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Abstract. We consider a scalar advection{di�usion problem and a recently proposed discon-
tinuous Galerkin approximation, which employs discontinuous �nite element spaces and suitable
bilinear forms containing interface terms that ensure consistency. For the corresponding sparse, non-
symmetric linear system, we propose and study an additive, two{level overlapping Schwarz precon-
ditioner, consisting of a coarse problem on a coarse triangulation and local solvers associated to
suitable problems de�ned on a family of subdomains. This is a generalization of the corresponding
overlapping method for approximations on continuous �nite element spaces. Related to the lack of
continuity of our approximation spaces, some interesting new features arise in our generalization,
which have no analog in the conforming case. We prove an upper bound for the number of iterations
obtained by using this preconditioner with GMRES, which is independent of the number of degrees
of freedom of the original problem and the number of subdomains. The performance of the method is
illustrated by several numerical experiments for di�erent test problems, using linear �nite elements
in two dimensions.
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1. Introduction. We consider the following scalar advection-di�usion problem
with Dirichlet conditions

Lu = �r � (aru) + b � ru+ cu = f; in 
 ;
u = 0; on � ;

(1.1)

where 
 is a bounded open polyhedral domain in Rd, d = 2; 3, and � its boundary.
Problem (1.1) describes a large class of di�usion-transport-reaction processes.

Discontinuous Galerkin (DG) approximations have been used since the early 1970s
and are recently becoming more and more popular for the approximation of advection-
di�usion problems; we refer to [5] for a comprehensive review of these methods. Here,
we consider a discontinuous hp-�nite element method proposed in [9]. As for many DG
methods, the approximate solution belongs to a space of discontinuous �nite element
functions, i.e., it is piecewise polynomial of a certain degree on a given triangulation,
being in general discontinuous across the elements. Increasing the polynomial degree
as well as re�ning the triangulation results in better approximations of the desired
solution. Suitable bilinear forms, which also contain interface contributions, are then
employed, in order to ensure consistency. The corresponding systems of algebraic
equations are sparse but often too large to be handled by direct solvers. In addition,
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they are non-symmetric, since the bilinear forms contain advection- and interface-
terms.

Fixing the polynomial degree p � 1, we construct and analyze a Schwarz-
preconditioner for linear systems obtained from discontinuous hp{discretizations, to
be used with a Krylov{type method, like GMRES. Our two{level Schwarz precondi-
tioner is built from a coarse solver and a number of smaller local solvers, associated
to a partition of the domain 
. While the coarse level is designed to reduce the
low-energy components of the error, the �ne level splits the original problem into a
number of smaller problems, not only to reduce the problem size but also to enable
eÆcient parallel computing. We then generalize the additive Schwarz theory for non-
symmetric problems, developed by Cai and Widlund in [2] and [3], to the class of DG
approximations in question. Our main result is an upper bound for the convergence
rate of the preconditioned system, which is independent of the number of degrees of
freedom and the number of local problems.

We only know of one previous work on DD preconditioners for DG approxima-
tions. In [8], a two{level Schwarz preconditioner has been proposed and analyzed for
a di�erent type of DG approximations for the Poisson problem. As opposed to our
approach, the method in [8] gives rise to a symmetric positive{de�nite problem and
the Conjugate Gradient method can be employed. In [8] an explicit bound for the
condition number for a non{overlapping preconditioner is obtained, which grows lin-
early with the number of degrees of freedom in each subdomain. The method that
we present here is similar to that in [8], but we choose a di�erent DG approximation,
which we believe is more suited for advection{reaction{di�usion equations. The coarse
space that we consider is also di�erent, and we believe that it is more appropriate for
the case of overlapping methods. We then use GMRES and prove an upper bound
for the number of iterations obtained when a two{level overlapping preconditioner is
employed. Due to the available error estimates for GMRES and the non{symmetry
of our problem, bounds that are explicit in the relative overlap cannot be obtained in
general, similarly to the case of conforming approximations; see [2, 3]. Our numerical
results show however that, as expected, the rate of convergence improves when the
the overlap increases.

The rest of the paper is organized as follows:
Section 2 introduces the model problem and the discontinuous �nite element spaces.
After de�ning the bilinear form and the corresponding discrete problem in section 3,
we describe our overlapping Schwarz method in section 4. The technical tools used
for the proof of the convergence result in section 6, are provided in section 5. We
�nally illustrate the performance of our algorithm in section 7 by several numerical
experiments in the case of linear �nite elements in two dimensions.

2. Model Problem and Finite Element Spaces. We consider problem (1.1)
and make some further hypotheses. We assume that a = fai;jgdi;j=1 is a symmetric
positive{de�nite matrix,

�Ta(x)� � �0 > 0; � 2 Rd; x 2 
;

b and c are a vector �eld inW 1;1(
) and a function in L1(
), respectively, such that

(c� 1

2
r � b)(x) � 
0 > 0 ; x 2 
 ;(2.1)

and the right-hand side f is a function in L2(
). The existence of a unique solution
of (1.1) is shown in [9]. We note that we have considered only the case of strongly{
imposed homogeneous Dirichlet boundary conditions for simplicity, but that more
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general ones can be employed, such as Neumann, Robin, or weakly{imposed Dirichlet
conditions. Our analysis remains valid in these cases.

In the following, the norm, seminorm, and inner product of a Hilbert space H are
denoted by k � kH; j � jH, and (�; �)H, respectively.

In our analysis we will use some regularity properties for second order elliptic
problems and tacitly assume that the domain 
 and the subdomains considered satisfy
them. Such properties are certainly valid for general polygonal and polyhedral domains
with angles between their edges (or faces) smaller than 2�. In particular we will assume
that the Poisson problem on 
 (and consequently Problem (1.1) and its adjoint) with
Dirichlet or Neumann conditions has H�+3=2 regularity, for all � < �
, where �
 > 0
depends on 
 and the particular type of boundary conditions considered; see, [6, Cor.
18.15 and Cor. 23.5].

