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Abstract

We study policies aiming to minimize the weighted sum of completion
times of jobs in the context of coordination mechanisms for selfish schedul-
ing problems. Our goal is to design local policies that achieve a good price
of anarchy in the resulting equilibria for unrelated machine scheduling. In
short, we present the first constant-factor-approximate coordination mecha-
nisms for this model.

First, we present a generalization of the ShortestFirst policy for weighted
jobs, called SmithRule; we prove that it achieves an approximation ratio
of 4 and we show that any set of non-preemptive ordering policies can re-
sult in equilibria with approximation ratio at least 3 even for unweighted
jobs. Then, we present ProportionalSharing, a preemptive strongly local
policy that beats this lower bound of 3; we show that this policy achieves
an approximation ratio of 2.61 for the weighted sum of completion times
and that the EqualSharing policy achieves an approximation ratio of 2.5
for the (unweighted) sum of completion times. Furthermore, we show that
ProportionalSharing induces potential games (in which best-response dy-
namics converge to pure Nash equilibria).

All of our upper bounds are for the robust price of anarchy, defined by
Roughgarden [36], so they naturally extend to mixed Nash equilibria, corre-
lated equilibria, and regret minimization dynamics. Finally, we prove that our
price of anarchy bound for ProportionalSharing can be used to design a new
combinatorial constant-factor approximation algorithm minimizing weighted
completion time for unrelated machine scheduling.
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1 Introduction

Traditionally, work in operations research has focused upon finding a globally op-
timal solution for optimization problems. Computer scientists have also long stud-
ied the effects of a lack of different kinds of resources, mainly the lack of com-
putational resources in optimization. Recently, the lack of coordination, inherent
in many settings, has become an important consideration in designing distributed
systems. To address this lack of coordination, decentralized algorithms are being
developed for self-interested users. In these algorithms, a central authority can
only design protocols and specify rewards hoping that the independent and selfish
choices of the users, given the rules and rewards of the protocols, may result in a
socially desirable outcome. Also, in order to measure the performance of these al-
gorithms, the global objective function is evaluated at equilibrium points for selfish
users. For example, the quality of an algorithm or mechanism can be measured by
its price of anarchy [31], which is the worst case ratio of the social cost of a Nash
equilibrium over that of a central global social optimum.

In order to achieve a good price of anarchy, several approaches have been pro-
posed, imposing economic incentives on self-interested agents. For example, these
incentives may be provided by using monetary payments [6, 14, 21], by enforcing
strategies upon a fraction of users, or with the Stackelberg strategy [5, 30, 35, 44].
The main disadvantage of these methods is the need for global knowledge of the
system and thus for high communication complexity. In many settings, it is impor-
tant to be able to compute mechanisms locally. A different approach, which is the
focus of our paper, uses coordination mechanisms, introduced by Christodoulou,
Koutsoupias and Nanavati [13]. Given a set of facilities, a coordination mechanism
is a set of local policies, one for each facility, that assign a cost to each agent using
the facility. The cost assigned to each agent is a function only of the agents who
have chosen to use the corresponding facility.

Consider, for example, the selfish scheduling game in which there are n jobs
owned by independent users, m machines, a processing time pij for job i on ma-
chine j, and a weight (or importance or impatience) wi for each job i. For now,
let us concentrate on the pure strategies case where each user selects one ma-
chine to assign its job to. Each user has full information about the game and
behaves selfishly. Specifically, it wishes to minimize its weighted completion
time by assigning its job to the machine on which it yields the earliest completion
time. The global objective however, is to minimize either the average completion
time or the weighted average completion time of all jobs. A coordination mecha-
nism [13, 29, 3] for this game is a set of local policies, one for each machine, that
determines how to schedule jobs assigned to that machine. A machine’s policy is
a function only of the jobs assigned to that machine. This allows the policy to be
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implemented in a completely distributed and local fashion.
In this paper, we mainly study strongly local policies in which the policy of

each machine j is a function only of the processing time pij of every job i assigned
to machine j. We first consider strongly local ordering policies, i.e. determinis-
tic non-preemptive strongly local policies that satisfy the independence of irrel-
evant alternatives or IIA property, which we define in Section 2. Two examples
of such policies are the ShortestFirst and LongestFirst policies in which jobs are
ordered in non-decreasing and non-increasing order of their processing times re-
spectively. Later in the paper we also study preemptive strongly local policies like
EqualSharing and ProportionalSharing.

Several local policies have been studied for machine scheduling problems, both
in the context of greedy or local search algorithms for machine scheduling [28, 20,
37, 17, 1, 4, 8, 45], and also in the context of coordination mechanisms [31, 16, 13,
29, 3, 10, 18]. Previous papers mainly considered the makespan, i.e. the maximum
completion time over all jobs, as the social cost function, but, in this paper, we
study the weighted sum of completion times instead.

Scheduling problems have long been studied from a centralized optimization
perspective. It has proven to be quite convenient to use a standard classification no-
tation due to [24] in order to refer to different variants. Each variant can be denoted
by α|β|γ. The first parameter (α) defines the machine model and the last parameter
(γ) specifies the objective function to be minimized. The second parameter is used
to indicate additional characteristics of the jobs, but for the purpose of this paper it
will be left blank.

The problem of minimizing the weighted sum of completion times is NP-
complete even for identical machines (P | |

∑
wici) [32]. For this setting, there

exists a PTAS [42], but if we allow for unrelated machines, where pij values can be
arbitrary (R| |

∑
wici), the problem becomes APX-hard [26]. For the latter model,

there exist constant-factor approximation algorithms which are based on rounding
optimal solutions of mathematical programming relaxations [25, 38, 40, 41]; our
work contributes a new combinatorial constant-factor approximation algorithm for
this setting. On the other hand, minimizing the (unweighted) sum of completion
times is polynomial time solvable even for unrelated machines (R| |

∑
ci) using

matching techniques [27, 9]. For identical machines (P | |
∑
ci), the ShortestFirst

policy, leads to an optimal schedule at any pure Nash equilibrium point1 [15]. For a
good survey of results regarding the average (weighted) completion time objective
function, see [33, Chapter 11].

