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Abstract. In earlier work on domain decomposition methods for elliptic problems in the plane,
an assumption that each subdomain is triangular, or a union of a few coarse triangles, has often
been made. This is similar to what is required in geometric multigrid theory and is unrealistic if
the subdomains are produced by a mesh partitioner. In an earlier paper, coauthored with Axel
Klawonn, the authors introduced a coarse subspace for an overlapping Schwarz method with one
degree of freedom for each subdomain vertex and one for each subdomain edge. A condition number
bound proportional to (1+ log(H/h))2(1+H/δ) was established assuming only that the subdomains
are John domains; here H/δ measures the relative overlap between neighboring subdomains and H/h
the maximum number of elements across individual subdomains. We were also able to relate the
rate of convergence to a parameter in an isoperimetric inequality for the subdomains into which the
domain of the problem has been partitioned.

In this paper, the dimension of the coarse subspace is decreased by using only one degree of
freedom for each subdomain vertex; if all subdomains have three edges, this leads to a reduction
of the dimension of the coarse subspace by approximately a factor four. In addition, the condition
number bound is shown to be proportional to (1+log(H/h))(1+H/δ) under a quite mild assumption
on the relative length of adjacent subdomain edges.

In this study, the subdomains are assumed to be uniform in the sense of Peter Jones. As in
our earlier work, the results are insensitive to arbitrary large jumps in the coefficients of the elliptic
problem across the interface between the subdomains.

Numerical results are presented which confirm the theory and demonstrate the usefulness of the
algorithm for a variety of mesh decompositions and distributions of material properties. It is also
shown that the new algorithm often converges faster than the older one in spite of the fact that the
dimension of the coarse space has been decreased considerably.
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1. Introduction. We will consider scalar elliptic problems in the plane of the
form

−∇ · (ρ(x)∇u(x)) = f(x), x ∈ Ω ⊂ R
2, (1.1)

with a zero Dirichlet boundary condition on a subset ∂ΩD of ∂Ω, the boundary of
Ω, and a Neumann condition on ∂ΩN = ∂Ω \ ∂ΩD. We can for example assume that
∂ΩD contains at least one edge of one subdomain.

The domain Ω is decomposed into N non-overlapping subdomains Ω1, . . . ,ΩN .
The coefficient ρ(x) is strictly positive and assumed to be a constant ρi for x ∈ Ωi.
We will use a variational formulation of the elliptic problem, written in terms of
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bilinear forms associated with these subdomains:

a(u, v) :=

N
∑

i=1

ai(u, v) :=

N
∑

i=1

ρi

∫

Ωi

∇u · ∇vdx. (1.2)

Each Ωi is simply connected and has a connected boundary ∂Ωi. The subdomains
can have quite irregular boundaries; see Definition 2.1 of uniform domains.

We denote by Hi = diameter(Ωi). The interface of this decomposition is given by

Γ :=

(

N
⋃

i=1

∂Ωi

)

\∂ΩD,

and the contribution to Γ from ∂Ωi by Γi := ∂Ωi \ ∂ΩD. These sets are unions
of subdomain edges and vertices. The subdomain edge E ij common to Ωi and Ωj

is typically defined as ∂Ωi ∩ ∂Ωj but excluding the two subdomain vertices at its
endpoints. The intersection of the two subdomain boundaries might have several
components. In such a case, each such component will be regarded as an edge; this
will not cause any extra complications. The set of all subdomain edges are denoted
by SE and the set of those belonging to Γi by SEi

. Similarly, the set of all subdomain
vertices will be denoted by SV and those on Γi by SVi

.
We use piecewise linear, continuous finite elements and triangulations with shape

regular elements and assume that each subdomain is the union of a set of elements
with all nodes matching across the interface. The smallest element diameter of the
elements of Thi

, the triangulation of Ωi, is denoted by hi and the smallest angle
in this triangulation is assumed to be bounded from below by a mesh independent
positive constant. The conforming finite element space of piecewise linear, continuous
functions associated with the triangulation of Ω will be denoted by V h. We could
equally well develop our algorithm and theory for any other conforming, low order
elements on triangular or quadrilateral meshes.

The nodal finite element interpolant of a sufficiently smooth function u ∈ H1(Ωi)
is defined as

Ihi(u) :=
∑

v∈Nhi

u(v)φv, (1.3)

where N hi is the set of nodes of Thi
, u(v) is the value of u at node v, and φv ∈ H1(Ωi)

is the shape function for node v. A coarse interpolant of u will be introduced in
Definition 2.6 and further considered in Lemmas 2.7 and 2.9.

