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Abstract. An adaptive choice for primal spaces, based on parallel sums, is developed for BDDC deluxe meth-

ods and elliptic problems in three dimensions. The primal space, which form the global, coarse part of the domain

decomposition algorithm, and which is always required for any competitive algorithm, is defined in terms of gen-

eralized eigenvalue problems related to subdomain edges and faces; selected eigenvectors associated to the smallest

eigenvalues are used to enhance the primal spaces. This selection can be made automatic by using tolerance parame-

ters specified for the subdomain faces and edges. Numerical results verify the results and provide a comparison with

primal spaces commonly used. They include results for cubic subdomains as well as subdomains obtained by a mesh

partitioner. Different distributions for the coefficients are also considered, with constant coefficients, highly random

values, and channel distributions.
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1. Introduction. There has recently been a considerable amount of activity in devel-

oping adaptive methods for the selection of primal constraints for BDDC algorithms and,

in particular, for BDDC deluxe variants. The primal constraints of a BDDC or FETI–DP

algorithm provide the global, coarse part of such a preconditioner and they are of crucial im-

portance for obtaining rapid convergence of these preconditioned conjugate gradient methods

for the case of many subdomains. When the primal constraints are chosen adaptively, we aim

at selecting a primal space, which for a certain dimension of the coarse space, provides the

fastest rate of the convergence for the iterative method. In the alternative, we can try to de-

velop criteria which will guarantee that the condition number of the iteration stays below a

given tolerance.

A particular inspiration for our own work has been a talk, see [5], by Clark Dohrmann at

DD21, the twenty-first international conference on domain decomposition methods, held in

Rennes, France, in June 2012. Dohrmann had then started joint work with Clemens Pechstein,

see also [21].

Much of this work for BDDC and FETI-DP iterative substructuring algorithms, which

has been supported by theory, has been confined to developing primal constraints for equiv-

alence classes with two elements such as those related to subdomain edges for problems de-

fined on domains in the plane; see a recent survey paper by Klawonn, Radtke, and Rheinbach

[12]. In our context, the equivalence classes are sets of finite element nodes which belong to

the boundaries of more than one subdomain with the equivalence relation defined by the sets

of subdomain boundaries to which the nodes belong. While it is important to further study the

best way of handling all cases, the basic issues appear to be well settled when the equivalence

classes all have just two elements.

We note that this work is relevant for problems posed in H(div) even in three dimen-

sions (3D) since the degrees of freedom on the interface between subdomains for Raviart-

Thomas and Brezzi-Douglas-Marini elements are associated only with faces of the elements,
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see [20, 26]. But for other elliptic problems in 3D, there is, except for quite special subdo-

main configurations, a need to develop algorithms and results for equivalence classes with

three or more elements.

There is early work by Mandel, Šı́stek, and Sousedı́k, who developed condition number

indicators, cf. [17, 18]. Talks by Clark Dohrmann and Axel Klawonn, [11], at DD23, the

twenty-third international conference on domain decomposition methods, held on Jeju Island,

Korea, in July 2015, reported on recent progress to give similar algorithms a firm theoretical

basis. A talk by Hyea Hyun Kim in the same session, on joint work with Eric Chung and

Junxian Wang, also reported considerable progress for a different kind of algorithm. Their

main new algorithm for problems in three dimensions are similar but not the same as ours;

see further [10]. The main result of this paper, which has been developed independently, was

reported on by the second author at the same DD23 mini-symposium.

This paper will focus on using parallel sums for general equivalence classes. The use

of parallel sums for equivalence classes with two elements has proven very successful in

simplifying the formulas and arguments; see in particular Pechstein [21] and also subsection

2.1. We note that algorithms using parallel sums for equivalence classes with more than

two elements have been quite successfully in numerical experiments by Simone Scacchi and

Stefano Zampini, reported in [2], for problems arising in isogeometric analysis and also by

Zampini, [25], in a study of problems formulated in H(curl) based in part on [7].

We also note that we previously have attempted to design adaptive algorithms, which

resulted in quite complicated formulas and limited success. Among other complications, in

one of these approaches, the primal constraints then had to be extracted by using a QR factor-

ization of a matrix generated from several bases for spaces of prospective primal constraint

vectors related to pairs of Schur complements. We note that an alternative would be to carry

out several changes of variables, enhancing the primal space in several steps, as is done in

[9].

In this paper, we will focus on low order, nodal finite element approximations for scalar

elliptic problems in three dimensions

(1.1) −∇ · (ρ(x)∇u) = f(x), x ∈ Ω, ρ(x) > 0,

resulting in a linear system of equations to be solved using BDDC domain decomposition al-

gorithms, in particular, its deluxe variant. We will always assume that the choice of boundary

conditions results in a positive definite, symmetric stiffness matrix. Future work is planned

on what is known as the economic variant of the BDDC deluxe algorithm, (e-deluxe), cf. [7],

and on linear elasticity including the almost incompressible case.

The outline of this paper is as follows: In the next section, we briefly introduce the BDDC

algorithms. It is followed by a discussion of the case of equivalence classes with two elements

and a related generalized eigenvalue problem. The success of the adaptive algorithm in this

case can be explained by examining the eigenvalues of a generalized eigenvalue problem

which is closely related to a face lemma. This lemma provides a standard technical tool in

domain decomposition theory; see [23, Subsection 4.6.3]. Several numerical experiments,

reported in subsection 2.2, highlight the fact that a small number of primal constraints often

can result in a very favorable bound.

We then focus on the case of equivalence classes with three elements. This is the main

part of our paper and is relevant, in particular, for contributions of subdomain edges to the

values of a jump operator PD acting on the elements in a product space related to the sub-

domains and the finite element space. We derive an upper bound of the square of a norm,

based on a Schur complement, and note that it has been known for over a decade that such

bounds provide an estimate of the condition number of the FETI–DP algorithm, see (2.1) and
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[14]. Given the close connection of the BDDC and FETI–DP algorithms, the bound for that

same jump operator is equally relevant for our work; see [16]. We find that the square of this

norm of a subdomain edge contribution to PDw can be bounded from above in terms of three

parallel sums of single Schur complements and sums of two others. We then attempt to find

a common upper bound of these expressions in terms of the parallel sum of all the relevant

Schur complements. This is not successful and we instead work directly with the operators

obtained in the estimate of the jump operator and formulate a generalized eigenvalue problem

for each of the edges of the subdomains. We can then select a few eigenvectors associated

with the smallest eigenvalues and generate a primal constraint from each of these eigen-

vectors. These generalized eigenvalue problems are defined in terms of principal minors of

relevant Schur complements and Schur complements of these Schur complements associated

with a minimal energy extension, e.g., from a subdomain edge of a three-dimensional finite

element problem. We also provide a bound on the condition number in terms of the smallest

eigenvalues for the subdomain faces and edges which have been neglected when constructing

the primal space.