We next introduce Th, a conforming, shape{regular triangulation of 
 consisting
of open simplices � with diameter O(h). We denote by Pk(�) the space of polynomials
on �� of total degree k 2 N0 and de�ne the vector of local polynomial degrees p =
(p� : � 2 Th). We consider the �nite element space

Sp(
; Th) = fu 2 L2(
) : uj�� 2 Pp�(�)g :
Given D � 
, the union of some elements in Th, we de�ne the product space

H1(D; Th) = fu 2 L2(D)j uj� 2 H1(�) ; � 2 Th ; � � Dg:
With an abuse of notation, we also denote by H1(D; Th) the subspace of H1(
; Th)
consisting of functions that vanish in 
 n �D. We equip H1(D; Th) with the broken
Sobolev norm and seminorm, given by

kuk2H1(D;Th)
=
X
�2Th
��D

kuk2H1(�) ; juj2H1(D;Th)
=
X
�2Th
��D

juj2H1(�) ;

and de�ne H1
0 (
; Th) and Sp0 (
; Th) as the subspaces of functions in H1(
; Th) and

Sp(
; Th), respectively, vanishing on �. Our FE approximation space is chosen as

V h = Sp0 (
; Th) :
We denote by E the set of all open (d � 1){dimensional faces (edges, for d = 2) of
the elements Th, and de�ne the set of interior faces Eint = fe 2 E : e � 
g and the
interior interface �int, such that ��int = [e2Eint�e.

For � 2 Th, we denote the unit outward normal to @� at x 2 @� by ��(x) and
partition the part of its boundary that is also contained in �int into two sets:

@�� = fx 2 @� \ �int : b(x) � ��(x) < 0g (in
ow part) ;

@+� = fx 2 @� \ �int : b(x) � ��(x) � 0g (out
ow part) :

Given v 2 H1(
; Th), its restriction to �D � �
 is denoted by vD = vj �D. Then, for
x 2 @�� there exists a unique neighbor �0 with x 2 @�0 and set

v+� (x) = v� (x) ; v�� (x) = v�0 (x) ; bvc� = v+� � v�� :

Given an interior face e 2 Eint, there are two elements �i; �j , with, e.g., i > j,
that share this face. We de�ne

[v]e = vj@�i\e � vj@�j\e; < v >e=
1

2
(vj@�i\e + vj@�j\e) ;
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and � as the unit normal which points from �i to �j . We note, that � and � point in
di�erent directions in general and that b�c and [�] are distinct. While � and b�c depend
on the sign of the advective normal 
ux on an element boundary, � and [�] depend on
the element numbering. Similarly, for e = @� \ �, we set

[v]e = vje:

Finally, we introduce a discontinuity-penalization function � de�ned on �int:
for a face e 2 Eint, we denote the diameter of e by he and de�ne

�e = �0 � < �ap2 >e

he
;

where �a = jjajj and �0 is a suitably chosen positive constant.

3. Bilinear Form and Discrete Problem. For u; v 2 V h, we consider the
bilinear form

B(u; v) =
X
�2Th

Z
�

aru � rvdx+
X
�2Th

Z
�

(b � ru+ cu)vdx

�
X
�2Th

Z
@��\�int

(b � �)bucv+ds+
Z
�int

�[u][v]ds

+

Z
�int

([u] < (arv) � � > � < (aru) � � > [v]) ds ;

which has been proposed in [9]. Our DG approximation of (1.1) is then de�ned as the
unique u 2 V h such that

B(u; v) = (f; v)L2(
) ; v 2 V h :(3.1)

Problem (3.1) can be written in matrix form as

Bu = f;(3.2)

where we have used the same notation for a function u 2 V h and the corresponding
vector of degrees of freedom, and a bilinear form, e.g., B(�; �), and its matrix repre-
sentation in the space V h. Similarly, in the following we use the same notation for
functional spaces and the corresponding spaces of vectors of degrees of freedom.

We next de�ne some additional bilinear forms. It can be easily veri�ed that

A(u; v) =
X
�2Th

Z
�

aru � rvdx +
Z
�int

�[u][v]ds ;

de�nes a scalar product in H1
0 (
; Th) and a norm k � kA = A(�; �) 12 .

Furthermore, let

D(u; v) =
X
�2Th

Z
�

b � ru v dx�
X
�2Th

Z
@��\�int

(b � �)bucv+ds ;

S(u; v) =

Z
�int

([u] < (arv) � � > � < (aru) � � > [v]) ds ;

C(u; v) = (cu; v)L2(
) :
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An important tool in the analysis of Schwarz methods is represented by some
Poincar�e and Friedrichs type inequalities valid for Sobolev spaces. The following
lemma provides two generalizations to the discontinuous space H1(D; Th); see also
[1, 8].

Lemma 3.1 (Poincar�e-Friedrichs). Let D � 
 be a domain which is the union of
some elements in Th. Then there exists a positive constant C depending only on the
geometry of D but not on its size, and the shape-regularity constant of Th, such that,
for all u 2 H1(D; Th),

kuk2L2(D) � CH2
D

0B@juj2H1(D;Th)
+
X
e2E

e�D

Z
e

h�1e [u]2ds

1CA ;(3.3)

where HD is the diameter of D. If in addition
R
D
udx = 0, then

kuk2L2(D) � CH2
D

0B@juj2H1(D;Th)
+
X
e2E
e�D

Z
e

h�1e [u]2ds

1CA :(3.4)

Proof. Here, we only present a proof for the the Poincar�e-type inequality (3.4). A
proof for the Friedrichs inequality (3.3) can be found in [1] for the case of a convex D
and can be easily generalized to our more general case.