1In [29] it is shown that these equilibria are exactly the solutions generated by the shortest-first
greedy algorithm.
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Our Results. We study coordination mechanisms aiming to minimize the weighted
sum of completion times for the unrelated machine scheduling problem. In partic-
ular, we present the first constant-factor approximate mechanisms for this problem,
and we show an intrinstic advantage of preemptive policies over non-preemptive
ones in this context. Our results also imply a new combinatorial constant-factor
approximation algorithm for R| |

∑
wici.

First, we study a generalization of the ShortestFirst policy, called SmithRule.
For each machine j and any set of jobs assigned to it, this policy follows Smith’s
rule [43], that is, it orders the jobs giving higher priority to a job i with smaller
pij

wi
value. We prove that the price of anarchy of SmithRule is at most 4. Further-

more, we show that any set of non-preemptive strongly local policies with the IAA
property (a.k.a. ordering policies) may result in pure Nash equilibria with approxi-
mation ratio at least 3 even for unweighted jobs. This gives a lower bound of 3 for
the pure price of anarchy of any set of non-preemptive ordering policies.

Next, we present a preemptive strongly local policy that beats this lower bound
of 3. In particular, we study the EqualSharing policy [18] that gives an equal
share of processing time to each active job at each time, and a generalization of
this policy, called ProportionalSharing, that gives each job a share of the process-
ing time proportional to the ratio of its weight over the sum of the weights of all
jobs being processed on the same machine at each time. We prove an approx-
imation ratio of 2.5 for the average completion time for the EqualSharing pol-
icy and an approximation ratio of 2.61 for the weighted average completion time
for the ProportionalSharing policy, beating the non-preemptive ordering policies’
lower bound of 3. This is in contrast to the makespan social function in which
the EqualSharing policy achieves an approximation ratio of Θ(m) [18], which is
no better than other non-preemptive policies such as ShortestFirst. Furthermore,
we show that ProportionalSharing results in potential games by presenting an ex-
act potential function. This proof, in turn, shows that best-response dynamics of
players converge to pure Nash equilibria.

All of our upper bounds are for the robust price of anarchy, defined by Rough-
garden [36] (see Section 2) and thus, our bounds also hold for mixed Nash equi-
libria, correlated equilibria, and regret minimization dynamics. Finally, we note
that our price of anarchy bound for ProportionalSharing yields a new combinato-
rial constant-factor approximation algorithm for minimizing the weighted sum of
completion times for the unrelated machine scheduling problem. To the best of
our knowledge, all the previous constant-factor approximation algorithms for this
problem were based on rounding optimal solutions of mathematical programming
relaxations [25, 38, 40, 41] so the algorithm that we present is the first combinato-
rial one to achieve a constant-factor approximation.
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Other Related work. Coordination mechanism design was introduced in [13]
by Christodoulou, Koutsoupias and Nanavati. In their paper, they analyzed the
LongestFirst policy w.r.t. the makespan for identical machines (P | |Cmax) and also
studied a selfish routing game. Immorlica, Li, Mirrokni, and Schulz [29] study
four coordination mechanisms for four types of machine scheduling problems and
survey the results for these problems. They further study the speed of convergence
to equilibria and the existence of pure Nash equilibria for the ShortestFirst and
LongestFirst policies. Azar, Jain, and Mirrokni [3] showed that the ShortestFirst
policy and any set of non-preemptive strongly local policies with the IAA prop-
erty do not achieve an approximation ratio better than Ω(m). Additionally, they
presented a non-preemptive local policy that achieves an approximation ratio of
O(logm) and a policy that induces a potential game and gives an approximatition
ratio ofO(log2m). Caragiannis [10] showed an alternativeO(logm)-approximate
coordination mechanism that minimizes makespan for unrelated machine schedul-
ing and does lead to a potential game. Fleischer and Svitkina [22] show a lower
bound of Ω(logm) for all non-preemptive local policies with the IAA property.

More recently, Dürr and Thang proved that the EqualSharing policy results in a
potential game, and achieves a price of anarchy of Θ(m) for R| |Cmax. In the con-
text of coordination mechanisms, an instance for which preemptive policies have an
advantage over non-preemptive ones was also shown by Caragiannis [10]; he pre-
sented a local preemptive policy of O(logm/log logm) beating the lower bound
of Ω(logm) that Fleischer and Svitkina [22] show for all local non-preemptive
mechanisms. However, his preemptive policy, unlike ProportionalSharing, doesn’t
induce a potential game which would guarantee the existence of pure Nash equi-
libria.

Coordination mechanisms are related to local search algorithms. Starting from
a solution, a local search algorithm iteratively moves to a neighbor solution which
improves the global objective. This is based on a neighborhood relation that is
defined on the set of solutions. The local improvement moves in the local search
algorithm correspond to the best-response moves of users in the game defined by
the coordination mechanism. The speed of convergence and the approximation
factor of local search algorithms for scheduling problems have been studied in
several papers [17, 19, 20, 28, 37, 39, 45, 1, 4]. Vredeveld surveyed some of the
results on local search algorithms for scheduling problems in his thesis [45].

