
dRBAC: Distributed Role-based Access Control
for Dynamic Coalition Environments (TR2001-819)

Eric Freudenthal, Tracy Pesin, Lawrence Port,
Edward Keenan, and Vijay Karamcheti

Department of Computer Science
Courant Institute of Mathematical Sciences

New York University
{freudent, tracyp, lport, woodiek, vijayk}@cs.nyu.edu

Abstract

Distributed Role-Based Access Control (dRBAC) is a scalable, decentralized trust-management and
access-control mechanism for systems that span multiple administrative domains. dRBAC represents
controlled actions in terms ofroles, which are defined within the trust domain of one entity and can be
transitively delegated to other roles within a different trust domain. dRBAC utilizes PKI to identify all
entities engaged in trust-sensitive operations and to validate delegation certificates. The mapping of roles
to authorized name spaces obviates the need to identify additional policy roots.

dRBAC distinguishes itself from previous trust management and role-based access control approaches
in its support for three features: (1)third-party delegations, which improve expressiveness by allowing
an entity to delegate roles outside its namespace when authorized by an explicitdelegation of assign-
ment; (2) valued attributes, which modulate transferred access rights via mechanisms that assign and
manipulate numerical values associated with roles; and (3)credential subscriptions, which enable con-
tinuous monitoring of established trust relationships using a pub/sub infrastructure to track the status of
revocable credentials.

This paper describes the dRBAC model, its scalable implementation using a graph-based model of
credential discovery and validation, and its application in a larger security context.

1 Introduction

dRBAC was motivated by the problem of controlling access to resources incoalition environments. A “coali-
tion environment” could be military, in which several nations work together to achieve a common goal; or
commercial, in which corporations form a partnership. The defining characteristic of a coalition environ-
ment is the presence of multiple organizations or entities that have no common trusted root authority. In
such a situation, the entities must cooperate to share the subset of their protected resources that is necessary
to the coalition, while protecting the resources that they don’t want to share. The growth of network-based
services on the Internet promises to make this paradigm pervasive. For instance, one can imagine a situation
where a mobile user seamlessly obtains connectivity to the Internet using the network facilities at a hotel or
an airport based on a coalition between the user’s organization and the entities administering these networks.
Upon receiving the user’s request, the network gateway can determine the existence of a trust relationship
between its organization and the user’s, and if one exists, enable access at the specified levelin spiteof the
anonymous and transient nature of the user’s relationship with the network.

Although such scenarios are compelling, establishing trust in coalition environments presents a number
of challenges:

1

• The members of the coalition must securely identify themselves to each other, possibly by transmitting
information over insecure network links. The identities of coalition members might not be known to
each other a priori, requiring the members to prove their trustworthiness through the presentation of
additional evidence. (This problem is familiar to users ofssh[20], for example, who must make an
initial decision as to whether to accept the key of an unknown host.)

• Coalitions involving large organizations benefit from an access control system that recognizes and
maintains the natural structure of the organization. It should be possible to authorize a user based on
some “role” that the user performs within an organization.

• Highly dynamic coalition environments must support the transitive delegation of authorization. The
owner of a resource must not only be able to specify who can access the resource, he must also be able
to identify users who can further delegate that authorization to others. This should be accomplished in
a way that minimizes the amount of coordination necessary between the owner of the resource and the
entity who can further delegate it. The evidence that establishes a transitive delegation of authority to
a user could conceivably be distributed over a number of different network hosts. Such evidence will
ideally be collected and presented automatically.

• Established trust relationships must be continuously monitored to track the status of revocable cre-
dentials. This is particularly crucial in the case of prolonged user accesses to some secure resource.

Unfortunately, existing solutions do not address these challenges well. Simple access control lists pose
administrative difficulties, don’t scale well to large systems and do not permit the transitive delegation of
authority. Traditional role-based access control (RBAC) systems [18, 19] depend upon a central trusted
computing base administered by a single authority, which contains all of the security policy for the entire
organization. RBAC systems provides ease of administration: when a user is added to a group, that user
is instantly afforded all the rights and privileges of that group. However, this approach cannot be scaled
for large number of mutually anonymous users such as one might encounter in coalition settings. More
recently, trust-based systems (e.g., SDSI/SPKI [17, 7], Keynote [2, 3]) have been developed to control
access. The application controlling the resource uses public-key cryptographic signatures to authenticate the
individuals requesting access. This approach has the advantages of decentralized administration, scalability,
and the ability to authenticate individuals over insecure networks. However, most trust-based systems do not
provide a delegation language that mirrors the natural structure of organizations. They also do not address
the question of continuously monitoring established trust relationships for changes to credential status.

Our approach, dRBAC, combines the advantages of role-based access control and trust-management
systems to create a system that offers both administrative ease and a decentralized, scalable implementation.
dRBAC represents controlled actions in terms ofroles, which are defined within the trust domain of one
entity and can be transitively delegated to other roles within a different trust domain. dRBAC utilizes
PKI to identify all entities engaged in trust-sensitive operations and to validate delegation certificates. The
mapping of roles to authorized name spaces obviates the need to identify additional policy roots. This paper
describes the key components of dRBAC: its model for authorizing actions, and a scalable architecture to
support distribution, discovery, validation, and monitoring of credential chains.

dRBAC has been influenced by the design of other recently proposed trust management systems, most
notably RT0 [13] whose delegation chain discovery ideas have informed dRBAC’s algorithms. However,
dRBAC distinguishes itself from previous approaches in its support for three novel features:

• Third-Party Delegations, which allow an authorized entity to delegate roles that were created byan-
otherentity by referring directly to the role originator’s namespace. This mechanism, related to the
speaks forrelationship of Li’s Delegation Logic [12], allows a natural administration model where

2

privileged entities in the system can create roles and designate other (less privileged) entities to give
out these roles. More importantly, as we show in Section 3, third-party delegation actually increases
the expressiveness of dRBAC in important ways. These benefits come at little cost: third-party dele-
gation does not require any additional infrastructure or specification of system security policy beyond
signed delegations.

• Valued Attributes, which take on numerical values to capture different levels of access and enable
fine-grainedrights restriction via mechanisms that modulate access rights transferred through dele-
gations. Valued attributes, like roles, are created by a given entity and defined within that entity’s
namespace. As with third-party delegations, valued attributes are specified through the issuance of
signed delegations, and require no out-of-band policy.

• Credential Subscriptions, which enable continuous monitoring of established trust relationships using
a pub/sub infrastructure to track the status of revocable credentials. This feature allows the dRBAC
infrastructure to support prolonged interactions based upon trust establishment at setup time. The
dRBAC systempushesupdates to client applications on the status of critical delegations, enabling
propagation of revocation information in a more efficient fashion than the alternative that requires
constant polling.

These three features of dRBAC enable the construction of a powerful trust management and access
control system. Like other trust management systems (see Blaze et. al. [2]), mechanisms that provide access
are separated from policy. No globally trusted ‘certifying authority’ is required: Each authority responsible
for protected resource can define their own trust relationships with other entities throughout the distributed
system. Privilege to access restricted resources is completely specified through the issuance of delegation
credentials that describe trust relationships among partners. Mechanisms are provided to automatically
discover chains of delegations authorizing a required trust relationship. Finally, mechanisms are provided
to monitor the status of a trust relationship over the duration of a sustained transaction. To understand the
benefits that accrue from these features, consider the following example.