We �rst suppose that D has unit diameter and proceed similarly to [1, Lem. 2.2].
Let u 2 H1(D; Th) with

R
D
udx = 0 and v 2 H�+3=2(D), for a � > 0, the solution of

the following Neumann problem

��v = u; in D;
@v

@n
= 0; on @D;

Z
D

vdx = 0:

Then there exists a constant C > 0 such that

kvkH�+3=2(D) � CkukL2(D):
Integration by parts on each � and summation over all the elements yields

kuk2L2(D) = (u;��v)L2(D)
= (ru;rv)L2(D) �

X
��D

�
u;

@v

@n

�
L2(@�n@D)

�
 
juj2H1(D;Th)

+
X
e�D

Z
e

h�1e [u]2ds

! 1
2

�
 
jvj2H1(D;Th)

+
X
��D

Z
@�n@D

h�

�
@v

@n

�2
ds

! 1
2

Using a trace inequality for @v=@n as in [1] we obtain (3.4).
The corresponding inequalities for the case of a general D can be obtained em-

ploying a scaling argument. 2

We note that (3.3) is the generalization of the corresponding estimate for a func-
tion in H1(
) with support contained in �D to a discontinuous function in H1(D; Th).
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In particular, (3.3) remains valid for a function that is constant in D and vanishes in

n �D, due to the contributions on the edges on @D. On the other hand, (3.4) requires
additional restrictions on u, since it is not valid for a constant function on D.

The following inverse inequalities are proven in [13, Sect. 4.6.1].
Lemma 3.2 (Local Inverse Inequalities). There exists a positive constant C de-

pending only on the shape-regularity constant of Th such that for all u 2 Pp�(�) and
for all � 2 Th

kuk2L2(@�) � C
p2�
h�

kuk2L2(�) ;(3.5)

juj2H1(�) � C
p4�
h2�

kuk2L2(�) :(3.6)

Using these tools, we obtain the following Lemmata.
Lemma 3.3 (Continuity). There exists C > 0 such that

jB(u; v)j � C kukAkvkA ; u; v 2 V h :

Proof. The bilinear form B consists of �ve contributions I, II, III, IV, and V, all
of which can be bounded by CkukAkvkA:
We easily �nd

jI j = j
X
�2Th

Z
�

aru � rv dxj � C kukAkvkA ;

jIV j = j
Z
�int

�[u][v] dsj � C kukAkvkA :

The Cauchy-Schwarz inequality and Lemma 3.1 with D = 
 yield

jII j = j
X
�2Th

Z
�

(b � ru+ cu)v dxj � C
X
�2Th

�jujH1(�)kvkL2(�) + kukL2(�)kvkL2(�)
�

� C kukAkvkA :

Applying the inverse inequality (3.5), Lemma 3.1, and the de�nition of �, we �nd

jIII j = j
X
�2Th

Z
@��\�int

(b � �)bucv+dsj

� C

 X
�2Th

h�1� kbuck2L2(@��\�int)
! 1

2
 X
�2Th

h�kv+k2L2(@��\�int)
! 1

2

� C

�Z
�int

�[u]2ds

� 1
2

kvkL2(
) � C kukAkvkA :

Using (3.5), we �nally obtain

jV j = j
Z
�int

([u] < (arv) � � > � < (aru) � � > [v]) dsj
6



� C

0B@ X
e2Eint

h�1e k[u]k2L2(e) �
X
�2Th

@���int

h�k < arv > k2L2(@�)

1CA
1
2

+ C

0B@ X
�2Th

@���int

h�k < aru > k2L2(@�) �
X

e2Eint

h�1e k[v]k2L2(e)

1CA
1
2

� C

 Z
�int

�[u]2ds �
X
�2Th

karvk2L2(�)
! 1

2

+ C

 X
�2Th

karuk2L2(�) �
Z
�int

�[v]2ds

! 1
2

� C kukAkvkA : 2

Lemma 3.4 (Coercivity). We have

B(u; u) � kuk2A ; u 2 H1
0 (
; Th) :

Proof.

B(u; u) =
X
�2Th

kparuk2L2(�) +
Z
�int

�[u]2ds

+
X
�2Th

Z
�

(b � ru+ cu)udx�
X
�2Th

Z
@��\�int

(b � �)bucu+ds

=: kuk2A +R(u; u)

Therefore, we just have to make sure that R(u; u) � 0. Integration by parts yields

R(u; u) =
X
�2Th

Z
�

�
�1

2
(r � b) + c

�
u2dx

+
X
�2Th

 Z
@�\�int

1

2
(b � �)(u+)2ds�

Z
@��\�int

(b � �)bucu+ds
!
:

Condition (2.1) ensures that the �rst sum is positive. To deal with the second sum,
we consider an interior face e � Eint which is common to the elements � and �0. Let
e be an in
ow edge of, e.g., �0. Then the second sum can be written asX

e�Eint

Z
e

�
1

2
(b � ��)(u�)2 + 1

2
(b � ��0)(u�0)2 � (b � ��0)(u�0 � u�)u�0

�
ds

=
X

e�Eint

Z
e

1

2
jb � ��0 j(u�0 � u�)

2 ds =

Z
�int

1

2
jb � �j[u]2ds � 0 ;

where we have used the fact that e � @��
0 also belongs to @+�. 2

Using similar arguments as in the proofs of Lemmata 3.3 and 3.4, we can prove
the following Lemma:

Lemma 3.5. There exists a constant C > 0 such that for all u; v 2 V h

jD(u; v)j � CkukL2(
)kvkA ;
jD(u; v)j � CkukAkvkL2(
) :
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Finally, we are able to control the interface penalization contribution by requiring
that the penalization coeÆcient is suÆciently large:

Lemma 3.6. Let H > 0 and �0 � c0=H for some constant c0 > 0. Then there
exists C > 0, such that for all u; v 2 V h

jS(u; v)j � C
p
H kukAkvkA :

Proof. Since ��1 � CHh, using the inverse inequality (3.5), we obtain

jS(u; v)j �
 X

�2Th

�k[u]k2L2(@�)
! 1

2
 X

�2Th

��1k < arv > k2L2(@�)
! 1

2

� C kukA
p
H

 X
�2Th

h k < arv > k2L2(@�)
! 1

2

� C
p
H kukAkvkA : 2

We remark that the restriction imposed by the previous lemma on � does not appear
to be required in practice; see Section 7.