Our current work follows earlier work on the effects of irregular subdomains on
the performance of different domain decomposition algorithms; see [3, 4, 5, 7, 11].
At the core of the present study are coarse space basis functions associated with
the subdomain vertices. They were originally developed in a comprehensive study of
H(curl) problems in the plane, see [7], but were not included in the final paper. In this
paper, they serve as basis functions for the coarse subspace of our overlapping Schwarz
algorithm. Not only are we able to improve the bound of the condition number in
comparison with that in our earlier paper [4], but the coarse subspace dimension will
now equal the number of subdomain vertices rather than the number of subdomain
edges and vertices. Thus, the dimension of the new coarse subspace is the same
as for BDDC and FETI-DP algorithms using the standard set of primal constraints
associated with the subdomain vertices, known to work well for problems in two
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dimensions; see, e.g., [11]. We note that in our estimate for the coarse interpolant
needed in our Schwarz analysis, we will use a bound on the energy of the coarse
basis functions, given by Lemma 2.7, as well as a discrete Sobolev inequality, given
by Lemma 2.8. Our estimate of the condition number of our algorithm will include
a factor (1 + log(H/h)); to our knowledge, no results, which are valid for arbitrary
jumps in the coefficients across the interface, have been established for any domain
decomposition algorithm without such a logarithmic factor.

Finally, we note that the present study is part of a larger research effort to make
domain decomposition solvers more efficient and to provide full theoretical support
for work on irregular shaped subdomains. Indeed, extensions of the ideas presented
here have already made their way into a solver used by a massively parallel structural
dynamics code [6, 1].

2. Technical tools. The results presented in this section will be used in the
proof of our main result, Theorem 3.1.

Our results apply to subdomains that are uniform. According to Jones [9], these
domains form the largest family for which a bounded extension of H1(Ωi) to H

1(R2)
is possible. We note that a uniform domain need not have a uniformly Lipschitz
continuous boundary. Thus, snowflake domains (see, e.g., Figs. 5.1 and 5.3 of [4])
with fractal boundaries are in this class.

Definition 2.1. (Uniform Domain). A bounded domain Ω ⊂ R
n is uniform if

there exists a constant CU (Ω) > 0 such that for any pair x, y of points in the closure
of Ω, there is a curve γ(t) : [0, ℓ] → Ω, parametrized by arc length, such that γ(0) = x,
γ(ℓ) = y,

ℓ ≤ CU (Ω)|x− y|, and (2.1)

min(t, ℓ− t) ≤ CU (Ω) · dist(γ(t), ∂Ω). (2.2)

Remark 1. There are several alternative and equivalent definitions. Thus, the
left hand side of (2.2) can be replaced by

min(|γ(t)− x|, |γ(t)− y|) or by
|γ(t)− x||γ(t)− y|

|x− y|
.

Any good result on the convergence of a domain decomposition algorithm with
two or more levels requires the use of

Lemma 2.2. (Poincaré’s Inequality) Consider a domain Ω ⊂ R
2. Then,

‖u− ūΩ‖
2
L2(Ω) ≤ (γ(Ω, 2))2|Ω|‖∇u‖2L2(Ω), ∀u ∈ H1(Ω).

This is [4, Lemma 2.2], ūΩ is the average of the scalar function u over Ω, and γ(Ω, 2) a
parameter in an isoperimetric inequality; cf. [12] or [4, Lemma 2.1]. Since any simply
connected uniform domain is a John domain and, according to [2], any John domain
in the plane has a finite γ(Ω, 2), we can use Poincaré’s inequality for any uniform
subdomain.

Assumption 1. The subdomains Ωi are all uniform domains and their uniformity
constants CU (Ωi) are uniformly bounded from above by a mesh independent constant
CU . We also assume that |SEi

| is uniformly bounded.
Let dE denote a unit vector in the direction from one endpoint of a subdomain

edge E to the other with the same sense of direction as ti, the unit tangential vector
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Fig. 2.1. Figure showing geometry of an edge E = Eij . The distance between the edge endpoints
a and b is denoted by dE .

of ∂Ωi, directed in a counterclockwise sense. The distance between the two endpoints
of E is denoted by dE . Thus, dEdE is the vector from one endpoint of the subdomain
edge to the other.