Example Consider the problem of dynamically distributing a video data feed to members of a military
coalition involving three countries, say the United States (US), United Kingdom (UK), and Australia. Imag-
ine that US cameras capture video information and want to transmit it digitally to not just US troops, but
also British and Australian troops that are engaged in a certain military exercise. Imagine also that these
troops may be connecting to the video source via computers that are unknown to machine that is hosting the
video feed, and over insecure network links. In addition, the US would like to modulate the delivery of the
data feed such that American officers receive a higher image resolution than other users.

Using dRBAC, all of these requirements can be supported in a straight-forward manner through the
issuance of delegations. Perhaps the host of the video feed specified that US Generals can both view the
feed and also delegate that right to others. US Generals would therefore be able to issue delegations that
defined the rights of Australian and British troops to view the feed. These delegations, enabled by dRBAC
support for third-party delegation, avoids conflicts in the namespace associated with the role “US Generals”
and has a clarity advantage. dRBAC support for valued attributes allow delegations issued to troops from
different countries to be associated with different resolution settings achieving the desired prioritization.
Finally, support for credentialed subscriptions allows the feed distribution application to be informed of
when the exercise completes (as indicated by a change of credentials for non-US troops), enabling it to
immediately cut off the feed for disallowed users.

The dRBAC system is one part of a larger security infrastructure called DisCo being developed by our
research group. DisCo enables dynamic deployment of decomposable services in partially trusted envi-
ronments relying upon dRBAC for mutual authentication and authorization based upon client and server

3

credentials. DisCo also includes a novel abstraction called the Switchboard, which provides applications
with the ability to create credentialed, secure connections with the same programming effort as might be re-
quired in a completely secure environment. The overall DisCo architecture and the Switchboard abstraction
are described in additional detail elsewhere [9, 10].

The rest of this paper is organized as follows. Section 3 discusses the basic dRBAC model for delegating
authority, as well as extensions that support modulation of access rights and control of credential lifetime.
Section 4 presents an architecture that supports the distribution, discovery, validation and continuous mon-
itoring of certificate chains. Section 5 contains an extended case study that shows the use of dRBAC in a
larger security context. We conclude the paper with a discussion of related work and future implementation
and design goals.

2 Overview of dRBAC

Fundamentally, dRBAC authorizes accesses to secure resources by ascertaining whether the requesting Prin-
cipal has been granted a role that the secure resource requires for access. The key question that dRBAC
attempts to answer is “Does Principal P have Role R?”

dRBAC uses the set of “building blocks” defined below to answer this question:

Credentials We refer to the relationship between a Principal and some Role that the principal has been
granted as aCredential. If a user can act in a given Role, he must have a Credential that proves his right
to do so. This term is somewhat informal; when we discuss the concrete software object that implements
Credentials, we will call it aDelegation.

Credential Chains Credentials can be passed from principal to principal in a transitive fashion. A user
U who has been granted Role Rmay be able to further delegation Role R to others, depending on the
restrictions specified by the author of the credential granting R to U. The transitive passing of Roles from
Principal to Principal can be imagined as aCredential Chain.

Supporting Chains In dRBAC, it is possible for a user U to delegate a Role R that U did not himself
define. In this case, U must provide evidence that he had the right to delegate R. This evidence will also take
the form of aCredential Chainrooted by the author of R, and is termed aSupporting Chain.

Proofs The full set ofCredential ChainsandSupporting Chainsneeded to answer the question “Does
Principal P have Role R” is called aProof. Figure 1 depicts a proof demonstrating that Principal A has the
rights to a role created by B, called Role 2. If such a Proof exists, we say thatA ⇒ B.Role2 .

Sub-Proofs The concept of a sub-proof will become important when we examine the process by which
dRBAC builds full Proofs from individual Delegations. A valid Proof is composed of one or more Sub-
Proofs. A Sub-Proof is a continuous subset of delegations in the Primary chain along with all of the needed
Support Chains, such that the Sub-Proof provides full evidence of a trust relationship between the Subject in
the first delegation of the Sub-Proof’s Primary Chain and the Object in the last delegation of the Sub-Proof’s
Primary Chain.

Proof Monitor Once a Proof thatA ⇒ B.Role2 has been identified, it is necessary to ensure that all of
the Credentials within the Proof remain valid for the duration of the access. AProof Monitorprovides this
functionality; this object is described in more detail in Section 4.

4

D says A
has C’s
Role1

B says C’s
Role1 has B’s
Role2

C says D can
assign C’s
Role1

Primary Chain

Supporting
Chain

Figure 1: dRBAC Proof that A⇒B.Role2

Section 3 formalizes these notions through a precise description of dRBAC’s delegation language. Sec-
tion 4 then describes an infrastructure that can be used to deploy dRBAC in a distributed setting.

3 dRBAC Model and Theory

3.1 Base model for delegations

Table 1 gives syntax and usage examples for the base dRBAC delegation model. We now describe the
components of this model in more detail.

3.1.1 Entities

Unlike some other trust management systems, dRBAC does not make a hard distinction between the “re-
sources” protected by the system and the “principals” attempting to access them. In dRBAC, all are termed
“entities”, and all are represented by a unique public/private key pair. Relaxing the distinction between
resources and principals allows for more transitivity in specifying delegation relationships. In particular, in
our system, all users, hosts, and services are represented by entities.

All entities are mapped to a public/private key pair so that they can be uniquely identified. Entities may
represent a group of individuals as well as an individual, for example, both “Cardiologist” and “Dr. Bob
Smith” are dRBAC entities. See Table 1 for examples.

5

Entities A public key that represents a principal or a resource, and defines a
namespace that can contain roles.

Form: cryptographic public key and a human-readable name
Examples: CEO; classifiedDatabase

Roles A name within anEntity’s namespace.

Form: Entity.LocalName
Examples: CEO.assistant

secureDB.table1
Role Delegations Signed Certificates that grant extend access rights on someObject to a

Subject .

Form: [Subject → Object] Issuer
whereObject is aRole , Issuer is anEntity , andSubject is a
Role or anEntity .

dRBAC includes three major types of delegations:

Object Delegation An Issuer A grants role A.a to someSubject . The role granted is
defined within A’s namespace.

Form: [Subject → A.a] A
Examples: [Raymond → CEO.assistant] CEO

[DBGroup.Developer → secureDB.table1] secureDB

Assignment Delegation: Entity B grants someSubject the right to delegateRole A.a to others.
The tick (’) indicates that theSubject can further delegate theRole . B
and A may or may not be the sameEntity .

Form: [Subject → A.a’]B
Examples: [HumanResources → CEO.assistant’] CEO

[DBGroup.Admin → secureDB.table1’] CTO

Third-Party Delegation: In third-party delegation, someIssuer B exercises their right to delegate
aRole defined in A’s namespace. A and B arenot the sameEntity .

Form: [Subject → A.a]B
Examples: [Jen → CEO.assistant]HumanResources

[Marketing → secureDB.table1] DBGroup

Table 1: Syntax for the base dRBAC delegation model

6

3.1.2 Roles

The central construct in dRBAC is a “role.” Any user wishing to perform a protected action must first prove
that he can act in the necessary role.

