TWO-LEVEL SCHWARZ METHODS FOR NONCONFORMING
FINITE ELEMENTS AND DISCONTINUOUS COEFFICIENTS
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Abstract. Two-level domain decomposition methods are developed for a simple nonconforming
approximation of second order elliptic problems. A bound is established for the condition number of
these iterative methods, which grows only logarithmically with the number of degrees of freedom in
each subregion. This bound holds for two and three dimensions and is independent of jumps in the
value of the coefficients.
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1. Introduction. The purpose of this paper is to develop a domain decomposi-
tion methods for second order elliptic partial differential equations approximated by
a simple nonconforming finite element method, the nonconforming P; elements. We
consider a variant of a two-level additive Schwarz method introduced in 1987 by Dryja
and Widlund [5] for a conforming case. In these methods, a preconditioner is con-
structed from the restriction of the given elliptic problem to overlapping subregions
into which the given region has been decomposed. In addition, in order to enhance the
convergence rate, the preconditioner includes a coarse mesh component of relatively
modest dimension. The construction of this component is the most interesting part
of the work. Here we have been able to draw on earlier multilevel studies, cf. Brenner
[1], Oswald [11], as well as on recent work by Dryja, Smith, and Widlund [4]. Our
main result shows that the condition number of our iterative methods is bounded by
C (14 log(H/h), where H and h are the mesh sizes of the global and local problems,
respectively. We also note that this bound is independent of the variations of the
coefficients across the subregion interfaces.

The face based and the Neumann-Neumann coarse spaces, that we are introducing,
have the following characteristics. The nodal values are constant on each edge (or
face) of the subregions and the values at the other nodes are given by a simple but
nonstandard interpolation formula. Thus the value at any node in the interior of a
subregion is a convex combination of three (or four) values given on the boundary, in
case of triangular (or tetrahedral) substructures. We note that an important difference
between nonconforming and the conforming case is that there are no nodes at the
vertices (or wire basket) of the subregions.
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2. Differential and Finite Element Model Problems. To simplify the pre-
sentation, we assume that €2 is an open, bounded, polygonal region of diameter 1 in
the plane, with boundary 0f2. In a separate section, we extend all our results to the
three dimensional case.

We introduce a partition of € as follows. In a first step, we divide the region
Q into nonoverlapping triangular substructures Q;,¢: =1,---, N. Adopting common
assumptions in finite element theory, cf. Ciarlet [2], all substructures are assumed
shape regular, quasi uniform and not to have dead points, i.e. each interior edge is
the intersection of the boundaries of two triangular regions. We can show that the
theory also holds if we choose nontriangular substructures, where the boundary of
each substructure is a composition of several curved edges, and each curved edge
is the intersection of two substructures. Naturally, we need assumptions related to
the quasi uniformity and nondegeneracy of this partition. Initially, we restrict our
exposition to the case of triangular substructures since the main ideas are seen in
this case. This partition induces a coarse mesh and we introduce a mesh parameter
H := max{H,, -, Hy} where H; is the diameter of ;. We denote this triangulation
by TH. Later, we extend the results to nontriangular substructures.

In a second step, we obtain the elements by subdividing the substructures into
triangles in such a way that they are shape regular, and quasi uniform. We define
a mesh parameter h as the diameter of the smallest element and denote this trian-
gulation by 7% Similarly, we assume the triangulation 7" not to have any dead
points.

We study the following selfadjoint second order elliptic problem:

Find u € Wy (), such that

(1) a(u,v) = f(v), YveE Wi (Q),
where
a(u,v) = /Q a(z) Vu-Voder and f(v) = /Q fvde for f € L*.

We assume that a(z) > a > 0 and that it is a piecewise constant function with
jumps occurring only across the substructure boundaries. This includes cases where
there is a great variation in the value of the coefficient a(z). We remark that there is
no difficulty in extending the analysis and the results to the case where a(x) does not
vary greatly inside each substructure.

DEFINITION 1. The nonconforming P element spaces (cf. Crouzeiz and Raviart
[8]) on the h-mesh and H-mesh is given by

VE:={v|v linear in each triangle T € T",

v continuous at the midpoints of the edges of T", and
v =0 at the midpoints of edges of T" that belong to O},
and

VH .= {v|v linear in each triangle T € TH,

v continuous at the midpoints of the edges of T, and
v =0 at the midpoints of edges of TH that belong to ON}.
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These spaces are nonconforming; in fact V# ¢ V" and V* ¢ Wi(Q).
Let ¥ be a region contained in € such that 0¥ does not cut through any element.
Denote by V|hi and Th@ the space V" and the triangulation 7" restricted to %,

respectively.
Given u € V|%, we define the discrete weighted energy semi norm by:
(2) |'“|%V;7h(2) = ag)(“f”)v
where
(3) ab(u,v) = > / a(z) Vu-Vudz.
T

Te Th 5

In a similar fashion, we define the inner product af(u,v) and the semi norm
|u|W§,H(Q) for u,v € VH(). In order not to use unnecessary notation, we drop the
subscript €2 when the integration is over {2 and the subscript @ when a = 1.

