*

Randomized Swap Matching in O(m logmlog|X|) time

Richard Colet Ramesh Hariharan?

September 27, 1999

Abstract

We give a randomized algorithm for the Pattern Matching with Swaps problem which
runs in O(mlogmlog|X|) time on a text of length 2m — 1 and a pattern of length m drawn
from an alphabet set of size |¥|. This algorithm gives the correct answer with probability
at least 1 — % and does not miss a match. The best deterministic algorithm known for this

problem takes O(m*/3polylog(m)) time.

1 Introduction

The Pattern Matching with Swaps problem (the Swap Matching problem, for short) requires
finding all occurrences of a pattern of length m in a text of length 2m — 1. The pattern is said
to match the text at a given location [, if adjacent text characters can be swapped, if necessary,
so as to make the substring of the text starting at location [identical to the pattern. All the
swaps are constrained to be disjoint, i.e., each character is involved in at most one swap.

Amir et al. [?] obtained the first non-trivial results on this problem. They showed that
the case when the size of the alphabet set ¥ exceeds 2 can be reduced to the case when it is
exactly 2 with a time overhead of O(log? ||). They then showed how to solve the problem for
alphabet sets of size 2 in time O(m?*/3 log m), which is the best bound known to date. Amir et
al. [?] also give certain special cases for which O(mpolylog(m)) time can be obtained. However,
these cases seem rather restrictive.

Recently, Amir et al. [?] have improved the reduction from large alphabet sets to alphabet
sets of size 2. This reduction now requires a time overhead of O(log|X|) only. The crucial
step in this reduction is to obtain |¥| codes of length O(log|X|) each so that the following
property holds for any ordered triple of codes: the first two codes in the triple are identical
and different from the third code on at least one bit. Amir et al. [?] use the e-biased k-wise
independent sample space of Naor and Naor [?] to obtain these codes in O(|X|) time. They
use the following parameter values: k¥ =3 and € < 1/8.

Our contribution is two-fold.

First, we give a randomized algorithm for the case of alphabet sets of size 2. This algorithm
produces the right answer with probability at least 1 — % in time O(m log m) and never misses
a match.

*This work was supported in part by NSF grants CCR-9503309 and CCR-9800085.
fCourant Institute, New York University, cole@cs.nyu.edu.
Indian Institute of Science, Bangalore, ramesh@csa.iisc.ernet.in. Work done in part while visiting NYU.

Second, we give an alternate direct construction of the above codes of length O(log |X|).
Our construction does not need e-biased k-wise independent sample spaces and runs in O(|X])
time.

Together, these give an O(m logmlog|X|) time algorithm for arbitrary alphabet sets. How-
ever, we do not have a procedure to verify the correctness of the output in O(m polylog(m))
time. Therefore, for longer texts (i.e., when the text has length n >> m), the time taken will
be O(nlogn) (and not O(nlogm)) and correctness guaranteed with probability at least 1 — 1.

This paper is organized as follows. Section ?7 gives a key property distilled from Amir
et al. [?] which gives necessary and sufficient conditions for the pattern to match at a text
location. The randomized algorithm is described in Sections ?? and ??. Section ?? gives our
construction of codes for large alphabet sets.

2 The Key Property

We assume that the text and the pattern both have only as and bs. Partition the text and pat-
tern into maximal streams, where a stream is an alternating substring, i.e., no two consecutive
characters are identical. By maximality, the character to the left of the leftmost character x
in a stream, if any, is identical to z, and similarly, the character to the right of the rightmost
character y, if any, is identical to y. The following lemma appears in a different form in [?]
and describes all matches of the pattern in the text.

Lemma 1 The pattern matches in a particular alignment if and only if one of the following
holds for each stream A in the text and each stream B in the pattern overlapping A.

1. The overlap between A and B has even length.

2. The overlap between A and B has odd length, and the portion of B overlapping A matches
A ezactly, i.e., without any swaps.

3. The overlap between A and B has odd length, and the portion of B overlapping A does not
match A. However, either B is the leftmost stream in the pattern and A extends further
to the left of B, or B is the rightmost stream in the pattern and A extends further to the
right of B.

