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Abstract

In a high-level query language such as SQL, queries yield the same result no matter

how the logical schema is physically implemented. Nevertheless, a query's cost can

vary by orders of magnitude among di�erent physical implementations of the same

logical schema, even with the most modern query optimizers. Therefore, design-

ing a low-cost physical implementation is an important pragmatic problem|one

that requires a sophisticated understanding of physical design options and query

strategies, and that involves estimating query costs, a tedious and error-prone

process when done manually.

We have devised a simple framework for automating physical design in rela-

tional or post-relational DBMSs and in database programming languages. Within

this framework, design options are uniformly represented as \features", and de-

signs are represented by \conict"-free sets of features. (Mutually exclusive fea-

tures conict. An example would be two primary indexes on the same table.) The

uniform representation of design options as features accommodates a greater vari-

ety of design options than previous approaches; adding a new design option (e.g.

a new index type) merely entails characterizing it as a feature with appropriate

parameters.

We propose an approximation algorithm, based on this framework, that �nds

low-cost physical designs. In an initial phase, the algorithm examines the logical

schema, data statistics, and queries, and generates \useful features"|features

that might reduce query costs. In a subsequent phase, the algorithm uses the

DBMS's cost estimates to �nd \best features"|features that belong to the lowest-

cost designs for each individual query. Finally, the algorithm searches among



conict-free subsets of the best features of all the queries to �nd organizations

with low global cost estimates.

We have implemented a prototype physical design assistant for the INGRES

relational DBMS, and we evaluate its designs for several benchmarks, including

ASSSAP. Our experiments with the prototype show that it can produce good

designs, and that the critical factor limiting their quality is the accuracy of query

cost estimates. The prototype implementation isolates dependencies on INGRES,

permitting our framework to produce design assistants for a wide range of rela-

tional, nested-relational, and object-oriented DBMSs.
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Chapter 1

Motivation and Objectives

Relational database management systems today dominate sales of new database

management systems (DBMSs). The success of relational DBMSs is due to the

convenient, high-level abstractions they provide to application developers. These

are:

� The relational model itself|the relational model is inherently simple, and

provides high-level, set-oriented query languages.

� Atomic transactions|atomic transactions guarantee consistency of data

that is used by concurrent processes, even in the face of system failures.

� Physical data independence|the formulation of queries does not depend

on the particular access paths available (e.g. indexes). Consequently, the

database administrator can modify many aspects of the physical database

without compromising the correctness of existing queries.

Because of these high-level abstractions, relational DBMSs support a classic \pro-

gramming by re�nement" paradigm, in which there is a separation of correctness

1
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concerns from performance concerns [DGLS79]. In this paradigm, developers can

�rst concentrate on producing a system in which queries produce correct results,

and where the logical schema provides a clean and intellectually straightforward

representation of the real-world entities and relationships being modeled. Then,

developers concentrate on improving the performance of the applications that de-

pend on the DBMS, partly by adjusting the physical organization of the database

to improve query performance.1

1.1 Rationale for a Physical Database Design

Assistant

The job of improving performance in DBMS applications is sometimes called

\database tuning", of which [Sha92] provides a system-independent overview.

Physical database design is an important component of database tuning. Our

working de�nition of the physical database design problem will be the following:

Given a logical database schema and data statistics, such as table size,

together with a set of queries on the schema and their frequencies, �nd a

good physical database design|one that a competent human database

designer might produce given the same information.

(1)

This formulation of the problem is especially suitable for the many database ap-

plications where most of the queries are \canned" (executed by application pro-

grams). Of course, a physical design for canned applications can also accommodate

1In reality, of course, the separation of correctness from performance concerns is not absolute,
and we discuss some of the implications of this fact below.
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ad hoc queries; execution plans for these can be computed relative to a �xed phys-

ical design as in current practice.

Finding a good physical design involves deciding

� which columns should be primary and secondary index keys,

� how to vertically partition logical tables,

� which queries should be materialized views,

and so forth. Physical database design is di�cult for a number of reasons:

� Even simple subproblems of physical database design are hard in a formal

sense. For example, [Com78] shows that a restricted form of secondary index

selection is NP-complete.

� Considerable expertise is needed to understand the performance impact of

physical design options o�ered by a particular DBMS. Vendors's documen-

tation on this performance impact is often sketchy, and advice on critical

aspects of physical design, such as selecting appropriate indexes, often leaves

the database administrator with many alternatives and no way of deciding

among them.

� Many important design options are not actually supported by the DBMS.

Salient examples include the ability to materialize aggregate views or to

vertically split a table into two physically distinct sub-tables. To employ

these strategies the database administrator must breach the separation be-

tween logical and physical database design, and revise both the queries and

the logical schema. This breach detracts from the clarity of the logical
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schema, makes application maintenance more complex, and requires that

the designer transform queries on one logical schema to queries on another

schema. (And SQL is surprisingly di�cult to transform correctly, as evi-

denced by the di�culty of devising correct algorithms for unnesting nested

SQL queries [Kim82, GW87, Mur92].)

� It is tedious and error-prone to evaluate manually the cost of a particular

design. One must understand the workings of a particular DBMS's query

optimizer, and understand what plan the optimizer is likely to use. Then,

one must be able to estimate the cost of the optimizer's plan on the organiza-

tion. In practice, designers often simply start with a plausible design based

on rules of thumb, load it with data, and then run queries on variations of

that plausible design.

Additional evidence of the di�culty of physical database design is an empirical

study reported in [EHR80]. In this study 11 groups of graduate students (who had

already taken introductory database courses) were given three tries to produce

a physical database design for a simple CODASYL [COD71] database. In the

results the lowest-cost design of the worst group of students was over twice as

expensive as the design that had the lowest cost overall. The mean lowest-cost

design among all the groups was 37% more expensive than the design that had

lowest cost overall. We conjecture that the interposition of a query planner in

relational DMBSs makes the task of physical database design more, rather than

less, di�cult than in CODASYL DBMSs.

Our own experience in database application development [RS89] also suggests

that database performance is often a concern, and that a software assistant for
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physical database design would be a useful adjunct. DBMSs are complex, and

demand for experienced database administrators is high; software that can support

database administrators by suggesting physical designs and by performing the

cost estimates needed to evaluate them can help avoid time-consuming missteps.