Definition 2.3. Let a and b denote the two endpoints of an edge E = E ij ∈ SEi
.

The region RE is defined as the open set with boundary

∂RE = γab(t) ∪ E ,

where γab(t) is the curve γ(t) in Definition 2.1 for Ωi with x = a and y = b.
The following result is [7, Lemma 3.4]:
Lemma 2.4. For the region RE of Definition 2.3, it holds

|RE | ≤ (C2
U/π)d

2
E , (2.3)

diam(RE) ≤ (2CU − 1)dE (2.4)

where |RE | is the area of RE and dE is the distance between the endpoints a and b.
We note that estimates closely related to those of the next lemma are presented

in [4] and [11] for the more general class of John domains. This lemma, in its present
form, is given as [7, Lemma 3.6]. It provides an estimate of certain coarse basis
functions in our earlier work; it is included here to provide a contrast to Lemma 2.7,
which gives a stronger estimate for our new coarse basis functions.

Lemma 2.5. Let E ∈ SEi
with endpoints a and b. There exists an edge function

ϑE ∈ V h equal to 1 at all nodes of E and vanishing elsewhere on ∂Ωi such that

(∇ϑE ,∇ϑE )Ωi
≤ C(1 + log(dE/hi)), (2.5)

(ϑE , ϑE)Ωi
≤ Cd2E . (2.6)
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We next introduce a coarse linear interpolant fℓ of an arbitrary element f ∈ V h.
The range of this operator will define the coarse subspace of our domain decomposition
algorithm and bounds for it will be central in the proof of our main result, which will
be based on the abstract Schwarz theory of [13, Chapter 2].

Definition 2.6. (Linear Interpolant). A coarse linear interpolant fℓ ∈ V h

of f ∈ V h has fℓ = f at all subdomain vertices of ∂Ωi. Furthermore, along each
subdomain edge E,

∇fℓ · ti =
f(b)− f(a)

dE
dE · ti

where a and b are the endpoints of E and dE is the distance between them. This linear
interpolant is a discrete harmonic function in the sense that its values in the interior
of the subdomains are obtained by minimizing the norm defined by the bilinear form
of (1.2) for given interface values.

Consider an element with an edge e ⊂ E. For linear finite elements, ∇f · ti is
constant on e, and the difference in nodal values along this edge is |e|∇f · ti, where
|e| is the length of the edge. Summing these differences for all elements along E , we
find that

∫

E

∇f · ti ds = f(b)− f(a).

The same formula also holds for fℓ and we then find that

∇fℓ · ti =
dE · ti
dE

∫

E

∇f · ti ds. (2.7)

The linear interpolant itself can be expressed in terms of basis functions θbℓ, which
solve interpolation problems with special data. Thus,

fℓ :=
∑

b∈SV

f(b)θbℓ. (2.8)

Lemma 2.7. (Linear Shape Functions). There exists a linear interpolant θbl that
vanishes at all subdomain vertices except for b where it equals 1. Further,

(∇θbℓ,∇θbℓ)Ωi
≤ C(1 + log(rb)), (2.9)

where rb ≥ 1 is the ratio of the distances between b and its adjacent subdomain vertices
a and c.

Proof. We first construct a coarse finite element mesh TE1
consisting of a square

element containing all of the edge E1, which connects a and b, and which is surrounded
by four trapezoidal elements as shown in Figure 2.2. The square is centered at the
midpoint between a and b, and two of its sides are parallel to the line segment between
a and b. The length of the side of the square is denoted by DE1

.
The values of a piecewise bilinear function ψ1 at the top two and bottom two

nodes of the internal square equal 1/2+DE1
/(2dE1

) and 1/2−DE1
/(2dE1

), respectively,
while ψ1 is chosen to be zero at the remaining four nodes of TE1

. The function ψ1 is
then extended by 0 to the rest of R2. By construction, ψ1(a) = 0, ψ1(b) = 1, and
∇ψ1 = (1/dE1

)dE1
in the internal square element, in which ψ1, in fact, is a function

of just one local coordinate which is defined by

x1 = (x− a) · dE1
. (2.10)
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a

b

Fig. 2.2. Coarse mesh TE1
around edge E1 used in the proof of Lemma 2.7. The sides of the

internal square element is denoted by DE1
and the distance from a to b is dE1

. The sides of the
assembly of five elements is chosen as 3DE1

/2.

Here x−a is the vector from a to x and dE1
the unit vector in the direction of b− a.