In the next section, we show how to extend our preconditioner and bounds to equivalence

classes with four elements; no new ideas are required.

Our paper concludes by demonstrating the performance of our algorithm in a series of nu-

merical experiments using regular subdomains as well as subdomains generated by a METIS

mesh partitioner; see [8]. We also demonstrate that we can obtain fast convergence for prob-

lems with a quite irregular coefficient inside the subdomains. We also report on experiments

with two alternative algorithms based on other generalized eigenvalue problems using paral-

lel sums and sums of the two sets of Schur complements; we have not been able to provide a

theoretical justification for these variants.

2. Equivalence classes and BDDC algorithms. This section begins with a short in-

troduction to BDDC algorithms; for more details, see, e.g., [15]. For an introduction to its

deluxe variant, see, e.g., [24].

BDDC algorithms are domain decomposition algorithms based on the decomposition of

the domain Ω of an elliptic operator into non-overlapping subdomains Ωi, each often associ-

ated with tens of thousands of degrees of freedom. The subdomain interface Γi of Ωi does

not cut through any elements and is defined by Γi := ∂Ωi \ ∂Ω. Its equivalence classes are

associated with the subdomain faces, edges, and vertices of Γ := ∪iΓi, the interface of the

entire decomposition. Thus, for a problem in three dimensions, a subdomain face is associ-

ated with the degrees of freedom of the nodes belonging to the interior of the intersection of

two boundaries of two neighboring subdomains Ωi and Ωj and does not include any nodes on

the boundary of the faces. If such a set consists of several disjoint components, each of them

will be classified as a face. Those of a subdomain edge are typically associated with a set of

nodes common to three or more subdomain boundaries, while the endpoints of the subdomain

edges are the subdomain vertices which are associated with even more subdomains.

Given the stiffness matrix A(i) of the subdomain Ωi, we obtain a subdomain Schur com-

plement S(i) by eliminating the interior variables, i.e., all those that do not belong to Γi. We

will also work with principal minors of these Schur complements associated with faces, F,

and edges, E, denoting them by S
(i)
FF and S

(i)
EE, respectively.

The interface space is divided into a primal subspace of functions which are continuous

across Γ and a complementary, dual subspace for which we will allow multiple values across

the interface during part of the iteration. In this study, all the subdomain vertex variables will

always belong to the primal set.

The BDDC and FETI–DP algorithms can be described in terms of three product spaces
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of finite element functions/vectors defined by their interface nodal values:

ŴΓ ⊂ W̃Γ ⊂ WΓ.

WΓ is a product space of the spaces defined on the Γi, without any continuity constraints

across the interface. Elements of W̃Γ have common values of the primal variables but allow

multiple values of the dual variables while the elements of ŴΓ are continuous at all nodes on

Γ. We will change variables, explicitly introducing the primal variables and a complementary

sets of dual variables in order to simplify the presentation. After eliminating the interior

variables, we can then write the subdomain Schur complements as

S(i) =

(
S
(i)
∆∆ S

(i)
∆Π

S
(i)
Π∆ S

(i)
ΠΠ

)
.

We will partially subassemble the S(i), obtaining S̃, enforcing the continuity of the pri-

mal variables only. Thus, we then work in W̃Γ. In each step of the iteration, we solve a linear

system with the coefficient matrix S̃. In the alternative, we could also work with a linear sys-

tem with a matrix obtained by partially subassembling the subdomain stiffness matrices A(i).
We note that solving these linear systems will be considerably much faster than if we work

with the fully assembled system provided that the dimension of the primal space is modest.

At the end of each iteration, the approximate solution is made continuous at all nodal points

of the interface; continuity is restored by applying a weighted averaging operator ED, which

maps W̃Γ into ŴΓ.
In each iteration, we first compute the residual of the fully assembled Schur complement

system. We then apply ET
D to obtain a right-hand side for the partially subassembled linear

system, solve this system, and then apply ED. This last step changes the values on Γ, unless

the iteration has converged, and can result in non-zero residuals at nodes not on Γ. In a final

step of each iteration step, we eliminate these residuals by solving a Dirichlet problem on

each of the subdomains. We always accelerate the iteration with the preconditioned conjugate

gradient algorithm.

2.1. BDDC deluxe. When designing a BDDC algorithm, we have to choose an effective

set of primal constraints and also a good recipe for the averaging across the interface. This

paper concerns the choice of the primal constraints while we will always use the deluxe recipe

in the construction of the averaging operator ED.
We note that in work on three-dimensional problems formulated in H(curl), it was

found that traditional averaging recipes did not always work well; cf. [6, 7]. The same is

true for problems in H(div), see [20]. This occasional failure has its roots in the fact that

there are two sets of material parameters in these applications. The deluxe scaling that was

then introduced has also proven quite successful for a variety of other applications including

isogeometric analysis, cf. [2, 3]. For a survey, see [24].

A face component of the average operator ED across a subdomain face F ⊂ Γ, common

to two subdomains Ωi and Ωj , is defined in terms of principal minors S
(k)
FF of the S(k), k =

i, j. The deluxe averaging operator, for F , is then defined by

w̄F := (EDw)F := (S
(i)
FF + S

(j)
FF )

−1(S
(i)
FFw

(i)
F + S

(j)
FFw

(j)
F ).

Here w
(i)
F is the restriction of w(i) to the face F, etc.

The action of (S
(i)
FF + S

(j)
FF )

−1 can be implemented by solving a Dirichlet problem on

Ωi ∪ F ∪Ωj , where F is the face between the two subdomains. This can add significantly to
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the cost. We can also compute the Schur complements, add them, and factor the sum. In an

economic variant (e-deluxe), we replace this large domain by a thin domain built from one

or a few layers of elements next to the face and this often results in a very similar iteration

counts; see, e.g., [7]. The advantage of using the e-deluxe variant will depend considerably

on the software used in assembling a program; a discussion on these matters can be found in

a recent paper on problems posed in H(div); see [20].

Deluxe averaging operators are also developed for subdomain edges and any other equiv-

alence classes of interface variables and the operator ED is assembled from all these compo-

nents; see further section 3. Our bound for this operator will be obtained from bounds for the

individual equivalence sets and will include factors that depend on the number of equivalence

classes associated with the faces and edges of the individual subdomains; see Theorem 3.2.

The core of any estimate for a BDDC algorithm is the norm of the averaging operator

ED. By an algebraic argument known, for FETI–DP, since 2002, we know that

(2.1) κ(M−1
BDDC Ŝ) ≤ ‖ED‖S̃,

see [14]. Here κ is the condition number of the iteration matrix, M−1
BDDC denotes the BDDC

preconditioner, and Ŝ the fully assembled Schur complement of the problem.

The analysis of any BDDC deluxe algorithm can be reduced to bounds for individual sub-

domains. Analysis of traditional BDDC algorithms requires the use of an extension theorem,

cf. [13]; the deluxe version does not.