Roles are names within the namespace of a given entity. They are used to name something that the entity
selectively control the access rights to, whether it be a protected resource such as a database, or a position
within an organization that implies a set of rights, such as Manager.

3.1.3 Delegations

Roles are granted to subjects via “delegations.” At a high level, the format of a delegation is:
[Subject → Object] Issuer

where the Subject is a Role or an Entity, the Object is a Role, and the Issuer is an Entity. The arrow
“→” can be read as “has the role of.” This relationship is enclosed within square brackets, and signed by the
“Issuer”, which is the Entity responsible for creating (”issuing”) the delegation.

An important feature of dRBAC, and one which distinguishes it from many other systems, is that the
Issuer need not be the same Entity as the Object Entity (the Entity in whose namespace the Object Role is
defined.) dRBAC attempts to validate the relationship between the Object and the Issuer at the time that the
delegation is used. In order for the Subject to employ the role granted in the delegation, it must be proved
that the Issuer in fact had the right to give away the Object in question. The ability to grant a given role is
called the “right of assignment” of that role.

Very often, the Object Entity and the Issuer will in fact be the same entity, in which case the delegation
is called “self-certifying.” These delegations are valid by definition, since anyone can give away any of the
roles in their own namespace. All valid dRBAC certificate chains terminate with self-certifying delegations.

Object Delegation Recall that the Object of a delegation is a Role, where a Role is a string attribute
within the namespace of an Entity. It is important to note that, since the Object of a delegation must be a
Role (never an Entity), an Entity cannot delegate its identity to someone else.

The Subject may be either a Role or an Entity. If the Subject is a Role, then the form of the delegation
is:

[Entity.LocalName → Entity.LocalName] Issuer

This delegation has the effect of mapping a Role in the Object’s namespace onto a Role in the Subject’s
namespace. Since any Entity can give away any role in its namespace, the Subject of this delegation will be
able to further delegate the granted Role.

If the Subject is an Entity, then the form of the delegation is:
[Entity → Entity.LocalName] Issuer

This delegation grants the Subject Entity on the left-hand side of the arrow the Object Role indicated on
the right side of the arrow.

Since in this case the Subject is an Entity and not a Role, the Object Role is not mapped to a Role in
the Subject’s namespace. Therefore, in general, the Subject of this delegation will not be able to delegate
this capability further. (However, dRBAC’s “third-party delegation” feature, detailed below, will make it
possible for an Entity Subject to delegate roles further by referring to the Object’s namespace.)

Assignment Delegation In assignment delegation, an Entity grants some Subject the right to delegate a
Role without mapping that Role into the Subject’s namespace. In dRBAC terms, the Subject is givenright
of assignmenton the Object Role.

dRBAC syntax for “right of assignment” is a tick (’) after the Object. In the following delegation:
[Subject → Object’] Issuer

7

the Subject is givenright of assignmenton the Object Role. This will allow the Subject to issue valid
delegations in which it gives away the Object Role by referring to the Object’s namespace, instead of its
own.

Third-Party Delegation In dRBAC’s Third-Party Delegation, the Issuer delegates a Role that exists in
another user’s namespace. The validating engine must ensure that the Issuer has theright of assignmenton
the Object.

Here is a general example to illustrate the concepts:
PrincipalA wants to use the following delegation in order to employ RoleB.b .
(1) [A→B.b] C

If the Object and the Issuer are the same entity (B=C), then the delegation is a “self-certifying” dele-
gation. If they are not the same entity, then it must be proved thatC has the right to delegate this Role of
Entity B. The following delegation, presented in conjuction with the one above, would supply the necessary
evidence:

(2) [C→B.b’] D

The prime (’) afterB.b in the delegation above indicates that theright of assignmenton RoleB.b was
granted toC, such thatCcan now delegate RoleB.b to others.

Of course, this is a recursive formulation; it must now be proved thatD had rights of assignment on
B.b . Each such chain must terminate in aself-certifying delegation, where the Object and Issuer are the
same Entity, such as the following:

(3)[D→B.b’]B

Taken together, delegations (1),(2) and (3) compose a valid delegation chain granting EntityA roleB.b
To recap, principalA wants to employ the roleB.b . PrincipalA presents three certificates that say that

(1) CsaysA has the role ofB.b ; (2) Dsays thatChas right of assignment on RoleB.b ; and (3)B says that
Dhas right of assignment on RoleB.b .

In this way, each entity becomes its own Certification Authority (CA). The self-certifying credentials
obviate the need for any external policy specifying which authorities to trust.

Benefits of Third-Party Delegation

Clarity of Delegations and Namespace ManagementA major objective of Third-Party Delegation con-
struction is clarity and expressiveness. An entity can be given rights to function as a ’role assigner’
rather than simply a delegator of their own rights. It may be more natural for a user to recall that they
have the right to delegateCameraA.view , rather than keep track of the fact that theview role of
CameraA maps to their ownview role.

In addition, third-party delegation can be used to reduce namespace conflicts. If the same user, call
her Alice, now wants to assignCameraB.view , and theview attribute in her namespace is already
in use, she need not find a new role name to use. Instead, she can explicitly nameCameraB.view ,
referring to CameraB’s namespace, in any delegations she writes. Of course, this requires some
coordination with the Issuer that gave Alice the right of assign on CameraB – they need to have used
the Third-Party Delegation mode. However, notice that with Third-Party Delegation, CameraB and
Alice do not need to agree on the meaning ofview in their respective namespaces, whereas with
Object Delegation they do.

Functional Differences In addition, Third-Party Delegation can create some functional capabilities that are
absent in Object Delegation. For example, Third-Party Delegation provides an interesting means of
“grouping” capabilities into a Role, and then delegating right of assignment on that Role to another
user, thereby giving the user the right to delegate any or all of the capabilities that are associated with

8

the Role. This can be of immense value in a system where a Role may encompass a large number of
capabilities.

In this example, a US General is given the ability to assign three roles:

[US.General → Missile.Fire’] Missile

[US.General → Camera.View’] Camera

[US.General → Tank.Drive’] Tank

[Bob → US.General]US

Now, Bob cannot assign the role of General any further since it is not mapped to a role in his names-
pace. This is the desired behavior. However, since he is aUS.General , there are valid delegation
chains giving him the right of assignment onMissile.Fire , Camera.View , andTank.Drive .
Suppose that Bob would now like to delegate the rights to view the Camera and drive the Tank, but
not the right to fire the Missile, to Private Joe. He can issue the following delegations:

[Joe → Camera.View] Bob

[Joe → Tank.Drive] Bob

Notice that these delegations do not give Joe the right to delegate these capabilities further. They
are neither mapped to roles in his namespace, nor does Bob include the tick (’) granting right of
assignment.

Using Object Delegation, there would have had to be individual delegations mapping each of the
Missile.Fire, etc. roles into Bob’s namespace, ensuring that none of them conflicted with roles already
existing in Bob’s namespace:

[Bob.Fire → General.Fire] General

[Bob.View → General.View] General

[Bob.Drive → General.Drive] General

This not only increases the number of delegations in the system (potentially by a large amount in a
real system, where Subjects have many capabilities), but also increases the amount of coordination
needed to avoid namespace conflicts.

