear form for each subspace.

For each internal face Fj, we let Vi, be the space of h-discrete harmonic functions
that vanish at all the interface nodes that do not belong to this face. The functions in
Vz, have support in €;;, the union of the two substructures €; and Q; that share the
face Fj. The bilinear form used for these spaces is a(-, ).

The wirebasket subspace is the range of the following interpolation operator:

Iélvu: Z 'u($k)99k+2ﬂ8Fk0Fk.
rLEWY k

Here, ¢y is the discrete harmonic extension of the standard nodal basis functions ¢y,
Wy, is the set of nodes in the union of all the wirebaskets, and ugz+ is the average of u
on F*. The bilinear form for this coarse subspace is given by

These subspaces and bilinear forms define, via the Schwarz framework, a precondi-
tioner of S that we call S, wg.
THEOREM 1. For the preconditioner S, wn, we have

K(ShwpSN) = (1+1log(N))?,

where the constant C' is independent of N, H, and the values k; of the coefficient.
Proof. We can apply, word by word, the proof of theorem 6.4 in [10] to the matrix
S, using now the tools developed in Section 4. This gives

“(Sh_,%VBSh) < (14 log(N))~

The harmonic FEM-SEM equivalence (13) and a Rayleigh quotient argument complete
the proof; see Section 3. O

The next algorithm is obtained from the previous one by the discrete harmonic
FEM-SEM equivalence, by which we find a preconditioner SN,WB from Sh,WB- The
subspaces that define the preconditioner are now contained in the space of Q-discrete
harmonic functions of P ().

Each face subspace, related to a face Fy, consists of the set of all ()-discrete har-
monic functions that are zero at all the interface nodes that do not belong to the interior
of the face Fj. The bilinear form for these spaces is ag(-, ).

The wirebasket subspaces are defined as before, by prescribing the values at the
GLL(N) nodes on a face as the average of the function on the boundary of the face.
The bilinear form used for the wirebasket subspace is I)OQ(-7 -), obtained from bg(-, )
by applying the GLL(N) quadrature to compute the L?-norm on each edge of the
wirebasket. This is exactly the wirebasket method based on GLL quadrature described
in [27].

The following lemma shows the equivalence of the two functions uj and uy with
respect to the bilinear forms bg(+, -) and bOQ(-, -), respectively.
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LEMMA 10. Let up be a Q1 finite element function on the GLL(N ) mesh on the
interval I = [—1,41], and let un be its polynomial interpolant using the nodes of this
mesh. Then,

N
inf [[up — el [Fogry < inf Y _(un (&) — ¢)°p;
7=0

Proof. The GLL(N) quadrature has the following important property:
For any polynomial upn of degree N defined on I,

N
lunllZzay < D0 ul(€)pi < 3llunllizqa;
i=0

see [1, p. 75]. Therefore, it is enough to prove that:
inf [Jup — ellf2(ry =< inf |lun — el[7a()-

We prove only the < part of this last estimate, since the opposite inequality is analogous.
The inequality without the infimum is valid for the constant ¢, that realizes the inf in
the right hand side by the FEM-SEM equivalence. By taking the inf of the left hand
side the inequality is preserved. O

THEOREM 2. For the preconditioner SN,WB; we have

R(SywpSN) < (1 +log(N))?

where the constant is independent of the parameters H, N, and the values k; of the
coefficient.

Proof. In this proof, the functions with indices A and N are h- and @Q- discrete
harmonic functions respectively, and they agree at the GLL nodes that belong to the
interface ['. As observed in Section 3, it is enough to analyze one substructure €2; at a
time, and prove the following equivalence:

(20) b, (un, un) + Y kilun — TN 5,08 7 i o,) <
FrC8;
bow, (unyun) + Y kilun = W o707, 7 )
FrC8;

where the subscript W, means that only the contribution from the wirebasket of €2; is
used to define the bilinear form. We prove only the < part; the proof of the reverse
inequality is analogous. We first note that Lemma 10 bounds the first term on the left
hand side by the first term on the right hand side.