Finally, another widely studied scheduling policy is the Makespan policy in
which all jobs on the same machine are processed in parallel so that the comple-
tion time of every job on machine j is the makespan of machine j. The price of
anarchy of this policy is unbounded even for two machines. Tight price of anarchy
results for (mixed) Nash equilibria are known for this policy for special cases of
the unrelated scheduling problem [16, 2, 23, 31].
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2 Preliminaries

Throughout this paper, let N be a set of n jobs to be scheduled on a set M of m
machines. Each job needs to be assigned to exactly one machine and each machine
can process only one job at any time. In selfish scheduling problems, each job is
owned by a selfish agent who decides which machine it will be scheduled on; see
below for details. Let pij denote the processing time of job i ∈ N on machine
j ∈ M and let wi denote its weight (or importance or impatience). Our goal is
to minimize the weighted sum of the completion times of the jobs, i.e.

∑n
i=1wici,

where ci is the completion time of job i.
The main scheduling model we study is unrelated machine scheduling (i.e.,

R| |
∑
wici) in which pij’s are arbitrary. Another machine scheduling model we

consider is the restricted identical machines model (B| |
∑
wici), in which each

job i can be scheduled only on a subset Ti of the machines, i.e., pij = pi if j ∈ Ti
and pij = ∞ otherwise. A third model is that of restricted related machines in
which each machine j has a speed qj and each job i has a processing requirement
pi. A job i can be scheduled only on a subset Ti of the machines, with processing
time pij = pi/qj if j ∈ Ti, and pij = ∞ otherwise. The restricted identical
machines model is a special case of the restricted related machines model.

A coordination mechanism is a set of local policies, one for each machine, that
determines how to schedule the jobs assigned to that machine. It thereby defines
a game in which there are n agents (jobs) and each agent’s strategy set is the set
of machines M . Given a strategy profile s, the disutility of job i is its weighted
completion time wici(s) as defined by the coordination mechanism. The goal of
each job is to choose a strategy (i.e., a machine) that minimizes its disutility.

We consider a normal-form game among selfish jobs resulting from a coordi-
nation mechanism, and study its equilibria. The social cost function with respect to
which we will be measuring the inefficiency of different schedules is the weighted
sum of the completion times, i.e.

∑n
i=1wici(s), where ci(s) is the completion time

of job i in configuration s. We will also be considering the unweighted sum of com-
pletion times. The goal of our coordination mechanisms is therefore the creation of
the right incentives for the players, such that selfish behavior leads to equilibrium
points with low social cost values.

Given a normal-form game, a strategy profile (or a vector of strategies) s is
a Nash equilibrium if no player has an incentive to change its strategy, i.e. the
machine which it is being proccesed by. A game is a potential game if there exists
a lower bounded potential function over strategy profiles such that any player’s
deviation leads to a drop of the potential function if and only if its cost drops.
A potential game is an exact potential game if after each move, the difference of
the potential function is equal to that of the player’s cost. It is easy to see that a
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potential game always possesses a pure Nash equilibrium.
The coordination mechanisms we study in this paper use the same local pol-

icy on each machine, so we may henceforth refer to a coordination mechanism
using the name of the policy. We analyze one non-preemptive strongly local pol-
icy that follows Smith’s rule [43] and one preemptive strongly local policy, which
we call ProportionalSharing. The SmithRule policy is a generalization of the
ShortestFirst policy and is defined as follows: given a set of jobs that are assigned
to machine j, it orders the jobs giving higher priority to a job i with smaller pij

wi

value. In case of a tie, the job with the shorter processing time pij gets higher
priority and if both the ratio and the processing times tie, a global tie breaking rule
is used. The ProportionalSharing policy is a generalization of the EqualSharing
policy and it schedules the jobs in parallel using time-multiplexing giving each job
a share of the processor time proportional to the ratio of its weight over the sum of
the weights of all jobs being processed on the same machine. It is easy to see that
if we assume unit weights, these policies turn into ShortestFirst and EqualSharing
respectively. As is already known [43], given a strategy profile, the social cost is
minimized if we order the jobs within each machine using SmithRule. For any
configuration s, we will let wicαi (s) and Ca(s) denote the cost for player i and
the social cost respectively, where α ∈ {SR,PS, SF,ES} denotes the policy,
namely SmithRule, ProportionalSharing, ShortestFirst and EqualSharing, respec-
tively. Finally, slightly abusing notation, let Sj = {i ∈ N | si = j} denote the set
of jobs that have chosen machine j in configuration s.

A local policy for machine j uses only the information about the jobs on the
same machine j, but it can look at all the parameters of these jobs, including their
processing times on other machines. On the other hand, a strongly local policy may
only depend on the processing time that these jobs have on this machine j. We say
that a policy satisfies the independence of irrelevant alternatives or IIA property
if for any set S of jobs and any two jobs i, i′ ∈ S, if i has a smaller completion
time than i′ in S, then i should have a smaller completion time than i′ in any set
S ∪ {k}. In other words, whether i or i′ is preferred should not be changed by
the availability of job k. The IIA property appears as an axiom in voting theory,
bargaining theory and logic.

In order to quantify the inefficiency caused by the lack of coordination, we use
the notion of Price of Anarchy (PoA) introduced by Koutsoupias and Papadimitriou
[31], that is, the ratio between the social cost value of the worst Nash equilibrium
and that of the optimum schedule. More specifically, we prove upper bounds for
the robust PoA, recently introduced by Roughgarden [36], which imply the same
bounds for the inefficiency of pure and mixed Nash equilibria, correlated equilibria,
and for regret minimization dynamics [7]. More specifically, Roughgarden defines
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a cost-minimization game to be (λ, µ)-smooth if for every two outcomes s and s∗,∑
i∈N

ci(s−i, s∗i ) ≤ λ
∑
i∈N

ci(s∗) + µ
∑
i∈N

ci(s).

The robust price of anarchy of such a game is then equal to:

inf
{

λ

1− µ
: (λ, µ) s.t. the game is (λ, µ)-smooth

}
.