With dE1
the distance between a and b, we see that x1 varies linearly from 0 at a to dE1

at b in the direction dE1
and that ∇ψ1 ·ti = (1/dE1

)dE1
·ti along E1. In addition, since

DE1
≤ CdE1

, by (2.4), and the other four trapezoidal elements are shape regular by
construction, it follows that |∇ψ1| is of order 1/dE1

in all five elements. Consequently,
since the area of all five elements is of order d2E1

, we obtain

(∇ψ1,∇ψ1)Ωi
≤ C.

We also note that ψ1 is uniformly bounded.
Let us now denote by E2 the other edge, between b and c, which also has b as an

endpoint. Similarly, dE2
is the distance between c and b, and a local coordinate x2 is

given by

x2 = (x− c) · dE2
, (2.11)

where dE2
is the unit vector in the direction b − c. We then construct ψ2 in a way

similar to that of ψ1. We note that ψ2 goes from 1 to 0 when we move from b to c
along the edge E2; there is a change in sign. Therefore, if we consider the contributions
on the edge E1 from ∇ψ1 · ti and that of the same kind of function corresponding to
the vertex a; we will find that they cancel each other. As a result of this observation,
we will find that the interpolation formula (2.8) will reproduce any constant.

We will construct a vertex function θ̃bℓ which equals 1 at b and vanishes at all other
subdomain vertices including a and c. Moreover, θ̃bℓ vanishes along all subdomain
edges not having b as an endpoint. The values of θbℓ in the interior of subdomain
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Ωi are given by the discrete harmonic function defined by the interface data of the
finite element interpolant of θ̃bℓ. In our final estimate, we can use an estimate of the
maximum of |∇θ̃bℓ| over individual elements since the same estimate also holds for its
linear interpolant θbℓ.

Let E3 denote the edge or union of the edges between c and a which completes
∂Ωi. Thus, ∂Ωi = a∪E1∪ b∪E2∪c∪E3. Letting dj(x), j = 1, 2, 3, denote the distance

from x ∈ Ωi to Ej , we define a vertex function θ̃bℓ by

θ̃bℓ(x) =
ψ1(x)/d1(x) + ψ2(x)/d2(x)

1/d1(x) + 1/d2(x) + 1/d3(x)
. (2.12)

It is easy to see that this function is continuous and attains the correct boundary
values. It is also uniformly bounded, a fact which we will use in the proof of our main
result. An estimate of the energy of its V h−interpolant will provide an upper bound
of the energy of the discrete harmonic function θbℓ with the same boundary data.

We obtain, by a direct computation,

∇θ̃bℓ = (∇ψ1d
−1
1 +∇ψ2d

−1
2 − ψ1d

−2
1 ∇d1 − ψ2d

−2
2 ∇d2)(d

−1
1 + d−1

2 + d−1
3 )−1 (2.13)

+(ψ1d
−1
1 + ψ2d

−1
2 )(d−2

1 ∇d1 + d−2
2 ∇d2 + d−2

3 ∇d3)(d
−1
1 + d−1

2 + d−1
3 )−2.

Since |∇d1| ≤ 1 and |∇d2| ≤ 1, it follows that

|∇θ̃bℓ| ≤ δ1|∇ψ1|+ δ2|∇ψ2|+

(1− δ3)
2|ψ2 − ψ1|

d1 + d2
+

(1− δ1)
2|0− ψ2|

d2 + d3
+

(1− δ2)
2|ψ1 − 0|

d1 + d3
, (2.14)

where

δj =
d−1
j

d−1
1 + d−1

2 + d−1
3

. (2.15)

Since 0 ≤ δj ≤ 1, it follows that

|∇θ̃bℓ|
2 ≤ 5

[

|∇ψ1|
2 + |∇ψ2|

2 +
(ψ2 − ψ1)

2

(d1 + d2)2
+

ψ2
2

(d2 + d3)2
+

ψ2
1

(d1 + d3)2

]

. (2.16)

Since |∇ψ1| is of order 1/dE1
and the area of the support of ψ1 is of order d2E1

, we see
that the integral over Ωi of the first term on the right hand side of (2.16) is of order
1. The same conclusion also holds for the second term using similar reasoning.