Software that can help solve the physical design problem (1) might also be used

� for capacity planning,

� to simply estimate the cost of a particular design,

� to produce designs that are partly speci�ed by the database administrator,

or

� to perform sensitivity analysis of a given design in the face of varying query

frequencies.

In view of the di�culty and importance of physical database design, we set our-

selves the goal of providing software to automatically solve (1).

1.2 Related Work

Although there has been much work on relatively restricted subproblems of prob-

lem (1), relatively little work has focused on a pragmatic approach to solv-

ing (1) itself. We primarily build on e�orts reported in [FST88, IBM85] and

in [DJCM89, CMD83]. To provide a solution to problem (1), it seems we need to

enrich the solution space explored in [FST88]. Also, we want an approach that is

applicable to a variety of relational DBMSs, and also to post-relational DBMSs
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such as nested-relational (:1NF) and object-oriented DBMSs. Therefore our ap-

proach must be more independent of the characteristics of any particular DBMS

than that taken in [FST88].

The papers [DJCM89, CMD83] report work in the context of CODASYL

DBMSs, and therefore their approach is necessarily somewhat di�erent from our

own in many details. Nevertheless there are broad similarities, notably in the re-

liance both on knowledge-based generation of possible designs and on cost-based

searching.

An alternative is to rely primarily on a knowledge-based approach. For ex-

ample, RdbExpert is a commercial system (for DEC's Rdb) that takes this ap-

proach [DEC92, DEC]. Another e�ort, [CBC93], describes how physical designs

produced by a set of rules can be ranked according to a measure of con�dence in

design quality. Chapter 7 discusses in more detail the relationship of our work to

other work.

1.3 Is the Problem Too Open-Ended?

A possible objection to our goal of producing a physical database design assistant

is that solutions to the problem are too open-ended to be captured within any

�xed set of design strategies. For example, strategies could include moving part

of the application out of the DBMS or even buying new hardware. We argue that,

even in these cases, having a design assistant such as the one we describe is useful.

For example, before moving part of an application out of the DBMS or buying

new hardware, one would like to be reasonably sure that the design being used is

already close to the best possible, and that a drastic solution is unavoidable.
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We also know that one physical design assistant, RdbExpert, is popular among

Rdb consultants, even though they may second-guess its designs.

1.4 Formal Statement of the Problem

We now formally de�ne problem (1). Let Cost(Q;D) denote the cost of computing

query Q on a physical design D, and let Cost(D) denote the storage cost of the

physical design itself. In our prototype system, Cost is a linear function of the

CPU time, disk access, and disk pages needed for storage; Section 3.1 presents the

details. The coe�cient of each term in Cost is a parameter to the system, so the

database administrator could, for example, arrange to e�ectively ignore storage

costs if this is reasonable for a particular application. Other cost functions would

be possible, for example one based on estimated response time.

Given Cost, the physical database design problem is de�ned by:

Input: Logical Schema, S, with data statistics, for example the number of

rows, the maximum and minimum values in each column, and the

number of distinct values in each column.

Workload, W = fhQ1; �1i; : : : hQn; �nig; each Qj is a query (or

update); each �j is the frequency of Qj|the number of times Qj is

executed each hour.

Output: Physical design, D, for S, with low weighted Cost:

Cost(W;D)
def
= Cost(D) +

X

hQj ;�j
i2W

�jCost(Qj;D): (2)
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We prefer to use frequencies rather than abstract weights (as [FST88] used) be-

cause frequencies allow us to make an informed trade o� between query costs and

storage costs. In particular, the more frequent a query is the more storage we

would be willing to use to make it execute e�ciently.

1.5 Example Physical Design Problem

As mentioned above, we want to develop a general framework for physical database

design that is applicable to relational DBMSs from di�erent vendors, and also to

post-relational DBMSs. For concreteness, however, we apply our methodology

to the commercial INGRES DBMS[SKWH76, RS86, Dat87, ING90], and use a

running example in describing our framework.

Figure 1.1 shows a simple logical schema2 annotated with statistics. In this

example the logical schema consists of three tables: parts, orders, and quotes.

For each table we have the number of tuples (e.g. quotes has 10000 tuples) and

information about the table's columns. The columns that are part of a logical key

are underlined in Figure 1.1; for quotes the logical keys are fsno, pno, minqtyg

and fsno, pno, maxqtyg.

For each column in the tables, Figure 1.1 shows the column's type, the number

of di�erent values in the column, and the column's minimumand maximumvalues;

the distributions are uniform. For example, the descrip column of parts has type

char(184) (i.e. �xed-length character �eld of length 184), containing 4000 di�erent

values distributed uniformly with the smallest possible value of "0" and the largest

possible value being a string of 184 `Z's.

2Inspired by an example in [FST88], adapted for expositional purposes.
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parts #tuples=4000

column pno qonhand descrip

type integer integer char(184)

# values 4000 2000 4000

min, max 1, 4000 1, 4000 "0", "Z: : :"

orders #tuples=10000

column ono pno sno date qty oprice

type char(6) integer char(3) integer integer money

# values 10000 3000 40 400 5000 1000

min "0" 1 "AAA" 19850101 1 .00

max "Z: : :" 3000 "ZZZ" 19930101 1000000 1000.00

quotes #tuples=10000

column sno pno minqty maxqty price remarks

type char(3) integer integer integer money char(15)

# values 40 1200 1000 1000 4500 10000

min "0" 1 1 1 0.10 "0"

max "ZZZ" 8000 1000000 1000000 1000.00 "Z: : :"

Figure 1.1: Example Schema
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Q0: \Enter an order."

insert into orders values (� � �)

Q1: \Find the smallest number of parts on hand."

select min(qonhand) from parts

Q2: \Find a particular order."

select * from orders where ono = :hostvar

Q3: \Find orders (and the corresponding part information) for which we might

be paying too much, i.e. orders where the order price is greater than some

quote for a number of parts no greater than the number of parts ordered."

select orders.ono, parts.pno, parts.descrip

from parts, orders, quotes

where parts.pno = orders.pno

and orders.pno = quotes.pno

and quotes.minqty <= orders.qty

and quotes.price < orders.oprice

�0 = �1 = �2 = �3 = 1=hour

Figure 1.2: Example Workload
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Figure 1.2 shows a four-query workload on the schema of Figure 1.1. One

might think that the query Q1 can be computed using the minimum column value

supplied with the annotated schema in Figure 1.1. However, minimum column

values need only be approximate, and the result of the query must be exact, so

this statistic cannot be used to answer Q1. INGRES never uses such a statistic

as the result of a query, because the statistic may be out-of-date.