Instead of developing an estimate for ED , we will work with PD := I − ED. Thus,

instead of estimating (RT
F w̄F )

TS(i)RT
F w̄F , we will work with the S(i)−norm of RT

F (w
(i)
F −

w̄F ). Here RF denotes the restriction to the face F. By elementary algebra, we find that

w
(i)
F − w̄F = (S

(i)
FF + S

(j)
FF )

−1S
(j)
FF (w

(i)
F − w

(j)
F ).

More algebra gives, by using that S
(i)
FF := RFS

(i)RT
F ,

(RT
F (w

(i)
F − w̄F ))

TS(i)(RT
F (w

(i)
F − w̄F )) =

(w
(i)
F − w

(j)
F )TS

(j)
FF (S

(i)
FF + S

(j)
FF )

−1S
(i)
FF (S

(i)
FF + S

(j)
FF )

−1S
(j)
FF (w

(i)
F − w

(j)
F ).

Adding a similar contribution from Ωj , we obtain, following Clemens Pechstein, that the

relevant expression of the energy is

(w
(i)
F − w

(j)
F )TS

(i)
FF (S

(i)
FF + S

(j)
FF )

−1S
(j)
FF (w

(i)
F − w

(j)
F ).

The matrix of this positive definite, symmetric quadratic form is a parallel sum; we will use

the notation

A : B := A(A+B)−1B;

cf. [1]. We note that if A and B are positive definite, then A : B = (A−1 + B−1)−1. If

A+B is only positive semi-definite, we can replace (A+B)−1 by (A+B)†, a generalized

inverse, without any complications. However, see [22] and section 3 for a discussion of the

case of parallel sums of more than two positive semi-definite operators. We can also work

with shifted, positive definite operators obtained by adding a small positive multiple of the

identity operator to the operators that are singular.
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We now easily find that

(w
(i)
F − w

(j)
F )T (S

(i)
FF : S

(j)
FF )(w

(i)
F − w

(j)
F )

≤ 2(w
(i)
F −wFΠ)

T (S
(i)
FF : S

(j)
FF )(w

(i)
F −wFΠ)+2(w

(j)
F −wFΠ)

T (S
(i)
FF : S

(j)
FF )(w

(j)
F −wFΠ)

where wΠ is an arbitrary element of the primal space. Each of these terms can be estimated

by an expression which is local to only one subdomain by using that S
(i)
FF : S

(j)
FF ≤ S

(i)
FF , etc.

We note that it is shown in [1] that A : B ≤ A and A : B ≤ B hold even for the case when

A+B is singular.

Let w
(i)
F∆ := w

(i)
F − wFΠ. There now remains to estimate w

(i)T
F∆ (S

(i)
FF : S

(j)
FF )w

(i)
F∆ by

the energy of w(i). For this, we will need the minimum norm extension of any finite element

function defined on F, which will provide a uniform bound for any extension of the values

on F to the rest of Γi. By a simple computation, we find that the relevant matrix is

S̃
(i)
FF := S

(i)
FF − S

(i)T
F ′F S

(i)−1
F ′F ′ S

(i)
F ′F .

Here S
(i)
F ′F ′ is the principal minor of S(i) with respect to Γi \ F and S

(i)
F ′F an off-diagonal

block of S(i). Thus, we need to establish a bound for

w
(i)T
F∆ (S

(i)
FF : S

(j)
FF )w

(i)
F∆ by w

(i)T
F∆ (S̃

(i)
FF : S̃

(j)
FF )w

(i)
F∆

and to show that

w
(i)T
F∆ (S̃

(i)
FF : S̃

(j)
FF )w

(i)
F∆ ≤ w(i)TS(i)w(i),

where w(i) is an arbitrary extension of the values of w
(i)
F on the face F to the rest of Γi.

In standard BDDC theory, the required estimates can be obtained by using a face lemma,

cf. [23, subsection 4.6.3], where such a result is established for constant coefficients in each

subdomain and for polyhedral subdomains. For an adaptive algorithm, this result is replaced

by the use of a generalized eigenvalue problem. Thus, we first solve the generalized eigen-

value problem

(2.2) S̃
(i)
FF : S̃

(j)
FFφ = λS

(i)
FF : S

(j)
FFφ.

Primal constraints are then generated by using the eigenvectors of a few of the smallest

eigenvalues of (2.2) and making (S̃
(i)
FF : S̃

(j)
FF )(w

(i)
F −w

(j)
F ) orthogonal to these eigenvectors.

This orthogonality condition allows us to conclude that

w
(i)T
F∆ (S̃

(i)
FF : S̃

(j)
FF )w

(i)
F∆ ≤ w

(i)T
F (S̃

(i)
FF : S̃

(j)
FF )w

(i)
F ,

since, w
(i)
F∆, the Γi−component of any element of the dual subspace, is spanned by the eigen-

vectors that are not used in constructing the primal space.

Given that the subdomain matrices A(i) are singular for interior subdomains, the Schur

complement S̃
(i)
FF can also be singular. As previously pointed out, we can replace the inverse

in the definition of the parallel sum by a generalized inverse without any further complica-

tions.
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We also have to use that S̃
(i)
FF : S̃

(j)
FF ≤ S̃

(i)
FF . A bound can now be obtained in terms

of the smallest eigenvalue associated with an eigenvector not used in deriving the primal

constraints. Thus, we have the following lemma:

LEMMA 2.1. Let λF
tol be the smallest eigenvalue of (2.2) ignored, when selecting the

primal constraints for a subdomain face F . We then have

(2.3) ‖(PDw)|F ‖
2
S̃
≤

2

λF
tol

(ai(w,w) + aj(w,w)),

where ai(·, ·) is the bilinear form associated with (1.1) obtained by restricting the integration

to Ωi, etc.

2.2. Convergence of eigenvalues. The success of this kind of algorithm is closely re-

lated to the rapid convergence of the eigenvalues of (2.2) to 1. Numerical experiments, re-

ported in four plots, illustrate a rapid decay of the eigenvalues of S
(i)−1
FF (S

(i)
FF − S̃

(i)
FF ), even

for problems with highly oscillatory coefficients; see Figure 2.1. The same can be said for

subdomains generated by the METIS mesh partitioner software; see Figure 2.2. This shows

that the eigenvalues of S
(i)−1
FF S̃

(i)
FF approach 1 quite rapidly and that, except on a very small

subspace, the action of S
(i)
FF and S̃

(i)
FF are virtually the same. Therefore the same can be said

of S
(i)
FF : S

(j)
FF and S̃

(i)
FF : S̃

(j)
FF . This fact is illustrated in four additional plots; see Figures

2.3 and 2.4.
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10
−5

10
0

(a) ρ = 1

0 50 100 150 200

10
−15

10
−10

10
−5

10
0

(b) Random ρ

Fig. 2.1: Eigenvalues of S
(i)−1
FF (S

(i)
FF − S̃

(i)
FF ) for a face, with 225 nodes, of a 3D problem

with cubic subdomains.

