A New Solution to the Hidden Copy Problem

Deepak Goyal and Robert Paige

New York University, 251 Mercer Street, NY, NY 10012
{deepak, paige}@cs.nyu.edu
Fax # 212-995-4124, Tel # 212 998 3156

Abstract. We consider the well-known problem of avoiding unneces-
sary costly copying that arises in languages with copy/value semantics
and large aggregate structures such as arrays, sets, or files. The ori-
gins of many recent studies focusing on avoiding copies of flat arrays
in functional languages may be traced back to SETL copy optimization
[Schwartz 75]. The problem is hard, and progress is slow, but a success-
ful solution is crucial to achieving a pointer-free style of programming
envisioned by [Hoare 75].

We give a new solution to copy optimization that uses dynamic reference
counts and lazy copying to implement updates efficiently in an imper-
ative language with arbitrarily nested finite sets and maps (which can
easily model arrays, records and other aggregate datatypes). Big step
operational semantics and abstract interpretations are used to prove the
soundness of the analysis and the correctness of the transformation. An
efficient algorithm to implement the analysis is presented. The approach
is supported by realistic empirical evidence.

Our solution anticipates the introduction of arbitrarily nested polymor-
phic sets and maps into JAVA. It may also provide a new efficient strategy
for implementing object cloning in Java and object assigment in C++.
We illustrate how our methods might improve the recent approach of
[Wand and Clinger 98] to avoid copies of flat arrays in a language of
first-order recursion equations.

keywords: Copy Optimization, Big Step Operational Semantics, Abstract In-
terpretation, Must Alias Analysis

1 Introduction

The problem of hidden copies arises in languages with copy/value semantics and
large aggregate structures such as arrays, records, sets, or files. Consider, for
example, the following two statements,

1 s := t; -- assign set t to s
2 s with:= x; -- add element x to s

Here, variables s and t are set-valued and the operation s with:= x adds ele-
ment x to set s. In a language with reference semantics, the element addition at

2 Goyal and Paige

Statement 2 above would cause a modification to the value of t also. However,
such a side effect would be disallowed under copy/value semantics.

Copy/value semantics can be implemented by eager or lazy approaches. In
an eager approach, we could implement Statement 1 by assigning a copy of set
t to s; Statement 2 could proceed by adding a copy of the value of x into set
s in place. In a naive lazy approach Statement 1 could assign to s a pointer
to the body of t, which makes s and t share the same location. Statement 2
could proceed by making a copy of s, and augmenting this copy in place with x.
Making a copy of s avoids the side effect of updating other variables that share
the location where s is stored.

Two interesting strategies have been considered to optimize the lazy ap-
proach. One strategy is to use static analysis to prove that an aggregate object
is unshared by live variables at a program point, so that the object can be up-
dated destructively at that point. Another is to maintain a dynamic reference
count for each location that stores an aggregate object. An object at location L
can be updated in place if the reference count at L is 1. We will describe a third
strategy with the aim of facilitating more destructive (or in-place) updates than
was possible before.

Copy optimization in functional languages with array updates is an impor-
tant problem of intense current interest [10, 9,6, 27]. Little seems to be known,
however, about Schwartz’s extensive investigation of copy optimization for SETL
in the 1970’s[22]. Since we believe that this early work may be relevant to current
research in the area, it is worth summarizing.

1.1 Motivation

SETL[20, 23] is an imperative language with copy/value semantics for assignment
and parameter passing, dynamic typing, and built-in finite sets, maps, and tuples
of arbitrary depth of nesting. The hidden copy problem has been the major
source of inefficiency in two generations of SETL compilers, which use a lazy
copy strategy. If such a strategy is not implemented effectively, then hidden
copies can potentially degrade program performance from O(f(n)) expected time
to O(f(n)?) actual time. Such a slowdown has been actually observed even in
small-scale SETL programs|3].

Although the hidden copy problem arises in different languages and language
paradigms, it is also crucial to the more general goal, expressed by Hoare [7], of
programming without pointers. Without a reasonable solution to this problem,
Hoare’s ideal cannot be achieved in any practical way. Currently without such
a solution, we are forced to choose between two pragmatic, but unsatisfactory,
compromises. One of these, exemplified by Ada and C++ is to retain copy/value
semantics, but to rely on pointer—oriented programming to obtain efficiency.
Another approach, taken by Java, is to assume reference semantics for aggregate
objects.

Hidden Copy Optimization 3

1.2 An unrealized analytic approach

Schwartz developed an interesting but complicated intra-procedural value flow
analysis[21, 22] for SETL1[23] in order to detect when destructive updates could
be performed. His analysis determined an overestimate of the set of variables that
at some level, no matter how deeply embedded, may share the same location. A
destructive update to a variable v could be performed if no other variable that
might share the location storing the value of v was live. His analysis aimed to
be so fine-grained as to detect when destructive updates could be performed on
components of aggregate structures.

Sharir [24] showed that value flow analysis did not fit any of the k-bounded
monotone dataflow frameworks[26], and conjectured that extensions to interpro-
cedural analysis would be too approximate to be useful. Based on these negative
observations, Schwartz’s approach was never implemented. Instead, SETL1 im-
plemented a dynamic ‘sticky’ bit that was initially unset, but was set the first
time that a location was shared and subsequently never unset. This solution
was completely unsatisfactory, as was demonstrated by the performance of the
Ada/Ed compiler[1].

Interestingly, researchers in the functional language community have shown
that the kind of may-alias analysis for value flow combined with live variable
analysis similar to Schwartz’s approach is tractable even in the interprocedural
case when datatypes are limited to flat arrays [9,27]. However, it remains to be
seen whether multi-level arrays and other aggregate data structures will confound
this approach as they did for SETL.