4. An overlapping Schwarz Method. In this section, we introduce our two{
level algorithm. It is the generalization of the classical overlapping method with a
standard coarse space. We refer to [15] and [14] for further details and some imple-
mentation issues.

We �rst introduce a shape{regular coarse triangulation of 


TH = f
ig1�i�N ;
of diameter H > h and suppose that Th is obtained by re�ning TH . We next extend
each 
i to a larger region 


0
i � 
, in such a way that 
0i is the union of some elements

in Th. Concerning the overlap of the extended subregions, we assume that there exists
a constant � > 0 such that

dist(@
0i \ 
; @
i) � �H ; 1 � i � N :(4.1)

Before proceeding, we remark that more general partitions and coarse meshes can be
employed in overlapping methods. In particular, the coarse mesh does not need to be
related to the �ne one, and the non{overlapping partition f
ig does not need to be
related to the coarse mesh TH . Indeed, one only needs to assume that the diameter
of TH and the diameters of the f
ig are of the same size H ; see, e.g., [4]. Our results
and proofs remain valid in this more general case.

The �rst problem we need to address is the choice of the local solvers associated
to the f
0ig. Our FE spaces are discontinuous and at a �rst glance there are no traces
to match! We then proceed in a pure algebraic way, by �rst de�ning some local spaces
(or, equivalently, by extracting some blocks from B) and identify the corresponding
problems, if any, that they represent.

Our local spaces are de�ned by

Vi = fu 2 V h : u(x) = 0 for x 2 
n
0i g ; 1 � i � N :(4.2)

We note that a function in Vi is discontinuous and, as opposed to the case of con-
forming approximations, in general does not vanish on @
0i. Let R

T
i : Vi ! V h be

8



the natural interpolation operator from the subspace Vi into Vh. We recall that the
restriction operator Ri : V h ! Vi, de�ned as the transpose of RT

i with respect to
the Euclidean scalar product, puts to zero the degrees of freedom outside �
0i. The
matrix block corresponding to the space Vi is obtained by extracting all the degrees
of freedom relative to the elements contained in 
0i and is equal to

Bi = RiBR
T
i : Vi �! Vi:

It can easily be veri�ed that the matrix Bi is the representation of the following local
bilinear form:

Bi(u; v) =
X
�2Th
��
0

i

Z
�

(aru � rv + b � ruv + cuv)dx

�
X
�2Th
��
0

i

Z
@��\
0i

(b � �)bucv+ds+
Z
�int\
0i

�[u][v]ds

+

Z
�int\
0

i

([u] < (arv) � � > � < (aru) � � > [v]) ds

�
X
�2Th
��
0

i

Z
@��\@
0i

(b � �)u+v+ds

+
1

2

Z
�int\@
0

i

(u((arv) � �)� (aru) � �)v) ds+
Z
�int\@
0i

�uvds

9>>>>=>>>>;
for u; v 2 Vi. The contributions in the �rst three lines come from the DG approxima-
tion of the operator L on 
0i, while the remaining contributions are boundary contri-
butions on @
0i, which appear since we have kept the boundary degrees of freedom in
the de�nition of Vi. We �rst consider the pure hyperbolic case a = 0. Following [9], we
see that Bi is the approximation of a Dirichlet problem with weakly imposed bound-
ary conditions on the in
ow part of the boundary @
0i and it is therefore well{posed.
This is opposed to the standard overlapping method for conforming approximations,
where, by extracting local blocks, strongly imposed Dirichlet conditions on all @
0i
and thus potentially ill{posed local problems are obtained. In the pure di�usive case
b = 0, we note the presence of the term 1=2 in the skew{symmetric boundary contri-
bution, arising from the average of the 
uxes. Without this multiplicative factor, Bi

would still be the approximation of a Dirichlet problem with weakly imposed bound-
ary conditions on @
0i; see [9]. Despite the presence of the term 1=2, we note however
that Bi is positive{de�nite thanks to the presence of the penalization contribution
and the local problem on 
0i is well{posed. In the general transport{di�usion case,
the local matrices are still positive{de�nite, even if they do not in general represent
Dirichlet local problems and we will prove that our choice of local problems leads to
an optimal and scalable method.

We also note that, thanks to the choice of the local spaces, the case of zero overlap,


0i = 
i; 1 � i � N;

can be considered, as was already noted in [8]. This has no analog in the conforming
case and is due to the fact that we work with discontinuous FE spaces. Most of
our numerical results show that the number of iterations obtained in this case is
comparable, even if larger, to that for the overlapping case.
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We now introduce our coarse solver. It is de�ned on TH and is the FE approxi-
mation of our original problem on the continuous, piecewise linear FE space

V0 = S1(
; TH) \H1
0 (
) � V h:

If RT
0 : V0 ! V h is the natural interpolation operator from the subspace V0 into Vh,

then our coarse solver is

B0 = R0BR
T
0 ;

and it can be easily shown to be positive{de�nite. We are now ready to de�ne our
Schwarz preconditioner

B̂�1 =

NX
i=0

RT
i B

�1
i Ri:

In order to analyze the spectral properties of the corresponding preconditioned system
B̂�1B, we write the latter using some projections; see [14]. As is standard practice in
Schwarz methods, for 0 � i � N we de�ne the B-projections Pi : V

h ! Vi by

B(Piu; v) = B(u; v) ; v 2 Vi :

It can be easily shown (see [14]) that

Pi = (RT
i B

�1
i Ri)B;

and consequently that the preconditioned matrix B̂�1B is equal to the additive
Schwarz operator:

P =

NX
i=0

Pi :

In Theorem 6.1, we will show that P is invertible.
We consider the generalized minimum residual method (GMRES) applied to the

preconditioned system

Pu = g;(4.3)

where g = B̂�1f . Some convergence bounds for GMRES are proven in [7], to which
we refer for a description of the algorithm. We denote by

cP = inf
u6=0

A(u; Pu)

A(u; u)
and CP = sup

u6=0

kPukA
kukA

the smallest eigenvalue of the symmetric part and the operator norm of P , respectively,
Then, if cp > 0, GMRES applied to (4.3) converges in a �nite number of steps, and
after m steps the norm of the residual is bounded by

krmkA �
 
1� c2p

C2
P

!m
2

kr0kA :
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5. Technical Tools. In this section, we provide all the technical tools needed
for the proof of our convergence result contained Theorem 6.1.