In the case of a random coefficient ρ(x), we use a uniform distribution to pick a number

r in the interval [−3, 3], and then assign the value 10r to ρ in individual elements.

As a consequence of these findings, the eigenvalues of (2.2) converge to 1 quite rapidly

even for problems with large changes in the coefficients inside subdomains. Therefore, we

do not need to expand the primal space very much.

Figures 2.1 and 2.2 suggest that the operator S
(i)−1
FF (S

(i)
FF − S̃

(i)
FF ) is associated with a

compact operator. We can offer an explanation at least for the case with constant coefficients.

We first recall that the trace class of H1(Ωi) is H1/2(∂Ωi). For a face F ⊂ ∂Ωi, the trace
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(a) ρ = 1
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Fig. 2.2: Eigenvalues of S
(i)−1
FF (S

(i)
FF − S̃

(i)
FF ) for a face, with 90 nodes, of a 3D problem

with METIS subdomains.
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(a) ρ = 1
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(b) Random ρ

Fig. 2.3: Eigenvalues of S̃
(i)
FF : S̃

(j)
FFφ = λS

(i)
FF : S

(j)
FFφ for a face, with 225 nodes, of a 3D

problem with cubic subdomains.

semi-norm is defined by

(2.4) |u|2H1/2(F ) :=

∫

F

∫

F

|u(x)− u(y)|2

|x− y|3
dSxdSy.

We obtain the H1/2(F )−norm by adding 1/HF‖u‖
2
L2(F ), where HF is the diameter of F.

We find that the S
(i)
FF−norm is equivalent to the norm obtained by restricting (2.4) to the

finite element space; cf. [23, Lemma 4.6].

It is also known that the H1/2(Γi)−norm of the minimal norm extension of any element

u ∈ H1/2(F ) is bounded uniformly by ‖u‖H1/2(F ). But it is also known that an extension by

zero even for H
1/2
0 (F ), the closure of C∞

0 (F ) in this norm, fails to be uniformly bounded.

The subspace for which the extension by zero is bounded is known as H
1/2
00 (F ). A norm for
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(b) Random ρ

Fig. 2.4: Eigenvalues of S̃
(i)
FF : S̃

(j)
FFφ = λS

(i)
FF : S

(j)
FFφ for a face, with 90 nodes, of a 3D

problem with METIS subdomains.

this subspace is given by

(2.5) ‖u‖2
H

1/2
00

(F )
:= |u|2H1/2(F ) +

∫

F

|u(x)|2

d(x)
dSx,

where d(x) is the distance from x to ∂F. The formula (2.5) can be derived for any Lipschitz

region by considering the square of the H1/2(Γi)−norm of the extension of u(x) by zero

onto F ′ := Γi \ F ; see, e.g., [19].

A reflection of the fact that H
1/2
00 is a true subspace of H

1/2
0 (F ) is the well-known bound

for finite element spaces

(2.6) ‖uh‖
2

H
1/2
00

(F )
≤ C(1 + log(Hi/hi))

2‖uh‖
2
H1/2(F ),

which is known to be sharp, see [4, Lemma 4.2 and Remark 4.3] and also [23, Lemma 4.24].

It is interesting to note that this estimate gives us an estimate of the smallest non-zero

eigenvalue of (2.2); we can establish that in the special case considered, this eigenvalue is

proportional to 1/(1 + log(H/h))2; see also [23, Subsubsection 4.6.3].

The restriction of the new term
∫
F

|u(x)|2

d(x) dx to the finite element space gives a weighted

mass matrix, which is spectrally equivalent to a diagonal matrix with elements varying in

proportion to 1/d(x). This matrix is easily seen to be well approximated by a matrix of low

rank since the weight function 1/d(x) varies between values of 2/Hi and of 1/hi. It then

follows that the matrix S
(i)−1
FF (S

(i)
FF − S̃

(i)
FF ) can be approximated well by a matrix of low

rank.

3. Equivalence classes with more than two elements. We begin this section by con-

sidering parallel sums of more than two operators. We will work with symmetric matrices

which all are at least positive semi-definite. We recall that for a pair of symmetric, posi-

tive definite matrices A and B, their parallel sum is given by A : B := A(A + B)−1B or

(A−1 +B−1)−1. If A+B is singular, we can work with a generalized inverse.

For three positive definite matrices, we can define their parallel sum by

A : B : C := (A−1 +B−1 + C−1)−1,
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with similar formulas for four or more matrices. A quite complicated formula for A : B : C
is given in [22] for the general case when some or all of the matrices might be only positive

semi-definite. It is also shown, in [22, Theorem 3], that A : B : C = (A†+B†+C†)† if and

only if the three operators A,B, and C have the same range. In our context, this is not always

the case since the matrix S̃
(i)
EE , defined below, will be singular if Ωi is an interior subdomain

while it will be non-singular if ∂Ωi intersects a part of ∂Ω where a Dirichlet condition is

imposed. This issue can be avoided by making all operators non-singular by adding a small

positive multiple of the identity to the singular operators.

As we previously have pointed out our interest in working with parallel sums with more

than two operators is inspired by Scacchi’s and Zampini’s success in using parallel sums of

more than two operators.

We will first focus on a case of an equivalence class common to three subdomains as

arising for most subdomain edges in a three-dimensional finite element context if the subdo-

mains are generated using a mesh partitioner. We will use the notation S
(i)
EE , S

(j)
EE , and S

(k)
EE

for the principal minors, of the degrees of freedom of an edge E, of the subdomain Schur

complements of the three subdomains that have this subdomain edge in common. The Schur

complements of the Schur complements representing the minimal energy extensions to indi-

vidual subdomains, of given values on the subdomain edge E, will be denoted by S̃
(i)
EE , S̃

(j)
EE ,

etc., and are defined by

(3.1) S̃
(i)
EE := S

(i)
EE − S

(i)T
E′ES

(i)−1
E′E′ S

(i)
E′E .

Here S
(i)
E′E′ is the principal minor of S(i) of Γi \ E and S

(i)
E′E an off-diagonal block.

We can now introduce the deluxe average over the edge E by

w̄E := (S
(i)
EE + S

(j)
EE + S

(k)
EE)

−1(S
(i)
EEw

(i)
E + S

(j)
EEw

(j)
E + S

(k)
EEw

(k)
E ).