1.3 A dynamic approach that didn’t work

In SETL2[25] dynamic multi-level reference counts for each location storing an
aggregate value (tuple, set, or map) are maintained. Highly restricted circularity
of pointers ensures that when a location has a reference count greater than 1,
then that location is shared, and cannot be updated unless it is first copied. Only
when a location has reference count 1 can a destructive update be performed.

Since dynamic reference counts only degrade performance by a constant fac-
tor, this approach would be worthwhile if it can successfully prevent the loss
of asymptotic factors. Unfortunately, the use of dynamic reference counts alone
is no solution. The backend of Snyder’s SETL2 compiler introduces so many
compiler-generated temporary variables (which don’t get garbage collected until
the end of scope) that practically all data is shared at runtime.

For example, the standard SETL2 code generator implements indexed map
assignment

f(a)(d) =4
using the following lower-level code,

t1 := f(a); -- increment reference count for the location storing f(a)
t1(b) := d; -- copy f(a) before update
f(a) := tl; -- in place update if reference count(f) = 1

4 Goyal and Paige

s := {} s := {} s =t
while P loop while P loop { s := copy(s) }
s with:= x { s := copy(s) } while P loop
end loop s with:= x s with:= x
c with:= s c with:= s end loop
end loop c with:= s
d with:= t

Fig. 1. Placement of copy operations

which copies the value of map t1 before it is updated in the second statement.
However, if the location L that stores the value of t is only shared by f (a), then
the reassignment to f (a) makes such a hidden copy unnecessary. This problem
can be solved dynamically by making f (a) undefined by executing the command
f(a) := om just before the indexed assignment to t1. This omega assignment
would decrement the reference count at L to 1, and allow a destructive indexed
assignment to t1.

1.4 Basis for a solution

A solution to the hidden copy problem that assumes dynamic reference counts,
may take into account the placement of copy operations and omega assignments
(which can decrement dynamic reference counts). Since copy operations can be
expensive, it is obvious that their placement needs attention. Figure 1 shows the
most desirable place for copy operations to be performed. No hidden copies are
needed for the first example. In the second example, a copy operation should be
performed just before the element addition to s within the while-loop. But in the
third example, a single desirable hidden copy should be performed the first time
only that the element addition is executed within the while-loop. Our solution
is to abide by the SETL2 strategy of making a copy each time an update to an
aggregate S cannot be performed destructively (based on a runtime check that
the reference count for S is greater than 1). Interestingly, Schwartz’s approach
(with no dynamic reference counts) would handle the first two examples, but
would fail on example 3.

The placement of omega assignments is more subtle. We say that a variable
v is live at a program point p if the set of live uses of v is non-empty at p [4, 2].
If a variable is not live at p, we say it is dead. In order for our transformation
to be correct, we will insert omega assignments only to dead variables. Even
though the cost of each omega assignment is relatively small, our tests show
that the overuse of such assignments leads to suboptimal performance. Thus,
our heuristic is to introduce omega assignments only when they are likely to
facilitate destructive updates.

In Figure 2, the first example shows that an omega assignment should be
placed at a point where a dynamic reference count decrement will actually take
place. The second example shows that an omega assignment should be placed
at a point where it is not redundant. The third example generalizes the other

Hidden Copy Optimization 5

s :=t while P loop while P loop
-- uses of s s 1= t if Q then
-- s becomes dead -- uses of s else
Vv -- s becomes dead s 1=t
while P loop ® :
® end loop -- uses of s
t with:= x Vv -- 8 becomes dead
end loop t with:= x Vv
endif
t with:= x
end loop

Fig. 2. Placement of s := om at 1/ is more profitable than at)

two examples, and shows that an omega assignment should only be made to
a variable that must share the same location as the one being destructively
updated.

Suppose that an update to variable s occurs at a program point p, where the
value of s is stored at location L. Suppose also that live(p) is the set of variables
that are live at p, and that alias(p, s) is the set of variables whose values are all
stored at L. Then the update to s cannot be destructive if some variable other
than s that belongs to alias(p, s) also belongs to live(p). In such a case as this, it
would be futile to perform omega assignments to dead variables at p, since that
won’t help to reduce the reference count at L to 1. Conversely, if every variable
but s that belongs to alias(p, s) is dead, we still can’t guarantee that setting all
such variables to omega will decrement the reference count at L to 1. This is
because an element of a live set-valued variable at p may be stored at location
L. But at least we have a good chance. This is what we bet on.

1.5 Outline of the Paper
We report the following new results:

1. An effective copy optimization is given for the first time in a SETL-like
language with dynamically typed finite sets and maps of arbitrary depth of
nesting. These datatypes can conveniently model a wide range of aggregate
datatypes including multilevel arrays and records.

2. In Section 2 we give big step operational semantics [11,15] for (1) copy/value
semantics, (2) a naive lazy copy strategy, and (3) an optimized strategy in
which destructive updates are performed on data whose location is unshared.
These three semantics are proved to be equivalent.

3. In Section 3 an abstract interpretation[5] is given to support the analysis at
each program point of equivalence classes of variables that MUST share the

6 Goyal and Paige

same location. Our analysis is fine-grained enough to detect sharing of map
components f (a). A safe approximation of this analysis is computed by an
algorithm that runs in time O(NV?), where N is the number of program
points, and V is the number of variables.

4. Finally, in Section 4 the Must-alias analysis is combined with live variable
analysis to form an effective intra-procedural transformation that selectively
inserts safe omega assignments at appropriate program points according to
a heuristic for profitability. A simple but significant test of our approach
applied only locally within the SETL2 backend shows ten-fold speedups for
realistic large-scale examples.

2 Language

Variables : s,v,t, f,g,...

op == with | less
Expressions: Commands:
en=>v L= read(v)
| v | v
| vi(v2) | 1)1(’!]2) := e (where v1 must be distinct from v, and e)
| om | v op:= e (where v must be distinct from e)
| constants | L1;Lo
| if e then £ else Ly endif
| while e loop £ endloop

Fig. 3. Definition of the language

Figure 3 defines the syntax of the kernel language £ to be transformed by copy
optimization. Expression 3 v returns an arbitrary element from set v. Expression
v1 (v2) represents single-valued map application. Commands v with := z and
v less := x are for set element addition and deletion respectively. Without loss
of generality we have omitted discussion of a much richer language that can be
transformed into L.