Let fBy be a ball of radius H centered at the point y 2 
, and set By = fBy \ 
.
The following de�nition of the quasi-interpolant as well as the proof of Lemma 5.1 are
given for d = 2. Our de�nitions and analysis can easily be adapted to the case d = 3.

We de�ne an interpolation operator

QH : L2(
)! V0;

by assigning a nodal value to every vertex a; b; c of every coarse element K 2 TH . We
set

(QHu)(y) = meas(By)
�1

Z
By

u(x) dx; y 2 fa; b; cg :

The following lemma ensures that QH is stable and provides an error bound.
Lemma 5.1 (Coarse Mesh Quasi-Interpolant). There exists C > 0, independent

of h and H, such that, for all u 2 H1(
; Th)
kQHu� uk2L2(
) � CH2 kuk2A ;(5.1)

kQHuk2A � C kuk2A :(5.2)

Proof. We consider a coarse element K 2 TH with vertices a; b; c and denote by eK
the smallest convex neighborhood of K that also contains Ba; Bb, and Bc. We clearly
have,

kQHukL2(K) � C kuk
L2(eK)

; u 2 L2(
) :

Since eK has a diameter of order H , inequality (3.4) yields a positive constant C
independent of h and H , such that for v 2 H1(
; Th) with

ReK v dx = 0

kvk2
L2(eK)

� CH2

�
jvj2

H1(eK;Th)
+

Z
�int\eK �[v]2ds

�
:

Let now u 2 H1(
; Th) and �u := u � meas( eK)�1
ReK udx. Since QH reproduces

constant functions on K, we obtain

kQHu� uk2L2(K) = kQH �u� �uk2L2(K) � C k�uk2
L2(eK)

� CH2

�
juj2

H1(eK;Th)
+

Z
�int\eK �[u]2ds

�
:

Summing over all K 2 TH and taking into account that for each x 2 
 the
number of extended elements eK to which it belongs is uniformly bounded, we have,
for u 2 H1(
; Th),

kQHu� uk2L2(
) � C
X
eK2TH kQHu� uk2

L2(eK)

� CH2
X
eK2TH

�
juj2

H1(eK;Th)
+

Z
�int\eK �[u]2ds

�
� CH2kuk2A ;

11



which concludes the proof of (5.1).
Using the inverse inequality (3.6) for an element K 2 TH and (3.4), we �nd

jQHuj2H1(K) = jQH �uj2H1(K) � C H�2 kQH �uk2L2(K)

� CH�2
�
kQH �u� �uk2L2(K) + k�uk2

L2(eK)

�
� C

�
juj2

H1(eK;Th)
+

Z
�int\eK �[u]2ds

�
:

Since QHu is continuous in 
, kQhukA is equal to the broken H1{seminorm, and
summing over all K 2 TH concludes the proof of inequality (5.2). 2

We note that we have used the interpolant QH instead of the L2 orthogonal
projection, in order to make our analysis valid in the case of a coarse mesh that is not
quasi{uniform; see, e.g., [4].

The following lemma ensures that, for every function in the discontinuous space
V h, a stable decomposition can be found for the family of subspaces fVig.

Lemma 5.2 (Decomposition). There exists a constant C0 > 0, independent of h

and H, such that for all u 2 V h there exists fui 2 Vig0�i�N with u =
PN

i=0 ui and

NX
i=0

kuik2A � C2
0 kuk2A :

Proof. We denote by C(
; Th) = fu 2 L2(
) : uj�� 2 C(��) ; � 2 Thg the space of
piecewise continuous functions. We de�ne the operator

Ih : C(
; Th)! V h ;

where for each element � 2 Th, the restriction Ihj�� to �� is equal to the nodal interpo-
lation operator onto Pp�(�).

For u 2 V h, we de�ne�
u0 = QHu;
ui = Ih(�i(u� u0)) ; 1 � i � N ;

where f�ig1�i�N is a piecewise linear partition of unity relative to the family
f
0ig1�i�N ; see, e.g., [14]. We recall, in particular, that �i 2 [0; 1], supp(�i) � �
0i,

for 1 � i � N , and
PN

i=1 �i(x) = 1 for all x 2 
. Furthermore, our assumption (4.1)
on the overlap of the extended subdomains ensures that kr�ikL1(
) � CH�1, where

C depends on �. By construction, ui 2 Vi for 0 � i � N , and u =
PN

i=0 ui.
Let w = u � u0. The same arguments used in the proof of the decomposition

lemma for standard conforming �nite elements [14, Chapter 5.3], yield, for � 2 Th
and 1 � i � N ,

juij2H1(�) � 2 jwj2H1(�) + CH�2 kwk2L2(�) :
Since for each x 2 
 the number of ui(x), which di�er from zero, is uniformly bounded
(�nite covering), summing over i yields

NX
i=1

juij2H1(�) � C jwj2H1(�) + CH�2 kwk2L2(�) :

12



We next sum over all the elements � and obtain

NX
i=1

juij2H1(
;Th)
� C jwj2H1(
;Th)

+ CH�2 kwk2L2(
) :

Furthermore, we have, for all 1 � i � N ,

k[�iw]kL1(�int) � k[w]kL1(�int) ;

where we have used the fact that �i is continuous and that k�ikL1(
) � 1. Since

w 2 V h, we obtain Z
�int

�[ui]
2ds �

Z
�int

�[w]2ds :

The �nite covering of the subdomains yields

NX
i=1

Z
�int

�[ui]
2ds � C

Z
�int

�[w]2ds :

Summing the H1-seminorms and jump terms, we obtain

NX
i=1

kuik2A � C kwk2A + CH�2 kwkL2(
) ;

and the proof is concluded by applying Lemma 5.1. 2

Remark 1. The proof of the previous lemma can be carried out also in the case
of zero overlap: 
0i = 
i. In this case the partition of unity f�ig consists of the
(discontinuous) characteristic functions of the subdomains f
ig. However, C2

0 grows
linearly with H=h in this case; see also [8] for a similar algorithm.