Turning to the remaining three terms, let da(x), db(x), and dc(x) denote the
distance from x ∈ Ωi to the vertices a, b, and c, respectively. From the definitions of
ψ1 and ψ2, and the bounds on their gradients, we see that

|ψ2 − ψ1| ≤ Cdb/min(dE1
, dE2

), (2.17)

|ψ2| ≤ Cdc/dE2
, (2.18)

|ψ1| ≤ Cda/dE1
. (2.19)

We note that, we will need additional arguments when the relative sizes of dE1
and

dE2
differ considerably. We first assume that they are of the same order of magnitude.
When we estimate the third term of (2.16), we will split Ωi into two subsets

and develop separate bounds for them. Let γ1 be the curve of Definition 2.1 which
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connects b with a and similarly let γ2 connect b with c. Let xγ1
be the point on γ1

which is closest to x ∈ Ωi and we then define xγ2
similarly. We also denote by t1(x)

the arc length of the part of the curve γ1 between b and xγ1
and we then define t2(x)

similarly. We are now ready to define Ωb
i : x ∈ Ωb

i if t1(x) ≤ ℓ1/2 or t2(x) ≤ ℓ2/2 or
both. Here, ℓ1 and ℓ2 are the lengths of the curves γ1 and γ2, respectively. We denote
the complement of Ωb

i by CΩb
i := Ωi \ Ωb

i .
By using (2.2), we can now establish a lower bound

d1(x) + dist(x, γ1) ≥ cdb(x), for x ∈ RE1
such that t1(x) ≤ ℓ1/2,

where c > 0 is a constant. We note that since dist(x, γ1) ≤ d2(x), we have a lower
bound for d1(x)+d2(x). By considering x ∈ Ωi \RE1

for which t1(x) ≤ ℓ1/2 and then,
similarly, points in RE2

and its complement for which t2(x) ≤ ℓ2/2, we find that

d1(x) + d2(x) ≥ cdb(x), ∀x ∈ Ωb
i .

The integral of the third term of (2.16) over Ωb
i is now easily seen to be bounded

since for x in that set, we have

(ψ2 − ψ1)
2

(d1 + d2)2
≤ C/(min(dE1

, dE2
))2. (2.20)

We now turn to the task of estimating the integral of the same expression on the
left in (2.20) over CΩb

i . By quite similar arguments, we can prove that

d1(x) + d2(x) ≥ cmax(da(x), dc(x)), x ∈ CΩb
i .

By using (2.18) and (2.19), we then obtain the same estimate for the integrand over
CΩb

i and a uniform bound for the integral of that third term over all of Ωi has then
been obtained.

We now outline how we can bound the integral of the fourth term of (2.16); the
fifth and final one can be handled quite similarly. We will again work with the curve
γ2 and also with γ3 which connects c to a. In an appropriate neighborhood Ωc

i of c,
we first develop a lower bound of d2(x) + d3(x) in terms of dc(x). What remains is to
obtain a lower bound for d2(x) + d3(x) for x in the rest of Ωi. We recall that when
we developed a bound for x ∈ CΩb

i for the third term, we were able to rely on (2.18)
and (2.19), which show that ψ1 and ψ2 go to zero linearly when we approach a and b,
respectively. In the present context, we write ψ2 = (ψ2 − ψ1) + ψ1 and can then rely
on (2.17) and (2.18) and ideas quite similar to those for the third term to obtain a
lower bound for d2(x) + d3(x) in terms of max(da(x), db(x)) for x ∈ CΩc

i , where CΩ
c
i

is the complement of Ωc
i .

If dE1
and dE2

are not of the same order of magnitude, we can provide a bound
with an additional factor log(max(dE1

, dE2
)/min(dE1

, dE2
)) =: log(rb)). We note that

the direct computation of the H1/2−norm of the trace of θbℓ on ∂Ωi, for a simple
geometry, shows that this logarithmic factor cannot be eliminated.

Let dE1
> dE2

. The idea is to introduce a number of additional basis functions,
in terms of additional vertices on the longer edge. These vertices are found as the
last exits yk by the edge E1 from circular disks Bk, which are centered at y0 := b and
of radius 2kdE2

. By using Lemma 2.4, we see that on the order of 1 + log(dE1
/dE2

)
circular disks will suffice to cover the entire edge.

A linear basis function can now be constructed for the vertices a, b, and y1 for
which the previous bound is valid. Additional basis functions θyk

are then constructed
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using sets of three consecutive points yk−1, yk, and yk+1 as vertices. Their energy can
also be estimated by using the previous bound since, by construction, |yk−1 − yk| is
of the same order as |yk − yk+1|. Finally, we note that θbℓ can be written as a linear
combination of on the order of 1 + log(dE1

/dE2
) of the new basis functions θyk

:

θ̃bℓ =
∑

k

ckθyk

where

ck = (yk − a) · dE1
/dE1

.