2.1 Copy/value Semantics

Figure 4 gives an abstract formulation of the big-step operational copy/value
semantics for £. The domain of values is denoted by Vi, and the environment
p maps variables to (V,), (the lifted domain of values), with L representing
the undefined value. The elements of V, represent canonical forms which are
not described here but which can be obtained easily by lexicographic sorting or
multiset discrimination (see [16]). External input constants and program con-
stants are mapped to values in (Vi), by an external procedure o. Constants
that belong to V. include integers, sets {ci1,...,¢,} of 0 or more constants,
smaps (c1 — ¢},...,cn = cl,) of 0 or more pairs of constants, and the undefined

Hidden Copy Optimization 7

Domains
type T set V-
int {int(z) :2=0,1,-1,2,-2,...}
set {set(s) : s C Vi | |s]| < o0}
smap {smap(f): f C Vi x Vi | |f| < 0o A f single-valued}
* Vint U Veer U Vsmap
Rules

Environment p : Vars — (Vi) L
Ve is the set of all syntactically correct constants
Externally defined procedure o : V, — (Vi) L

domain(u) S {z:3y|[z,yl€uv N y#1}

(p,c) =5 o(c) ¢, a constant (1)
(p,v) = p(v) v, a variable (2)
(p,v) = set(g), YyEu (3)
(p3v) — y
{p,v) — set(u), u={} (a)
(p,ov)y — L
{p,v1) = smap(w1), (p,v2) i*;fag(uz), [tag(us), us] € wa (5)
(p,v1(v2)) — us
(p,v1) = smap(u1), (p,vs) — taz(m), tag(u2) & domain(ui) (6)
(pyv1(v2)) — L
7 reacg(pq,))c)) _L::)L[U —em where c is an external constant (7
OEEEE T ©
{p,e) = tag(u), {p,s) — set(w) 9)

(p,s op:= ey — p[s — set(w op tag(u))]

(pe) == L, {p,) = smap(g), (p,a) — tag(x)

(p, f(a) :=e) — plf = smap(Q)] where Q = {[y, 2] € gly # tag(x)}

(10)

(pre) = tag(u), (p,f) = smap(g), (p,a) “>tag(z) . =~ _
{p, f(a) := e) — plf = smap(Q U {[tag(z), tag(u)]})] e ily;é o
11

Fig. 4. Copy/value semantics of the Language

8 Goyal and Paige

atom om. Note that o(om) = L. The initial environment is given by p = Az.L.
The semantics of if-then-else, while loop, and statement sequence are
straightforward (see [28]), and are omitted.

In rules (1)-(11), judgment {p,e) — u stands for the evaluation of £ ex-
pression e in environment p to obtain value u € (Vi) . Judgment {(p,c) — p'
represents evaluation of £ command c¢ in environment p to obtain new environ-
ment p'.

In Figure 4 we use the notation tag(u) to represent an element of Vi, set(u)
and smap(u) to represent set-valued and smap-valued elements of Vi, and u, u1,
uz to represent elements of (V,) 1. Under this convention the reader should see
that L can never be added to a set or smap. Note that the arbitrary selection
expression 5 S makes the semantics of £ nondeterministic.

2.2 Lazy Copy Semantics

Whereas the copy/value semantics defines what £ programs mean, we need an
abstract formulation of the semantics of lazy copying in order to formally define
our copy optimization in Section (3). Figure 5 defines the semantics of £ with
a naive lazy copying strategy. As before, we use simple domains to represent
canonical forms, with details omitted. Domain Vj,. is an infinite set of locations
where data is stored. In lazy copy semantics environment p maps variables either
to locations or integers, and store v maps locations either to sets or smaps. In
formal terms, domain(y) represents the subset of Vj,. that has been allocated
during execution, and Vj,. — domain(vy) represents unallocated locations. Types
inti, seti, and smapi are the implementations of types int, set, and smap,
respectively. The implementation of integers remains unchanged, but seti is
implemented as a set of locations or integers. Similarly smapi is implemented as
a set of pairs of locations or integers.

We use function extract to relate a location to the corresponding value that
it represents in the copy/value semantics. Function extract is recursively defined
as,

extract(loc(l),y) = case v(loc(l)) of
seti(s) = set({extract(z) : x € s})
smapi(f) = smap({[extract(x), extract(y)] : [z,y] € f})
end case

extract(inti(i),y) = int(7)

Proposition 1. Function “extract” is well defined for all locations in store ~y
at any point in the execution of an L program

The proof is a straightforward well-founded induction on the structure of loca-
tions in the store, and is omitted. The proof essentially asserts that no sequence
of statements can create a set that is a member of itself, or create an smap that
is an element of its own domain or range.