To be more precise, we are interested in upper bounds for the PoA of coordination
mechanisms rather than the PoA of specific games. Based on [13], the price of
anarchy of a coordination mechanism is the maximum ratio over all the games G
that the mechanism may induce, of the social cost of a Nash equilibrium of G,
divided by the optimum social cost of the scheduling problem underlying G. It is
important to note that this optimum social cost depends only on the pij’s and not
on the coordination mechanism. Given this definition, we define a coordination
mechanism α to be (λ, µ)-smooth if for every two outcomes s and s∗ of any game
that it may induce,∑

i∈N
cαi (s−i, s∗i ) ≤ λ

∑
i∈N

ci(s∗) + µ
∑
i∈N

cαi (s).

In our context, we know that the optimal schedule uses SmithRule for weighted
jobs and EqualSharing for unweighted jobs, so we will be using cSRi (s∗) or cESi (s∗)
respectively for the optimum social costs. We can now define the robust price of
anarchy of a coordination mechanism to be equal to:

inf
{

λ

1− µ
: (λ, µ) s.t. the coordination mechanism is (λ, µ)-smooth

}
.

In [36], a class of games is defined to be tight if there exists a game instance with
pure PoA equal to the upper bound of the robust PoA of all games in this class2,
which is the case for many of the classes of games that we study in this paper.

3 Non-Preemptive Coordination Mechanisms

3.1 SmithRule policy

It is known that in order to minimize the weighted sum of completion times on
one machine, SmithRule is optimum [43]. Here, we show that using this rule in

2Or more generally, the upper bound equals the supremum of the pure PoA over those game
instances for which a pure Nash equilibrium exists.
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our game-theoretic model for multiple machines will result in Nash equilibria with
social cost a constant-factor away from the optimum.

Theorem 3.1. The robust PoA of SmithRule for R| |
∑
wici is at most 4.

Proof. We start by giving a rough intuition. Assume that all jobs start from the
optimum configuration s∗ and we give each job i credit equal to four times its cost
in s∗, i.e. 4wicSRi (s∗). Now, given any pure Nash equilibrium s, each job i moves
from machine s∗i to machine si; in doing so, it “gathers” credit of value at least
twice its cost in s (i.e. 2wicSRi (s)), and then gives half of it away to some of the
jobs who used to be in its current machine si, “redeeming itself” for pushing their
position on si higher. Job i “gathers” its credit from those jobs which, in turn,
moved into i’s initial machine s∗i thus increasing i’s cost for uniquely deviating
back (from si to s∗i ). The remaining credit of each job will be at least as much as
its cost in equilibrium s and the conclusion is that four times the social cost value
at s∗ is greater or equal to the social cost value at any equilibrium s, thus proving
the bound.

In order to prove the above, it would suffice if we could show that for every
machine j, the incoming credit of the jobs in Sj , along with the initial credit of
the jobs in S∗j , is enough for every job i ∈ S∗j to have twice its cost for uniquely
deviating back to j = s∗i , or

2
∑
i∈S∗j

wic
SR
i (s−i, s∗i ) ≤

∑
i∈Sj

wic
SR
i (s) + 4

∑
i∈S∗j

wic
SR
i (s∗).

In order to prove a bound on the more general notion of the robust PoA, we
instead let s and s∗ be any two configurations; then we want to show that for every
machine j,∑

i∈S∗j

wic
SR
i (s−i, s∗i ) ≤

1
2

∑
i∈Sj

wic
SR
i (s) + 2

∑
i∈S∗j

wic
SR
i (s∗).

In order to show this, we first prove that this inequality only becomes tighter if for
any two jobs i, i′ ∈ Sj ∪S∗j , their ratios on j are equal, i.e. pij

wi
=

pi′j
wi′

. Assume that

not all ratios are equal and let Maxj = {i ∈ Sj ∪ S∗j | ∀i′ ∈ Sj ∪ S∗j ,
pij

wi
≥ pi′j

wi′
}

be the set of jobs of maximum ratio among the two sets. Also, let J∗ = Maxj ∩S∗j
and J = Maxj ∩ Sj be the maximum ratio jobs in sets S∗j and Sj respectively.

For all the jobs i ∈ Maxj , we decrease their ratio pij

wi
by the minimum positive

value ∆ such that the cardinality of Maxj increases. In order to do this, we decrease
the processing time of each job i ∈ Maxj by wi∆ and then we reorder the jobs so
that they obey the SmithRule policy (so that jobs with equal ratio are ordered in
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a ShortestFirst fashion). After a change of this sort, in order to show that the
inequality may only become tighter, we want the drop of the LHS to be less than
or equal to the drop of the RHS, so it suffices to show that:

∑
i∈J∗

wi

(
wi +

∑
i′∈J

wi′

)
∆ ≤ 1

2

∑
i∈J

wi

 ∑
(i′∈J)∧(wi′≤wi)

wi′

∆

+ 2
∑
i∈J∗

wi

 ∑
(i′∈J∗)∧(wi′≤wi)

wi′

∆.

The LHS actually corresponds to an upper bound for this drop, which we get if
we assume that every job i ∈ J∗ that deviates back to machine j is processed last.
On the other hand, the RHS corresponds to a lower bound for the corresponding
drop. To be more specific, this drop corresponds to the case when no reordering
of the jobs takes place after the processing times’ modifications. This is indeed a
lower bound, since the reordering would only lead to an even greater drop. If we
set A =

∑
i∈J∗ wi and B =

∑
i∈J wi and further notice that:

2
∑
i∈J∗

wi

 ∑
(i′∈J∗)∧(wi′≤wi)

wi′

 = A2 +
∑
i∈J∗

w2
i ,

and similarly for jobs in J , the inequality becomes:

AB +
∑
i∈J∗

w2
i ≤

1
4

(
B2 +

∑
i∈J

w2
i

)
+A2 +

∑
i∈J∗

w2
i ,

or equivalently, (
B

2
−A

)2

+
1
4

∑
i∈J

w2
i ≥ 0,

which is true for any value of A,B and weights of jobs in J .
We can now assume that for any job i ∈ Sj ∪ S∗j , pij

wi
= r for some r ∈ R+.