We then establish that the contribution of the subdomain Ωi to the square of the norm of

contribution of the edge to PDw = w − EDw is the square of the S
(i)
EE−norm of

(S
(i)
EE + S

(j)
EE + S

(k)
EE)

−1((S
(j)
EE + S

(k)
EE)w

(i)
E − S

(j)
EEw

(j)
E − S

(k)
EEw

(k)
E ),

which can be estimated by the sum of

3w
(i)T

E (S
(j)
EE+S

(k)
EE)(S

(i)
EE+S

(j)
EE+S

(k)
EE)

−1S
(i)
EE(S

(i)
EE+S

(j)
EE+S

(k)
EE)

−1(S
(j)
EE+S

(k)
EE)w

(i)
E ,

3w
(j)T
E S

(j)
EE(S

(i)
EE + S

(j)
EE + S

(k)
EE)

−1S
(i)
EE(S

(i)
EE + S

(j)
EE + S

(k)
EE)

−1S
(j)
EEw

(j)
E ,

and

3w
(k)T
E S

(k)
EE(S

(i)
EE + S

(j)
EE + S

(k)
EE)

−1S
(i)
EE(S

(i)
EE + S

(j)
EE + S

(k)
EE)

−1S
(k)
EEw

(k)
E .

Here, we can replace w
(i)
E by the differencew

(i)
E∆ between the originalw

(i)
E and an appropriate

element in the primal space just as in the previous section.

The other two subdomains also contribute terms which can be obtained from the formulas

above by changing superscripts appropriately. The three terms that involve w
(i)
E∆ are

3w
(i)T
E∆ (S

(j)
EE+S

(k)
EE)(S

(i)
EE+S

(j)
EE+S

(k)
EE)

−1S
(i)
EE(S

(i)
EE+S

(j)
EE+S

(k)
EE)

−1(S
(j)
EE+S

(k)
EE)w

(i)
E∆,

3w
(i)T
E∆ S

(i)
EE(S

(i)
EE + S

(j)
EE + S

(k)
EE)

−1S
(j)
EE(S

(i)
EE + S

(j)
EE + S

(k)
EE)

−1S
(i)
EEw

(i)
E∆,



BDDC WITH ADAPTIVE PRIMAL SPACES 11

and

3w
(i)T
E∆ S

(i)
EE(S

(i)
EE + S

(j)
EE + S

(k)
EE)

−1S
(k)
EE(S

(i)
EE + S

(j)
EE + S

(k)
EE)

−1S
(i)
EEw

(i)
E∆.

By first adding the second and third terms, and then using that A(A+B)−1B = B(A+
B)−1A, we find that we can write the sum of these three terms as

3w
(i)T
E∆ S

(i)
EE : (S

(j)
EE + S

(k)
EE)w

(i)
E∆.

There are also two additional terms representing the squares of certain norms of w
(j)
E∆ and

w
(k)
E∆.

This formula represents a simplification of what was worked out in a joint paper with

Beirão da Veiga, et al., [3], and also in the development of the theory in a more recent paper

with Dohrmann on three-dimensional problems in H(curl), see [7]. We can now immedi-

ately obtain a bound of the square of the norm of this edge component of PDw by

3(w
(i)T
E∆ S

(i)
EEw

(i)
E∆ + w

(j)T
E∆ S

(j)
EEw

(j)
E∆ + w

(k)T
E∆ S

(k)
EEw

(k)
E∆)

using only that S
(i)
EE : (S

(j)
EE + S

(k)
EE) ≤ S

(i)
EE , etc. For certain problems, e.g., those with

constant coefficients in each subdomain and polyhedral subdomains, we can then obtain re-

spectable bounds even without solving any generalized eigenvalue problems. This typically

results in a bound involving a factor C(1 + log(H/h)), cf. [23, Lemma 4.16]; a fully satis-

factory proof of this result in given in [7].

Returning to the search for adaptive primal spaces, we note that ideally, we would now

like to prove that the three operators T
(i)
E := S

(i)
EE : (S

(j)
EE + S

(k)
EE), T

(j)
E := S

(j)
EE : (S

(i)
EE +

S
(k)
EE), and T

(k)
E := S

(k)
EE : (S

(i)
EE + S

(j)
EE) all can be bounded uniformly from above by

(3.2) S
(i)
EE : S

(j)
EE : S

(k)
EE := (S

(i)−1
EE + S

(j)−1
EE + S

(k)−1
EE )−1.

If this were possible, we could use that same matrix for estimates for w
(i)
E∆, w

(j)
E∆, and w

(k)
E∆.

But we are not that lucky. Before we look at the details, we note that if we were to use the

generalized eigenvalues obtained from two parallel sums with three Schur complements, as

in (3.2), we could complete our argument by noting that

S̃
(i)
EE : S̃

(j)
EE : S̃

(k)
EE ≤ S̃

(i)
EE ,

etc., and using the same arguments as in the previous section. Thus, a second parallel sum

would be constructed by using the Schur complements of the previous Schur complements,

associated with the minimal energy extension, given by (3.1).

Let us now make an attempt to find a bound such as

S
(i)
EE : (S

(j)
EE + S

(k)
EE) ≤ Const. S

(i)
EE : S

(j)
EE : S

(k)
EE .

The operator on the left equals

(3.3) (S
(i)−1
EE + (S

(j)
EE + S

(k)
EE)

−1)−1

and the one on the right is given by (3.2). The desired inequality would hold if

S
(j)−1
EE + S

(k)−1
EE ≤ Const. (S

(j)
EE + S

(k)
EE)

−1
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but by using the eigensystem of the generalized eigenvalue problem, S
(j)
EEφ = µS

(k)
EEφ, we

find that the best constant above would be maxµ(µ+2+1/µ). If S
(i)−1
EE S

(j)
EE and S

(i)−1
EE S

(k)
EE

were well-conditioned, we would obtain a good bound. In our experience, this is not at all

the case for many problems.

If we like to prove a bound, which does not require any additional assumptions, we have

to find a different common upper bound for T
(i)
E , T

(j)
E , and T

(k)
E . This can be accomplished

by using the trivial inequality

T
(i)
E ≤ T

(i)
E + T

(j)
E + T

(k)
E ,

etc. We will therefore define our generalized eigenvalue problem as

(3.4) (S̃
(i)
EE : S̃

(j)
EE : S̃

(k)
EE)φ = λ(T

(i)
E + T

(j)
E + T

(k)
E )φ.

This is the recipe that we have used in most of our numerical experiments. Given the

success of others with using parallel sums of each of the two sets of three Schur complements,

we have also carried out experiments with that alternative generalized eigenvalue problem

although we have not been able to justify this choice theoretically. We have also tested a

second alternative.

An alternative generalized eigenvalue problem would be obtained by replacing the sum

on the right of (3.4) by S
(i)
EE + S

(j)
EE + S

(k)
EE . Since T

(i)
E ≤ S

(i)
EE , we see that we again find a

solid bound. But we would then be one step further away from the expression of the energy

of (PDw)|E .
We can now write down a bound similar to the one of (2.3) in terms of a tolerance for the

eigenvalues of (3.4), just as in the previous section. We note that these eigenvalue problems

are different from those of subsection 2.2 and less attractive; see further the next subsection.