Rules (12)—(15) describe how program constants and external constants input
by a read statement are evaluated. The method is to allocate an implementation

Hidden Copy Optimization 9

Implementation Domains

type 7 set V-
loc infinite set of atoms loc(1).
inti Vint
seti {seti(s) : 8 C Vipe U Vinsi | |8] < o0}
smapi {smapi(f) : f € (Vioe U Vinti) X (Vioc U Vinti) | |f| < 0o A f single-valued}
*i ‘/inti) Vseti U %mapi
Rules

Assume V. is the set of all the syntactically correct constants.
Environment p : Vars U Ve — Vige U Vings U {1}

Store v Vioe — Vseti U ‘/smapi

extract : Vioe U Vinyi — Vi

(7,int(z)) ~ (v, inti(z)) (12)

l € Vipe — domain(y), (i, uit1) ~ (Yi+1,Ti+1) Vi=0,...,n—1
(vo, set({us, ..., un})) ~> ([l = seti({z1, ..., za})],1)

(13)

l € Vipe — domain(y), (yi,uit1) ~ (Vi Tit1), (Viswit1) ~ (Yit1,%i+1) Vi=0,...,n —1
(0, smap({[us, wi] : i =1,...,n})) ~ (W[l = smapi({[zi,yi] : i =1,...,n})],])

(14)

(1,0(0)) ~ (v, w)
(p, 7, allocate(c)) — (p[c — u],v") (15)
(p,y,v) == p(v) for a variable v (16)
(p,7,¢) = p(c) for a constant c (17)

(p7 '71”1) ; I, 7(l1) = smapi(m), (p777 U2) L) U2,
([z,y] € w1 A extract(z,v) = extract(uz,v)) (18)

(P, 7,01 (02)) — y

(P; 7)”1) — l, 7(l1) = Smapi(ul)a (P,"Y, U2) — Uz,
(V[z,y] € u1 | extract(z,y) # extract(us,y)) (19)
(p7 Ys Ul(UQ)) 1

(p:7,v) = 1, (1) = seti(u), y € u
(P12 v) —ry

(p1,v) = 1, () = seti(w), u = {} 1)
(07, 2v) — L

(20)

Fig. 5. Lazy Copy semantics (cont. on the next page)

10 Goyal and Paige

{p,7, allocate(c)) == (p',7)

where ¢ is an external constant (22)
(p,7:read(v)) — (plv — p'(c)],7")

(p,7,€) —u

{p,7,8:=€) — (p[s = u],7) (23)

{p,v,€) = tag(u), (p,v,8) == 1, 7(l) = seti(w),
extract(seti(w),vy) # extract(seti(w op tag(u)),7y), I € Viee — domain(y) (24)

(p,7,8 op :=e) — (p[s = I'],y[l" = seti(w op tag(u))])

(p,v.e) == L, {p,7, f) — 1, {p,7,a) — tag(x),
~y(1) = smapi(g), I € Viee — domain(7y) (25)

{p,7, f(a) := e} — (plf = V];7ll" = smapi(Q)])
where Q = {[z,y] € glextract(z,) # extract(tag(z),v)}.

(p:v,€) — tag(u), (p,7, f) =1, {p,7,a) — tag(z),
v(1) = smapi(g), I € Viec — domain(y) (26)

{p, 7, f(a) =) — (plf = I';A[l" = smapi(Q U [tag(z), tag(u)])])
where Q = {[z, y] € glextract(z,v) # extract(tag(z),v)}.

Fig. 5. cont., Lazy Copy Semantics

of a canonical form o(c) of constant ¢ within store v. We use judgments of
the form (v,o(c)) ~ (v',1) to say that canonical form o(c) of constant ¢ in
the copy/value semantics is allocated into new store 7' at the new location
l. Environment p maps integer constants to integers, and maps set-valued, or
smap-valued constants to corresponding locations. We assume that all program
constants are processed by calling a non-£ ‘system’ command allocate(c) for each
constant just before program execution. Thus, the initial environment maps all
program constants to corresponding locations or integers.

In Rules (16)—(26), judgment (p,7,e) — u stands for the evaluation of £
expression e in environment p and store 7y to obtain either a location or an integer
u. Note that preallocation of all program constants before program execution
ensures that expression evaluation does not modify either environment p or store
~. Judgment (p,v,¢c) — (p',7') represents the evaluation of £ command ¢ in
environment p and store v to obtain new environment p’ and new store v'. These
rules essentially embody the idea that a simple assignment is implemented by just
mapping the left-hand-side variable to the location corresponding to the right-
hand-side, but that updates on sets and maps are implemented by modifying
a copy. The rule for the read statement read(v) indicates that a new external
constant ¢ is input. If ¢ is not an integer, it is allocated within the store at
location [say, and the environment is modified so that v is mapped to [.

Although arbitrary selection operator 5 S makes the semantics of £ nonde-
terministic, we can express the equivalence of copy/value and lazy copy semantics
as follows.

Hidden Copy Optimization 11

Premises of Rule 24 A not shared(l, p,7)

- 27

(57,5 0p 1= €} — (p, 2l = seti(w op tag(w))]) 27)
Premises of Rule 25 A not shared(l, p,) (28)
{p,7, fa) =€) — (p, 7l = smapi(Q)))

where Q = {[z,y] € glextract(z,v) # extract(tag(z),v)}.
Premises of Rule 26 A not shared(l, p,-) (29)

{p,7, f(a) := e) — (p, [l = smapi(Q U [tag(z), tag(w)))])
where Q = {[z, y] € glextract(z,y) # extract(tag(z),7)}.

Fig. 6. New rules for optimized lazy copy semantics

Theorem 1. For given program P, (Ax.L,P) — p1 iff {pinit>Yinit, P) —
(p2,7) (where piniz and Yiniz are obtained by preallocating the program constants
in P) where for all variables v, p1(v) = extract(p2(v),7y).

The proof by rule induction (see for example [28]) is omitted here for the sake
of brevity.

2.3 Optimized Lazy Copy Semantics

The semantics of £ with an optimized lazy copying strategy is obtained from
the unoptimized semantics by minor modification. This semantics sheds light on
how our copy optimization can improve £ programs.