We see that these coefficients are all uniformly bounded by using (2.4).
Finally, we remark that the arguments can be modified so as also to cover the

case where a subdomain has only two vertices.
We will also need a well-known finite element Sobolev inequality, established for

John domains in [4, Lemma 3.2].
Lemma 2.8.

‖u− ūΩi
‖2L∞(Ωi)

≤ C(1 + log(H/h))|u|2H1(Ωi)
, ∀u ∈ V h(Ωi), (2.21)

Here ūΩi
denotes the average of u over the subdomain Ωi. We also have,

‖u‖2L∞(Ωi)
≤ C(1 + log(H/h))‖u‖2H1(Ωi)

, ∀u ∈ V h(Ωi), (2.22)

where the full H1(Ωi)−norm is defined by

‖u‖2H1(Ωi)
:= |u|2H1(Ωi)

+ 1/(Hi)
2‖u‖2L2(Ωi)

.

We will now combine this result with that of Lemma 2.7 to obtain the following
lemma. It follows after observing that the linear interpolant, defined in Definition
2.6, reproduces constants and by using Lemma 2.2.

Lemma 2.9. The linear interpolant fℓ of f ∈ V h satisfies

(∇fℓ,∇fℓ)Ωi
≤ C(1 + log(Hi/hi))(1 + log(max(rb)))(∇f,∇f)Ωi

, (2.23)

where C is a constant independent of f.

3. An overlapping Schwarz method and the main result. We will first
define our domain decomposition algorithm and then prove our main result, Theorem
3.1.

Our algorithm is a two-level overlapping Schwarz method and we will use a stan-
dard result [13, Theorem 2.7] in its analysis. The coarse subspace of our algorithm
can be defined as the range of the interpolation operator of Definition 2.6. The lo-
cal subspaces are defined by Vi := V h(Ω′

i) ∩ H1
0 (Ω

′
i). Typically Ω′

i is obtained by
repeatedly adding layers of elements to the subdomains Ωi; see also [6, Section 3.2]
for an alternative. The width of the subset of Ωi that is also covered by neighboring
extended subdomains is denoted by δi; for a detailed definition, see [13, Assumption
3.1].

As always in the analysis of overlapping Schwarz methods, the main effort in the
analysis involves the design and study of a stable decomposition as in [13, Assumption
2.2]. We should provide a bound for a parameter C2

0 such that

a(u0, u0) +

N
∑

i=1

a′i(ui, ui) ≤ C2
0a(u, u), ∀u ∈ V h, (3.1)
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for some choice of {ui}Ni=0, such that

u =
N
∑

i=0

RT
i ui, ui ∈ Vi. (3.2)

Here,

a′i(u, v) :=

∫

Ω′

i

ρ∇u · ∇vdx, i ≥ 1

and RT
i the injection of Vi into V

h.
Lemma 2.9 provides a bound for a(u0, u0) after that we select u0 = uℓ, the

interpolant of u defined by Definition 2.6. The components in the local subspaces
Vi, i ≥ 1, are defined, as in [13, Section 3.6], by ui := Ih(ϑi(u − u0)), where {ϑi}Ni=1

is a partition of unity with 0 ≤ ϑi ≤ 1, |∇ϑi| ≤ C/δi, and with ϑi supported in the
closure of Ω′

i. We can choose the ϑi ∈ V h and easily prove, by using [13, Lemma 3.9],
that a′j(uj , uj) ≤ Ca′j(ϑj(u−u0), ϑj(u−u0). We will now estimate the latter bilinear
form and we will do this by considering the contributions from each subdomain Ωi,
one at a time. In this, we can then equally well work with the H1(Ωi)−seminorm and
H1(Ωi)−norm.

The number of sets Ω′
j that intersect Ωi is uniformly bounded and we therefore

need to consider the contributions from only one of them. We cover Ω′
j ∩ Ωi with

square patches with sides on the order of δi. If the subdomain boundary ∂Ωi is
Lipschitz, we can do so by using on the order of Hi/δi patches. For the more irregular
subdomains, considered in this paper, the count can be larger and is related to the
Hausdorff dimension of ∂Ωi; cf., e.g., [8] and also the discussion of this matter in [7,
Section 3]. We will denote the patches by πk and the number of patches needed to
cover ∂Ωi by χiHi/δi.