We have the following lemma:

LEMMA 3.1. Let λE
tol be the smallest eigenvalue of (3.4) ignored, when selecting the

primal constraints for a subdomain edge E shared by three subdomains Ωi,Ωj , and Ωk. We

then have

(3.5) ‖(PDw)|E‖
2
S̃
≤

3

λE
tol

(ai(w,w) + aj(w,w) + ak(w,w)),

where ai(·, ·) is the bilinear form associated to (1.1) and the subdomain Ωi, etc.

We can now combine the estimates of Lemmas 2.1 and 3.1 into what is our main theo-

retical result; cf. [10, Lemma 4.1].

THEOREM 3.2. Assume that all subdomain edges are common to no more than three

subdomains. The S̃-norm of the operator PD then satisfies

‖PDw‖2
S̃
≤

(
8N2

F

minF λF
tol

+
18N2

E

minE λE
tol

)
‖w‖2

Ŝ
.

Here NF is the maximum number of faces of any subdomain and NE the maximum number

of edges.

Therefore, the condition number of the deluxe BDDC algorithm satisfies

κ(M−1
BDDCŜ) ≤

8N2
F

minF λF
tol

+
18N2

E

minE λE
tol

.

We note that we have found this bound to be quite pessimistic given the quadratic factors

8N2
F and 18N2

E. The bound would even be worse if the number of subdomains common to

any subdomain edge would exceed 3.
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3.1. Some eigenvalue distributions. Following the example of subsection 2.2, we have

computed the eigenvalues of S
(i)−1
EE (S

(i)
EE − S̃

(i)
EE). The four plots provide information on the

eigenvalues of the generalized eigenvalue problem defined by S
(i)
EE and S̃

(i)
EE in four different

cases.

We note that while in all cases we have one eigenvalue equal to 1, the decay of the rest

of the spectra is much less pronounced than for the faces.

We note that a subdomain edge typically will be associated with much fewer degrees of

freedom than a subdomain face and that therefore the need for a very rapid decay of these

eigenvalues might be less important.

0 5 10 15 20 25 30 35

10
−1

10
0

(a) ρ = 1

0 5 10 15 20 25 30 35
10

−3

10
−2

10
−1

10
0

(b) Random ρ

Fig. 3.1: Eigenvalues of S
(i)−1
EE (S

(i)
EE − S̃

(i)
EE) for an edge, with 31 nodes, of a 3D problem

with cubic subdomains.

0 5 10 15 20 25 30 35

10
−1

10
0

(a) ρ = 1

0 5 10 15 20 25 30 35

10
−4

10
−2

10
0

(b) Random ρ

Fig. 3.2: Eigenvalues of S
(i)−1
EE (S

(i)
EE − S̃

(i)
EE) for an edge, with 32 nodes, of a 3D problem

with METIS subdomains.

3.2. Equivalence classes with four elements. This case closely parallels the previous.

Looking at this important case, we find that the energy of PDw can be estimated by the sum
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of four terms, the first two of which are

4w
(i)T
E∆ S

(i)
EE : (S

(j)
EE + S

(k)
EE + S

(ℓ)
EE)w

(i)
E∆

and

4w
(j)T
E∆ S

(j)
EE : (S

(i)
EE + S

(k)
EE + S

(ℓ)
EE)w

(j)
E∆.

If a bound of S
(i)
EE in terms of S̃

(i)
EE and similar bounds for the other pairs of Schur

complements were available, then we could obtain a bound right away for the BDDC algo-

rithm, without adaption, with a factor 4. This is also an improvement as far as the constant is

concerned in comparison to previous results. But here we will focus on selecting the primal

constraints adaptively.

With four subdomains in the equivalence class, there are four operators T
(i)
E := S

(i)
EE :

(S
(j)
EE + S

(k)
EE + S

(ℓ)
EE), T

(j)
E := S

(j)
EE : (S

(i)
EE + S

(k)
EE + S

(ℓ)
EE), etc. All these operators are

symmetric, positive definite and they appear directly in our estimate of the energy of PDw.
We can now use the trivial inequality

T
(i)
E ≤ T

(i)
E + T

(j)
E + T

(k)
E + T

(ℓ)
E

and very similar bounds for the other terms and arrive at the generalized eigenvalue problem

(3.6) (S̃
(i)
EE : S̃

(j)
EE : S̃

(k)
EE : S̃

(ℓ)
EE)φ = λ(T

(i)
E + T

(j)
E + T

(k)
E + T

(ℓ)
E )φ.

Both operators of (3.6) are symmetric with respect to the Schur complements. What

would be featured in the final bound would be the smallest eigenvalue not taken into account,

i.e., with eigenvectors not associated with the primal space, and a fixed factor, similar to the

bounds in Lemmas 2.1 and 3.1 and Theorem 3.2.

3.3. Recipes of some previous work. Several other generalized eigenvalue problems

have been quite successful but so far lack full theoretical justifications.

Scacchi and Zampini have used what would correspond to the operators S
(i)
EE : S

(j)
EE :

S
(k)
EE and S̃

(i)
EE + S̃

(j)
EE + S̃

(k)
EE and S̃

(i)
EE : S̃

(j)
EE : S̃

(k)
EE for difficult, very ill-conditioned

problems arising in isogeometric analysis.

Stefano Zampini has also used S
(i)
EE : S

(j)
EE : S

(k)
EE and S̃

(i)
EE : S̃

(j)
EE : S̃

(k)
EE successfully

for subdomain edges and three-dimensional H(curl) problems; see [25].

So far, we have not found as full a justification for these recipes as for the one based on

using the generalized eigenvalue problems (2.2), (3.4), and (3.6).

4. Numerical results. We present some numerical results for our adaptive BDDC deluxe

algorithm. We consider a triangulation of the unit cube into tetrahedral elements and decom-

positions of this domain into cubic subdomains or subdomains obtained by using a METIS

mesh partitioner; see Figure 4.1.

We solve the resulting linear systems, with random right-hand sides, with BDDC pre-

conditioners, to a relative residual tolerance of 10−6. The number of iterations and condition

number estimates (in parenthesis) are reported for each experiment.

EXAMPLE 4.1. We first consider the scalability of the BDDC deluxe algorithm for

a cubic subdomain partitioning of the unit cube and for different standard choices of the

primal space. “Corners” represents the common choice with only primal constraints for the

subdomain vertices. “Edges” adds the average over each edge to the set of primal constraints

while “Edges and Faces” additionally uses the averages over each face; see Table 4.1. We then
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(a) METIS decomposition (b) METIS subdomain

Fig. 4.1: Domain decomposition obtained by METIS for the unit cube, N = 27.