Define a relation <C Vjy. X Vjo. by the following inductive definition:

I < by &L (1, € range(p) vV (Follo < 1)) A
((v(l) = seti(s) Alz € 5) V (v(I1) = smapi(f) AT[z,y] € fl(z =12 Vy =12))))

In other words, I3 < I3 holds if l; is reachable from some variable by following a
sequence of locations, and either /; corresponds to a set having I, as a member,
or [y is a map having [, as a member of either its domain or range. For [€ Vj,,
we also define

var_share(l, p,v) = { € domain(p)|p(z) =1} —- variables sharing 1

set_share(l,p,v) ={l' : ' <l A ~v(l') = seti(.)} - sets sharing 1

domain_share(l,p,v) ={l' : I' <l AN v(l') = smap(f) Al € domain(f)}
-- maps whose domain shares 1

range_share(l, p,v) = {[d, '] : I' <l A (') = smap(f) N f(d)=1"}

-- maps whose range shares 1 at specific domain points

Then the extent to which location [is shared in environment p and store ~y
is defined by reference count,

refcount(l, p,7y) e (lvar_share(l, p,7)| + |set_share(l, p,v)| +
|domain_share(l, p,v)| + |range_share(l, p,7)|).

12 Goyal and Paige

Predicate shared(l, p,~) &L refcount(l, p,v) > 1 decides whether [is shared,
and is used in the optimized lazy copy semantics to allow data stored at unshared
locations to be updated destructively.

The new semantics includes Rules (12)-(26) (from Figure 5), adds new Rules
(27)-(29) (see Figure 6), and conjoins premise shared(l, p,y) to Rules(24)-(26).

Proposition 2. Optimized lazy copy semantics preserves the semantics of un-
optimized lazy copy semantics.

In the next section we describe an alias analysis that computes a close ap-
proximation to sets

var_share(l, p,v) U {y : 3l € range(p)|y € range_share(l, p,7)},

in order to justify copy optimization.

3 Must-Alias Analysis

This section describes the static data flow analysis used to compute a safe
(sound) approximation to the must-alias relation R C Vars x Vars at each
program point. A pair {z,y) belongs to R at a program point p, if we can guar-
antee that p(z) = p(y) (wrt lazy copy semantics) for all possible environments p
reaching program point p in any execution of the program. Note that the absence
of a pair {z,y) from R does not imply that p(z) # p(y) for all environments p
reaching p. Note that (z,y) ¢ R does not even imply the existence of at least
one environment p reaching p such that p(z) # p(y), since the relation R is only
a safe approximation.

It is easy to see that any must-alias relation R is an equivalence relation. So
R can be efficiently implemented as a partition of the set of variables Vars. P is
a partition of Vars iff P is a set of nonempty mutually disjoint subsets of Vars
whose union is all of Vars. The next subsection states some of the properties of
partitions that will be useful in our analysis. A much more detailed description
of these and many other properties can be found in [13].

3.1 Notation

Elements of a partition are sometimes called blocks. Let P(.S) denote the set of all
partitions over a finite set S. If Q, P € P(S), then we say that @ is a refinement
of P, denoted by @ C P, iff Vb e Q|(3b' € P|b C V'). The partially ordered set
(P(S),C) has maximum element {S} and minimum element {{v} : v € S}, and,
being finite, has the finite-descending-chain condition. The set of partitions form
a Lattice, for which the meet (M) is defined by

PnQ™ {bpnbg :bp € Pbg € QlbrNbo # {} -

Figure 7 gives an example of the meet operation.

Hidden Copy Optimization 13

’U1,’U2,U3|| ’U4,’U5,U6| m | ’U1,’U2|| ’Us,’U4,’U5|

~ [(o)] [

Fig. 7. Example of the M (meet) operation for the Partition Lattice

Each partition on a finite set S can be represented as a single-valued map
from S to names of blocks, where each block in the partition is associated with
a unique name. Let name : blocks — names map distinct blocks to distinct
names. Then, the implementation P’ : S — names of a partition P is given by,

P' = Upep{[z,name(b)] : = € b} (30)

In the following sections, we will abuse our notation by associating the symbol
b with both the block b (i.e. a subset of S) and name(b). Thus, equation(30)
could be rewritten as

P = Ubep{[m,b] xr € b}

Given an implementation P of a partition of set S, P(z) denotes the name of
the block containing element z, and [z]p denotes the equivalence class of element
z (i.e. the set of elements in the same block as z). Of course, since changing the
name of any block does not change the underlying partition, we define a notion
of equivalence between implementations of partitions by saying that two such
implementations P and @) are equivalent if their underlying partitions are equal.

The following notation for overriding is very useful in describing partitions
that are constructed from existing partitions by moving elements from one block,
either to another existing block, or to a new block. Partition P/{[z, P(y)]} de-
notes the partition obtained by moving element z to the block containing ele-
ment y. Similarly, the partition obtained by moving z to a new block by itself
is denoted by P/{[z, new(block)]}, where new(block) returns a new block name.
This notation for overriding can be extended to describe the movement of more
than one variable into other existing or new blocks. Let X : A — names be
single-valued, with A C S. Then, P/X represents a partition obtained from
P by moving elements in A into either existing or new blocks, and we have
P/X = P', where P'(y) = P(y) if y ¢ A and P'(y) = X(y) otherwise. Finally,
for X; : A — names, and X; : B — names single-valued, with AN B = ¢,
X1 ¥ X, denotes the obvious union of these two maps. The disjointness of A and
B ensures the single-valuedness of the resulting union.

3.2 Abstract Interpretation

This section describes an abstract interpretation approach based closely along
the lines of [18], for computing a sound must-alias relation at each program
point. As described in the previous subsection, the alias relation is a partition

14 Goyal and Paige

of the set of variables in the program. The set Vars comprises of all variables of
the form v and f(v) (smap application) that appear textually in the program.
We use a nonstandard definition of Vars by including the variables of the form
f(v) appearing explicitly in the program. This enables us to maintain informa-
tion such as whether (f(v), s) belongs to the must-alias relation or not. In fact,
this is a key factor that enables us to do a reasonable must-alias analysis for
arbitrarily nested sets and maps. Note, that even though only single-level map
applications of the form f(v) can appear textually in an £ program, multi-level
map applications such as f(z)(y)(2) or f(g(h(z))) are easily translated into L.