The following lemma contains some bounds for the B-projections fPig.
Lemma 5.3 (B-Projections). There exists C > 0, such that for all u 2 V h,

kP0ukA � C kukA;
kP0u� ukL2(
) � C H
 kukA
kPiukL2(
) � C H kPiukA ; 1 � i � N ;

where 
 > 1=2 is related to the regularity constant of the adjoint problem with Dirichlet
boundary conditions.

Proof. The coercivity and continuity of B, and the de�nition of P0 yield

kP0uk2A � B(P0u; P0u) = B(u; P0u) � C kukAkP0ukA ;
which gives the �rst inequality.

In order to obtain a bound for the error u�P0u, we consider the auxiliary problem
L�w = P0u� u in 
; w = 0 on � ;

where L� is the adjoint of L. We have for any w0 2 V0

kP0u� uk2L2(
) = (P0u� u;L�w)L2(
) = B(P0u� u;w)

= B(P0u� u;w � w0) � C kP0u� ukAkw � w0kA :
13



Since P0u� u 2 L2(
), then w 2 H�+3=2(
) for a � > 0, and the Sobolev embedding
theorem implies H�+3=2(
) � C(
). Therefore, w�w0 is continuous, and kw�w0kA
is equal to the broken H1{seminorm. Standard approximation estimates yield the
existence of w0 2 V0 such that

kw � w0kH1(
) � C H
 kwkH1+
 (
) ;

with 
 = � + 1=2; see, e.g., [12]. Therefore,

kP0u� uk2L2(
) � C H
 kP0u� ukAkP0u� ukL2(
) ;

which gives the L2-bound.
The inequalities for i > 0 result from the observation that Piu vanishes outside a

region of diameter O(H) and the Friedrichs inequality in Lemma 3.1. 2

As for the analogous algorithm in the conforming case ([2, 14]), we need to control
the lower{order and skew{symmetric terms of the bilinear form B. Lemmata 3.1, 3.5,
3.6 and 5.3 set the stage for the proof of the following bounds, which can be carried
out as in [14, Lem. 16, Ch. 5.4].

Lemma 5.4. There exists a constant C > 0, independent of h and H, such that
for all u 2 V h and 0 � i � N

jC(Piu� u; Piu)j � C H�i
�kuk2A + kPiuk2A

�
;

jD(Piu� u; Piu)j � C H�i
�kuk2A + kPiuk2A

�
;

jS(Piu� u; Piu)j � C
p
H
�kuk2A + kPiuk2A

�
;

where �0 = 
 and �i = 1 for i > 0.

6. The convergence result. We have now completed all the preparations re-
quired to obtain a lower bound for cP and an upper bound for CP . We remark that
the following proof is similar to those in [2], [3], and [14, Ch. 5.4].

Theorem 6.1. There exist constants C > 0, H0 > 0, c(H0) > 0, such that, for
all u 2 V h,

A(Pu; Pu) � C A(u; u) ;

c(H0)A(u; u) � A(u; Pu); H � H0:

Proof. First we observe, that the �nite covering property implies

kPuk2A =







NX
i=0

Piu







2

A

� C

NX
i=0

kPiuk2A :(6.1)

Since B is coercive and continuous, we �nd

NX
i=0

kPiuk2A �
NX
i=0

B(Piu; Piu) =

NX
i=0

B(u; Piu) = B(u;

NX
i=0

Piu)

� C kukA






NX
i=0

Piu







A

� C kukA
 

NX
i=0

kPiuk2A
! 1

2

:(6.2)

Combining (6.1) and (6.2), we obtain kPuk2A � C kuk2A, which proves our upper
bound.
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Since A(u; Pu) =
PN

i=0 A(u; Piu), we need to consider the term A(u; Piu) for
0 � i � N . Using the de�nition of Pi and B, we have

0 = B(Piu� u; Piu)

= A(Piu� u; Piu) + C(Piu� u; Piu) +D(Piu� u; Piu) + S(Piu� u; Piu) ;

and consequently, using Lemma 5.4,

A(u; Piu) � A(Piu; Piu)� jC(Piu� u; Piu)j � jD(Piu� u; Piu)j � jS(Piu� u; Piu)j
�
�
1� Cmax(H�i ;

p
H;H)

�
kPiuk2A � C max(H�i ;

p
H;H) kuk2A :

If we choose H small enough such that

! = min
0�i�N

�
1� Cmax(H�i ;

p
H;H)

�
;

is positive, we have

A(u; Piu) � !kPiuk2A � Æikuk2A ;

where Æi = max(H�i ;
p
H;H). Again, the �nite covering implies

A(u; Pu) � !

NX
i=0

kPiuk2A � C kuk2A :(6.3)

The coercivity and continuity of B, Lemma 5.2, and the Cauchy-Schwarz inequality
yield

kuk2A � B(u; u) =

NX
i=0

B(u; ui) =

NX
i=0

B(Piu; ui)

� C

NX
i=0

kPiukAkuikA � C

 
NX
i=0

kPiuk2A
! 1

2

�
 

NX
i=0

kuik2A
! 1

2

� C

 
NX
i=0

kPiuk2A
! 1

2

� C0 kukA ;

and therefore
PN

i=0 kPiuk2A � C kuk2A, which, combined with (6.3), gives the desired
lower bound for H suÆciently small. 2

Remark 2. We note that our analysis is valid for FE spaces of arbitrary polyno-
mial degree on each element, but the constants C, H0, and c in Theorem 6.1 depend
on p := maxfp�j � 2 Thg in general.