Since all jobs have the same ratio on j, the sums on the right hand side of the initial
inequality are minimized when the jobs are in order of non-decreasing processing
time and thus suffices to show that:∑

i∈S∗j

wi

pij +
∑
i′∈Sj

pi′j

 ≤ 1
2

∑
i∈Sj

wi

 ∑
(i′∈S∗j )∧(pi′j≤pij)

pi′j


+ 2

∑
i∈S∗j

wi

 ∑
(i′∈S∗j )∧(pi′j≤pij)

pi′j

.
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If we replace pij with wir for each job i, we get:

rAB + r
∑
i∈J∗

w2
i ≤

1
4
r

(
B2 +

∑
i∈J

w2
i

)
+ rA2 + r

∑
i∈J∗

w2
i ,

which we already know is true. Now that we have proved that the initial inequality
is true for all machines j, summing up the corresponding inequalities over all j ∈
M gives: ∑

i∈N
wic

SR
i (s−i, s∗i ) ≤

1
2
CSR(s) + 2CSR(s∗).

This shows that this coordination mechanism is (2, 1/2)-smooth, therefore show-
ing an upper bound of 4 for its robust price of anarchy and proving the theorem.

In order to get the pure PoA bound, we need only consider the case when s
is an equilibrium and s∗ is an optimum configuration. For all players i ∈ N , we
know that wicSRi (s) ≤ wicSRi (s−i, s∗i ), thus:

CSR(s) ≤ 1
2
CSR(s) + 2CSR(s∗)⇒ CSR(s)

CSR(s∗)
≤ 4.

3.2 Lower Bounds for Non-preemptive Policies

In this section, we study non-preemptive strongly local policies with the IIA prop-
erty, and show a lower bound for the PoA of any set of such policies.

Theorem 3.2. The pure price of anarchy for any set of non-preemptive strongly
local policies satisfying the IIA property for R| |

∑
wici is at least 3. This lower

bound holds even for the unweighted variant, i.e., R| |
∑
ci.

Proof. In the proof, we use the notion of a “game graph” from [11] (section 3).
In this directed graph, each machine corresponds to a vertex and each job corre-
sponds to an edge; the edge is directed from the machine the job is assigned to
in the optimal configuration to the machine the job uses in the Nash equilibrium
configuration. All jobs need infinite processing time on all machines except the
ones they use in one of these two configurations.

We construct a lower bound game graph G starting from a complete binary
tree of height h with edges directed toward the root. Each vertex j is assigned
a number pj that equals the processing time of any job that is assigned to the
corresponding machine j in either of the two configurations. The root of the tree
is given processing time 1. For every other vertex, except the leaves of the tree,
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let x be the processing time of its parent; if the vertex is a left child, its processing
time is x/3, while if it’s a right child, its processing time is 2x/3. For a leaf, its
processing time is x for a left child and 2x for a right child, where once again x
is the processing time of its parent. What remains is to define the assignment of
jobs in the optimal configuration (one job per machine). The Nash equilibrium
configuration will then follow directly as each job will move to the machine that
its outgoing edge points to.

We start with a setA of (2h+1−2) jobs and a vertex j in the h-th level (one level
above the leaves). Since j’s policy is strongly local, it only looks at the processing
time of jobs assigned to itself and their IDs. As a result, if the processing time of
all jobs in A on machine j was pj , then it would be an ordering policy that would
order the jobs based on a global ordering of IDs. We assign the job ordered first by
such an ordering policy to j’s left child and the job ordered second to its right child
and remove them from A. By the IIA property we know that, no matter whether
the remaining jobs of A will be available to j or not, these two will still be the first
and second ones in the actual ordering. We continue in a similar fashion for all
machines in the h-th level. Then, we perform the same process for the (h − 1)-th
level and so on, until we reach the root (to which we don’t assign any job).

In the optimal configuration that we defined, each machine has one job assigned
to it. The sum of completion times of each level except the root and the leaves is
1 and the sum of completion times of all the leaves is 3, thus leading to an optimal
configuration cost of (h − 1) + 3. On the other hand, in the Nash equilibrium
configuration, on each machine, the left child goes first and the right child goes
second and if the parent deviates back to its optimal strategy, it goes third. This
leads each level except the leaves to have sum of completion times equal to 3 and
thus a Nash equilibrium configuration cost of 3(h − 1). For values of h going to
infinity, this leads to PoA arbitrarily close to 3.

Theorem 3.3. The pure price of anarchy for any set of non-preemptive strongly lo-
cal policies satisfying the IIA property for restricted identical machines (B| |

∑
wici)

is at least 2.182. This is true even for the unweighted case, i.e., (B| |
∑
ci).

Proof. We show that the lower bound is true for the ShortestFirst policy and it is
easy to generalize it to any strongly local ordering policy.
Assume there are m = 4096 machines. In the optimal configuration s∗, 1 unit job
assigned to machines 257 to 4096. Machines 129 to 256 have 2 unit jobs assigned
to them, while machines 65 to 128 have 3 unit jobs. Machines 33 to 64 have 4
unit jobs assigned to them and machines 9 to 32 have 5 unit jobs. Machines 5 to
8 have 6 unit jobs, machines 3 and 4 have 7 unit jobs and finally machine 2 has
8 unit jobs and machine 1 has 10. This leads to CSF (s∗) = 5519. All the jobs
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that are scheduled first on some machine j are restricted to only being assigned to
machines j′ with j′ ≤ j while all other jobs are restricted to the one machine that
they are assigned to in s∗.