3.2 Extensions to Base Delegation Model

Table 2 gives syntax and examples for the extensions to the base dRBAC model. These extensions include
Valued AttributesandCredential Managementinformation. We now describe them in more detail.

3.2.1 Valued Attributes

Often, trusted resources naturally permit accesses at varying levels of service. dRBAC supports access
control specification for such resources using the notion of Valued Attributes. Valued Attributes can be used
to modulate the level of access or the quality of service granted to an authorized user. Like Roles, Valued
Attributes exist in the namespace of a given Entity, but they are disjoint from the set of Roles belonging to
that Entity.

One or more valued attributes may be set in conjunction with the delegation of some Role. It is only
meaningful to set attributes that are defined within the namespace of the Object Role, or that are inherited
by that Object Role.

Also like Roles, the right to delegate Valued Attributes can be assigned to third parties. For example,
consider a live video feedCamera.view . An Officer.intelligence should receive the data as
close to real-time as possible. However, there may be a security need to delay the delivery of data to

9

Valued Attributes A name within an Entity’s namespace that can be set to a numeric value in
order to modulate access level. Zero or more Valued Attributes can be set
in conjunction with the delegation of a Role. The set of Valued Attributes
in a namespace is disjoint from the set of Roles in that namespace.

Form: [Subject → Object
with A.ValuedAttribute1 <Operator > =<Value >
<and B.ValuedAttribute2 <Operator >=<Value >>*] C

A, B, and C may be all the same entity, or all different entities, or any
combination thereof. The ”with” clause specifies the first Valued Attribute
in the delegation, after which ”and” clauses may specify additional Valued
Attribute settings.

Examples: [User → Server.Account with Server.DiskSpace =
10] Server
[Intern → Server.Account with CPU.Priority-=5]
Manager

Delegation of
Assignment for
Valued Attributes

These delegations give the Subject the right to set the Object Attribute in
future delegations written by the Subject. While the Valued Attribute is
not a Role, the right to set it is a Role, and therefore can be the Object of
delegations.

Form: [Subject → Entity.ValuedAttribute <operator >=’] Issuer
Example: [Server.root → CPU.Priority-=’] Server

Credential
Management

These delegation annotations provide mechanisms to discover credential
chains and control credential lifetime.

Discovery Tags The Discovery Tag provides information to assist in the location of
credentials across a distributed system.

Form: [Subject <Discovery Tag > →
Object <Discovery Tag >] Issuer < acting as

Role, Discovery Tag >
More information on discovery tags is provided in the Infrastructure
section of this paper, section 4

.

Expiration Date A date after which the delegation is no longer valid.

Form: [Subject → Object <expiry: date >]

Table 2: Extensions to the dRBAC delegation model

10

reporters accredited by the US (US.reporter) by five hours. This can be achieved via the introduction
of the following delegations:

[Officer.intelligence → Camera.view with Camera.delay=0] Camera

[US.reporter → Camera.view with Camera.delay=5] Camera

Note the extended delegation syntax: an object role followed by the “=” operator has the effect of setting
the Attribute’s value.

Consider now a slightly more complex problem: The camera’s video feed can have multipleindependent
parameters. For example:

delay : how many hours to delay the feed
rez : resolution metric from 0 (fuzzy) to 1 (sharp)
There may be needs to modulate these parameters independently. To achieve this, we allow a delegation

to specify multiple objects:
[Officer.intelligence → Camera.view

with Camera.rez=1

and Camera.delay=0] Camera

Third party delegation applies to these roles as well. The following delegations provide low quality
video service to members of the press corps:

[Camera.fullRights → Camera.view’] Camera
[Camera.fullRights → Camera.rez=’] Camera
[Camera.fullRights → Camera.delay=’] Camera
[NSA → Camera.fullRights] Camera
[PressOffice.reporter → Camera.view

with Camera.rez=1

and Camera.delay=0] NSA

Finally, we consider the challenge of accumulated role values. For example, members of a foreign press
corps may be authorized to receive the same video feed, however the PressOffice should be allowed to
increase a particular delegee’s delay.

To allow this, we introduce a mechanism to build a composite values from multiple delegations. For ex-
ample, the following delegation permits the PressOffice to increase the delay value by 24 hours for unfavored
reporters.

[PressOffice → Camera.delay+’] NSA
[PressOffice.unfavoredReporter → PressOffice.Reporter

with Camera.delay+=24] PressOffice

The “+” operator in the first delegation gives NSA the right to delegate Camera.delay, and the right to
specify that it’s value should be summed with the value specified.

It is important that no entity can issue a credential that specifies a higher level of access or quality of
service than they themselves receive. This is achieved in dRBAC through a careful choice of operators and
valid value settings. Any associative operator with a top and a bottom can be used. Supported operators
include:

+ : add a positive quantity to the valued attribute. Higher values indicate a lower quality-of-service.
Base value is 0.

*: multiply the attribute by a positive quantity between 0 and 1. This will bound the range of possible
values between 0 and 1. Larger values indicate a higher quality-of-service. Base value is 1.

<= : collects the minimum of all values along the certificate chain. Default value is infinity.
>= : collects the maximum of all values along the certificate chain. Default value is 0.

Valued Attribute Delegation Types The right to further modulate Valued Attributes can be transferred
with either Object or Third-Party Delegation. Here is a general example of their use with Object Delegation:

[A.a → A.b with A.v*=0.5] A

[A.b → A.c with A.v*=0.5] A

11

impliesA.a has roleA.c with Valued AttributeA.v set to 0.25 of the base value.
Here is an example using third-party delegation:
[B.a = → B.b with A.r*=.5] B

[B → A.r*=’] A

impliesB.a has roleB.b with A.r set to 0.5 of the base value.

3.2.2 Credential Management

Table 2 also shows the syntax forDiscovery TagsandExpiration Dates. Discovery Tags are described in
section 4.

Expiration Dates are straightforward: Delegations can include a hard expiration date, after which the
credential will no longer be deemed valid. A more interesting and flexible mechanism for controlling cre-
dential lifetime is provided by dRBAC’sCredential Subscriptions, which allow for continuous monitoring
of established trust relationships. Credential Subscriptions will be discussed at length in section 4.

4 dRBAC: Supporting Infrastructure

4.1 Functional Requirements

Deploying dRBAC in distributed environments requires a robust infrastructure that will perform the follow-
ing functions:

• Distribution: provide a means for issuers of new delegations to “publish” them, so that they can be
discovered by others;

• Discovery:when presented with the question “does entity x have role y?”, locate a set of valid dele-
gations composing a chain from x to y, or report that no such chain exists;

• Validation: once a delegation chain has been identified, verify the signatures of each delegation in the
chain, and check expiration dates;

• Monitoring: when delegations are revoked or become invalid for any reason, notify any users who
may have authorized actions based on the validity of those delegations.

This functionality is provided by dRBAC’srepositories.In a distributed implementation, each partici-
pating server runs a dRBAC repository where users may publish credentials, submit queries, and subscribe
to the status of an existing proof usingCredential Subscriptions.