The discrete problem associated with (1) is given by:

Find u € V", such that

(4) ah(u,v) = f(v), Vv € Vh(Q).

Note that | - |W§,h(9) is a norm, because if |u|W;7h(Q) = 0, then u is constant in
each element. By the continuity at the midpoints of the edges and the zero boundary
conditions, we obtain u = 0. Note also that f is a continuous linear form. Therefore,
we can apply the Lax-Milgram theorem and find that there exists one and only one
solution of the discrete equation (4).

We also define the weighted L? norm by:

(5) lullfam = [ a(@) (@) de foru € (VF+VF 4 L2)5.
We introduce the following notation: * <y, f > g and v <X v meaning
x<Cy, f>cg and cv<u<(Cwv, respectively.

Here C and ¢ are positive constants independent of the variables appearing in the
inequalities and the parameters related to meshes, spaces and, especially, the weight

a(x).

M. M,

M;
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Sometimes is more convenient to evaluate a norm of a finite element function in
terms of the values of this function at the nodal points. By first working on a reference
element and then using the assumption that the elements are shape regular, we obtain
the following lemma:

LEMMA 1. Foru e V&,

(6) lullz o < B> 32 a(T) (u(My) + u(My) + u?(Ms))
Te Th s
and
(7) ulws oy = D2 alT){(u(My) — u(Mz))*
Te Th s

+(u(Ma) — u(Ms3))* + (u(Ms) — u(My))*}.

where My, My, M3 are the midpoints of the edges of the triangle T as in Fig. 1.
An inverse inequality can be obtained by using only local properties. It is easy
to see that for u € V",

(8) ulws, = A ulz;.

3. Additive Schwarz Schemes. We now describe the special additive Schwarz
method introduced by Dryja and Widlund; see e.g. [6,7]. In this method, we cover
Q by overlapping subregions obtained by extending each substructure {2; to a larger
region .. We assume that the overlap is ¢;, where ¢; is the distance between the
boundaries 9€; and 9, and we denote by ¢ the minimum of the ¢;. We also assume
that 02 does not cut through any element. We make the same construction for the
substructures that meet the boundary except that we cut off the part of Q! that is
outside of (2.

For each Q!, a P; nonconforming finite element subdivision is inherited from the
h-mesh subdivision of {2. The corresponding finite element space is defined by

(9) V;-h ={v|v € V" support of v C Q}, i=1,---,N.

The coarse space V)" C V#(Q) is given as the range of I (or Ily) where the
prolongation operator I}y (or I7,) will be defined later.
Our finite element space is represented as a sum of N + 1 subspaces

(10) VE=V V4 4 Vi
We introduce operators P;: VF — V% i =0,---, N, by

k3

(11) a"(Paw,v) = d"(w,v), Yve V'
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and the operator P: V" — V" by
(12) P=PFPy+ P +---+ Py.
In matrix notation, Py is given by
(13) Po=I4(IN"KIN)'IET K
where K is the global stiffness matrix associated with a(-, ).
We replace the problem (4) by
N
(14) Pu=yg, g=)> g¢; where ¢g; = Pu.
=0

By construction, (4) and (14) have the same solution. We point out that g; can
be computed, without knowledge of u, since we can find g; by solving

(15) a"(gi,v) = a"(u,v) = f(v), Yo € V.

The operator P is positive definite and and symmetric with respect to a”(-,-).
We can therefore solve (14) by a conjugate gradient method. In order to estimate the
rate of convergence, we need to obtain upper and lower bounds for the spectrum of
P. A lower bound is obtained by using the following lemma; cf. Zhang [13,12].

LEMMA 2. Let P; be the operators defined in equation (11) and let P be given by
(12). Then

(16) ah(P_lv,v) = mzi:n Zah(vi,vi), v; € Vih.

Therefore, if a representation v =3 v; can be found such that

N
(17) Zah('via'vi) < C’gah(v,v), Vo e Vh7

1=0

then

An upper bound on the spectrum is obtained by bounding

(18) a"(Pv,v) = a"(Pyv,v) + a"(Pyv,v) + - + a"(Pyv,v),

from above in terms of a"(v,v). Using Schwarz’s inequality, the fact that the P; are
projections, and that the maximum number of regions that intersect at any point is
uniformly bounded, it is easy to show that the spectrum of P is bounded above by

?éaéc{#(i :pe Q)+ 1}
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4. Properties of the P, nonconforming finite element space. We first
define a two local equivalence maps in order to obtain some inequalities and local
properties for our nonconforming space. Through these mappings, we can extend
some results that are known for the piecewise linear conforming elements to our non-
conforming case.