In the equilibrium s, the jobs that are scheduled first on machines j with j ∈
(2k−1, 2k] are now assigned to machines j − 2k−1 where k = 1, 2, ..., 12. All the
remaining jobs obviously stay put. This leads to CSF (s) = 12044 and therefore
PoA ≥ CSF (s)

CES(s∗)
= 2.182.

4 Preemptive Coordination Mechanisms

In this section, we study preemptive coordination mechanisms and show that these
mechanisms are strictly better w.r.t. the PoA than any set of non-preemptive strongly
local policies. These results create a clear dichotomy between all local ordering
policies and the EqualSharing and ProportionalSharing preemptive policies w.r.t.
the PoA. An intuition for this result is that both EqualSharing for sum of com-
pletion times and ProportionalSharing for weighted sum of completion times give
high priority players an incentive to avoid crowded machines, although they might
have a small processing time there. In contrast, for non-preemptive ordering poli-
cies, the cost of high priority players is not affected by the number of other players
using the same machine, thus allowing them to move to these machines, possi-
bly resulting in more crowded machines. Another advantage of these coordination
mechanisms, is that, unlike SmithRule, they can deal with anonymous jobs, i.e.
jobs that don’t have IDs.

Before giving the analysis for the ProportionalSharing policy for
∑
wici, we

first study EqualSharing for the unweighted variant (
∑
ci). Before we embark on

showing our upper bounds, we begin by proving the following lemma which gives
a tighter version of an inequality used by Christodoulou and Koutsoupias [12].

Lemma 4.1. For every pair of non-negative integers k and k∗,

k∗(k + 1) ≤ 1
3
k2 +

5
3
k∗(k∗ + 1)

2
.

Proof. After some algebra, this translates to showing that for all non-negative in-
tegers k and k∗,

5k∗2 + 2k2 − 6k∗k − k∗ ≥ 0.

We start by taking the partial derivative of the LHS w.r.t. k, i.e. 4k − 6k∗, from
which we infer that for any given value of k∗, the LHS is minimized when k = 3

2k
∗.

On substituting this into our inequality, we obtain:

5k∗2 + 2(
3
2
k∗)2 − 6k∗

3
2
k∗ − k∗ ≥ 0⇒ k∗2 ≥ 2k∗,

12



which is true for k∗ = 0 and k∗ ≥ 2. For k∗ = 1 our inequality becomes k2 −
3k + 2 ≥ 0 which is true for all non-negative integers k.

Theorem 4.2. The robust PoA of EqualSharing for R| |
∑
ci is at most 2.5. This

bound is tight even for restricted related machine scheduling.

Proof. Following an argument very similar with the one for the proof of Theorem
3.1, we prove that for any machine j:∑

i∈S∗j

cESi (s−i, s∗i ) ≤
1
3

∑
i∈Sj

cESi (s) +
5
3

∑
i∈S∗j

cSFi (s∗).

In order to show this, we first prove that this inequality only becomes tighter if for
any two jobs i, i′ ∈ Sj ∪ S∗j , their processing times on j are equal, i.e. pij = pi′j .
Assume that not all processing times are equal and let Maxj = {i ∈ Sj∪S∗j | ∀i′ ∈
Sj∪S∗j , pij ≥ pi′j} be the set of jobs of maximum processing time among the two
sets. Also, let k∗ = |Maxj ∩S∗j | and k = |Maxj ∩Sj | be the number of maximum
size jobs in sets S∗j and Sj respectively.

For all the jobs i ∈ Maxj , we decrease pij by the minimum positive value ∆
such that the cardinality of Maxj increases. After a change of this sort, the LHS
drops by (k∗(k+1))∆ while the RHS drops by (1

3k
2+ 5

3
k∗(k∗+1)

2 )∆. Given Lemma
4.1 above, we conclude that the drop of the LHS is always less than or equal to the
drop of the RHS. Using the same inequality again, we conclude that for unit jobs
on machine j the inequality is always true; summing up over all j ∈M yields:∑

i∈N
cESi (s−i, s∗i ) ≤

1
3

∑
i∈N

cESi (s) +
5
3

∑
i∈N

cSFi (s∗).

This shows that this coordination mechanism is (5/3, 1/3)-smooth, therefore show-
ing an upper bound of 2.5 for its robust price of anarchy and proving the theorem.

In order to get the pure PoA bound, we can once again assume that s is an
equilibrium and s∗ is an optimal configuration w.r.t. the ShortestFirst policy. For
all players i ∈ N , we know that wicESi (s) ≤ wicESi (s−i, s∗i ), thus:

∑
i∈N

cESi (s) ≤ 1
3

∑
i∈N

cESi (s) +
5
3

∑
i∈N

cSFi (s∗)⇒
∑

i∈N c
ES
i (s)∑

i∈N c
SF
i (s∗)

≤ 5
2
.

The tightness of the bound follows from Theorem 3 of [11]. The authors
present a load balancing game lower bound, but if we assume that all jobs have
unit size and the machines are using EqualSharing, the same proof yields a pure
PoA lower bound for restricted related machines and unweighted jobs.
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Now we switch to studying the ProportionalSharing policy for the
∑
wici so-

cial objective function. We start by proving that the order of completion times of
jobs on a machine that follows ProportionalSharing is the same as the order that
results from SmithRule; we also present a convenient formula that expresses each
job’s completion time as a function of itself and the jobs that complete before and
after it on the same machine.

Lemma 4.3. For any machine j using ProportionalSharing and any pair of jobs
a, b assigned to this machine, ca ≤ cb ⇔

paj

wa
≤ pbj

wb
. Also, assuming ci ≤ ci′ for

any two jobs i ≤ i′, the completion time of some job b on this machine is:

cb = pbj +
∑
a<b

paj +
∑
c>b

pbjwc
wb

.