Because most of the complexity arises from the need to discover credential chains and monitor exist-
ing trust relationships, this section focuses on our solutions to those problems.Validation is comparatively
straightforward: As in SDSI/SPKI [7], object delegations simply require a validity check of the issuer’s
signature. In addition to this check, third party delegations require validation of the support chains(s) that
authorize the issuer to assign the object role and attribute value modifiers. Attribute value modifier opera-
tions are associative and are aggregated along the primary chain.

For clarity of presentation, we first describe the functionality provided by a single dRBAC repository,
then discusses the ways in which repositories on different servers interact in a distributed implementation.

4.2 Abstraction Provided by a dRBAC Service

We first examine the abstraction of a centralized implementation of dRBAC, where the entire set of system
credentials is stored in one repository. Our distributed implementation, which extends the semantics of the
centralized repository, will be described later in this section.

12

Credential Repository
Functions:
•add/revoke delegation D
•prove (A⇒C.c)

•Returns proof in a proof monitor
•Also supports value constraints

•monitor delegation D
•callback if invalidated

Proof monitor:
•notify trust-sensitive
object if invalidated

A→B.b→C.c

[B→C.c]C
[A→B.b]B

Trust-sensitive
object

Delegation
credential

Legend

credential callback

proof callback

Proof

Figure 2: Centralized Implementation with dRBAC Semantics

The repository depicted in Figure 2 contains two delegations that supporting trust relationship betweenA
andC.c. As indicated, a repository supports insertion and revocation of delegations, performs authorization
queries that return proofs, and allows for continuous monitoring of discovered Proofs. Callback mechanisms
are provided to inform Proof Monitors of credential status changes, and to inform trust-sensitive objects of
proof invalidations.

Publication of new Credentials An Issuer of new Credentials posts these Credentials in the appropriate
repository so they can be located and used by others. For efficiency reasons, the dRBAC implementation
incorporates the design choice that a publisher of Third-Party delegations must provide the repository with
all of the Support Chains needed to demonstrate the Issuer’s right to delegate the Third-Party Role or Valued
Attribute. This frees the repository from having to conduct recursive searches to collect the supporting
chains when building proofs from sets of Delegations.

Queries against a repository A trust-sensitive object queries the repository in order to determine whether
a requested access is permitted. The repository can be queried to return any proofs that demonstrate a trust
relationship between the specified SubjectSub and ObjectObj , and which satisfy a set of Valued Attribute
constraintsC. Our centralized repository implementation includes data structures that support efficient enu-
meration of credential chains between any specified subject and object.

In response to queries, repositories return Proofs. We will see that in the distributed implementation,
a query may actually return portions, orSub-Proofsof the desired proof. The returned proofs contain all
necessary support chains to authorize third-party delegations.

Identifying a proof within the repository Internally, the repository builds a proof using a graph-based
algorithm by submitting queries of the following two types:

13

• Object Queries: given a set of objectsOand Valued Attribute constraintsC, enumerate the full set of
proofs whose Primary Chain terminates inOand that do not violateC.

• Subject queries: given a set of subjectsS and Valued Attribute constraintsC, enumerate the full set of
proofs whose Primary Chain begins withS and that do not violateC.

Credential Subscriptions and Proof Monitors A fundamental objective of dRBAC is to implement sup-
port for continuous monitoring of trust relationships. For example, an army officer accessing a continually
updated stream of classified radar imagery should have his access immediately terminated if he loses some
necessary credential.

To achieve this, a dRBAC repository implements a pub/sub interface for each credential’s validity. Using
this, an agent monitoring the validity of a proof authorizing some trust relationship based on some setS of
delegations is notified if a credential inS becomes invalid.

We have said that a query returns a proof (if one exists); in fact, what it returns is a proof wrapped
in a Proof Monitor object. As described above, a Proof Monitor is responsible for registeringCredential
Subscriptionswith a trusted repository for each of delegations in the proof. The Proof Monitor also includes
a Proof Callbackinterface to the trust-sensitive object that first requested the proof to inform the trust-
sensitive objects if the proof becomes invalid.

This design utilizes an eventpushdata-flow model, which minimizes polling of a credential repository.
When a credential in the proof is invalidated, the trust-sensitive object can either query the repository for an
alternate authorizing proof or discontinue access. Similarly, if the repository initially cannot provide a proof
satisfying the required relationship, the trust-sensitive object can register a callback that will be activated
when such a proof is available.

4.3 Distributed Implementation

Distributed implementations of role-based trust management systems expose several problems not present in
centralized systems. Credential discovery is a challenge since the full set of credentials required to authorize
a trust relationship may be distributed over a set of hosts not previously known by any agent participating in
a particular trust-sensitive interaction. Additionally, credential revocation requires that any copies of these
credentials be reliably disabled, and that any dRBAC clients relying on their validity be quickly informed.

4.3.1 Credential Wallets and Coherence

The dRBAC infrastructure supports distributed repositories using a network ofCredential Wallets. Indi-
vidually, Credential Wallets implement abstractions provided by the centralized repository described above.
Wallets include interfaces to communicate with other wallets in order to implement a cache of the dele-
gations stored in a distributed repository. Typically, an entity specifies ahomewallet where theoriginal
instance of a delegation lives. Wallets can also store copies of credentials whose home is in other wallets; in
this case, these copies are termedghosts.

Coherence of ghost copies is maintained usingCredential Subscriptionsfrom the credential’s home or
authorized proxies. An invalidation of an original credential instance results in notification of all wallets
containing ghosts.

We now focus on how we can discover a credential chain that spans multiple wallets.

Discovery Tags To facilitate discovery across multiple repositories, our scheme annotates each potential
delegation Subject, Object, and Issuer with aDiscovery Tagthat includes (1) a reference to an authorized

14

Homeagent responsible for answering discovery and validity queries associated with it, (2) liveness moni-
toring constraints, and (3) search types that indicate the contexts in which credentials involving these entities
and roles will be stored in various repositories. More precisely, discovery tags include:

• an Internet address and dRBAC role identifying (respectively) the role’s network-reachable authorized
Home wallet monitor and a trust relationship required to authorize the home and its proxies.

Example:wallet.aol.com:AOL.wallet

• A numerically valuedTTL (time-to-live) field that indicates the number of seconds a credential is
valid after validity confirmation from its Home wallet. A TTL value of zero indicates that a credential
does not require monitoring.

• two discovery search flags, each of which can take on one of three values, indicate a home wallet that
must contain a copy of credentials. Consider some delegationD giving some subjectSub the rights
of objectObj .

– There are three subject discovery types: ’- ’, ’ s ’, and ’S’.: subject discovery types apply to the
Subject of a delegation. If the subject of a delegation is of type ’s ’ (store with subject) or ’S’
(search from subject), the delegation must be stored in the delegation’s Subject’s home. Type
’S’ also requires that all Object Roles that the subject can be granted must also be of typeS.

– There are three object discovery types: ’-’, ’o’, and ’O’. Like subject discovery types, object
discovery types apply to the Object of a delegation, and the types have corresponding meanings.
If the object of a delegation is of type ’o’ (store with object) or ’O’ (search from object), the
delegation must be stored in the delegation’s Object’s home. Type ’O’ also requires that all
Subject roles that are granted to the delegation’s Object must also be of typeO.