We use a bar to denote conforming spaces. Let %63 lq, be the conforming space of
piecewise linear functions in €2;, where the h/2-mesh is obtained by joining midpoints
of the edges of elements of 7"|q..

We define the local equivalence map M; : V*|gq. — V%|Qz7 as follows:

ISOMORPHISM 1. Given u € Vg, define u = M,u by the values of u at the three
sets of points (c¢f. Fig. 2):
i) If P is a midpoint of an edge of a triangle in T", then

u(P) :=u(P).

i) If P is a vertez of an element in T" and belongs to the interior of

Q.

i, and the T; are the elements that have P as a vertez, then

u(P) := mean of wu|r,(P).

Here ul|r,(P), is the limit value of u(xz) when x € T; approaches P.
1) If Q is a vertez of T"|sq,, and Q; and Q, the two midpoints of T"|aq,
that are next neighbors of (), then

Q| Q,Q|
|Ql | |Q1QT|

Here |Q.Q)| 1s the length of the segment Q,Q.
Case ii) is illustrated in Fig. 2, where

1 6
=5 LUl

=1

u(@Q) = u(Qr) + w(Qr).

Case iii) is required in order to have property (21), which will be very important
in our analysis.




LEMMA 3. Given u € Vg, let u € Vi q. gwen by u= Mu. Then
(19) |alwia = Tulwe, @)
(20) lellz @0 = llullzz@
and

(21) /89 a(s)ds = /BQ u(s) ds.

Here | - |wi(q,) 1 the standard weighted energy semi norm for conforming functions.
Proof. We first note that we have results similar to (6) and (7) for the conforming
space Ve |q,» where now My, M; and Mj; are the vertices of a triangle in 7 2. In order
to prove (19), we compare (7) with the analogous formula for the piecewise linear
conforming space.
For instance (see Fig. 2),

_ Q@
|Q1QT|

The right hand side can be controlled by the energy semi norm of u restricted to the

u(Q) — u(Q:)|* w(Qr) — u(Q:)[*.

union of the triangles 77, Ty and Tp.

We also prove that if we take two next neighboring vertices of T% in the interior
of Q;, the energy semi norm can be bounded locally. If a(z) does not vary a great
deal, we can work with weighted semi norms. Using the fact that our arguments are
local, it is easy to obtain the upper bound of (19).

The lower bound is easy to obtain since the degrees of freedom of V* are contained
in those of V2.

Similar arguments can also be used to obtain (20).

Finally, it is easy to see that (21) follows directly from iii) even if the refinement
is not uniform. 0O

We define another local equivalence map M¥F : Vg — V%|Q” by:

ISOMORPHISM 2. Given u € V"|q. and an edge E of 98Y;, define u = MFPu by the
values of u at the three sets of points (c¢f. Fig. 2):

i) Same as step i) of Isomorphism 1.
i) Same as step ) of Isomorphism 1.

wi) If V is a vertez T"|sq, and an end point of E, and V, the midpoint

of T"|i that is the next neighbor of V, then

w) If Q is a vertex of T"|sq, and we are not in case 111), then

Q| Q-Q|

"9 =10.0,] Q.0

u(Qr) +

7

u(Qr).



Using the same ideas as in Lemma 3, we can prove:

Q. let u € %3 a. gwen by u = MPu. Then

1

LEMMA 4. Given u € V"

(22) |alwe) < lulwr, @)
(23) ]l 22 ) = lullzz)
and

(24) /Eﬂ(s)ds:/Eu(s)ds.

5. The Interpolation Operator. Let v € V" and let P;; be the midpoint of
the edge FE;; common to Q; and ;.

DEFINITION 2. The Interpolation operator I : V* — VH s given by:

¢ H . — 1 =
(25) (ITv)(P;) : |E”| / ) do= /E vlg, () da.

The second equality follows from the fact that the mean of v on each edge of an
element of 7" is equal to v(M, ), where M; is the midpoint of the edge. It is important
to note that the value of (I}/v)(P;;) depends only on the values of v on the interface E;;.
This allows us to obtain stability properties that are independent of the differences of
a(x) across the substructure interfaces.

Before studying the stability properties of this operator, we need two lemmas for
the piecewise linear conforming finite element space.

The following lemma is a Poincaré-Friedrichs inequality. The idea of the proof
can be found in Ciarlet (Theorem 6.1) [2] and in Necas (Chapter 2.7.2) [10].

LEMMA 5. Let I be a subset of 0S2;, such that T and 0S); have measures of order
H. Then,

(26) a2, < Hulb g, —i—(/r'li(:c)dx)z, Va € W),

As a consequence, if [pu(x)dr =0, we have the Poincaré inequality

(27) |l 2@ = H |u|wiq,

Proof. Consider initially a region 2 with diameter 1. If this is not the case, we
use a linear change of variable to get the general result.