Proof. In order to prove the first part of the lemma, we consider some processing
time interval of length L, during which no job is completed and therefore the sum
of the weights of the jobs being processed is fixed and equal to W . During this
time interval, every player i whose job is being processed gets a share of the pro-
cessing time equal to wi

W L and therefore it gets a fraction wi
pijW

L of its whole job
completed. It is easy to notice that jobs with smaller pij

wi
value complete a greater

fraction of their job during any such interval of time and therefore these jobs must
be completed first.

To prove the second part of the lemma, we notice that the completion time of
job b is only affected by the amount of “work” that the processor has completed by
that time and not by the way this processing time has been shared among the jobs.
For job b and any job a < b, we know that their whole processing demand pbj and
paj respectively has been served. On the other hand, while job b is not complete,
for each wb units of processing time that it receives, any job c > b receives wc
units. Thus, when job b is completed, the processing time spent on any job c > b
will be exactly pbjwc

wb
. Adding all these processing times gives the second part of

the lemma.

Before proving the PoA bounds for this policy, we show that this policy also
leads to a potential game by generalizing Theorem 3 of [18].

Theorem 4.4. The ProportionalSharing coordination mechanism induces exact
potential games.

Proof. We show that Φ(s) = 1
2

∑
i′∈N wi′

(
ci′(s) + pi′si′

)
is an exact potential

function for any such game. Let player i make a better response move from ma-
chine x to machine y, decreasing its cost from wici(s−i, x) to wici(s−i, y) and
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let

A =
{
a ∈ N | (sa = x) ∧

(
pax
wa

<
pix
wi

)}
,

B =
{
b ∈ N − i | (sb = x) ∧

(
pbx
wb
≥ pix
wi

)}
,

C =
{
c ∈ N | (sc = y) ∧

(
pcy
wc

<
piy
wi

)}
,

D =
{
d ∈ N − i | (sd = y) ∧

(
pdy
wd
≥ piy
wi

)}
.

By Lemma 4.3, the drop of the cost of player i after this move is:

wici(s−i, x)− wici(s−i, y) = wi

(
pix +

∑
a∈A

pax +
∑
b∈B

pixwb
wi

)

− wi

(
piy +

∑
c∈C

pcy +
∑
d∈D

piywd
wi

)
,

which is equivalent to:

wici(s−i, x)− wici(s−i, y) = wipix − wipiy
+
∑
a∈A

wipax +
∑
b∈B

wbpix −
∑
c∈C

wipcy −
∑
d∈D

wdpiy.

After this deviation of player i, all jobs except i have the same processing time and
the only completion times that are affected are those of player i and of the jobs in
one of the four sets defined above. More specifically, using Lemma 4.3, we can
break down the potential function drop as follows:

2(Φ(s−i, x)− Φ(s−i, y)) = wi (ci(s−i, x)− ci(s−i, y) + pix − piy)

+
∑
a∈A

wa
paxwi
wa

+
∑
b∈B

wbpix −
∑
c∈C

wc
pcywi
wc

−
∑
d∈D

wdpiy,

which is equivalent to:

2(Φ(s−i, x)− Φ(s−i, y)) = wici(s−i, x)− wici(s−i, y) + wipix − wipiy
+
∑
a∈A

wipax +
∑
b∈B

wbpix −
∑
c∈C

wipcy −
∑
d∈D

wdpiy,

from which one can conclude that:

2(Φ(s−i, x)− Φ(s−i, y)) = 2(wici(s−i, x)− wici(s−i, y)).
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We are now ready to prove the PoA bound for ProportionalSharing policy. The
intuition behind the following analysis is that the completion time(s) of the last
job(s) (the job(s) with the greatest ratio value) is exactly the sum of the processing
times of all the jobs that are assigned to the machine.

Theorem 4.5. The robust PoA of ProportionalSharing for R| |
∑
wici is at most

φ+1 = 3+
√

5
2 ≈ 2.618. Moreover, this bound is tight even for the restricted related

model.

Proof. Let s and s∗ be any two configurations. We start by showing that for every
machine j:∑

i∈S∗j

wic
PS
i (s−i, s∗i ) ≤

1
2φ

∑
i∈Sj

wic
PS
i (s) +

φ+ 2
2

∑
i∈S∗j

cSRi (s∗).

In order to show this, we first prove that this inequality only becomes tighter if for
any two jobs i, i′ ∈ Sj ∪S∗j , their ratios on j are equal, i.e. pij

wi
=

pi′j
wi′

. Assume that

not all ratios are equal and let Maxj = {i ∈ Sj ∪ S∗j | ∀i′ ∈ Sj ∪ S∗j ,
pij

wi
≥ pi′j

wi′
}

be the set of jobs of maximum ratio among the two sets. Also, let J∗ = Maxj ∩S∗j
and J = Maxj ∩ Sj be the maximum ratio jobs in sets S∗j and Sj respectively.

For all the jobs i ∈ Maxj , we decrease their ratio pij

wi
by the minimum positive

value ∆ such that the cardinality of Maxj increases. In order to do this, we decrease
the processing time of each job i ∈ Maxj by wi∆. After a change of this sort, in
order to show that the inequality may only become tighter, we want the drop of the
LHS to be less than or equal to the drop of the RHS, or∑

i∈J∗
wi

(
wi +

∑
i′∈J

wi′

)
∆ ≤ 1

2φ

∑
i∈J

wi

(∑
i′∈J

wi′

)
∆

+
φ+ 2

2

∑
i∈J∗

wi

 ∑
(i′∈J∗)∧(wi′≤wi)

wi′

∆.