7. Numerical results. We present some numerical results to illustrate the per-
formance of our overlapping Schwarz algorithm for piecewise linear �nite elements
in two dimensions. We have tested the two{level preconditioner introduced in the
previous sections, as well as the one{level preconditioner built on the same parti-
tions, and we are interested in the performance of the two methods when varying h,
H , and the overlap. We consider Problem (1.1) in 
 = (0; 1)2 with weakly{imposed
Dirichlet boundary conditions; see, e.g., [9]. Our test cases are for a Poisson problem,
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an advection-di�usion equation with constant coeÆcients, and an advection-di�usion
equation with a rotating 
ow �eld.

We use a two-level subdivision of 
, consisting of a �ne triangulation Th, obtained
by dividing 
 into h�2 squares that are then cut into two triangles, and a coarse
triangulation consisting of H�2 squares 
i, which are possibly extended in order to
form a partition ff
ig by adding q 2 N0 layers of h-level triangles in all directions. We

set 
0i =
f
i \ 
. The overlap is Æ = qh, Æ � 0.

Though our theory requires the penalization parameter �0 to be of order H�1,
our experiments show that in practice this restriction is not required. We have chosen
�0 = 1 and solved the coarse and local problems exactly by using Gaussian elimination.

We remark that all our theoretical estimates employ the A{induced scalar prod-
uct, but that our GMRES implementation employs the standard Euclidean product.
Our theoretical results are still valid in this case:
The inverse estimates (3.5) and (3.6) yield positive constants d0; d1 independent of h,
such that

d0h
dkxk22 � kxk2A � d1h

d�2kxk22; x 2 Rn ;

see for example [10, Sect. 7.7]. Therefore, the use of the Euclidean norm increases the
iteration counts only by an additive term of order log10(h), which is hard to observe
in our computational experiments; see also [11, Sect. 5].

In our experiments we stop GMRES as soon as krik2 � 10�6kr0k2 or after 100
iterations. Our numerical results have been obtained with Matlab 5.3.

7.1. Poisson equation. We �rst consider the Poisson equation with inhomoge-
neous Dirichlet conditions:

��u = xey in 
 ; u = �xey on � :

and partitions into N �N squares (H = 1=N), with N = 2; 4; 8; 16; 32.
Tables 7.1 show the iteration counts for the one{ and two{level algorithms, as

functions of h and the inverse of the relative overlap. We have also considered the
case of zero overlap, denoted by H=Æ = 1. We note that both methods appear to
be rather insensitive to the size of the original problem when H is �xed, but that, as
expected, the iterations for the one{level preconditioner (table on the left hand-side)
grow with the number of subdomains. The two{level algorithm (table on the right
hand-side), on the other hand, appears to be scalable and this con�rms our analysis.
We also note that the iteration numbers decrease when the relative overlap increases.
Since our convergence bound for the two{level preconditioner is not explicit in the
overlap, we can only give the heuristic explanation that the subproblems capture more
and more of the entire problem when the overlap is increased. Finally, we remark that
the restriction on the penalization term �0 > C=H does not appear to be required in
practice. This is essential, since if this coeÆcient is too high, the accuracy of the FE
solution deteriorates.

The case of zero overlap requires a special discussion. Our results show that the
number of iterations obtained are generally comparable to, but slightly higher than,
those obtained in the case of Æ > 0 for both algorithms. The iterations are considerably
higher only for the case h = 1=128 and H = 1=8. From our numerical results, we are
unable to deduce whether the two{level method is optimal or non{optimal with the
number of iterations growing as a power of H=h. We refer to the following tables for a
clearer behavior of the convergence rate in this case, and to [8] for a method with the
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H=Æ
h�1 H�1 1 16 8 4 2
16 2 17 - 16 14 12
16 4 24 - - 22 17
32 2 22 21 17 14 12
32 4 33 - 30 23 18
32 8 44 - - 38 29
64 2 30 27 22 17 14
64 4 45 40 32 24 18
64 8 60 - 53 41 30
64 16 84 - - 73 54
128 4 60 54 44 33 25
128 8 82 72 57 43 31
128 16 100 - 100 78 57
128 32 100 - - 100 100

H=Æ
h�1 H�1 1 16 8 4 2
16 2 13 - 11 11 11
16 4 13 - - 13 14
32 2 16 13 12 11 10
32 4 15 - 13 12 13
32 8 13 - - 13 15
64 2 21 16 14 12 11
64 4 19 15 14 13 13
64 8 16 - 13 13 14
64 16 13 - - 13 15
128 4 25 18 16 14 13
128 8 35 15 14 13 14
128 16 15 - 13 13 15
128 32 12 - - 13 15

Table 7.1

Poisson's equation: Iteration counts for GMRES and the one{level and two{level precondition-

ers, respectively, versus h and the relative overlap.

same local solvers but a di�erent coarse space, which exhibits a rate of convergence
that appears to grow linearly with H=h. However, we believe that due to the minimal
communication between the subdomains and the relatively small iteration counts that
we have obtained, the two-level algorithm with zero overlap might be competitive in
practice.

7.2. Advection{di�usion problem with constant coeÆcients. We next
consider the advection-di�usion equation

��u+ b � ru = f in 
 ; u = 0 on � ;

with constant coeÆcients and zero Dirichlet boundary conditions. We consider the
two cases

b 2 f�(k�; k�) : k = 3; 300g :
The right-hand side f is always chosen such that the exact solution is u =
xexy sin(�x) sin(�y).

Tables 7.2 present the results for k = 3, for the one{ and two{level algorithms,
respectively. As for the Poisson problem with non{vanishing overlap, the iteration
counts decrease when the overlap increases and are independent of the number of
subdomains for the two{level method. The use of a coarse solver improves the con-
vergence properties.