We prove first that the functional f, given by
(28) fu) = [ a(e)de .
r

is continuous on the space W*'(Q).

In fact
(29) @) 2 ullerey = Mullezey 2 Mully 1 = lullwie)
using the Cauchy-Schwarz inequality and a trace theorem.

We argue by contradiction assuming that (26) is false. Then, there exists a
sequence {v;}72; such that

(30) [ollw: =1, VI,
and
(31) B (Joffys + ((50))?) = 0.
Since the sequence {5} is bounded in || - |1, we can by Rellich’s theorem find a

subsequence, again denoted by {v;}, and a function v € W such that
() e —
By using (31), we have
0] =0 and f(v) = 0.
Therefore, v = 0 and
(53 Jn e~ ol = 0,

which contradicts (30). O
The next lemma is a Poincaré-Friedrichs inequality for nonconforming P; ele-
ments. It is obtained by using Lemmas 3, 4 and 5.

LEMMA 6. Letu € W;7h(ﬂi), where ; 1s a triangular substructure of diameter
O(H). Let T be 0%2; (or an edge of 02;). Then,

(34) lullZ2n = H by q,) + (/F u(z)dz)®, Yu€ W, ().
As a consequence, if [u(x)dr =0, we have the Poincaré inequality

(35) ||’U||L§’h(9i) =H |u|Wi’h(Qi)-



The next lemma gives an example of an operator that is L?— and W}!—stable.

LEMMA 7. Let u € W}(Q;), where Q; is a triangular substructure of diameter of
O(H ). Define a linear function uy in ; by

(36) an(Py) = / de, j=1,2.3,
2 |Eu|

where the E;; are the edges of ;, and P;; is the midpoint of E;;. Then,

_ 1 _
(37) am(Py)* = 7B —llu ||%2(91-) + |u|%v1(9)
(38) [umwiey = [ulwe o
and
(39) s — allzzgan = Hlalwy,

Proof. Consider initially a region 2 with diameter of 1.
Using that |E;;| = O(1), the Cauchy-Schwarz inequality and a trace theorem, we
have

<1, ) de’ < Jallugs

<l gy, ) % Nl = Nalam, + @l

We obtain (37) by returning to a region of diameter H.
Note that for any constant ¢

]2 N
(40) wn i @) =
| (Pi) — ug(Po)|? + lug(Pa) — ug(Pis)* + |ug(Pis) — un(Pa)|?

=l — C”:D)Vl(Qi)'

By choosing ¢ = u(P;;) and I' = E;;, we can apply Lemma 5 and obtain the W*'-
stability (38).

We now prove the L?-stability. Since # — uy has mean zero on 0;, we can apply
the Poincaré inequality (27) and obtain

| —un|r2) 2 H |t —tg|maq,

Using the first part of this lemma, we obtain the L?-stability (39). O
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The next lemma shows that the interpolation operator I}7, defined by (25), is
locally L2— and W}—stable.

LEMMA 8. Let u € VH(Q). Then uy = Iu satisfies the following properties

(42) lurlws ) 2 ulwr @)
and
(43) ||UH - UHL%(QJ j H |‘u|IV;7h(Qi) , 7 = ]_7 A 7N.

Proof. Let uy = Ifu and let u € W'(€2;) be given by u = J’\/l?” w and let uy(Py)
be given by (36). Using the properties (24) and (25), we have

(44) uH(PZ ) = ‘HH(PZ' )

Therefore, by (44), (37) and Lemma 4, we have

~ [ ~
(45) un(Po)l* = (Pl % 5l + il

1
= EHUH%?(Q,) + lulfyqy-

We also obtain the same estimate for |ug(P;)| and |uy(Pis)l|.
The rest of the proof is similar to that of Lemma 7. We now use the Poincaré
inequality for nonconforming elements. 0O

6. The Prolongation Operator. In this section, we introduce several prolon-
gation operators and establish that they are stable. The range of each of these oper-
ators will serve as a coarse space in our algorithms.

DEFINITION 3. The Prolongation Operator Iy : V1 — V* is given by:
i) For all nodal points P of T" that belongs to an edge E;; common to
Qi and Q;, let (Ihug)(P) = ug(P;), where Py is the midpoint of
the edge E;;.
i) Given I}ug at the nodal points of T = U;09Q; from i), let [fup(S))
be the Pp-nonconforming harmonic extension inside each €;.

It is easy to check that uy, = [juy € V(). A disadvantage of step i7) is that we
have to solve exactly a local Dirichlet problem for each substructure in order to obtain
the harmonic extension. Other extensions can be used, which we call approzimate
harmonic extensions. They are given by simple explicit formulas and have the same
L? and W}, stability properties as the harmonic one.