(a) Channels with ρ = 10
3

(b) Coefficient distribution

Fig. 4.2: Coefficient distribution with channels: black elements on the right have ρ = 103,

and all the other elements ρ = 1.

compare these results with adaptive algorithms based on generalized eigenvalue problems;

see Table 4.2. The numbers in its first two columns represent the fraction of the range of

the eigenvalues, related to the subdomain edges, that are incorporated into the primal space

through their eigenvectors. Thus, given the interval between the smallest and the largest

eigenvalues, we use, as primal constraints, the eigenvectors of all the eigenvalues that lie in

the leftmost 5% or 50% of this interval. For the faces, we always use a fixed 5%. Finally, for

the last column, “Adaptive”, we use λF
tol = (1 + log(H/h))−1, λE

tol = (kH/h)−1, where k
is the number of subdomains that share the edge E, to select the eigenvalues. These formulas

are borrowed from [10] and have allowed us to make direct comparisons with results of that

study; we have also found that this recipe selects a relatively small number of effective primal

constraints. However, we note that in numerical experiments, not reported here, we have

found that the smallest eigenvalues of the generalized eigenvalue problems for the subdomain

edges remain above a positive constant when H/h increases.
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The number [f ] in square brackets represents the ratio of the dimension of the primal

space and the total number of edges and faces. Different choices of ρ are considered in all

cases: ρ = 1, ρ = R (random values for each element) and ρ = S (a distribution with

rods and with jumps in the coefficients; see Figure 4.2). In the case of random values, we

use a uniform distribution to pick a number r in the interval [−3, 3], and then assign to each

element the value 10r.

Table 4.1: Performance for different choices of primal constraints, H/h = 8 and cubic sub-

domains. NE is the number of subdomain edges, and DOF is the number of degrees of

freedom of the problem.

Corners Edges Edges and Faces NE DOF
ρ N I(κ) |WΠ| I(κ) |WΠ| I(κ) |WΠ|
1 33 12(14.9) 8 12(13.9) 44 12(13.9) 98 36 15626

43 17(16.6) 27 17(15.6) 135 17(15.6) 279 108 35937

53 24(17.2) 64 24(16.1) 304 23(16.1) 604 240 68921

63 26(17.6) 125 25(16.5) 575 25(16.5) 1115 450 117649

R 33 23(42.9) 8 21(39.2) 44 23(39.1) 98 36 15626

43 34(77.9) 27 33(64.8) 135 37(62.3) 279 108 35937

53 51(83.4) 64 48(75.5) 304 51(75.2) 604 240 68921

63 68(106) 125 66(90.0) 575 61(90.0) 1115 450 117649

S 33 24(176) 8 24(174) 44 23(173) 98 36 15626

43 37(1068) 27 37(985) 135 33(981) 279 108 35937

53 60(1994) 64 59(1812) 304 55(1804) 604 240 68921

63 74(2234) 125 71(2022) 575 64(2013) 1115 450 117649

Table 4.2: Scalability for adaptive primal constraints, H/h = 8 and cubic subdomains.

Primal 5% Primal 50% Adaptive

ρ N I(κ) |WΠ| I(κ) |WΠ| I(κ) |WΠ| [f ]
1 33 6(1.5) 98 6(1.5) 122 8(2.2) 50 [0.6]

43 6(1.5) 279 6(1.5) 333 8(2.2) 189[0.8]

53 7(1.5) 604 6(1.5) 700 8(2.2) 460[0.9]

63 7(1.5) 1115 7(1.5) 1265 8(2.1) 905[0.9]

R 33 14(5.9) 115 11(3.2) 213 10(2.5) 237[2.6]

43 16(7.4) 336 13(7.3) 622 11(3.1) 746[3.0]

53 19(12.1) 765 13(4.0) 1361 11(3.1) 1698[3.1]

63 22(20.9) 1368 14(5.5) 2534 11(3.5) 3140[3.2]

S 33 9(10.5) 102 9(10.5) 119 10(10.6) 65[0.7]

43 10(14.3) 285 10(13.8) 340 11(11.6) 197[0.8]

53 11(15.2) 612 11(14.5) 708 11(15.2) 473[0.9]

63 12(15.3) 1125 12(14.6) 1272 12(15.3) 918[0.9]

These experiments show that the standard choices of primal constraints can fail quite

badly for problems with a coefficient that varies considerably inside the subdomains. The

results for the adaptive choices of primal constraints are much more satisfactory. We also

find that we can have success with only a small number of primal constraints even for the
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subdomain edges. We also note that adaptive choices of the primal constraints can result in

much smaller condition numbers even for the case of a constant coefficient ρ.

EXAMPLE 4.2. We verify the scalability of our algorithm for METIS subdomains, with

the same coefficient distribution as Example 4.1; see Tables 4.3 and 4.4. The results are in

many cases quite similar to those for cubic subdomains.

Table 4.3: Performance for different choices of primal constraints, H/h = 8 and METIS

subdomains. NE is the number of subdomain edges.

Corners Edges Edges and Faces NE
ρ N I(κ) |WΠ| I(κ) |WΠ| I(κ) |WΠ|
1 33 17(7.0) 51 16(6.4) 169 15(6.3) 268 126

43 20(7.4) 164 19(6.4) 516 17(6.3) 793 389

53 22(8.2) 417 25(11.2) 1265 23(11.1) 1886 951

63 26(10.0) 658 28(10.1) 1977 25(9.9) 2912 1458

R 33 21(15.5) 51 32(44.1) 169 31(54.9) 268 126

43 27(14.7) 164 46(124) 516 48(236) 793 389

53 34(19.5) 417 64(384) 1265 61(383) 1886 951

63 39(24.1) 658 68(108) 1977 71(242) 2912 1458

S 33 29(147) 51 50(173) 169 56(171) 268 126

43 35(263) 164 64(242) 516 69(232) 793 389

53 52(254) 417 110(1911) 1265 117(1859) 1886 951

63 57(398) 658 161(1125) 1977 160(1121) 2912 1458

Table 4.4: Scalability for adaptive primal constraints, H/h = 8 and METIS subdomains.

Primal 5% Primal 50% Adaptive

ρ N I(κ) |WΠ| I(κ) |WΠ| I(κ) |WΠ| [f ]
1 33 7(2.0) 252 8(2.0) 299 9(2.4) 108[0.5]

43 8(1.9) 732 7(1.8) 855 9(2.4) 363[0.5]

53 12(5.9) 1697 12(5.9) 1884 13(6.0) 927[0.6]

63 15(5.7) 2688 14(5.7) 2967 14(5.7) 2319[0.9]

R 33 15(15.1) 275 12(4.9) 379 13(4.8) 264[1.2]

43 16(12.9) 798 14(7.9) 1143 21(24.3) 834[1.2]

53 23(15.3) 1852 19(11.8) 2607 20(13.1) 2036[1.2]

63 24(16.0) 3003 22(15.7) 4216 20(15.8) 4115[1.7]

S 33 15(47.9) 263 14(37.8) 300 14(32.4) 143[0.6]

43 20(50.8) 748 20(50.3) 864 20(31.3) 402[0.6]

53 23(86.0) 1723 25(85.9) 1908 23(86.6) 981[0.6]

63 33(55.0) 2710 33(55.0) 3019 35(55.0) 2379[0.6]

EXAMPLE 4.3. This example is used to study the behavior of our algorithm for increas-

ing values of H/h with 27 cubic subdomains; see Table 4.5. We find the results, all obtained

with the tolerances used in the ”Adaptive” columns of Tables 4.2 and 4.4, quite satisfactory.