In query Q2, :hostvar is a variable in a host program that is set to a lit-

eral value before the query is executed. In other words, if Q2 is executed while

:hostvar has the value 'X23-S6', the e�ect is of executing

select * from orders where ono = 'X23-S6'

To simplify exposition, we take the frequency of each query in our example to be

1/hour; this does not reduce the complexity of the design problem, and is a not a

restriction in our prototype.



Chapter 2

A Framework

As discussed above, we want an approach that is applicable to di�erent relational

DBMSs and also to post-relational models such as nested-relational (:1NF) and

object-oriented databases. Retargetability is important because of the variety

of relational systems available today, and because of the intense research on ex-

tensible DBMSs and DBMS toolkits, which will likely form the basis of tomor-

row's post-relational systems [BBG+90, MJC88, Haa90, HHR90, LKD+88, RC87,

SCF+86]

Therefore we will develop a general framework that can be instantiated for a

particular DBMS. We �rst characterize a manual approach, then show our ap-

proach to automating it.

2.1 Manual Design Methods

Amanual approach [ING90, Sha92] to the physical database design problem posed

by Figures 1.1 and 1.2 would work something like this:

12
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� Look at the logical schema and the workload.

� Observe that Q0 is an insert on orders; this implies that, as far as Q0 is

concerned, orders shouldn't have any indexes, since maintaining the indexes

will increase the cost of Q0.

� Observe that Q1 references only the qonhand column of parts. This suggests

that Q1 could be computed e�ciently if there were a dense index on qonhand.

� Observe that Q2 is a point query on ono, so a primary or secondary index

on ono would probably help Q2. (A sparse primary index would likely be

preferable to a secondary index.)

� Observe that Q3 is a \bulk join"|a join where a large number of tuples

from two or more tables are joined. This implies that btree indexes on the

join columns (parts.pno, orders.pno, quotes.pno) might be a good idea.

� Since the requirements of di�erent queries are di�erent, (e.g. Q0 is better

o� without an index on parts, but Q2 is helped by an index on parts) the

designer has to rely on experience or informal cost estimation to determine

which queries's \needs" should be satis�ed.

� Load the database into the chosen design, and reconsider if the performance

of any of the queries is inadequate.

We can characterize this approach as involving two parts:

1. generating design possibilities based on inspection of the queries and logical

schema, and
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2. some kind of search among the possibilities generated, possibly involving

generation of additional design possibilities if there are performance prob-

lems.

Our approach will derive from two key intuitions of the manual approach:

1. For a single query, database designers can often rely on rules of thumb

to quickly produce a small set of candidate representations that might be

advantageous. For example, if a query involves only columns a and b,

both in equality selections, then only indexes on a or b or both need be

considered. Furthermore, a query plan to go with the representations is

also available by rule of thumb. Of course rules of thumb must sometimes

be backed up by cost estimation and search, as in a multi-way join. For

such cases one can generate potentially useful data organizations and plans

(in a way analogous to rule-based generation of candidate query plans as

in [Fre87, GD87, Loh88]) and then fall back on cost estimates.

2. To �nd a good physical organization for several queries one can often nar-

row the search to a space that is in some sense intermediate between good

organizations for the individual queries. For example, suppose one query

can be computed e�ciently on a table indexed by column a and another can

be computed e�ciently if the table is indexed by column b, and that neither

query can be computed using an index on column c. Then when searching

for an organization good for both queries one must consider indexes on a, b,

or both, but one need not consider an index on c.
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Below, we formalize these two intuitions enough to provide the basis of a practical

system.1

The broad outlines of our framework for automating (1), then, are:

� Use features to represent di�erent designs options (e.g. indexes).

� Use knowledge-based methods to generate possibly good features for each

query.

� Among the features generated for each query, search to �nd those that are

best for that query.

� Search among the union of the best features for all the queries for a set of

features that is good for the workload as a whole.

We discuss in detail in Chapter 4 how we can generate features and perform the

search.

2.2 Features

We formalize the notion of a feature as follows. We take a particular physical

organization (usually one that minimizes storage space), and call this the basic

(physical) schema. This we represent by the empty set of features. In our exam-

ple, this would be to store each of the tables parts, orders, and quotes as an

unordered sequence of records without any indexes|in INGRES terminology, as

a heap.

1The preceding paragraph is taken from [RS91a], cVLDB Endowment; reproduction here is
permitted under copyright agreement with VLDB Endowment.



16 CHAPTER 2. A FRAMEWORK

To this can be added various additional features. For example, let us de-

note a primary (resp. secondary) index feature of type � on columns �c of ta-

ble t by idx(1,� , t, �c) (idx(2,� , t, �c), resp.), � 2 fhash; ISAM; btreeg. Then a de-

sign in which there is a primary btree index on orders.ono would simply con-

tain a feature idx(1,btree,orders,ono), and a good feature set for Q1 might be

fidx(1,btree,orders,ono)g. The aforementioned good design for Q3 (consisting

of primary btree indexes for each of the join columns) would be represented by

the feature set

fidx(1,btree,parts,pno); idx(1,btree,orders,pno); idx(1,btree,quotes,pno)g

Clearly not every set of features represents a physical schema. For example,

the feature set fidx(1,btree,orders,ono); idx(1,btree,orders,pno)g cannot cor-

respond to a physical schema, because a table cannot have two di�erent primary

indexes.

To accommodate this fact we re�ne our notion of feature set as follows.

De�nition 1 A feature set that represents a physical schema is a realizable fea-

ture set.