Proof. First, we show the if part. If the above overlap is even then the overlapping portions
of A and B can be made identical by swapping, if necessary. Note that these swaps stay
within the overlapping portion so other streams are not affected. If the overlap is odd and
the overlapping portions match exactly then nothing needs to be done. And if the overlap is
odd, the overlapping portions do not match exactly, B is the leftmost (rightmost, respectively)
strip in the pattern, and A extends further to the left (right, respectively) of B, then swapping
characters in A starting from the character to the left (right, respectively) of the overlapping
portion and proceeding to the right (left, respectively), ensures that the overlapping portions
of A and B can be made identical without affecting the other streams. So clearly, if one of the
above conditions holds for each overlapping pair of streams then the pattern matches.
Consider the only if part now. Suppose none of the above conditions hold for A and B.
Then their overlap has odd length and, without loss of generality, the overlap has u = (ab)*a
in the text and v = (ba)*b in the pattern. Then, for a match to occur, either the leftmost a

in 4 must be swapped with the character to the left or the rightmost a in u must be swapped
with the character to the right. Consider the former case (the latter is similar).

Clearly, the portion of A overlapping B cannot be a prefix of A for the above swap to be
effective (the character preceding A is an a). It follows that the portion of B overlapping A
must be a prefix of B. If B is not the leftmost stream in the pattern, then again the above
swap is ineffective (the character preceding B is a b). Thus B must be the leftmost stream in
the pattern and A must extend further to the left of B. But this contradicts the assumption
that none of the above conditions hold for A, B. O

3 Algorithm Outline

We show how to find all matches of the pattern beginning at odd locations in the text. Matches
beginning at even locations are found similarly.

We will set up two pairs of strings with the property that matches beginning at odd
locations can be determined by convolving each pair of strings separately. The two pairs are
called odd-even and even-odd, respectively.

A stream in the text is called odd if the as in it occur at odd text locations (if there are
no as, then the only b in it occurs in an even text location). Otherwise, this stream is called
even. An analogous definition is made for pattern streams.

The Odd-Even Pair. One string ¢, in this pair is obtained from the text, the other p. from
the pattern.

Consider the text first. Put a 1 at each location which is part of an odd stream and a 0
at each location which is part of an even stream. Next, consider the pattern. In each even
stream, put an alternating sequence of 1 and -1; puts Os at locations in odd streams. The
following lemma is obvious.

Lemma 2 Consider any placement of the pattern in the text and consider any two overlapping
streams A in the text and B in the pattern. Let j denote the dot product of the portions of
to, and p. which correspond to the overlap of the streams A and B. Then j has the following
property.

1. If either A is an even stream or B is an odd stream then j = 0.
2. If the overlap has even length then j = 0.

3. If the overlap has odd length, A is an odd stream, and B is an even stream, then j = +1.

The Even-Odd Pair. Consider the text first. Put a 1 at each location which is part of an
even stream and a 0 at each location which is part of an odd stream. This gives the string Z..
Next, consider the pattern. In each odd stream, put an alternating sequence of 1 and -1; puts

0Os at locations in even streams. This gives p,. Lemma 77 is the even-odd analogue of Lemma
79

Lemma 3 Consider any placement of the pattern in the text and consider any two overlapping
streams A in the text and B in the pattern. Let j denote the dot product of the portions of
te and p, which correspond to the overlap of the streams A and B. Then j has the following
property.

1. If either A is an odd stream or B is an even stream then j = 0.
2. If the overlap has even length then j = 0.

3. If the overlap has odd length, A is an even stream, and B is an odd stream, then j = +1.

Corollary 1 Consider any placement of the pattern starting at an odd location in the text.
Consider any two overlapping streams A in the text and B in the pattern and consider their
overlapping portions. The dot product of the corresponding overlapping portions of either te, p,
or to,pe 18 1 if and only if the above overlapping portions violate both conditions 1 and 2 of
Lemma ?77.

Proof. First, consider the if part. Since the two conditions are violated, the overlap has odd
length and the portions of A and B in this overlapping region are not identical. Recall that we
are considering a placement of the pattern beginning at an odd location in the text. Thus A
and B cannot be both odd streams or both even streams, otherwise, their overlapping portions
would be identical. So one of A, B is odd and the other is even. The corollary follows from
Lemmas 7?7 and ?7.

Next, consider the only if part. Without loss of generality, suppose that the dot product
of the overlapping portions of A, B in t,,p. is 1. Then A must be an odd stream and B an
even stream. Further, this overlap must have odd length, otherwise the dot product will be 0,
by Lemma ??. Finally, since we are considering only matches of the pattern starting at odd
text locations, the overlapping portions of A and B are not identical. Thus conditions 1 and
2 are violated. O

Corollary ?? and Lemma ??7 immediately lead to Lemma ?7, which is the crux of our
algorithm. Let L, R denote the leftmost and rightmost streams in the pattern, respectively.
For any particular placement of the pattern, let L', R’ denote the text streams overlapping the
left and the right ends of the pattern, respectively.