In this case, the behavior for zero overlap appears to be more regular. As expected,
the iteration counts increase when the number of subdomains increases for the one{
level algorithm. On the other hand, if a coarse solver is employed, the number of
iterations appears to grow like H=h, when h is �xed. For a �xed value of H=h, slower
convergence rates are obtained for h larger. We can then conclude that, for the case of
zero overlap, the iteration counts are indeed bounded by a C(H=h), with C a suitable
constant; see also [8]. However, we believe that in this case as well the two-level
algorithm with zero overlap might be competitive in practice.
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H=Æ
h�1 H�1 1 16 8 4 2
16 4 25 - - 15 17
32 4 33 - 21 16 17
32 8 45 - - 25 22
64 4 49 28 22 16 17
64 8 59 - 36 27 24
64 16 84 - - 47 39
128 4 43 28 22 16 17
128 8 59 36 27 24 24
128 16 84 - 47 39 39

H=Æ
h�1 H�1 1 16 8 4 2
16 4 15 - - 14 16
32 4 16 - 15 14 15
32 8 12 - - 14 16
64 4 20 16 16 15 15
64 8 14 - 13 13 16
64 16 10 - - 12 16
128 4 20 16 16 15 15
128 8 14 13 13 16 16
128 16 10 - 12 16 16

Table 7.2

Case of b = �(3�; 3�): iteration counts for GMRES with the one{level and two{level precondi-

tioners, respectively, versus h and the relative overlap.

H=Æ
h�1 H�1 1 16 8 4 2
16 4 13 - - 12 16
32 4 14 - 13 13 16
32 8 22 - - 16 21
64 4 15 13 13 13 16
64 8 23 - 21 17 20
64 16 38 - - 26 27
128 4 15 13 13 14 16
128 8 23 21 17 20 20
128 16 38 - 26 27 27

H=Æ
h�1 H�1 1 16 8 4 2
16 4 32 - - 21 19
32 4 32 - 28 21 18
32 8 74 - - 32 23
64 4 32 30 27 21 18
64 8 73 - 47 32 23
64 16 100 - - 36 27
128 4 33 31 27 21 18
128 8 73 47 32 23 23
128 16 100 - 36 27 28

Table 7.3

Case of b = �(300�; 300�): iteration counts for GMRES with the one{ and two{level precon-

ditioners, versus h and the relative overlap.

Our second set of results is for k = 300 and is shown in Tables 7.3. All the
remarks made for Tables 7.2 remain valid in this case, but the iteration counts for the
two{level method are considerably higher. This is a case with very strong convection
(the Reynolds number is approximately 1000), and the one{level method performs
fairly well. A coarse space not only does not seem necessary, but can slow down
the convergence considerably. We believe that such behavior is partly due to our
coarse solver, which, in this case, comes from a non{stabilized approximation of an
advection{di�usion problem on a continuous FE space and a di�erent type of coarse
solver needs to be devised for some kinds of convection{dominated problems. Note
also that the iterations for the one{level method appear to depend only on H , and
grow linearly with 1=H . For the case of zero overlap, the same remarks made before
remain valid.

7.3. Advection{di�usion problem with a rotating 
ow �eld and bound-

ary layers. Finally, we consider an advection-di�usion equation with a rotating wind
b = 0:5 (y + 1;�x� 1), a constant c = 10�4, the right-hand side f = 0, and discon-
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H=Æ
h�1 H�1 1 16 8 4 2
16 4 22 - - 14 16
32 4 30 - 19 15 17
32 8 39 - - 23 22
64 4 40 26 20 16 18
64 8 53 - 33 25 24
64 16 72 - - 42 37
128 4 54 28 21 16 18
128 8 53 33 25 24 26
128 16 72 - 42 37 42

H=Æ
h�1 H�1 1 16 8 4 2
16 4 13 - - 13 14
32 4 15 - 13 13 13
32 8 14 - - 13 15
64 4 19 15 14 13 14
64 8 16 - 14 13 14
64 16 13 - - 13 15
128 4 24 18 14 13 14
128 8 16 14 13 13 14
128 16 13 - 13 15 14

Table 7.4

Rotating 
ow �eld, case of � = 1: iteration counts for GMRES with the one{ and two{level

preconditioners, versus h and the relative overlap.

H=Æ
h�1 H�1 1 16 8 4 2
16 4 13 - - 10 13
32 4 16 - 11 10 14
32 8 23 - - 15 17
64 4 19 13 10 10 14
64 8 28 - 18 15 18
64 16 43 - - 25 25
128 4 25 13 11 10 14
128 8 28 18 15 18 19
128 16 43 - 25 25 27

H=Æ
h�1 H�1 1 16 8 4 2
16 4 27 - - 19 16
32 4 28 - 22 19 16
32 8 33 - - 20 18
64 4 31 26 23 19 17
64 8 36 - 24 20 17
64 16 23 - - 17 19
128 4 35 26 23 19 17
128 8 36 24 20 17 17
128 16 23 - 17 19 18

Table 7.5

Rotating 
ow �eld, case of � = 0:01: iteration counts for GMRES with the one{ and two{level

preconditioners, versus h and the relative overlap.

tinuous Dirichlet boundary data:

���u+ b � ru+ cu = f; in 
 ;

u = 1 if (x; y) 2 ]0:5; 1]� f�1; 1g [ f1g � [0; 1] ;

u = 0 elsewhere on � :

We note that for small values of � there are internal layers and boundary layers along
the four sides of 
.

Tables 7.4 show the results for the two methods for a case of small Reynolds
number (� = 1). We note that the same remarks made for Tables 7.2 apply in this
case for both algorithms. We then consider a convection{dominated case. Tables 7.5
show the results for a case of a much smaller di�usion (� = 0:01). As for a parallel
constant 
ow, the results for the one{level method are better than those with a coarse
space, even though, due to the smaller Reynolds number (100) the di�erence is not
as large as in Tables 7.3.
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