De�nition 2 A set of features, F , is compressible if for all realizable F 0 � F ,

F 00 � F 0 implies that F 00 is realizable.
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Henceforth in this thesis we assume that all feature sets are compressible.2 This

assumption is natural, because it says that whenever a given feature set is realiz-

able, so are its subsets.

Another advantage of this assumption is that it simpli�es determination of whether

a feature set is realizable; we can restrict ourselves to a notion of conict among

features to determine realizability. For example, idx(1,btree,orders,ono) and

idx(1,btree,orders,pno) conict.

We now can frame the physical database design problem as follows. Let

Cost(Q;F ) denote the cost of computing query Q on a physical schema repre-

sented by feature set F , and let Cost(F ) denote the storage cost of the physical

design represented by F . We can then replace D in (2) by F , since we are repre-

senting designs by feature sets.

To generate features, the design assistant inspects each query in the workload

to yield a set of potentially useful features for that query. We want each of the

features in this set to be useful in the following sense:

De�nition 3 A feature, f , is existentially useful to a query, Q, if there exists a

realizable feature set, F , such that

1. F [ ffg is realizable, and

2. Cost(Q;F [ ffg) < Cost(Q;F ).

2Given a non-compressible set of features, it is possible to de�ne a di�erent, compressible,
set that can express the same physical schemas. For example, if we consider the materialization
of a join query as one kind of feature, and consider an index on the materialized join as another
kind of feature, then a feature set containing only an index on a materialized join (but not the
materialized join itself) is not realizable. (To make the feature set compressible, we would have
to consider the index in conjunction with the materialized join as a single feature.)
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We next show (in Theorem 1) that we can con�ne our search to subsets of exis-

tentially useful features, and still �nd a lowest-cost solution.

De�nition 4 The set of all existentially useful features for a query, Q, is termed

the complete feature set of that query, denoted cfs(Q).

Recall that a workload is a set of queries associated with their frequencies.

De�nition 5 Let W = fhQ1; �1i; : : : hQn; �nig, be a workload. Its complete fea-

ture set, denoted cfs(W ), is de�ned as

[

hQj;�j
i2W

cfs(Qj):

We now show a few results (�rst shown in [RS91a]) about feature sets

De�nition 6 An ideal feature set for workload W is any realizable feature set,

F , such that for every realizable feature set F 0, Cost(W;F ) � Cost(W;F 0).

Theorem 1 Given a workload, W , there must be some ideal feature set, F , for

W such that F � cfs(W ).

Proof. To show a contradiction, suppose not, i.e. that for all ideal feature sets, F ,

F � cfs(W ) 6= ;. Consider a minimal ideal feature set, F 0. Let D = F 0 � cfs(W ).

By our assumption, D 6= ;, so take any f 2 D, and let F 00 = F 0 � ffg. Now

Cost(W;F 00) 6 >Cost(W;F 0) (otherwise f would be existentially useful for some

query in W ). Furthermore F 00 is a strict subset of F 0, implying that F 0 is not

minimal. Contradiction. 2

This theorem tells us then, that in searching for an ideal feature set for W , we

can con�ne our attention to subsets of cfs(W ).
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Corollary 1 Given a workload W = fhQ1; �1i; : : : hQn; �nig we can �nd, for each

j, 1 � j � n, a realizable Sj � cfs(Qj) such that
S
1�j�n Sj is an ideal feature set.

Proof. Consider an ideal feature set, F , that is also a subset of cfs(W ). Such an F

must exist by Theorem 1. If we let each Sj = cfs(Qj)\F we satisfy the corollary,

since by the assumption that all feature sets are compressible, each F \ cfs(Qj) is

realizable, and

F = F \ cfs(W ) = F \
[

1�j�n

cfs(Qj)

=
[

1�j�n

(F \ cfs(Qj)) :

2

Thus, if we could somehow �nd such Sj 's, we could simply take their union to

�nd an ideal feature set for W .

Our algorithm, presented in Chapter 5, does not guarantee that it has selected

an Sj for each Qj. But it uses the heuristic of selecting for each Qj a set, bestI(j),

containing a restricted number features found in the lowest-cost feature sets for

that Qj (see Section 5.1). The hope is that within
S
1�j�n bestI (j) there will be, if

not an ideal set, at least one with low Cost for W . Our experiments suggest that

the solutions found do indeed have costs close to that of an ideal set.

The next chapter instantiates this abstract framework for INGRES.



Chapter 3

Instantiation for INGRES

In order to evaluate the utility of the physical database design framework pre-

sented above and in [RS91a], we instantiated and implemented it for the commer-

cial INGRES1 relational database management system [SKWH76, RS86, Dat87,

INGa]. We call this instantiation DAD-I (for DAtabase Designer|INGRES).

DAD-I operates in three main phases, which we briey summarize here:

Feature Generation For each query, Qj in the workload, generate a set of fea-

tures that are likely to be existentially useful to Qj. Denote this useful(Qj)

or useful(j).

Search I Search among each useful(j) for a small number of features that are

part of the best feature sets for Qj. Call these bestI(j).

Search II Search among the union of the bestI(j) for a feature set, F , with low

weighted aggregate Cost over the entire workload.

1We used INGRES v5.0, the most recent release available to us, on a VAX 8650 running
VMS.

20



3.1. COSTS 21

The remainder of this chapter discusses particulars of the instantiation for IN-

GRES: the Cost function and feature kinds. The following chapters discuss

feature generation and Search I and II.

3.1 Costs

We base our Cost function on the cost estimates that INGRES's query optimizer

produces. (It would be impractical to try to re-estimate the queries's cost by

parsing the ASCII representation that INGRES uses to display its query plans.)

The INGRES query optimizer yields its cost estimate in two separate components:

� number of disk access (dra), and

� \C"s, a measure of CPU utilization.

INGRES documentation does not reveal the relative weights the query optimizer

assigns to CPU utilization and disk accesses when choosing a plan. In any case,

INGRES's users can do little to inuence the plans chosen by the optimizer, so

we accept as optimal the plans and estimates that INGRES produces.