Lemma 4 Consider any placement of the pattern starting at an odd location in the text. If
the pattern matches in this placement, then the dot product of the overlapping portions of A, B
for each stream A in the text and B in the pattern is 0 (with the possible exception of L', L
and R',R) in both t,,p. and te,p,. If the pattern does not match in this placement then one
of the following happens:

1. The overlapping portions of L', L are not identical, have odd lengths, and L' does not
extend further to the left of L.

2. The overlapping portions of R', R are not identical, have odd lengths, and R' does not
extend further to the right of R.

3. For some pair of overlapping streams A, B other than L,L' and R, R', the dot product of
the overlapping portions of A, B is non-zero in at least one of to, pe and te, po-

4 The Randomized Algorithm

First, we do some computation for L and R.

Border Computation. The following can be determined easily in linear time.

4

1. For each I, when the pattern is placed started at the /th text character, whether the
stream L' in the text overlapping the left end of the pattern has an odd or even length
overlap with L, whether L' extends further to the left of L, and the dot product of the
overlapping portions of L' and L in both t,,p, and in t.,p,. We call these dot products
left — oe(l) and left — eo(l), respectively.

2. For each I, when the pattern is placed started at the /th text character, whether the
stream R’ in the text overlapping the right end of the pattern has an odd or even length
overlap with R, whether R’ extends further to the right of R, and the dot product of the
overlapping portions of R’ and R in both t,,p. and in ., p,. We call these dot products
right — oe(l) and right — eo(l), respectively.

Random Multipliers. We modify t,, te, po, pe slightly. For each stream in the text, two ran-
dom numbers in the range 1...m? are assigned; all entries in the portion of ¢, corresponding
to this stream are multiplied by the first number and all entries in the portion of %, corre-
sponding to this stream are multiplied by the second number. A similar multiplication with
random numbers is done in p, and p,. Let rand.(A) and rand,(A) denote the random number
multiplier for stream A in the even and the odd versions, respectively.

Next, for each placement of the pattern starting at an odd location [in the text, we
determine dp — oe(l), the dot product of p. and the overlapping portion of ¢,, and similarly,
dp — eo(l), the dot product of p, and the overlapping portion of ¢.. This can be done in
O(mlogm) time, using convolution [?]. We now have the following claim.

Lemma 5 Consider a particular placement of the pattern starting at an odd location | in the
text. If the pattern matches in this location, then the following hold.

1. dp — eo(l) = rande(L') x rand,(L) = left — eo(l) 4+ rand.(R') * rand,(R) * right — eo(l).
2. dp — oe(l) = rand,(L') x rand.(L) x left — oe(l) + rand,(R') * rand¢(R) * right — oe(l).

3. The overlapping portions of L, L' are either identical, or have even lengths, or L' extends
further to the left of L.

4. The overlapping portions of R, R' are either identical, or have even lengths, or R' extends
further to the left of R.

If the pattern does not match in this location, then with probability at least 1 — #, at least one
of following holds.

1. dp — eo(l) # rand.(L') * rand,(L) x left — eo(l) + rande(R') x rand,(R) * right — eo(l).
2. dp — oe(l) # randy(L') x rand(L) x left — oe(l) + rand,(R') * rande(R) x right — oe(l).

3. The overlapping portions of L,L' are not identical, have odd lengths, and L' does not
extend further to the left of L.

4. The overlapping portions of R,R' are not identical, have odd lengths, and R' extends
further to the right of R.

Proof. If the pattern matches at location ! then the lemma follows directly from Lemma 77
and Lemma ?7?. If the pattern does not match starting at location I, then by Lemma ?7?,
either conditions 3 and 4 stated above for this case hold, or there exists some pair of streams
A, B (other than L, L' and R, R'), the dot product of whose overlapping portions is non-zero
in either tq,p, or in t,, p.. Without loss of generality, suppose this dot product is non-zero in
te,Po- Then dp—eo(l) = rande(L')xrand,(L)*left—eo(l) +rand.(R') xrand,(R) *right —eo(l)
with probability at most ng (if the random multipliers for all streams other than B are fixed
then there is at most one value for the random multiplier for stream B which can cause this
event to happen). O

Since there are only m values for [in the above lemma, the above algorithm produces the
correct result with probability at least 1 — %; in addition, it never misses a match.

Finally, if the text has length n >> m, then the random multipliers have to be chosen from
1...n? and not 1...m?, so that the probability of correctness is at least 1 — % The time taken
in this case is O(nlogn).

5 Coding for Large Alphabet Sets

We show how to construct |3| codes of length O(log|X|) each, with the following property.
Our construction will take O(|X]|) time.