The extended syntax for Roles and Entities with discovery tags is:
RoleOrEntity(host:dispenseRole:disoveryFlags:TTL)
For example, the following discovery tag indicates that the roleAOL.user has a Home Wallet at

www.aol.com , a credential distribution agent authorization role ofAOL.agent , a TTL of thirty seconds,
and has discovery typessearchable from subjectandstore with object.

AOL.user <wallet.aol.com:AOL.wallet:So:30 >
Although Issuers of third-party credentials are required to supply their repositories with all necessary

support chains, it may become necessary at some point to discover new supporting delegations. This is also
implemented using discovery tags. As potential subjects of support chains, issuers of third party delegations
are annotated with discovery tags, and each third party delegation credential supporting remote discovery
contains an additionalacting asclause enumerating the assignment roles (including discovery tags) the
issuer must be entitled in order to validate the credential.

[AOL.user <AOL.user tag > → APNet.user <APNet.user tag >
with APNet.bw <APNet.bw tag > <= 10] APnet <APnet.tag >
acting as <APnet.user’ tag, APNet.bw <=’ tag >

Discovery Algorithm Given these discovery tags, the credential discovery search process is straightfor-
ward. As in other distributed credential discovery systems, credential discovery requires support for directed
searches from Subjects toward Objects and/or Objects toward Subjects.

The distributed discovery algorithm builds a complete proof by submitting Object Queries and Subject
Queries to the wallets as directed by Discovery Tags. Our credential discovery mechanism extends the work
of Clarke [6] and Howell [11] that support directed credential searches in both subject-toward-object and

15

object-toward-subject directions by storing credentials in repositories that are referenced by their subjects
and objects. A similar technique has also been recently investigated by Li and Winsborough [13].

Consider an agent seeking to discover a proof authorizing a trust relationship from SubjectSub to
ObjectObj satisfying a set of Valued Attribute constraintsC. A credential discovery search must succeed if
Sub has subject search type “S” orObj has object search type “O”. Without loss of generality, the following
description assumes thatSub (and thereforeObj has subject search type “S” (store with subject). The agent
first queries its local wallet for the set of Sub-Proofs in whichSub is the Subject. If a proof is discovered,
then no additional discovery is required.

SinceSub is of type “S”, all authorizing paths (should one exist) fromSub to Obj must consist only
of delegations whose subjects are also of type “S” and therefore stored in the wallets associated with their
subjects. For this reason, a subject-toward-object search will therefore discover a proof authorizing the
requested relationship. The approach we utilize is a parallel breadth-first search. Due to the subject search
type of “S”, the full set of delegations withSub as subject can be obtained by queryingSub’s home for
the full set of proofs it can validate withSub as Subject that also satisfyC.

The validated results of this query (or any subsequent query) can include a proof authorizing the required
relationship. The search terminates when such a proof is discovered. Otherwise, the credentials returned
from a query are inserted into the trusted wallet. The home wallets of Objects for which the local wallet
supports a proof with S as Subject are queried for further delegations until a satisfying chain is discovered.

[A→B.b]C

A home
[C→B.b']B

B home

[C→B.b']B [C→B.b']B

C home

[A→B.b]C

Trust-sensitive
object requires

A ⇒B.b

Local Trusted Wallet

Request Proof
for A ⇒ B.b

1

Query fo
r proofs with subject A

2 Query re
turns subproofs,

in this case, complete.

3

Legend

credential subscription

support chain

Figure 3: Discovery: Initialization and first steps.

Figures 3 and 4 depict a subject-toward-object distributed search process. A trust-sensitive Object wants
to authorize an action requiring Entity A to have the Role B.b. To do this, it requests that a proof demon-
strating this relationship from its (trusted) local wallet. In this example, all Issuers, Subjects, Objects, and
Assignment Roles are of type “search-from-subject”. Figure 3 portrays the wallets in their initial states and
the first stages of the search.

Initially, the local wallet contains no delegations. Two delegations, [A→B.b]C and [C→B.b’]B, are
stored in the distributed repository. Original copies are stored in the wallets corresponding to their Issuers’
homes, and Ghost copies reside in other wallets as required by their search types and support relationships.

16

[A→B.b]C

A home
[C→B.b']B

B home

[C→B.b']B

[C→ B.b']B

C home

[A→B.b]C

Trust-sensitive
object requires

A ⇒B.b [A→B.b]C
[C→B.b']B

Locally Trusted Wallet

Wallet inserts
proof into its
repository.

4

Wallet returns
proof monitor

5

Legend

credential subscription

proof callback

support chain

[A→B.b]C

[C→B.b']B

Figure 4: Discovery: Final Steps.

Dotted lines represent the inter-wallet credential subscriptions required for validation, and each step of the
discovery process is labeled in the sequence they are executed; these steps are described below:

(1) The trust-sensitize object requests a proof-with-discovery from a trusted wallet. (2) Since the Re-
questing Wallet does not contain the necessary proof, A’s Home Wallet is queried for all proofs in which A is
the Subject. (3) This query’s response contains a proof that satisfies the trust-sensitize object’s requirements.

Figure 4 indicates the remaining steps in creating a proof monitor for the authorization: (4) Credentials
from the proof are inserted into the local walletwhich is trusted to verify signatures and establish its own
validation subscriptions. (5) The local wallet discovers that the requested authorization is satisfied; a proof
monitor is generated and is returned to the trust sensitive object.

Efficiency Considerations The number of potential authorizing paths in a tree with a constant branching
factor is clearly exponential with depth. As observed by Winsborough et. al. [13], the number of paths to be
considered may be significantly reduced if a credential search is simultaneously conducted in theforward
(subject-toward-object) andreverse(object-toward-subject) directions. The dRBAC discovery algorithm
similarly searches delegation paths in both directions, merges search results in the local wallet as additional
credentials are collected, and terminates when a satisfying path is discovered.

Note that modulation of valued attributes may modify queries generated by a discovery process in a
manner that effectively prunes the search space. For example, consider the problem of a search for a proof
from some Subject E to Object H.h with constraintE.x>0.05. In a subject-toward-object search, if the only
delegation discovered with F.f as Object is [E→F.f with E.x*=0.1]E, then the search from F.f should specify
the modified constraintE.x>0.5. We note that this constraint will cause proofs containing the delegation
[F.f → G.g with E.x*=0.1]Gfrom being considered.

Multiple object queries with differing attribute value constraints may be required when multiple proofs
are discovered from some Subject to a potentially useful intermediate Object I.i and multiple aggregate
value modifiers. For example, consider a query for a path from H to J with value constraintsH.a > 0.02

17

andH.b > 0.02. Assume two proofs P1 and P2 from S to I.i. P1 has has attribute value modifierH.a∗ = 0.1
and path P2 has attribute value modifierH.b∗ = 0.1. Clearly two families of potential proofs from I.i to
the desired Object satisfy the required constraints. The first has constraintsH.a > 0.02 andH.b > 0.2, the
second has constraintsH.a > 0.2 andH.b > 0.02.

Potential proofs are not necessarily discovered in topologically sorted order. Therefore, repeat queries
may be required for multiple search paths that only modulate a single value attribute. Fortunately, all valued
attribute modifiers are monotonic, so (depending on the order of proof discovery and the combination of
valued attribute combinations) many of these repeat queries may be pruned.