By examining a prefractal Koch snowflake curve, a polygonal domain with side
length hi and diameter Hi, we find that C(4/3)log(Hi/hi)Hi/δi patches would suffice.
In this case, the additional factor χi ≤ C(4/3)log(Hi/hi) in the count of the number of
patches is less than 4 log(Hi/hi) in the case of a minimal overlap of δi = hi even in
the extreme case of Hi/hi = 106.

We observe that ∇(ϑj(u− u0)) = ϑj∇(u− u0)+ (u− u0)∇ϑj . The L2(Ωi)−norm
of the first of these terms can then immediately be estimated by |u − u0|H1(Ωi) since
|ϑj | ≤ 1.

To handle the second, we first assume that a maximum principle is valid. This
allows us to bound ‖u0−ūΩi

‖L∞(Ωi) by C‖u−ūΩi
‖L∞(Ωi); we use that the coarse basis

functions are uniformly bounded on ∂Ωi and that u0− ūΩi
is the coarse interpolant of

u− ūΩi
since the coarse interpolant, defined by (2.8), reproduces constants. By using

(2.21), we can estimate the energy contributed by πk by C(1 + log(Hi/hi))|u|2H1(Ωi)

and from all the patches by CχiHi/δi(1 + log(Hi/hi))|u|2H1(Ωi)
.

However, a maximum-norm estimate is only available if all angles of the triangu-
lation are acute and it has also not been established for other finite element methods.
We will therefore split u − u0 into two terms: u − u0 = (u − ũ0) + (ũ0 − u0). Here
ũ0 :=

∑

b∈SV
u(b)θ̃bℓ, cf. (2.12), while u0 :=

∑

b∈SV
u(b)θbℓ. We can now use almost

the same argument as before to estimate the L2−norm of (u− ũ0)∇θi since, as previ-
ously noted, the functions θ̃bℓ are uniformly bounded. However, the functions θ̃bℓ do
not sum to 1 and we therefore have to use (2.22) resulting in a full norm in the right
hand side.
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What remains is to estimate the L2− norm of (ũ0 − u0)∇θi. We use the fact that
θ̃bℓ − θbℓ vanishes on ∂Ωi and can be extended by zero to the subset of πk which is
outside Ωi. This allows us to use Friedrichs’ inequality; in fact the argument has been
reduced to the case of a square patch with vanishing boundary data on one of its
sides. Therefore,

‖ũ0 − u0‖
2
L2(πk)

≤ Cδ2i |ũ0 − u0|
2
H1(πk)

.

We can then, after estimating the H1−seminorm of ũ0 and u0, obtain the bound

‖(ũ0 − u0)∇θi‖
2
L2(Ωi)

≤ Cχi(1 + max r(b))(1 + log(Hi/hi))‖u‖
2
H1(Ωi)

.

As already indicated, we can use Poincaré’s inequality replacing the full H1(Ωi)−
norm by the H1(Ωi)−seminorm, since u− u0 is invariant under a shift by a constant.
This completes the proof of our main result:

Theorem 3.1. The condition number of our overlapping additive Schwarz algo-
rithm introduced in this section satisfies

κ(Pad) ≤ Cmax
i

(χi(1 +Hi/δi)(1 + log(Hi/hi))) (1 + log(max(rb))).

The constant C is independent of the number of subdomains, the diameters and meshes
of the subdomains as well as of the coefficients ρi.

4. Numerical examples. We present some numerical examples in this section
to confirm the theory and also to show some advantages of the present coarse space
over the one of [4]. The domain for the problem is a unit square discretized by square
bilinear elements and subject to homogeneous Dirichlet boundary conditions at the
bottom. Preconditioned conjugate gradients is used to solve the associated linear
systems to a relative residual tolerance of 10−8 for random right-hand-sides. The
numbers of iterations and condition number estimates obtained from the conjugate
gradient iterations are under the table headings iter and cond, respectively.

We consider four different types of subdomain decompositions. The first three
types are shown in Figure 4.1 and designated by square, ragged, and small-big. We
also consider decompositions obtained from a mesh partitioner based on Metis [10].
Some example decompositions obtained from this partitioner are shown in Figure 4.2.