Each term in the sum on the left hand side can be bounded from above by

2kilun — Tn,o7,08,7 1 (q,) + 2ki| (@07, — Tno7,) 0N, 7 i ) -

The first term of this expression can be bounded from above by the corresponding term
on the right hand side by using the harmonic FEM-SEM equivalence. The second term
is bounded by

CkiH(l + 10g(N))|ﬂh73}'k — HN,B}';JQ =
ChiH (1+1og(N))|(un — caw.)yz, — (un — caw,)oz, %
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where ¢y )y, is the average of uj, over W;. Here we have used that the estimate on
the energy norm of 6 7, , given in Lemma 6, implies a similar estimate for 0y r,, by
(13). Applying the Cauchy-Schwarz inequality, as in Lemma 8, and the FEM-SEM
equivalence, we can bound this last expression in terms of the first term of the right
hand side of equation (20). O

6. Overlapping Schwarz Algorithms. We now consider the additive overlap-
ping Schwarz method, which is presented, e.g., in [11, 12]. We recall that an abstract
framework, given in Theorem 3.1 of [11], is available for the analysis of this type of algo-
rithm. Here we only discuss the additive version, but the analysis can also be extended
in a standard way to the multiplicative variant [4], which has proven more effective in
many practical problems.

As in the previous section, a preconditioner K}, for K, is specified by a set of local
spaces together with a coarse space. We also have to provide bilinear forms (approximate
solvers) for the elliptic problems restricted to each of these subspaces. Here we work
with exact solvers, i.e. the bilinear form is a(+,-). The extension to approximate solvers
is straightforward.

In the context of spectral elements, the following construction was first proposed by
Pahl [22]. The domain €2 is covered by substructures €2;, which are the original spectral
elements. We enlarge each of them, to produce overlapping subregions Q;,
way that the boundary of Q; does not cut through any element of the triangulation
T" generated by the GLL nodes. The overlap § is the minimum distance between the
boundaries of €2; and Q; When § is proportional to H the overlap is called generous, and
when § is comparable to the size of the elements of 7", we speak of a small overlap. For
the sake of simplicity, we again restrict our analysis to the case when all the mappings
F; are affine. The general situation can be treated similarly.

The local spaces are given by Pl (), the set of functions in Py (£2) that vanish at
all the nodes on or outside 89;. The coarse space is the (21 finite element space defined
on the mesh generated by the subregions €2;, the elements of the coarse triangulation,
which are shape-regular by assumption; see Section 2. This setting incorporates both
small and generous overlap.

THEOREM 3. Pahl’s additive Schwarz algorithm satisfies:

in such a

KKy sKN) = (14 H/6)

The constant C' is independent of the parameters H, N, and 8.

Proof. As before, we follow the proof of the analogous theorem for shape-regular
finite elements; see Theorem 3 in [12]. The proof applies, word by word, except for
the estimate of ax (In(0;wy), In(6;wy)) where I}, is the interpolation operator, {6;} a
partition of unity (different from the one described in Lemma 6), wy, a finite element
function, and ax (-, -) the restriction of a(-, -) to the single element K € 7. It is known
that 6; can be found such that |6;| < C, and |V;| < C/§. Lemma 3 gives:

1
ax (In(Bswn), In(Biwn)) < Cllwnlfn ey + szllwnllze ),

where the constant C' depends on the coefficients k;. The rest of the proof follows
without any change, and we obtain

/i(lz'};ils[(h) <O+ H/)).
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The FEM-SEM equivalence and a Rayleigh quotient argument complete the proof. O

REMARK 1. Fuven though the theory does not rule out the possibility of growth of
the constant C' of Theorem 3 when the coefficient k(z) has large jumps, only a very
moderate increase has been observed in numerical experiments; see e.g. [15]. We also
note that when the overlap is generous, the method is optimal in the sense that the
condition number is uniformly bounded with respect to N and H.

REMARK 2. In the present algorithm, the local spaces are allowed to be more general
than those considered by Pavarino [24, 25, 26]. For each crosspoint x4, Pavarino defines
an extended subdomain ) as the union of all the subdomains that contain z, as a vertex.
Therefore, § is always on the order of H.