However, in order to be able to compare the costs of executing a query on

di�erent physical database designs, we must be able to convert the cost of disk

access, \C"s, and of storage space to a common currency, which we do with the

following formula:

Cost$ = KCCC +KDCD +KSCS (3)

where CC is the number of \C"s used per hour, CD is the number of disk accesses

used per hour, and CS is the number of INGRES pages used. The values for

KC , KD, and KS assign relative weights to CPU utilization, disk-access rate,
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and storage costs. These will likely vary from installation to installation, so the

values of these coe�cients are parameters to DAD-I. We call the units of Cost

\nominal $".

To determine realistic values for the coe�cients in 3, one could conduct an

analysis similar to that in [GP87]. But in many cases these coe�cients are pro-

vided by the local accounting mechanism. For example, for our experiments we

based these coe�cients on the charges made by NYU's Academic Computing Fa-

cility, on whose computers we ran the experiments.

3.2 Storage Structures and Query Plans

A brief description of INGRES's storage structures and of the kinds of query plans

it generates should provide context for understanding the features and feature-

generation procedures used by DAD-I. INGRES constitutes a stress test for our

framework in that it o�ers a richer repertoire of physical table organizations and

indexes than any other commercial relational DBMSs, and therefore presents us

with a larger design space.

3.2.1 INGRES Storage Structures

INGRES o�ers three organizations for both primary and secondary indexes:

btree, ISAM, and hash. (The next-richest o�ering is from DEC's RDB, which

o�ers primary and secondary btree indexes, and a primary hash index; Oracle's

version 7 will also o�er hash indexes.) A primary btree index is a dense index,

the leaves of which contain pointers to the data pages. A primary ISAM index is a

multi-level sparse index that potentially requires periodic, explicit reorganization
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to maintain e�ciency. A primary hash index organizes a table by the value of

a hash function on key values. Tables with a hash organization must also be

periodically reorganized as the table grows. If reorganizations are required, their

frequency depends on the pattern of insertions. Because ISAM and hash indexes

require reorganization as their table grows they are called \static". On the other

hand, btree organizations adjust automatically to most update patterns, and are

called \dynamic".

In ISAM tables, insertions involving a sequential index key (i.e. with new values

for the index key that tend to monotonically increase or decrease over time) are

particularly egregious, because all updates go to the last index page, transforming

it into a long overow chain. Column updates that have the e�ect of deleting an

index key and always inserting it at the end of the index have the same e�ect.

An INGRES table need not have a primary index, in which case the table is

said to be stored as a heap. In a heap table, tuples are simply stored in the order

they are inserted, and there is no data structure to support associative access.

Secondary indexes can have a btree, ISAM, or hash organization. Secondary

indexes are implementationally similar to tables, with the leaf pages of a secondary

index being analogous to the data pages of a primary table.

In addition to primary and secondary indexes, INGRES o�ers the option of

compressing character data by truncating trailing blanks, but there is no com-

pression of key data in primary indexes (see [ING90], page 10-29).

Unlike some DBMSs (for example Oracle [ORA88]), INGRES provides no

mechanism for co-locating (clustering) the rows of more than one table.
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3.2.2 INGRES Query Plans

INGRES accepts queries (including data manipulation statements) in a dialect

of SQL [Cha76]. The query optimizer translates SQL statements to query plans

that specify the actual operations to be performed to compute the query. To

understand when a particular design option might be useful to a query, we have

to understand INGRES's query optimizer and the plans it produces.

INGRES's query optimizer estimates query costs using detailed data distri-

bution statistics (if these are available). Such data statistics guide query cost

estimates. For example, consider the queries

select * from employees where married=1 (4)

and

select * from employees where birth date='9-apr-88' (5)

and suppose there is a secondary index on both married and birth date. If

there were three possible values for married and 9845 birth dates for 10000 em-

ployees in the table, INGRES can store the information that there are approxi-

mately 3333.3 records for each married value and approximately 1.0157 records

for each birth date value. (This information is computed by INGRES only at

the database administrator's request.) In this case INGRES would not use the

secondary index on married to compute query (4), but it would use the secondary

index on birth date to compute query (5). (The index on married would yield

virtually every page in the table anyway, so a scan, with readahead, is preferable

for (4).2)

2INGRES can also compute and use information on non-uniformdata distributions. However,
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In addition to using data statistics, INGRES can

� internally rewrite nested SQL queries as joins [Kim82, GW87],

� use TID intersection (which allows INGRES to use more than one index on

a single occurrence of a table in a query's from list), and

� generate plans that access only secondary indexes, (rather than the primary

table) when the indexes include the necessary columns.

Secondary indexes in INGRES are much like tables. The leaf pages of the sec-

ondary index act like the data pages of a table. When a query,Q, can be computed

so that all tuples from a correlation name,3 t, are drawn from secondary index

rather than the index's base table, we say the index is column-su�cient for t in Q.

In processing joins, the optimizer uses several strategies: nested loop, two

variants of sort-merge, index join,4 and, for SQL nested subqueries, a so-called

\subquery" join, where a sub-query is evaluated �rst, and its output is used as

the inner table of the join [ING90].

3.3 Kinds of Features

In designing a set of features to capture the design options available in INGRES,

we tried to strike a balance between the conicting requirements

� of having few features in order to reduce the search space, and

in INGRES v5.0, the version we used, there is no way to enter these statistics without actually
loading all the rows into the table. This would be prohibitive for physical database design,
because reorganizing and building indexes on fully loaded tables is too expensive. Therefore we
restricted ourselves to uniform distributions.

3See Section 4.1.2 for a de�nition of \correlation name".
4Index joins are called \key lookup" joins in [ING90].
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� of having a large number of features to get the best possible design.

Every conict-free feature set represents a state of INGRES's data dictionary.5

A state of the data dictionary is the set of tables known to the system, what orga-

nizations they have (e.g. heap, btree), and what secondary indexes are available

on them. Some feature sets require DAD-I to transform the original queries into

semantically identical queries in light of the state of the data dictionary. For

example, if one is maintaining a query as a materialized view, updates must be

rewritten to maintain the materialized view (since INGRES provides no built-in

facility for materialized views).

3.3.1 Features in DAD-I

DAD-I employs the following repertoire of features:

Primary Indexes A single table can have only one primary organization, so

di�erent primary index features on the same table conict. Each primary

index feature represents either a dense btree, or a sparse ISAM or hash

index.