In each of the tables, we compare results from the present coarse space (vertex
only) with those from the older one (vertex+edge); we note that the vertex+edge
coarse space of [4] has a higher dimension. The number of layers of adjacent elements
included in the overlapping subdomains is denoted by the integer no. Thus, for a
square subdomain of square elements, we have noHi/δi ≈ Hi/hi. The results shown
in Table 4.1 are for fixed values of H/h = 8, no = 2, and increasing numbers of subdo-
mains N . Results in the top half of the table are for square subdomains, while those
in the bottom half are for decompositions from the mesh partitioner. We see in the
top half of the table that both coarse spaces lead to scalable algorithms. That is, the
condition number estimates are bounded uniformly in terms of N . Interestingly, the
vertex only coarse space leads to smaller numbers of iterations and condition number
estimates even though its dimension is much smaller than that of the vertex+edge
coarse space. Comparing the results in the top and bottom halves of the table, we
see that performance is not degraded significantly by using a mesh partitioner for the
decomposition.

In Table 4.2, we show the effects of increasing the mesh parameter H/h while
holding both the overlap parameter H/δ and the number of subdomains constant.
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Fig. 4.1. Examples of square, ragged, and small-big subdomain decompositions.

Fig. 4.2. Example decompositions obtained from a mesh partitioner.

The results suggest for this problem that condition numbers for the present approach
are bounded uniformly with respect to H/h for all three types of decompositions,
while those for the richer vertex+edge coarse space exhibit a log(H/h) dependence.

The original intent for considering small-big mesh decompositions was to exercise
the log(max(rb)) term in Theorem 3.1 since rb is proportional to H/h, but the effect of
this term was not made evident. We note that, at least for square subdomains, we can
make our estimates completely independent of H/h for constant material properties
by using a different interpolation formula based on averages of u around a vertex
rather than point values; cf. [13, Section 3.5]. As in the previous example, we observe
better performance for the new coarse space.

The results in Table 4.3 are for 64 square subdomains with H/δ held fixed and
a checkerboard arrangement of material properties. The logarithmic dependence of
the condition number is clearly evident for both coarse spaces. In contrast to the
previous examples, the vertex+edge coarse space requires fewer iterations and has
lower condition number estimates.

For the final example, we consider 64 square subdomains with H/h = 64 and
different values for the overlap parameter no. The results in Table 4.4 are consistent
with the linear dependence on H/δ of the condition number estimate in Theorem 3.1.
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Table 4.1

Results for unit square domain decomposed into N subdomains, each with approximately
(H/h)2 = 64 elements. Subdomain material properties are constant with ρi = 1, and the coarse
space dimension is denoted by nc.

vertex only vertex+edge
N nc iter cond nc iter cond

square subdomains
16 18 20 5.3 33 26 9.1
64 70 21 5.4 161 29 9.9
144 154 21 5.5 385 30 10.1
256 270 21 5.5 705 30 10.2

mesh partitioner subdomains
16 27 23 5.8 49 30 10.2
64 115 25 6.0 244 34 10.5
144 274 27 7.1 612 38 13.6
257 490 29 8.3 1107 39 13.9

Table 4.2

Results for unit square domain decomposed into 64 subdomains with H/δ = 4 held constant.
Subdomain material properties are constant with ρi = 1.

vertex only vertex+edge
H/h iter cond iter cond

square subdomains
8 21 5.4 29 9.9
16 21 5.5 33 12.2
32 22 5.5 36 14.6
64 22 5.5 39 17.0

ragged subdomains
8 25 6.5 37 16.5
16 23 5.6 40 19.1
32 22 5.3 42 21.7
64 23 5.3 43 24.1

small-big subdomains
8 24 6.4 28 9.5
16 24 6.7 33 12.2
32 24 6.8 37 14.8
64 25 6.9 41 17.5

Table 4.3

Results for unit square domain decomposed into 64 square subdomains with H/δ = 4 held fixed.
The material properties are in a checkerboard arrangement with black squares having ρi = 1 and red
squares having ρi = 103.

vertex only vertex+edge
H/h iter cond iter cond
8 32 13.8 27 8.4
16 34 16.2 30 10.0
32 36 18.6 31 11.5
64 37 20.8 34 13.0

Table 4.4

Results for unit square domain decomposed into 64 square subdomains with H/h = 64 held fixed.

vertex only vertex+edge
no iter cond iter cond
1 55 45.8 71 73.4
2 41 23.9 59 36.4
3 35 16.6 52 27.4
4 31 13.0 48 23.7
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