We consider an abstract interpretation framework where the environment-
store pairs (from the lazy copy semantics) form the concrete domain and par-
titions form the abstract domain. We also define an abstraction function, that
takes an element (p,~) of the concrete domain to an element P of the abstract
domain. The abstraction function merely states that two variables are mapped
into the same block if and only if they are mapped to the same location in (p, 7).

Abstraction Function 8 : Env x Store — Partition

B{p,7)) = P <= Yu1,vs € Vars :
{p,7,v1) == L A (p,7,v2) = I A(Iy = 1) <= P(v1) = P(v2)) (31)

Just as statements act as (Env, Store) transformers in the concrete domain,
similarly, statements act as partition transformers in the abstract domain. Fig-
ure 8 defines the abstract semantics for the statements in £. We can read
(P, sty = P' as saying that the statement st transforms partition P to P'.
The abstract semantics are most easily understood by looking at the examples
in Figure 9.

Suppose variables f and g are pointing to the same location. Then, for any
variable u, p(f(u)) and p(g(u)) (if defined) will evaluate to the same location.
In other words, if maps f and g are equal, then so are f(u) and g(u). Therefore,
we make sure that the partitions in our analysis satisfy a congruence property
that says that if f and g are in the same block, then f(u) and g(u) should be in
the same block.

We now proceed with a step-by-step explanation of the rules for the abstract
semantics described in Figure 8.

1. For statements of the form read(s), s op :=e, s :=3> v:
The only variables whose values could be affected by these statements are of
the form s, or s(v), or g(s). The effect of overriding P by {[s, new(block)]}
is to move s to a new block (see example Figure 9). Also, we see in the
example that, if f and g were equal before the read, the fact that read(s)
cannot modify either f or g, guarantees that f and g (and, hence f(s) and
9(s)) must be equal after the read. This congruence effect is captured by

Weep(let n = new(block)in {[g(s),n] : g € m1{s} Nb}),

Hidden Copy Optimization 15

(P, st) =5 P

Notation: mi{s} = {f € Vars|f(s) € Vars}
m1[S] = Usesm1{8}
ma{f} = {s € Vars|f(s) € Vars}
mo[S] = Ugesma{f}
m¢[S] = {v € Vars|f(v) € S}

Case 1. If st is of the form read(s), s op := e, or s :=3 uv:

P' = P/ {[s, new(block)]} &
Weep (let n = new(block) in{[s(v),n] : v € ma{s}Nb}) W
Weep (let n = new(block) in{[g(s),n] : g € m1{s} Nb})

Case 2. If st is of the form s :=¢:

P' =P/ {[s,Pt)]} @
Woe Plbnmy [[t]p]#£d let v => {U € [t]p|m1{v} nb# d)} in
let f =5 mi{v}Nbin{g(s), P(f(v))]:g € mi{s}Nb} W
Wye Plonma[[t] pl£d let v =3 {’U (S [t]p|m2{v} nb# ¢} in
let f =3 ma{v}Nbin{[s(g), P(v(f))]: g € ma2{s}Nb} W
WoePlonmait]p]=¢ (let n = new(block) in{[g(s),n]: g € mi{s}Nb}) W
Woe Plonms[itlpl=s (let 1 = new(block) in{[s(g),n] : g € m2{s} Nb})

Case 3. The case for s := f(t) is obtained from Case 2 by substituting ¢ by f(t).
Case 4. If st is of the form f(t) := s, then

P = P/ {[f, new(block)]} @
{[f(v), P(s)] : v € ma{f} N[t]lp} W
Woe Plo£P(t)AbNm. ¢ [[s]p]=¢ (let n = new(block) in{[f(v),n] : v € m2{f} Nb}) W
Woep (let n = new(block) in{[g(f),n] : g € mi{f} Nb})

Fig. 8. Abstract Semantics

which says that for all variables in {g € b|g(s) € Vars}, we should move
the corresponding variables of the form g(s) into a block by themselves. A
similar rule applied to variables of the form s(v) and s(u).

2. Statements of the form s := ¢:

The rule for this statement is more interesting. The effect of {[s, P(t)]} is
to move s into the block containing t. Suppose there exist variables v and
f (W) in the program such that v = ¢ before the assignment. Then after the
assignment, we know that s = ¢. Therefore, if the variable f(s) exists, it
must equal f(v) (by the congruence condition). The complicated rule shown
in Figure 8 essentially captures this effect by considering two cases. In the
first case, there exist variables v and f(v) such that (v € [t]p), so we move
f(s) to the block containing f(v). In the second case, no such v exists, so
f(s) is moved to a new block. Again, we have to be careful in the second

16

Goyal and Paige

s, t|[Fog || f5 g || F@), g'(t), y || £(s), g(s), fF(t), g(t), x

fallfd || £ @), gy £(s), 9(s) || £t), 9(t),x

s,t|[gl £y || F@), g@) |[y]| £(5), 9(s), £(2), g(t)

tu 8, f(v1), g(ui) || f5 g || F(v2), g(w2) || £(2), 9(t), f(u), g(u),

f(t) :=s

t,u s, f(v1), g(vr), £(t), f(u) @ Fw2) || g(v2) | 9(t), 9(u), =

Fig. 9. Illustrative examples of the abstract semantics

case to maintain congruence. The variables of the form s(u) are handled in
a similar manner.

. Statements of the form f(t) := s:

Clearly this statement modifies the value of map f, which is moved to a
new block. Looking at our example in Figure 9, we see that since ¢ and u
are equal, we move both f(¢) and f(u) to the block containing s. If vq is
not in the same block as ¢, this does not mean that s # ¢t. A modification
to f(t) could conceivably cause a modification to f(ve). This is why f(v2)
moves into a block by itself. However, f(v;) is not moved to a block by
itself, because it was already equal to s; the statement f(¢) := s could not
have possible changed its value to something other than s. The rule given in
Figure 8 takes care of all these subtleties.