EXAMPLE 4.4. This example is used to compare the behavior of different eigenvalue

problems, with 27 cubic subdomains and H/h = 16; see Table 4.6. Here, ET refers to the
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Table 4.5: Results for the adaptive algorithm with 27 cubic subdomains, for increasing values

of H/h.

ρ = 1 ρ = R ρ = S
H/h I(κ) |WΠ| [f ] I(κ) |WΠ| [f ] I(κ) |WΠ| [f ]

4 5(1.2) 62[0.7] 7(1.7) 154[1.7] 5(1.2) 62[0.7]

8 8(2.2) 50[0.6] 10(2.5) 237[2.6] 10(10.7) 65[0.7]

12 9(2.7) 50[0.6] 12(4.0) 265[2.9] 11(19.7) 89[1.0]

16 10(3.1) 50[0.6] 13(4.3) 270[3.0] 12(5.4) 60[0.7]

generalized eigenvalue problem (3.6), Epar refers to

(S̃
(i)
EE : S̃

(j)
EE : S̃

(k)
EE : S̃

(ℓ)
EE)φ = λ(S

(i)
EE : S

(j)
EE : S

(k)
EE : S

(ℓ)
EE)φ.

and Emix to

(S̃
(i)
EE + S̃

(j)
EE + S̃

(k)
EE + S̃

(ℓ)
EE)φ = λ(S

(i)
EE : S

(j)
EE : S

(k)
EE : S

(ℓ)
EE)φ.

Table 4.6: Results for different eigenvalue problems with N cubic subdomains and H/h = 8.

ET Epar Emix

ρ N I(κ) |WΠ| [f ] I(κ) |WΠ| [f ] I(κ) |WΠ| [f ]
1 33 8(2.1) 50[0.6] 8(2.1) 50[0.6] 8(2.2) 38[0.5]

43 8(2.1) 189[0.8] 8(2.1) 189[0.8] 8(2.2) 141[0.6]

53 8(2.1) 460[0.8] 8(2.1) 460[0.8] 8(2.2) 352[0.7]

63 8(2.1) 905[0.9] 8(2.1) 905[0.9] 9(2.2) 713[0.7]

R 33 10(2.5) 237[2.6] 13(4.3) 71[0.8] 13(4.3) 59[0.7]

43 11(7.3) 746[3.0] 15(9.6) 246[1.0] 14(4.4) 198[0.8]

53 11(3.1) 1698[3.1] 16(8.8) 604[1.1] 14(4.8) 496[0.9]

63 11(3.5) 3140[3.2] 18(10.3) 1158[1.2] 17(8.5) 966[1.0]

S 33 10(10.6) 65[0.7] 10(12.0) 57[0.7] 11(13.6) 41[0.5]

43 11(11.6) 197[0.8] 14(30.0) 189[0.8] 14(29.1) 140[0.6]

53 11(15.2) 473[0.9] 15(30.0) 463[0.9] 14(29.1) 354[0.7]

63 12(15.3) 918[0.9] 17(30.0) 906[0.9] 16(29.4) 713[0.7]

5. Conclusions. We have developed adaptive choices for the primal spaces for BDDC

deluxe methods and elliptic problems, and a theoretical bound for the condition number of the

preconditioned system. We have first observed that adaptivity can considerably improve the

performance, since classical choices with primal vertices, edge averages, and faces averages

can fail in case of large variations in the coefficients; see Table 4.1 and 4.3. Second, numerical

experiments show that the primal constraints related to the subdomain faces generally are easy

to handle; this is supported by the discussion in subsection 2.2. Therefore, the 5% option has

been used in many of the experiments, resulting in just one or two constraints per face, in

most of cases. For the subdomain edges, we note that there is no significant difference in the

case of constant coefficients if we use a 5% or 50% of the interval. For the other two cases

considered, extending this interval beyond 5% can be more important; it is clear that such

an increase will improve the condition number and iteration count as illustrated in Tables 4.2
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and 4.4. Here, the results in the ”Adaptive” column show that we can keep the primal space

small.

As we have already observed, the tolerances used for subdomain faces and edges seem

to work well, since they produce small primal spaces with good condition numbers. In most

of the cases, the ratio between the dimension of the primal space and the total number of

edges and faces [f ] is smaller than 1, which means that, on average, we use fewer than one

constraint per subdomain face/edge. Finally, Table 4.6 exemplifies that different eigenvalue

problems considered by others can have a similar performance as ours.
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[20] D.-S. OH, O. B. WIDLUND, S. ZAMPINI, AND C. R. DOHRMANN, BDDC algorithms with deluxe scal-

ing and adaptive selection of primal constraints for Raviart-Thomas vector fields, tech. rep., Courant



20 JUAN G. CALVO AND OLOF B. WIDLUND

Institute, New York University, 2015. TR2015-978.

[21] C. PECHSTEIN AND C. R. DOHRMANN, Modern domain decomposition methods, BDDC, deluxe scal-

ing, and an algebraic approach. Talk by Pechstein in Linz, Austria, December 2013, URL:

http://people.ricam.oeaw.ac.at/c.pechstein/pechstein-bddc2013.pdf.

[22] Y. TIAN, How to express a parallel sum of k matrices, J. Math. Anal. Appl., 266 (2002), pp. 333–341.

[23] A. TOSELLI AND O. WIDLUND, Domain Decomposition Methods - Algorithms and Theory, vol. 34 of

Springer Series in Computational Mathematics, Springer-Verlag, Berlin Heidelberg New York, 2005.

[24] O. B. WIDLUND AND C. R. DOHRMANN, BDDC deluxe domain decomposition, in Proceedings of the

Twentysecond International Conference on Domain Decomposition Methods, vol. 104, Springer-Verlag,

Lecture Notes in Computational Science and Engineering, 2014. Held in Lugano, Switzerland, Septem-

ber 16-20, 2013. To appear.

[25] S. ZAMPINI, Adaptive BDDC deluxe for H(curl). Submitted to the proceedings of DD23, the twenty-third

International Conference on Domain Decomposition Methods.

[26] , PCBDDC: a class of robust dual-primal preconditioners in PETSc, SIAM J. Sci. Comput., (2016).

In revision.