11



P
Fig. 3

Our first construction is a natural generalization of the partition of unity intro-
duced by Dryja and Widlund in [6]; this partition of unity will provide the basis
functions of our approximate extensions. Let P;, 7 = 1,2, 3, be the midpoints of the
edges of €;, and let V; be the vertex of ); that is opposite to P;. Let C' be the
barycenter of the triangle €2;, i.e. the intersection of the line segments connecting V;

to Pj.

EXTENSION 1. The construction of an approzimate harmonic extension 18 defined
by the following steps (see Fig. 3.):
i) Let

0(0) 1= 5 fun(P) + un(Py) + un(Py)}

i) For a point R that belongs to a line segment that connects C to a
vertex V;, let

u(R) :=u(C).

wwi) For a point Q) that belongs to a line segments connecting C to Pj, de-
fine u(Q) by linear interpolation between the values u(C') and uy(P;),
i.e by

u(Q) == MQ)u(C) + (1 = MQ))un(F;).
Here \(Q) =distance(Q, P;)/ distance(C, P;).

i) For a point S that belongs to the line segment connecting the previous
point Q to a vertex Vi, with k # j, let

v) Finally, let Ihuy = Iu, where I, 1s the interpolation operator into
the space V" that preserves the values of a function at the midpoints
of the edges of the elements.

12



Note that the function u just constructed is continuous except at the vertices V;
of ;. The step ¢) can be viewed as emulating the mean value theorem for harmonic
functions. However, near the vertices, u is a bad approximation of the harmonic
extension. We know that the local behavior of the harmonic extension near a vertex
V; depends primarily on the boundary values in the vicinity of V;. For instance, if
ug(Pr) = 0,ug(Ps) = 0, and ug(Py) = 1, we should obtain u;, ~ 0 near V; in
addition, by using symmetry arguments, we should have u;, ~ 1/2 for points near V;
that lie on the bisector that passes through V; . With this in mind, we now construct
an alternative approximate harmonic extension.

We change notation in order to be able to use Fig. 3. Let now C be the point
where the three bisectors intersect.

EXTENSION 2. The construction of the approzimate harmonic extension 1s defined
by (see Fig. 3):
i) Same as Step 1) of Extension 1.
1) Define u(V;) = 5 Y1z u(Py). For a point R that belongs to a line seg-
ment connecting C to V;, define u(R) by linear interpolation between
the values u(C) and u(V;).
wwi) Same as Step i) of Extension 1.
w) For a point S that belongs to a line segment connecting the previous
point Q to Vi, k # 3, u(S) us defined by linear interpolation between
the values u(Q) at Q@ and f(Q,j,k) at V. Here,

H@Q, 5, k) = MQ)u(V;) + (1 = MQ)) u(Fy).

v) Same as Step v) of Extension 1.

A disadvantage of this extension is that we cannot just work in a reference triangle,
since the angles are not preserved under a linear transformation. This is similar to
the fact that under a linear transformation a harmonic function does not necessarily
remain harmonic. We can construct other approximate harmonic extensions which
combine the properties of the two extensions, given so far, and working, for instance,
with the barycenter C' as in Extension 2 and replacing the weight 1/2 in Step ii).

The next lemma shows that the extensions given above have quasi-optimal energy
stability. Using ideas of Dryja and Widlund [6], we prove the following lemma.

LEMMA 9. Let uy € VH(Q). Then

(46) |IJ@1'“H|W;7,1(91-) = (L4 log(H/h))2 |uH|W;7H(Qi)
and
(47) s — unllz@) = H lumlw: @,)-

13



Proof. Let 9?; e Vhk
structed from the boundary values 6}, = 1 at the h-mesh nodes on the edge E;;, and
9{; = 0 at the other boundary nodes of 0f2;. It easy to see that the 9{& form a basis
of all approximate harmonic extensions that take constant values on the edges of the

Q,,] = 1,2,3, be the approximate harmonic extensions con-

substructure. It is easy to show that if a point  belongs to the interior of an element

of Q;, then |V #](z)| is bounded by C/r, where r is the minimum distance from = to
any vertex of €2;. Note that any element that touches a vertex of ); provides an order
one contribution to the energy semi norm. To estimate the contribution to the energy
semi norm from the rest of the substructure, we introduce polar coordinate systems
centered at the vertices of €2;. Then,

: H
(48) 8] sy 2 1+ //h 72 drdp <1+ log(H/h).
Since the partition of unity 9‘2 forms a basis, it is easy to see that

(49) |I1}iLIUH|%V,1(Qi) =

(1 + log(H/R)) {Jun(P)l” + lun(Po)l* + |un(Ps)[*}

and using ideas similar to that of Lemma 7, we have

[Trun v, = (1+ log(H/R)) {lun (Pr) — up(Py)[*+
|un(Py) = up(Ps)l* + |un(Ps) — un(P)*}

=< (1 +log(H/1))|unliy g,

By construction, it is easy to see that

[(Lun)(@)] < max Jup(P)l.