We now state a number of theorems dealing with the soundness of the ab-

stract semantics. The proofs are long and can not be included here because of

space constraints.

Theorem 2 (Local Soundness). If st is a simple assignment statement, then

(P, st) — (p',7Yand (B({p,7)),st) = P' = (P'C B({p',7")))

Simply put, if the incoming partition is a safe approximation of the incoming
environment-store pair, then the outgoing partition is also a safe approximation
of the outgoing environment-store pair.

Hidden Copy Optimization 17

Theorem 3 (Monotonicity). For any simple assignment statement st, and
partitions P and @) such that P C (@), we have

(P, sty % Pland (Q,st) - Q' = P'C Q'

We define a path p from start (the beginning of the program) to a program
point i as any sequence of simple assignment statements that lead from start
to i. Note that, if there exists a cyclic path to i, then there are infinitely many
possible paths to i (corresponding to 0 or more loops around the cycle). Let

paths(i) = {All paths to program point }.

Furthermore, let us define f, and f; to be the concrete and abstract transfer
functions for path p, i.e.,

def
Follpsn) = (0's7") & (p,v,p) — (', 7), and
* def a
Q=0 & (@) 5 Q
Then the Meet-over-all-paths solution, i.e., Mpepatns(i) B(fp({Pinit, Vinit)) is a
safe approximation to the must-alias relation.

Theorem 4 (Global Soundness). For all program points i in the program,

Mpepaths(i) fp (BUPinits Yinit))) T Mpepaths(iyB(Fp(pinits Yinit))

In other words, the solution to the data flow analysis problem in the abstract
domain is a safe approrimation of the solution in the concrete domain.

The Proof follows from Local Soundness (Theorem 2) and Monotonicity (Theo-
rem 3).

3.3 Algorithm

Let the program points be numbered from 0, ..., n, where program point 0 cor-

responds to the start of the program. We use st(j,4) to denote the statement

between program point j and its successor i. We use the results from [12] to

claim that the meet-over-all-paths solution is given by the greatest fixed point
solution of the following equation:

F(POJ"‘JPTL) = (90(P07"'7Pn)7

gl(P(), e ,Pn),

. (32)

gn(PO;-‘--;Pn))

where go(Po, - . ., Pr) = B({pinit, Yinit))
and g;(Py,...,P,) = ﬂjEpred(i)f:t(j,i)(Pj)a Vi=1,...,n.
The above greatest fixed point can be computed by Kildall’s iterative algo-
rithm [14] (shown in Figure 10).

Let V denote |Vars| and let N denote the number of nodes in the control
flow graph.

18 Goyal and Paige

Init: Vi=0,...n Fi)=T

Loop : repeat
Vi=1,...,n F(i) = jepredci) for(j,) (F(4))
until all F(z)’s stabilize.

Fig. 10. Kildall’s Iterative algorithm for greatest fixed point computation

Proposition 3. 1. Given partitions P, and P, we can compute P, M Py in
O(V) time.

2. Given a partition P, we can compute fi(P) for any simple assignment in
O(V) time.

(1) can be proven directly from [13]. (2) has a direct implementation using
simple data structuring and the techniques in [13].

Proposition 4. Fach iteration of Kildall’s algorithm can be implemented in
O(N x V) time.

This follows directly from Proposition 3 assuming that the control flow graph
has been processed so that each node has at most 2 predecessors and at most 2
successors [17].

Proposition 5. Kildall’s algorithm converges in at most N XV iterations. Thus
the time complezity of the iterative algorithm is O(N? x V2).

The proof relies on the fact that the length of a strictly decreasing chain of
partitions is bounded by V and that each iteration decreases the value of F'(7)
at least at one program point i.

The time complexity of Kildall’s algorithm can be improved by using a work-
list strategy. The idea is to maintain a worklist of program points ¢ that do not
satisfy the condition F'(i) = Mjecpred(i) Faviin (F'(j)). Figure 11 describes the mod-
ified algorithm.

Proposition 6. The complezity of the worklist algorithm in Figure 11 is O(N x
V2).

The proof depends on showing that each program point can be added to the
worklist at most V' times. Furthermore, each time a program point is removed
from the worklist, the processing takes O(V') time. Hence the time complexity
is O(N x V?).

4 Copy Optimization Transformation

The problem of live variable analysis is well understood (see [19], for exam-
ple). We have a live variable analysis that takes map variables such as f(v)

Hidden Copy Optimization 19

worklist = {1,...,n}
Vi=1,...,n F(i)=T
while (worklist # ¢) loop
remove an arbitrary element = from the worklist
F(z) = Hyepred(m)f:t(y,z)(F(y))
for z € suce(x) loop
if (z & worklist) A (I'Iwepred(z)f:t(w,z)(F(w)) C F(z)) then
worklist with := z
endif
end loop
end loop

Fig. 11. Algorithm based on Worklist strategy

into account. This analysis is also proven correct using the framework of ab-
stract interpretation. The abstract semantics and the proof of correctness are
straightforward and are omitted.

The final solution is obtained as follows. For each update assignment, we look
at the must-alias set for the variable being updated, and if all the other variables
in this set are dead, these are assigned omegas just before the update. We are
investigating improvements to this strategy in order to facilitate elimination of
more copies.

5 Applications

Destructive array update optimization is critical for writing scientific codes in
functional languages. Recently, Wand and Clinger [27] propose a solution for
a call-by-value functional language based on interprocedural flow analysis for
aliasing and liveness. Their optimization is based on the idea that if a sound
live variable analysis can ensure that the array on which the update is being
performed is not live after the update, then the update can be performed de-
structively.

Consider the definitions of a few functions in the simple first-order functional
language considered by Wand and Clinger in Figure 12. Their analysis tries to
prove that the location corresponding to array B is always dead at the time
when B is updated. However, they will not be successful in doing so for the
simple reason that this is not true. This can be seen from the fact that the array
A is live after the first call to function f from inside function g. Consequently,
all updates on B will result in the creation of a new copy, although, if the calls
to f are from function h, then the destructive updates on the arrays would still
be legal. This problem is very reminiscent of the problems that made Schwartz’s
value flow analysis [22] ineffective for solving the copy optimization problem in
Setl.