Property: For any ordered triple of codes, there must be a bit in which the first two codes
agree but differ from the third code.

It is easy to see that the expected number of ordered triples violating the above property
is less than 1 for a random assignment of codes (each code bit is set to 1 with probability 1/2),
provided the code length is ©(log|X|). Our linear time algorithm constructs these codes in
two steps.

Step 1. |E|% codes with the above property are constructed in this step. Each code has length
O(log|X|). This is done using the method of Conditional Probabilities [?, ?], which is easily
seen to run in O((|Z[Y/#)*1og? |]) = o(|X]) time (the number of ordered triples is cubic in
|E|§, each triple needs to be checked each time a bit is set, the total number of bits over all
codes is O(|E|§ log |X]), checking a triple requires O(log |%|) time).

Step 2. Shortly, we will show how to construct z? codes with the above property, given x
codes with the above property, for any z > 0. The lengths of the new codes will be thrice
those of the old codes. The time taken will be O(z?). Step 2 involves 3 iterations of the above
construction, starting with the codes obtained in Step 1 (here, z = \E|§) Clearly, the lengths
of the final codes will be O(log |X|) as well. The total time taken will be O(|%]).

Constructing z? codes from z codes. Let the given codes be denoted by ai,as,...,as.
Note that no two of these codes are identical, otherwise, the required property will not be
satisfied. The new codes are given by the following z X x matrix. Each new code has three
components. The first component is determined by the row, the second by the column, and
the third by the SW-NE diagonal (with wrap-around).

aijai1ay a1a20a2 aiaszag o A10z-10z-1 41050y

a2a1a2 a2a2a3 a2a3a4 e a2z 10y a2a50a1
azaiag a3a204 azasas Tt a3az-101 430502
Qr—10105;—1 0Qzr—1020y Q;—10301 ot Q1051053 Qz—_10505_2
Az Q10ag Gz G201 Az a3a2 ot QzOgp—10g-2 QzQzQg—1

That the z codes obtained above satisfy the required property is shown as follows. Recall
that this property involves ordered triples of codes. Consider any one ordered triple. It suffices
to prove that one of the following situations holds for at least one of the three components
forming each code.

1. No two entries of the ordered triple are identical in this component. This is sufficient
because a; ...a; themselves have the required property.

2. The first two entries of the ordered triple are identical in this component while the third
entry is different. This is sufficient because a; ... a, are all distinct.

There are 3 cases in proving that one of the above situations holds.

Case 1. Suppose all three entries in the ordered triple are either in distinct rows or in distinct
columns. Then (1) above holds for either the first component or the second component.

Case 2. Suppose the first two entries in the ordered triple are in one row (column, respectively)
and the third entry is in another row (column, respectively). Then (2) above holds for the first
component (second component, respectively).

Case 3. The only remaining case is when the first two entries in the ordered triple are neither
in the same row, nor in the same column. Further, the third entry is in the same row as one
of the above entries (without loss of generality, the first entry) and in the same column as the
second entry. Note that the first and third entries will now disagree in the third component, as
will the second and the third entries. Then either [1] or [2] will hold for the third component.

6 Open Problems
Whether the above stream multipliers can be chosen in a deterministic manner in O(mpolylog(m))
time is not clear. We leave this as an open problem.

References

[1] A. Amir, Y. Aumann, G. Landau, M. Lewenstein, N. Lewenstein. Pattern Matching with
Swaps, Proceedings of IEEE Symposium on Foundations of Computer Science, pp. 144—
153, 1997.

[2] A. Amir, G. Landau, M. Lewenstein, N. Lewenstein. Efficient Special cases of Pattern
Matching with Swaps, Information Processing Letters, Vol. 68, No. 3, pp- 125-132, 1998.

[3] A. Amir, Private Communication.

[4] M. Fischer, M. Paterson. String Matching and Other Products, R.M. Karp (editor), STAM-
AMS Proceedings, 7, pp. 113-125, 1974.

[5] J. Naor, M. Naor. Small Bias Probability Spaces: Efficient Constructions and Applications,
SIAM J. Computing, 22, pp. 838-856, 1993.

[6] P. Raghavan. Probabilistic Construction of Deterministic Algorithms: Approzimating
Packing Integer Programs, Journal of Computer and System Sciences 37, pp. 130-143,
1988.

[7] P. Raghavan, Randomized Approzimation Algorithms in Combinatorial Optimization,
Foundations of Theoretical Computer Science and Software Technology, LNCS 880, pp.
300-317, 1994.

[8] J. Spencer, Ten Lectures on the Probabilistic Method, STAM, Philadelphia, 1987.