Therefore
||I£IUH - ‘“HH%?(Q) = ZH2 |‘UH(P2')|27

and by using (45) and (35), we obtain (47).

Since a(z) varies little in each ;, these arguments are also valid for the weighted
norms and we obtain (46). O

Using Lemmas 6 and 9 and the triangular inequality, we have:

14



THEOREM 1. Let u € V*(Q). Then

(50) 175 1w — iz = H ulw: @,
and
(51) |I£II}?U|W;W(Q) = (14 log(H/N))? |ulw: (-

REMARK 1. It is easy to see that we do not need to use the fact that uy € Vg (Q);
we only need to calculate values Vi (Pi;) by formula (25) at the midpoint P;; of the
edge E;;. The next step is to provide the constant value Vy(P;;) to all nodes of the
interface and perform an approrimate harmonic extension.

REMARK 2. The extensions also can be constructed for nontriangular substruc-
tures. In a first step, we construct a partition of unity in ;. This can be done by
using tdeas similar to those of the triangular case. By using the same technique as in
the proof of Lemma 9, we can show that

(52) [Tunlivs | @) =

N

(14 log(H/R)) >~ a(S) |un(Pij) — wa(Pi-))|?

i=1

where P;; and Pj;_yy are neighboring midpoints of edges of 0€); and Ni is the number
of edges of 0. We obtain (50) by noting that each term of the sum is bounded by

ar |2
|“|W37h(9i)'

7. The Neumann-Neumann Basis. In this section, we consider a Neumann-
Neumann coarse space. This is the P; nonconforming version of a coarse space studied
in Dryja and Widlund [8], and Mandel and Brezina [9]. However, here we use an
approximate harmonic extension inside the substructures. We note that the coarse
spaces considered by these authors differ only in how certain weights are chosen.
Mandel and Brezina use weights that are convex combinations of the coefficient a(z),
while Dryja and Widlund use a%(:c). Here we show that any convex combination of
a®(z), for B > 1/2, leads to stability. We point out that the choice 8 = 1/2 can be
viewed as a L%*-average, while # = 1 is an average in the L' sense.

We call the coarse space of the previous section, face based. There are some
differences between Neumann-Neumann and face based coarse spaces. A Neumann-
Neumann coarse space has one degree of freedom per substructure, while a face based
uses one degree of freedom per edge. A Neumann-Neumann basis function associated
with the substructure €2;, has support in €2; and its neighboring substructures, while
a face based function basis, associated with an edge of a substructure, has support in
just two substructures. The face based coarse space appears to be more stable since
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all the estimates, related to the jumps of the coefficients, are tight. In the lemmas
that we have proved for the face based methods, all the stability results were derived
in individual substructures, while in the Neumann-Neumann case, we need to work
in an extended subdomain.

DEFINITION 4. The Neumann-Neumann interpolation operator, Iny : VP — V7,
as follows:
i) For each substructure Q;, calculate the mean value on 0L);, i.e.

1
|02

mu 1= u(s) ds.
Here |0Q;] is the length size of O0S;.
i) For all nodal points P of T" that belong to the edge E;;, let
(Innu)(P) = (I u)(P;;), where
: () #(9)
IH’ PZ = ¢ : X /
W) = Gty ity ™ @ ey ™
Here Py is the midpoint of the edge E;;.
wi) Perform an approzimate harmonic extension to define Inyu inside

=

the substructures.
Note that we can also calculate m;u by:

_y Bl )
(53) miu = Z 20, | u)(Pij).

Therefore, there exists a linear transformation I : Viy — Vj, such that
IHy = [Ty, The next lemma establishes stability properties for 7.

LEMMA 10. Let ug € VH(Q) and 8 > 1/2. Then

(54) |I}]}IUH|W;7H(Q¢) < CB) lurlwr ) »
and
(55) ||IHUH — uH||L2 < C( )H |uH|W1 Qe.rt)

Here the extended domain Q5 1s the union of §; and the substructures that share an
edge with ;.
Proof. Let us first prove the L? stability. Note that (see Fig. 4.)

a’(Q) mi + a’(%; DMz

lun(Py) — (Ifuw)(Pyj)|* = |un(Py;) — aP(0) + aP(Q)

By using (53) and simple calculations, this quantity is equal to
16



1
() + P ()]

| ik |Zal
4" (52) {1, (wn(Pe) = un(Pao)) + 150

K3

(un(Pij) —up(Pu))}+

) g (Py) — wn(P)) + 5 un(Py) — un( P

Using the shape regularity of the subdomains, it is easy to see that

(56) () [un(Py) — (Iifuw )(Pij)]* =

a*?(Q;) a(;) a??71(Q;)
Z || fy + - :
|a5(QZ~) + aﬁ(Qj)P Wa,H(Qi) |a5(92) + aﬁ(Q]‘)

|2 |uH|€V;,H(QJ)

and using the fact that # > 1/2, we can bound this quantity by

< C(B) |uH|%/V;7H(Q¢UQ])‘

We obtain (55) by adding all the contributions (56) to the L?(€;) norm. We prove
(54) by using the triangular inequality, an inverse inequality, and (55). O