We believe that the key idea of using dynamic reference counts together
with alias and liveness analysis could contribute to an effective solution to the

20 Goyal and Paige

fun Sum(A) =... //sum the elements of array A
fun f(B,1,j) = Sum(update(B,1i, j))

fun g(Aailaiz) = f(Aaih 0) + f(A7i27 0)

fun h(A’ll) = f(Aaily 0)

Fig. 12. Small functional program fragment illustrating difficulties of a static analysis
based approach to copy optimization

problem. If the program fragment in Figure 12 is implemented in an impera-
tive language with copy/value semantics, then the use of reference counts, an
interprocedural live variable analysis, and placement of dynamic reference count
decrements would ensure that the reference count of array B is 1 when function
f is called by function h, thereby allowing a destructive update.

6 Conclusions and Future Work

This paper presents a new approach to copy optimization that trades potentially
asymptotic costs of hidden copies for a constant factor overhead to maintain
dynamic reference counts. The analysis and transformation are proved correct
using formal semantics and abstract interpretations. A new low polynomial time
algorithm is given to carry out the analysis.

It would be interesting to extend this work to the interprocedural case. We
also want to explore partition refinement strategies found in [8] and [13] to
improve the algorithm. It would be interesting to see how further optimization
could cut down or eliminate dynamic reference counts. Our analysis deals with
arbitrarily nested sets and maps that can be used to simulate a wide variety
of datatypes such as records or even pointers (by the use of single-valued maps
called ref and deref). We believe that our analysis and algorithmic techniques
may apply to pointer analysis.

References

1. ADA UK News, Vol. 6, No. 1, pp. 14-15, Jan 1985.

2. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison Wesley, 1988.

3. J. Cai and R. Paige. Towards increased productivity of algorithm implementation.
In Proc. ACM SIGSOF'T, pages 71-78, Dec. 1993.

4. J. Cocke and J. Schwartz. Programming Languages and Their Compilers. Lecture
Notes. Courant Institute, New York University, New York, 1969.

5. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixed points. In Proc.
Fourth ACM Symp. on Principles of Programming Languages, pages 238-252, 1977.

6. M. Draghicescu and S. Purushotham. A uniform treatment of order of evaluation
and aggregate update. Theoretical Computer Science, 118:231-262, 1993.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Hidden Copy Optimization 21

C. A. R. Hoare. Data reliability. In Proc. of the Intl. Conf. on Reliable Software,
pages 528-533, 1975.

J. Hopcroft. An n log n algorithm for minimizing states in a finite automaton. In
Z. Kohavi and A. Paz, editors, Theory of Machines and Computations, pages 189—
196. Academic Press, New York, 1971. Proc. Intl. Symp. on Theory of Machines
and Computation.

P. Hudak. A semantic model of reference counting and its abstraction. In Proc.
1986 ACM Symposium on Lisp and Functional Programming, pages 351-363.
ACM, 1986.

P. Hudak and A. Bloss. Avoiding copying in functional and logic programming
languages. In Conference record of the 12th Annual ACM Symposium on Principles
of programming languages, pages 300-314. ACM, 1985.

G. Kahn. Natural semantics. In Proc. STACS’87. Springer-Verlag, 1987. Lecture
Notes in Computer Science, Vol. 247.

J. B. Kam and J. D. Ullman. Monotone data flow analysis frameworks. Acta
Informatica, 7:305-317, 1977.

J. Keller and R. Paige. Program derivation with verified transformations — a case
study. CPAM, 48(9-10), 1995.

G. A. Kildall. A unified approach to global program optimization. In ACM Sym-
posium on Principles of Programming Languages, pages 194-206, 1973.

H. R. Nielson and F. Nielson. Semantics with Applications, A formal introduction.
Wiley, 1992.

R. Paige and Z. Yang. High level reading and data structure compilation. In
Conference Record of POPL ’97: The 24th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 456—469, Paris, France, 15-17 Jan.
1997.

B. K. Rosen, M. Wegman, and K. Zadeck. Global value numbers and redun-
dant computations. In ACM Symposium on Principles of Programming Languages,
pages 12-27, 1988.

M. Sagiv, T. Reps, and R. Wilhelm. Solving shape analysis problems in languages
with destructive updating. ACM Transactions on Programming Languages and
Systems, 20(1):1-50, January 1998.

D. A. Schmidt. Data flow analysis is model checking of abstract interpretations.
In 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, 1998.

J. Schwartz. On Programming: An Interim Report on the SETL Project, Install-
ments I and II. New York University, New York, 1974.

J. Schwartz. Automatic data structure choice in a language of very high level.
CACM, 18(12):722-728, Dec. 1975.

J. Schwartz. Optimization of very high level languages, parts I, II. J. of Computer
Languages, 1(2-3):161-218, 1975.

J. Schwartz, R. Dewar, E. Dubinsky, and E. Schonberg. Programming with Sets:
An Introduction to SETL. Springer-Verlag, New York, 1986.

M. Sharir. A few cautionary notes on the convergence of iterative data-flow analysis
algorithms. Setl Newsletter 208, New York University, April 1978.

K. Snyder. The SETL2 programming language. Technical Report 490, Courant
Insititute, New York University, 1990.

R. E. Tarjan. A unified approach to path problems. JACM, 28(3):577-593, July
1981.

M. Wand and W. D. Clinger. Set constraints for destructive array update opti-
mization. In Proc. IEEE Conf. on Computer Languages. IEEE, May 1998.

22 Goyal and Paige

28. G. Winskell. The Formal Semantics of Programming Languages. Foundations of
Computing. MIT Press, 1994.