We now apply the FEM-SEM equivalence to the subspaces that define IE'hAS, to
propose yet another preconditioner; this is the same technique used to derive the pre-
conditioner SN,WB from gh,WB- The coarse space is the same as the one for RYh,AS,
while the local spaces are given by

Vé\{ ={on € PY(Q) such that I%(vy) € PE(Q2)}.

Notice that the polynomials of ngz\’.[ are generally not equal to zero outside Q;, and
therefore Vé\[ ¢ PN ().

These sﬁbspaces and the use of the bilinear forms ag(+,-) and a(-,-) for the local
and coarse spaces, respectively, define our new preconditioner RYN,AS- Theorem 3 and a
simple application of the FEM-SEM equivalence for each of the local spaces immediately
give:

THEOREM 4.

K(Ky4sKn) < C(14+ H/S).

REMARK 3. To the best of our knowledge, this preconditioner RYN,AS is new. Fven
though IE}WAS is superior to IN(NAS for the model problem considered here, because the
local problems are much easier to solve, the comparative efficiency in more complicated
problems can only be determined by experiments.

7. Comments on the Numerical Experiments by Pahl. We describe here
some of the experiments performed by Pahl [22]. These experiments have motivated our
analysis, and are used to illustrate the efficiency of some of the algorithms considered
in the last two sections. For more details on this very thorough study, we refer to [22].

The region €2 was taken to be the unit square in the plane, and the tests were based
on the two dimensional analogues of the methods described in the previous two sections.
Q was subdivided into a uniform M x M mesh of squares, with sides H = 1/M. In each
square, polynomials of degree N were used. The coefficient k(z) was equal to one, and
the right hand side of (1) was chosen so that the exact solution was u = zy(1—z)(1—y).
The stopping criterion for the PCG iteration was a reduction of 107° in the Euclidean
norm of the residual, and only iteration counts were reported. The experiments were
performed for the finite element based preconditioners of the spectral element stiffness
matrix; see our Theorems 1 and 3.

In a first set of experiments, the iterative substructuring methods were considered.
Several preconditioners were studied. We focus our attention on the wirebasket pre-
conditioner analyzed in Section 5, and an analogue of the balancing preconditioner of
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Mandel and Brezina [20]. For N = 4 and M between 2 and 12, the number of iter-
ations was bounded by 10, and grew hardly at all, with increasing M. For M =7
and N between 4 and 12, the iteration count increased very slowly with N, and was
bounded by 11 for the wirebasket and balancing preconditioners. We remark that the
analysis of the finite element balancing preconditioner for the spectral element method
is a straightforward application of the results of Section 5 and the existing theory for
shape-regular finite elements. Pahl’s results corroborate, in a clear cut way, the results
of the theory.

The overlapping Schwarz preconditioner was studied in a second set of experiments.
The domain was divided as before into M x M subdomains, polynomials of degree NV
were used within each subdomain, and ¢ was taken to be on the order of one or two
mesh intervals. From the geometrical properties of the GLL mesh, it is easy to see that
the bound on the condition number given by Theorem 3 grows like (1+ H/§) < NZ.
Hence, our theory predicts an iteration count which is linear in N and independent
of M. The experiments performed by Pahl showed that for N = 4, the number of
iterations grows very slowly with M between 2 and 12, and presents a sublinear growth
when N increases from 4 to 12, for M = 7. The maximum iteration count was 22,
achieved for M = 7 and N = 12. Our estimate seems pessimistic in its dependence on
N, at least for this range of values, while it describes the dependence on the number of
subdomains quite well.

An important practical question, also addressed by Pahl’s experiments, is the choice
of the most efficient overlap & for a particular problem and decomposition of the domain.
The greater the overlap, the smaller the iteration count, but since a more generous
overlap also increases the work to solve the local problems, it is hard to decide in
advance what the best § would be. The results obtained by Pahl indicate that, for
M = 7 and N between 4 and 9, one mesh size overlap appears to be a good choice
in terms of total work on a serial machine, while a more generous overlap seems to be
appropriate for larger V.
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