Secondary Indexes In principle, there can be any number of secondary indexes

on a table. However INGRES sometimes produces unrealistically low cardi-

nality estimates when joining two secondary indexes. (Appendix A.1 con-

tains an example.) To avoid designs that rely too heavily on secondary

indexes (due to this anomaly) we made secondary indexes on the same table

with intersecting sets of columns conict.

5The data dictionary is called the \catalog" in INGRES documentation.
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Also, as a heuristic, we do not allow a feature set to contain a primary

and a secondary index where the columns of one index are a pre�x of the

columns of the other. The only exception occurs when one of the indexes

has more columns than the other and the other is a hash index (for reasons

adduced below). Formally, this heuristic states that an ISAM or btree in-

dex, �, on a1; a2; : : : ; an conicts with any other index, �0, on a1; a2; : : : ; am

when n > m; if m = n then � and �0 conict regardless of their organi-

zations. The rationale for this heuristic is that INGRES can always use

an ISAM or btree index on columns a1; a2; : : : ; an to compute a selection

involving a1; a2; : : : ; am when n > m. Therefore, if there is already an ISAM

or btree index on a1; a2; : : : ; an, an additional index a1; a2; : : : ; am provides

only marginal advantage. (The marginal advantage derives from the fact

that the m-column index might have fewer levels, so using it might involve

fewer disk accesses.) By contrast, a hash index on a1; a2; : : : ; an is useless

unless one has a value for each ai, whence the exception when the shorter

index has a hash organization.

Vertical Partitioning (Vertical Splitting, Vertical Declustering) This is the

representation of a table as two physical tables, whose columns share a

logical key. Formally, let R be a table with columns A = fa1; a2; : : : ; ang

and minimal logical keys K1;K2; : : : ;Km. Then a vertical partitioning of R

is a set, fA1, A2g, such that

1. A1 [A2 = A, and

2. 9Ki:(Ki = A1 \A2)
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The sets A1 and A2 contain the columns of two physical tables which to-

gether stand in for R. The second condition guarantees that queries can

recover the original table by joining on Ki. Any index on the original table

whose columns are contained entirely in one (or both) of A1 or A2 is under-

stood to be an index on A1 or A2 (or both, respectively). Any other index

conicts with the vertical partitioning fA1; A2g. As a heuristic, a feature

set can contain only a single vertical partitioning of a logical table.

An additional heuristic is that a secondary index on exactly the columns of

A1 (or A2) conicts with the vertical partitioning on fA1; A2g. The rationale

is that (as described below) a query, Q, that can be computed using only

A1 (or A2) can also be computed using only such an index (i.e. the index is

column-su�cient for Q).

Materialized Aggregates This is the maintenance of certain simple aggregate

queries as materialized views. For example, consider the following query

from the AS3AP benchmark [TOB91]):

select min(key) from hundred group by name

This query could be stored in a materialized view, that is, in a table mapping

each name in hundred to the minimum key associated with it in hundred.

The implementation of DAD-I materializes simple and group by6 aggregates

on a single table for queries that involve where selections only on columns

in the group by clause. Techniques for maintaining materialized views for

larger classes of queries are straightforward [Koe81, Pai84, Han87], though

6Because of a technical problem with getting cost estimates from INGRES, DAD-I cannot
handle group by queries. See Section 6.1.
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maintaining more complex aggregates is likely to be more expensive, and

therefore less useful.

3.3.2 Other Possible Feature Kinds

In addition to the design strategies captured by the features above, there are some

design strategies that might be useful to include in DAD-I as features, but that

we did not have the resources to implement. These strategies are all considered

\last-resort" strategies by expert human designers [Sha92, McG89].

Duplicate Tables This is the replication of (possibly partial) rows from a single

table in an additional physical table with a di�erent primary organization.

One of our reasons for deferring generation of duplicate tables is that, in

many cases, a column-su�cient secondary index can be as good.

However, we would like to include duplicate tables, eventually, because in

some situations table duplication is preferable to a secondary index. For

example, a duplicate table can require fewer pages than a secondary index,

because the duplicate table need not store TIDs of the primary table.

Join Denormalization By \join denormalization" we meanmaterializing a join.

This strategy can be a good for certain queries. For example, an equi-join

where

� the join column is a key of one of the tables,

� there is a two-way inclusion dependency on the join columns (that is,

there are no unmatched rows), and
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� the equi-join also involves equality selection on the join column or the

join column is a key for both tables

would be a good candidate for join denormalization. One good reason for

including join denormalization would be to undo a vertical partitioning in

the logical schema.

Ad Hoc Nesting (Vertical Anti-Partitioning in [Sha92]) A common pattern in

a normalized relational design is to have one table that contains master (or

\header") records for some entity, and another table containing a set of zero

or more detail records that relate to the master record. For example, in a (�-

nancial) bond database one might have a master record describing the static

characteristics of a bond, such as its coupon. Another table would contain

a set of date/price records representing the bond's price history [RS89]. In

this situation one might want to allocate in the master record columns for

detail records frequently requested with the master. For canned applica-

tions, this can be very advantageous, because a single page access retrieves

both master and detail information. On the other hand, this makes query

formulation awkward.

Encoding Sparse Domains If a column or set of columns takes on only a few

values relative to the total number of tuples in the table, one can save space

by encoding each value by short identi�er, perhaps an integer. A disadvan-

tage of this is that a join is required to reconstitute the data. Sometimes the

mapping from identi�er to value changes little over time, and is complied

into application programs that use the database.
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Other Design Parameters

As a default heuristic, DAD-I uses a compressed organization except on tables sub-

ject to updates of a variable-length character �eld. (The database administrator

can override the default.) The reason is that (at least in INGRES 5.0 [INGb])

the query optimizer does not consider the cost of expanding compressed data.7

Therefore, INGRES's query-cost estimates on a compressed organization are at

least as low as on the corresponding non-compressed organization.

For both compressed and uncompressed tables with inserts or updates, by

default, DAD-I uses e�ective �ll factors8 of 90% for btree or ISAM and 75% for

hash.9

Neither DAD-I's cost model nor the workload presented by the database ad-

ministrator is likely to capture important considerations that would make non-

default compression or �ll factors desirable; such considerations include

� the frequency of updates that are absent from the workload, and

� the cost and feasibility of taking the database o�-line for reorganizing tables.