Fig. 4

THEOREM 2. Let u € V*(Q) and 8 > 1/2. Then

and
(58) |INNu|W;7h(Qi) <OB)(L+ ZOQ(H/h))% |u|lV;7h(Qf”)-

17



Proof. Using Lemmas 9, 10 and 8, we have

[ Invulws (o) = (14 log(H/h))? |II{III}€IU|W;7H(Q!') <
U3 (1 + g 1]l ey <

C(B)(1 +log(H/R))" |‘U|W;7h(95$t)-
The L2-stability is obtained by

[ Innu = ull 2, < [ Invu — I Il 20, +

177 1w — I ull ez + 25w — |z -
and by using Lemmas 9, 10 and 8. [

REMARK 3. We can also prove Theorem 2 for the case of nontriangular substruc-
tures; ¢f. Remarks 1 and 2.

8. The Three Dimensional Case. We show in this section that the methods
developed before can be extended to three dimensions.

For simplicity, we assume that 2 is a polyhedral region of diameter 1 in three
dimensional space. As before, we introduce a nonoverlapping partition composed of
tetrahedra €; of diameter of order H. This defines a coarse space and a triangulation
TH. We further subdivide the substructures into tetrahedra which results in a tri-
angulation 7" and define the nonconforming P, finite element spaces V" and V¥ as
in Definition 1. Here, the continuity is enforced at the barycenter of the faces of the
triangulations.

The local equivalence maps are given by the following procedure. In each tetrahe-
dral element of 7" (cf. Fig. 5.), we connect its centroid to the four vertices and to the
barycenters of the four faces. We also connect each barycenter to the three vertices.
In other words, we subdivide each tetrahedral element into twelve subtetrahedra. We
denote this new triangulation by 7"*. The vertices of 7" are the vertices, barycenters,
and centroids of the elements of 7",

Let V"
We define the local equivalence map M; : V*|gq. — Vv q,, as follows:
ISOMORPHISM 3. Given u € V*|q., define u = Mu by the values of u at the
following sets of points: ~
i) If P is a vertex of an element of ’]ih and belongs to the interior of §2;,
and the K; are the elements in T"|q. that have P as a vertez, then

q, be the conforming space of piecewise linear functions of the triangulation

f]'h

u(P) := mean of ulk,(P).

Here u|k,(P) is the limit value of u(x) when v € K; approaches P.
18



i) If P is a barycenter of a triangle in T"|5q,, then
u(P) :=u(P).

i) If P is a vertex of a triangle in T"|sq, and T;, j = 1,---, Np, are the
triangles of T"|sq, that have P as a vertez, then

E T

u(P) = Z

k=1 | Uévzpl Tj|

u(C).

Here C; and |T;| are the barycenter and the area of the triangle T;,
respectively. i
It 1s easy to check that the Lemma 3 holds, if we replace Vh/2|gi by V"gq..

o — V"

We define another local equivalence map M : V" q,, by:
ISOMORPHISM 4. Given u € V*|q. and a face F of 08, define u = M¥u by the
values of u at the following sets of points:
i) Same as step i) of Isomorphism 3.
i) Same as step u) of Isomorphism 3.
1) Let P be a vertez of a triangle in T"|sq, that belongs to OF, and let
T:, j=1,---,NE, be the triangles of T"|r that have P as a vertez.
Then

AL

uP) =) ——
=1 | U T

u(C).

w) Let P be a vertex of a triangle in T"|5q, that does not belong to OF,
and let T;, j = 1,--+,Np, be the triangles of T"|p that have P as a
vertex. Then

It is easy to check that Lemma 4 holds, if we replace Vh/2|gi by v
the faces play the role previously played by the edges.
Let v € V" and let C;; be the barycenter of the face F}; common to Q,; and Qj.

q., and let

DEFINITION 5. The interpolation operator I : V' — VH s given by:

1 1
(FoXC) = e [, vlae) de = o [ vl (o) do
(¥ 1] k3 2

where |Fyj| 1s the area of the face Fj.
Using the same ideas as in two dimensions, we can prove lemmas analogous to
Lemmas 5-8.
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The prolongation operator I}y : VH — V" is defined as in the two dimensional
case. In a first step, we define (Iuy)(P) := uy(C;;) for all barycenters P of tri-

angles in 7" F;,;- Finally, we perform an P;-nonconforming harmonic or approximate
harmonic extension.