Storage of Support Chains The dRBAC algorithm to extract proofs from a wallet can be extended to
discover support chains for third-party delegations. However, we expect that prior to issuing a third party
delegation the issuer will be aware of delegations that support their authorization to do so (and the ontology
they represent). Discovery of support for arbitrary trust relationships (that might not even exist) is expensive;
therefore dRBAC wallets do not automatically search for support chains. Instead the issuer is responsible
for inserting third-party delegations complete-with-proof to all required wallets.

4.4 Implementation Status

dRBAC is being developed as a trust management component of a larger system called the Distributed Coali-
tions Infrastructure (DisCo) [9] that presents a simple unified interface for trust-monitored distributed appli-
cation deployment. We have implemented a centralized dRBAC system that responds to trust-relationship
queries generated by our DisCo infrastructure. Our current implementation is Java-based and uses Java RMI
(Remote Method Invocation) and secure sockets implemented using our Switchboard [10] abstraction for
inter-host communication. We are in the process of developing a distributed implementation of dRBAC. We
intend to be in a position to distribute the full working version in a few months.

5 dRBAC in a larger security context: Case Study

dRBAC is one component of a larger architecture called the Distributed Coalitions Infrastructure (DisCo) [9].
DisCo presents a simple, unified interface for distributed application deployment in environments that con-
tain systems and services administered by multiple authorities with changing trust relationships. DisCo
provides application-neutral support for authentication and access control, secure communication, code dis-
tribution, and process rights management, thereby relieving the application developer from independently
managing these features.

DisCo includes a dRBAC module to supply authentication and access control functionality. Application
developers who are working with the DisCo infrastructure can make API calls to dRBAC to register new
protected resources, or Roles. Thereafter, the DisCo infrastructure uses dRBAC to automatically handle
the details of ensuring that all accesses to that resource are backed up by the necessary set of delegations,
performing discovery to locate the full set of delegations, if needed.

We now develop an extended example of the type of problem that our DisCo infrastructure is designed
to solve, highlighting dRBAC’s contributions. We examine the formation of adynamic coalitionbetween
a mobile user and the network facilities offered at an airport. The software that enables this transient trust
relationship is enabled can be viewed as a single application consisting of multiple components:

• The communications client software the user runs on her laptop

• The gateway server software run by the airport network

18

Both of these components must support dRBAC as an authorization module.

Case Study Scenario:

BigISP and AirNet strike up a marketing partnership in which BigISP members can use AirNet’s services
in a limited fashion; i.e., with less bandwidth and server storage space, and fewer online hours per month.
Sheila, who works in the marketing department at AirNet, administers the deal. Maria, a BigISP member,

will attempt to log on to AirNet using her promotional membership.

Table 3 shows the delegations required to support this access. We now describe the process by which
Maria’s access is authorized by AirNet.

(1) [Maria → BigISP.member] BigISP
(2) [BigISP.member → AirNet.member with

AirNet.BW ≤100
and AirNet.storage-=20MB
and AirNet.monthlyHrs=10] Sheila

(3) [Sheila → AirNet.mktg] AirNet
(4) [AirNet.mktg → AirNet.member’ with

AirNet.BW ≤’
and AirNet.storage-’
and AirNet.monthlyHrs=’] AirNet

(5) [AirNet.member → AirNet.access with
AirNet.BW = 200
and AirNet.storage = 50

and AirNet.monthlyHrs = 60] AirNet

Table 3: Delegations to support Maria’s AirNet access.

Maria, a BigISP member, arrives at Springfield Intl. Airport. She attempts, for the first time, to use her
laptop to log on to an AirNet server in order to connect to the Internet. She connects using a client that
supports dRBAC as an authentication protocol; likewise, the AirNet service software that she is connecting
to is enabled to use dRBAC.

Maria establishes a wireless connection to the AirNet server and requests permission to log on. She
sends AirNet her public key and then proves to AirNet that she has the corresponding public key. Now the
AirNet server must decide whether her access should be authorized. In other words, AirNet must discover a
Proof that Maria⇒ AirNet.access.

AirNet knows that AirNet.access has the discovery search type “search from Subject.” Therefore, it
must contact Maria’s Home Wallet and query it for all of the Proofs in which Maria is a subject. It discovers
delegation (1), demonstrating that Maria is a BigISP member.

As instructed by the discovery tags in this delegation, the AirNet Wallet continues searching from the
Subject side. It now contacts BigISP’s Home Wallet, which returns a Proof consisting of delegations (2),(3),
and (4) which grant AirNet.member to a BigISP.member. Delegation (2) is aThird-Party delegation, since
the Issuing Entity is Sheila, and she is delegating roles and attributes defined not in her . Delegations (3) and
(4) provides the support chain for this trust relationship.

Finally, AirNet queries its own Home Wallet for all Proofs in which AirNet.member is the subject. It
discovers the self-certifying delegation(5). TheValued Attributesare aggregated, so that finally, Maria is
granted AirNet.access with BW (bandwidth)≤100, server storage of 30 MB, and a limit of 10 hours of
monthly access.

19

Now that the proof consisting of these 5 delegations has been discovered, AirNet establishesCredential
Subscriptionswith Maria’s Home Wallet for delegation(1), with BigISP’s Home Wallet for delegations (2),
(3), and (4), and with its own local repository for delegation (5). It delivers a Proof Monitor, containing a
Proof Callback, to the server software controlling Maria’s access, so that her access will be terminated in
case any of these delegations should become invalid.

6 Related Work

SDSI/SPKI dRBAC builds on many of the features of SDSI [17]/SPKI [7]. SPKI/SDSI does not contain
a notion of Third-Party Delegation, and therefore does not permit an entity to grant a role not mapped to its
namespace. As described above, this restriction leads to the creation of names in multiple namespaces as
aliasesfor each trust relationship. In SDSI/SPKI, certificate chains are linear in nature, rooted by the ACL
belonging to application controlling access to the resource. The validation of SDSI chains depends upon
the premise that the subject of certificate k is the issuer of certificate k+1. dRBAC extends this model to a
graph-based approach in which Third-Party delegation allows the system to flexibly administer itself.

Credential Discovery Clarke et. [6] recognized the utility of reachability closures in credential discov-
ery. We filter these closures for proofs that satisfy a required attribute value range restriction. Li and Wins-
borough [13] contemporaneously developed a credential discovery mechanism for their trust management
system “RT0” that utilizes search tags with similar semantics to ours.

Credential Revocation dRBAC’s online third-party certificate validity authentication scheme extends the
mechanisms used by online positive authorization schemes such as OCSP [14] and revocation schemes
such as CRLs [8] (The problem of efficiently broadcasting certificate revocation has spawned a surfeit of
algorithms that efficiently encode and communicate sets of revoked credentials. For example, hierarchical
schemes [1] and skip-lists [15]). OCSP provides an online mechanism to determine the validity of creden-
tials. A client monitoring the status of an OCSP-certified must poll a authorized OCSP server, potentially
creating hotspot agents communicating that no changes have occurred since the last time they were polled.
Revocation-based schemes transmit information regarding all revoked certificates to all subscribers. Our
subscription-based scheme permits the construction of hierarchical directory-based caches of trusted on-
line validation agents that filter out revocation information irrelevant to particular caches. This scheme,
which can be extended to utilize the aggressive encoding schemes utilized for traditional credential revoca-
tion schemes, minimizes network traffic for agents with long-standing trust relationships whose supported
credentials are infrequently updated.