Because of these imponderables, DAD-I's user can specify non-default compression

or non-default e�ective �ll factors.

Another INGRES design parameter that we leave outside of DAD-I because

it is invisible in INGRES's query-cost model is the physical location of tables on

7Indeed, much of this cost occurs in updates to the compressed �elds, because when the
value in a compressed �eld is lengthened, INGRES might move the record, requiring secondary
indexes on the table to be updated. (This is true even if the record is only moved within its
page.)

8By \e�ective �ll factor" we mean the percentage of each storage page that is used, averaged
over the lifetime of a table. This is di�erent from INGRES's \�ll factor", which is the percentage
of storage page usage when the table is �rst loaded.

9The default (initial) �ll factors that INGRES uses for uncompressed tables are 80% for
btree or ISAM and 50% for hash.
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disk. For example, a table can be located on several disks. Storing a table on

several disks is crucial if disk access rates exceed the capacity of a single disk

(usually around 30{50 random disk access per second). DAD-I implicitly assumes

that tables are located on as many disks as needed to support any given disk

access rate.

Other relational DBMSs o�er other design options that could be represented

as features. For example, Oracle provides the option of co-locating tuples from

two tables on the same page, so that they share the same primary organiza-

tion [ORA88]. If o�ered in future relational systems, design options such as join

indexes [Val87], could easily be represented as features. Indexes for object-oriented

databases (for example path indexes [MS86] or class-hierarchy indexes [KKD89])

as well as various clustering disciplines would also be good candidates for repre-

sentation as features.



Chapter 4

Feature Generation

Recall that DAD-I's �rst step given a workload, W = fhQ1; �1i; : : : hQn; �nig, is to

generate, for each Qj, useful(j)|a set of features that are likely to be existentially

useful to Qj. We want DAD-I to produce a useful(j) that is large enough to contain

a good physical design, but not so large that searching among useful(j)'s subsets

becomes intractable.

4.1 Preliminaries

4.1.1 Static Indexes

Even though it might be necessary to periodically reorganize static indexes, it is

important to include them in DAD-I's repertoire, because an INGRES ISAM or

hash index can be much more e�cient than a btree. For example, in a simple

33
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select that we tested, the average number of disk accesses was 8.3 on a primary

btree as opposed to 3.3 on a primary ISAM.1

It would be technically straightforward to extend DAD-I's cost model to in-

clude the costs of table and index reorganization. These costs include not only

the machine resources to perform the reorganization (i.e. CPU and disk-access

costs), but also the cost of table or index unavailability during the reorganization

and the administrative and managerial costs of insuring that the reorganization

occurs when needed. This extension would allow DAD-I to estimate the cost of

reorganization if it could estimate the rate at which a static structure became dis-

organized. However, it is not clear how realistic such a cost model would be, since

reorganizations typically take place during periods of low load, so we have decided

to defer this as a possible future enhancement. In the mean time, our approach is

to allow the database administrator to supply two pieces of information on every

table:

1. the columns in the table that have sequential update patterns, and

2. whether the database administrator is willing to use a static organization

even if the table grows.

This information is used in the following predicates:

De�nition 7 Given a table, t, and a workload (understood from the context)

static(t) is true i� either

� there are no inserts in the workload, or

1The reasons include the fact that the readahead factor is greater for ISAM than for btree
tables, and the fact that primary btree indexes are dense while primary ISAM indexes are sparse.
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� the designer is willing to use a static organization even if the table grows.

De�nition 8 sequential-key(t:c) is true i� column c on table t has a sequential

update pattern in a given workload (where the workload is understood from the

context).2

If static(t), then DAD-I usually generates ISAM or hash indexes, unless for the

�rst column, c, of the index, sequential-key(t:c) is true. (In a few situations

DAD-I generates a btree index on t when static(t); see 4.2 and 4.4 below.) When

sequential-key(t:c), DAD-I never generates an ISAM index on t with �rst column

c, even if static(t). DAD-I does sometimes generate a btree index on a sequential

key. In high-contention workloads this can be problematic, because the trans-

actions serialize on the insertion point. A future version of DAD-I might warn

the database administrator about potential situations of this kind, and allow the

database administrator to suppress consideration of the btree.

4.1.2 Correlation Names

There is a distinction in SQL between correlation names and tables (and table

names). Briey, in an SQL query of the form

select � � � from t1 t
0
1; : : : ; tn t

0
n : : :

each t0i is a correlation name for ti. Correlation names allow the query to mention

the same table twice in the from list, and still be able to distinguish the two

mentions in other parts of the query. If a t0i is absent (it is optional), then the

correlation name for ti is ti.

2The terminology \incremental key" or \incrementing key" is also used [ING90].
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Rules for generating features are often best formulated in terms of correlation

names. As a shorthand we often use a correlation name, t0, where we would use a

table, t. In such cases t0 is understood to refer to the table named (or aliased) by

t0. For example, \columns of t0" means \columns of t" and \placing an index on

t0" means \placing an index on t".

If no table occurs more than once in a query, we can just think of correlation

names as table names.

4.2 Indexes for Join Predicates

An (equality) join predicate for a pair of correlation names, t; t0, in a query, q, is a

predicate of the form t:c=t0:c0.3 In addition, a join predicate for t and t0 is implicit

if there is a nested subquery connected by in, that is, of the form

t:c in (select t0:c0 from � � � )

There are two ways that INGRES can use an index to evaluate a join predicate:

1. For bulk joins (i.e. joins involving large numbers of tuples from both tables),

INGRES can use the ordering properties of a primary btree index: if a table

is ordered by a join column, a merge-join method does not have to sort.

2. When a join can be computed in such a way that the outer operand has

few tuples, INGRES can use a primary index on the inner table to look up

3In our experience, INGRES does not use indexes to compute joins where the join predicates
involve inequalities.
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matching values. This join method is sometimes termed an \index join",

and in [ING90], \key lookup join".