If we set A =
∑

i∈J∗ wi and B =
∑

i∈J wi and further notice that:

2
∑
i∈J∗

wi

 ∑
(i′∈J∗)∧(wi′≤wi)

wi′

 = A2 +
∑
i∈J∗

w2
i ,

the inequality becomes:

AB +
∑
i∈J∗

w2
i ≤

1
2φ
B2 +

φ+ 2
4

(
A2 +

∑
i∈J∗

w2
i

)
,
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which is equivalent to:(
B√
2φ
−
√
φ

2
A

)2

+
2− φ

4
A2 +

φ− 2
4

∑
i∈J∗

w2
i ≥ 0.

It thus suffices to show that:(
B√
2φ
−
√
φ

2
A

)2

+
2− φ

4

(
A2 −

∑
i∈J∗

w2
i

)
≥ 0,

which is true for any value of A,B and weights of jobs in J∗.
We may now assume that for any job i ∈ Sj ∪ S∗j , pij

wi
= r for some r ∈ R+

and therefore if any set of jobs that is a subset of Sj ∪ S∗j was scheduled on j,
they would all have the same completion time, equal to the sum of their processing
times. Thus, the inequality that we need to prove becomes:

∑
i∈S∗j

wi

pij +
∑
i′∈Sj

pi′j

 ≤ 1
2φ

∑
i∈Sj

wi

∑
i′∈Sj

pi′j


+
φ+ 2

2

∑
i∈S∗j

wi

 ∑
(i′∈S∗j )∧(pi′j≤pij)

pi′j

.
If we replace pij with wir for each job i, we obtain:

rAB + r
∑
i∈J∗

w2
i ≤

1
2φ
rB2 + r

φ+ 2
4

(
A2 +

∑
i∈J∗

w2
i

)
,

which we already know is true. Now that we have proved that the initial inequality
is true for all machines j, summing up the corresponding inequalities over all j ∈
M gives us: ∑

i∈N
wic

PS
i (s−i, s∗i ) ≤

1
2φ
CPS(s) +

φ+ 2
2

CSR(s∗). (1)

This shows that this coordination mechanism is
(
φ+2

2 , 1
2φ

)
-smooth, therefore show-

ing an upper bound of φ + 1 ≈ 2.618 for its robust price of anarchy and proving
the theorem.
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In order to get the pure PoA bound, we can once again assume that s is an
equilibrium and s∗ is an optimal configuration w.r.t. the SmithRule policy. For all
players i ∈ N , we know that wicPSi (s) ≤ wicPSi (s−i, s∗i ), thus:

CPS(s) ≤ 1
2φ
CPS(s)+

φ+ 2
2

CSR(s∗)⇒ CPS(s)
CSR(s∗)

≤ φ+1 =
3 +
√

5
2

≈ 2.618.

The tightness of this bound follows from a Theorem shown in [11]. The authors
present a weighted load balancing lower bound. The corresponding scenario in our
setting is that all jobs have processing time equal to their weights and machines are
using ProportionalSharing. This way, their lower bound can be translated into a
pure PoA lower bound for restricted related machines and weighted jobs.

The machine scheduling problem of minimizing the weighted average com-
pletion time for unrelated machines (R| |

∑
wici) is well-studied NP-hard prob-

lem [32]. The first constant-factor approximation algorithm for this problem was
developed by by Hall et al. [25] who achieved an approximation ratio of 16

3 , im-
proved by Schulz and Skutella [38] to 3

2 + ε. This result was further improved to
3
2 independently by both Sethuraman and Squillante [40] and Skutella [41]. All
of these algorithms are based either on LP or convex quadratic programming re-
laxations. The following Theorem presents a new polynomial time combinatorial
constant-factor approximation algorithm for this optimization problem.

Theorem 4.6. The PoA bound for ProportionalSharing can be used to design a
combinatorial polynomial-time algorithm for R| |

∑
wici with an approximation

guarantee of 2.619.

Proof. Since the function 1
2

∑
wi(ci(s)+pisi) is a potential function for the game,

pure Nash equilibria of the ProportionalSharing policy are equivalent to local op-
timal solutions of a Polynomial Local Search (PLS) problem in which local im-
provements, by moving one job from one machine to another machine, decrease the
potential function. Therefore, we can use the result of [34] to show that a (1− ε)-
approximate local optimal solution can be found in time polynomial in 1

ε and the
size of the instance, i.e., a solution can be found for which any move of a job from
one machine to another decreases the total potential function

∑ 1
2wi(ci(s) + pisi)

by less than a 1− ε factor.
Our goal is to change the previous proof for the PoA bound and show the ap-

proximation factor of 2.619. Let Φa be the value of the potential function in this
approximate local optimum. Since this is an “exact” potential game, the fact that
the potential function does not decrease by more than εΦa implies that if the game
has reached a configuration sa that corresponds to the local optimum above, mov-
ing any job from any machine to another machine does not decrease its completion
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time by more than εΦa. The relaxed equilibrium inequalities for such a configura-
tion sa would then be: wicPSi (sa) ≤ wicPSi (sa−i, s

∗
i ) + εΦa for each i ∈ N . Using

inequality (1) from the previous proof, replacing s with sa, gives:

CPS(sa) ≤ 1
2φ
CPS(sa) +

φ+ 2
2

CSR(s∗) + nεΦa,

from which, using the fact that Φa ≤ CPS(sa) and setting ε = ε′

2φn , yields:

CPS(sa)
CSR(s∗)

≤ φ(φ+ 2)
2φ− 1− ε′

=
φ(φ+ 2)
2φ− 1

+O(ε′) ≤ 2.619.

We have therefore shown that in time polynomial in 2φn
ε′ we can achieve an ap-

proximation ratio of φ(φ+2)
2φ−1 + O(ε′). Of course, after we compute this allocation,

we can reorder the jobs using SmithRule which can only improve the social cost
value.
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