JXTA Sun’s Project JXTA [16] has recently introduced a distributed credentialing system [5] that is de-
signed to accumulate and distribute knowledge about the trustworthiness of peers in P2P applications. It
does not have a notion of roles or delegations, and instead relies on a PGP-like ”web of trust,” in which
you trust somebody who is trusted by others you trust, and modulation is achieved through the registering
of ”personal opinions.” ”Web of trust” implementations generally do not provide a strong enough security
model for use in security-critical applications.

PolicyMaker, Keynote, and Delegation Logic The entity whose namespace a role is defined and third
party delegations in dRBAC provide similar power to the policy roots required for PolicyMaker [4], Keynote [3]
and Delegation Logic [12]. All three of these systems all implement trust management systems that include
another idiom for third-party delegations called “speaks-for” relationships. While Keynote and PolicyMaker

20

support more complex trust relationships than dRBAC, they do not include mechanisms for delegation dis-
covery or revocation monitoring.

Transitive trust can be limited by delegations that specify maximal depth is included in Delegation
Logic. dRBAC can be extended to support such provisions; however we feel that the choice of depth
limits is problematic and that other monitoring schemes may be more effective. In particular, the “S” “O”
search tags thatrequirepublic registry of further delegation provide an alternative mechanism to audit (and
therefore restrict) re-delegation.

7 Conclusion

We have specified a decentralized access-control mechanism, dRBAC, for trust-relationships encompassing
multiple administrative domains and discussed aspects of both its theory and its deployment architecture. We
have introduced a method for Third-Party Delegation and shown how it augments the expressiveness of trust-
management systems. Additionally, we have shown how trust-management languages can realize access-
rights modulation through the use of Valued Attributes, eliminating the need for out-of-band security policy.
Our supporting infrastructure introduces Credential Subscriptions, which solve the problem of efficiently
monitoring established trust relationships for updates to credential status. dRBAC defines a complete system
that can be used to distribute, locate, validate and revoke role-based delegations in a larger security context.

8 Acknowledgements

The semantics of third party delegations were refined with the assitance of Jordan Applebaum. Joshua
Rosenblatt and Oliver Kennedy wrote proof evaluation and credential storage modules for early versions of
the dRBAC centralized repository. Vladimir Vanyukov integrated public-key cryptography into dRBAC.

This research was sponsored by DARPA agreements F30602-99-1-0157, N66001-00-1-8920, and N66001-
01-1-8929; by NSF grants CAREER:CCR-9876128 and CCR-9988176; and Microsoft. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copy-
right annotation thereon. The views and conclusions contained herein are those of the authors and should not
be interpreted as representing the official policies or endorsements, either expressed or implied, of DARPA,
Rome Labs, SPAWAR SYSCEN, or the U.S. Government.

References

[1] W. Aiello, S. Lodha, and R. Ostrovsky. Fast digital identity revocation. InAdvances in Cryptology
- CRYPTO ’98, 18th Annual International Cryptology Conference, Santa Barbara, California, USA,
August 23-27, 1998, Proceedings, volume 1462 ofLecture Notes in Computer Science, pages 137–152.
Springer, 1998.

[2] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis. The KeyNote Trust Management Sys-
tem, Version 2. IETF Request for Comments 2704, Available athttp://www.ietf.org/rfc/
rfc2704.txt , 1999.

[3] Matt Blaze, Joan Feigenbaum, and Angelos D. Keromytis. KeyNote: Trust management for public-
key infrastructures. InProceedings of the 1998 Security Protocols International Workshop, Springer
LNCS vol. 1550, pages 59–63, 1998.

[4] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management. InProceedings of the
IEEE Conference on Privacy and Security, 1996.

21

[5] Rita Chen and William Yeager. Poblano: A Distributed Trust Model for Peer-to-Peer Networks. Sun
Microsystems, Inc. White Paper, Available athttp://www.jxta.org/project/www/docs/
trust.pdf , 2001.

[6] Dwaine Clarke, Jean-Emile Elien, Carl Ellison, Matt Fredette, Alexander Morcos, and Ronald L.
Rivest. Certificate Chain Discovery in SPKI/SDSI. Available atciteseer.nj.nec.com/
article/clarke99certificate.html , 1999.

[7] Carl M. Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian M. Thomas, and Tatu Ylonen. SPKI
Certificate Theory. IETF Request for Comments 2693, Available athttp://www.ietf.org/
rfc/rfc2693.txt , 1998.

[8] W. Ford. A public-key infrastructure for u.s. government unclassified but sensitive applications. Avail-
able atciteseer.nj.nec.com/ford95public.html , 1995.

[9] Eric Freudenthal, Edward Keenan, Tracy Pesin, Lawrence Port, and Vijay Karamcheti. DisCo: A
Distribution Infrastructure for Securely Deploying Decomposable Services in Partially Trusted Envi-
ronments (TR2001-820). Technical report, Department of Computer Science, New York University,
2001.

[10] Eric Freudenthal, Lawrence Port, Edward Keenan, Tracy Pesin, and Vijay Karamcheti. Credentialed
Secure Communication Switchboards (TR2001-821). Technical report, Department of Computer Sci-
ence, New York University, 2001.

[11] Jon Howell and David Kotz. End-to-end authorization. InProceedings of the USENIX Symposium on
Operating Systems Design and Implementation, 2000.

[12] Ninghui Li, Benjamin N. Grosof, and Joan Feigenbaum. A practically implementable and tractable
delegation logic. InProceedings of the 21st IEEE Symposium on Security and Privacy, pages 27–42,
2000.

[13] Ninghui Li, William H. Winsborough, and John C. Mitchell. Distributed credential chain discovery
in trust management. InProceedings of the 8th ACM Conference on Computer and Communications
Security, 2001.

[14] Michael Myers, R. Ankney, A. Malpani, S. Galperin, and Carlisle Adams. Rfc2560: X.509 internet
public key infrastructure online certicate status protocol. IETF Request for Comments 2560, Available
athttp://www.ietf.org/rfc/rfc2560.txt , 1996.

[15] Moni Naor and Kobbi Nissim. Certificate revocation and certificate update. InProceedings 7th
USENIX Security Symposium (San Antonio, Texas), Jan 1998.

[16] Project JXTA. JXTA Version 1.0 Protocols Specification. Available athttp://spec.jxta.org ,
2001.

[17] Ronald L. Rivest and Butler Lampson. SDSI – A simple distributed security infrastructure. InPro-
ceedings of CRYPTO’96, 1996.

[18] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access control: A multi-
dimensional view. In10th Annual Computer Security Applications Conference, pages 54–62, 1994.

[19] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-based access control
models.IEEE Computer, 20(2):38–47, 1996.

22

[20] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and S. Lehtinen. SSH Protocol Architecture. Internet
Draft <draft-ietf-secsh-architecture-09.txt>, Available athttp://www.ssh.com/tech , 2001.

23