We describe the three dimensional version of Extension 1. This is a generalization
of the partition of unity introduced by Dryja, Smith, and Widlund [4]. Let Cj,
J =1,---,4, be the barycenters of the faces Fj; of 0€);, and let V; be the vertex of
2; that 1s opposite to C;. Let C the centroid of €2;, i.e. the intersection of the line

segments connecting the V; to the C;. Let Ej;, k =1,2,3 | be the edges of OFj.

EXTENSION 3. The construction of an approzimate harmonic extension Ilurr is
defined by the following steps (see Fig. 5.):
i) Let

lj(C) = uH(C])

1 4
4=
i) For a point Q) that belongs to a line segment connecting C to C;, de-

fine u(Q) by linear interpolation between the values u(C) and uy(C;),

.e. by
0(Q) = NQ)a(C) + (1 — N(@))un(C)).

Here \(Q) =distance(Q, C;)/ distance(C,C;).
wwi) For a point S that belongs to any of the three triangles defined by the
previous (), and the edges Ej, k=1,---,3, let

w) Finally, let Iluy = Iyu, where I, is the interpolation operator into
the space V" that preserves the values of a function at the barycenter
of the faces of elements in T".

We can also construct an approximate harmonic extension similar to that of
Extension 2. This gives a better approximate harmonic extension near the edges.

The prolongation operator I}, in three dimensions has the same stability proper-
ties as in the two dimensional case, i.e. Lemma 9 still holds.

The idea of the proof is the following. Consider the case where uy(€2;) is given
by upg(Pi1) = 1 and ug(P) = up(Ps) = 0. This gives the partition of the unity
introduced by Dryja, Smith, and Widlund [4]. The energy semi norm of uy is of
order H.

Let 6! = Ihup(Q;). We note that |[V#il(z)| is bounded by C/r, where r is the
distance to the nearest edge of €2;. The contribution to the energy semi norm from
the union of the elements with at least one vertex on the edge of the substructure
can be bounded by C'H, using that the extension is given by a convex combination of
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the boundary values. To estimate the contribution to the energy from the rest of the
substructure, we introduce cylindrical coordinates using the appropriate substructure
edge as the z-axis. Integrating |V} (z)|?
C(1+log(H/h))H.

To prove Lemma 9 for a general uy, we use the same ideas as for two dimen-

over this region, we find that is bounded by

sions. Similarly, we can extend the results to nontriangular substructures and to the
Neumann-Neumann case.

Fig5

9. Main Result. In this section, we consider the Schwarz method introduced
in the previous sections and prove the following result.

THEOREM 3. The operator P of the additive Schwarz algorithm, defined by the
spaces VI and V', satisfies:
H H
k(P)=(1+ Zog(%)) (14 ?)
Here k(P) is the condition number of P. Therefore, if we use a generous overlapping,
then

k(P) <1+ Zog(%).

The proof of this theorem is essentially the same as in the case of a conforming
space; see Dryja and Widlund [7].

Proof. As we have seen before, the upper bound is very easy to obtain. The
lower bound is obtained by using Lemma 2. We partition the finite element function
u € Vj, as follows. We first choose ug = I%IHu or Iynu, i.e. apply a face based or
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Neumann-Neumann interpolation operator. Let w = u — ug. The other terms in the
representation of u are defined by u; = I (6;w),: = 1,---,N. Here I, is the linear
interpolation operator into the space V" that preserves the values at the midpoints
of the edges of the elements and {6;} is a partition of unity with 6, € C§*(£!) and

For a relatively generous overlap of the subdomains, these functions can be chosen
so that V#; is bounded by C'/H. By using the linearity of I, we can show that we
have a correct partition of u. In order to estimate the semi norm of u;, we work on
one element K at a time. We obtain

|ui|%vgyh(1<) <2 |§i‘u’|%;7h(1«') + 2 [ 1n((6: — éi)'w)|%V;7h(Ix")
Here 6; is the average value of 6; over K. It is easy to see, by using the inverse
inequality (8), that
Ih((6: = 0:)w)[ia , oy 2272 (6 = 6:)w)l| 7z (xc)-

We can now use the fact that on K, 6; differs from its average by at most C' h/H.
After summing over all elements of 2}, we arrive at the inequality

|'ui|%;7h(92) = |’w|%vgyh(9;) + H ™ Jwl|Laq)-

We sum over all ¢ and use that each point in  is covered only a fixed number of
times and obtain a uniform bound on C3. We conclude the proof, by estimating the
two terms of

|‘w|%v;7h(9) + H™? [Jw]| 730

by |u|%"’i,h(9)' The bounds follow by using the stability results of Theorem 1 or 2.

For the case of small overlap, the proof is similar to that of the case of piecewise
linear conforming space considered in Dryja and Widlund [7]. O

REMARK 4. We can use the same technique and prove all our results for ()
nonconforming finite elements on rectangular elements.
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