In tests with INGRES v5.0, every join plan we observed satis�ed the following

properties:

Property 1 INGRES does not use a secondary index in evaluating a join, except

when the index in question is column-su�cient for one of the join arguments

(i.e. when all the necessary columns for one of the join arguments can be read

from the index.)

Property 2 INGRES uses only the �rst column in the index key when planning

a sort-merge query. For example, if the where clause contains

t:a = t0:a and t:b = t0:b

then INGRES sorts even if there is a primary btree on ha; bi.

Property 3 INGRES does not recognize that an ISAM organization maintains

data in approximately sorted order by the index key; INGRES estimates the cost

of sorting it as if the table had a heap organization.4

DAD-I's feature-generation procedures are based on these properties.

DAD-I generates one or more primary indexes for every join column, c, on

correlation name t, with index types take from the matrix

sequential-key(t:c)

static(t) Y N

Y hash, btree hash, ISAM, btree

N btree btree

4This is consistent with INGRES 6.2 documentation, [ING90] pages 9-25, 9-26, and 9-29.
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where static(t) and sequential-key(t:c) are as de�ned in Section 4.1.1.5 A sequential

key probably stresses even a btree; nodes split often and their storage utilization

is low. However, for a join predicate DAD-I generates a potential btree even on

a sequential key, because btree is the only structure that INGRES will read as

ordered input to a merge join (as discussed above).

DAD-I relies on INGRES cost estimates to discard indexes that are unprof-

itable because they are on small tables.

Property 2 implies that a concatenated index would be preferable to a single-

column index only when the following two conditions hold:

� There are predicates of the form

r:a = s:b and r:c = s:d

� A primary index on any of r:a, s:b, r:c, or s:d is infeasible because of the

possibility of overow.6

Since this is presumably a rare occurrence, and in light of Property 1, DAD-I

generates only single-column primary indexes to support join predicates. Were

this to prove a problem it could be easily corrected.

For the schema of Figure 1.1 and the workload of Figure 1.2, DAD-I generates

the following features for join predicates for query Q3 (the only query with join

predicates):

5 As a technical elaboration, note that some indexes are intrinsically poor because there
are so many tuples per index-key value that either data pages or index-leaf pages su�er from
overow. Before generating any index DAD-I always estimates whether the prospective index
key would lead to overow. If so, DAD-I tries to add additional columns to the index key.
This may involve changing a hash index to an ISAM index (provided the initial column is not a
sequential key). See Section 4.6 below for more discussion.

6\Overow" in this case would be due to having too high a \repetition factor" (in INGRES
terminology)|so many tuples with a particular value for, say, a, that they would not all �t in
a single page.
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idx(1,hash,parts,pno)

idx(1,ISAM,parts,pno)

idx(1,btree,parts,pno)

idx(1,btree,orders,pno)

idx(1,hash,quotes,pno)

idx(1,ISAM,quotes,pno)

idx(1,btree,quotes,pno)

Here orders has only a btree index because static(orders) is false. (Also, there

are no sequential keys in this workload.)

4.3 Indexes for Selection Predicates

A selection predicate is one of the form

t:c between v1 and v2

or

t:c � v1 (6)

where t is a correlation name, t:c is a column speci�cation involving t, � is one

of =, >, >=, <, or <=, and v1 and v2 are values, in other words, expressions that

involve no column speci�cation.7 A selection predicate of the form (6) is an

7We omit certain predicates for the following reasons:

1. t:c1 � t:c2. We have never observed INGRES to use an index to �nd tuples satisfying such
predicates.

2. E(t:c) = v1, where E(t:c) is some expression in t:c other than t:c itself (e.g. t:c + 3), so
that t:c is not the immediate operand of the comparison operator. INGRES never uses
an index to �nd tuples satisfying such predicates [ING90].
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equality selection predicate if � is =, and every other selection predicate is a range

selection predicate; t:c is an equality column in a query, q, if t:c is involved in an

equality selection predicate in q, and t:c is a range column if it is involved in a

range selection predicate. In either case, t:c is a selection column.

The selectivity of a conjunctive set of selection predicates, S, on a correlation

name, t, is the fraction of the tuples of t that satisfy each predicate in S, and the

yield is the number of such tuples. Similarly, page selectivity of S is the fraction of

the pages of t that contain a tuple that satis�es each predicate in S, and the page

yield is the number of such pages. Page selectivity is at least as large a fraction as

selectivity, and, in general, approaches selectivity only when t's table is sorted or

clustered by the selection columns in S. When this is not the case, the page yield

of S can be approximated from the tuple yield as P (1� (1� 1=P )Yt ), where P is

the number of pages in t's table and Yt is the tuple yield [Car75]. We also de�ne

selectivity, yield, page selectivity, and page yield on a set, A, of columns to be the

corresponding selectivity or yield on a conjunctive set of equality predicates, one

on each column in A.

We do not want DAD-I to generate an index that has such a high page yield

that it will always be better to compute a query using a full-table scan than using

the index. We therefore de�ne the function selective-enough to yield true when

an index is likely to be selective enough to use. In de�ning selective-enough, we

make optimistic estimates of the costs of using an index and pessimistic estimates

3. t:c 6= v1. INGRES does not use an index for such a predicate unless it knows from
data statistics that the predicate is very selective. However, INGRES v5.0 provides no
reasonable interface for loading a �ctitious non-uniform distribution, so this cannot arise
in DAD-I's implementation for INGRES v5.0.

4. t:c in (v1; : : : ; vn). This can be rewritten as a disjunct.
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of table-scan costs (since we don't want to discard useful indexes).

1. For a primary index I = idx(1,� , t,A) of type � on columns A of table t:

(a) Let y be the page-yield of A assuming that I provides t's primary

organization.

(b) Let z be an estimate of the number of levels of I that are not cached,

and that must therefore be read from disk.

(c) Let Pages(t) be the total number of pages in t assuming a heap or-

ganization, and let heap-readahead be 3.8|an empirically determined

estimate of the readahead (prefetch) factor for scanning an INGRES

heap organization. (Since the alternative to a primary index is a heap

organization, we will compare the number of page accesses needed for

a primary index to the number needed for scanning a heap.)

selective-enough(I) is de�ned to be true i� (y + z) � heap-readahead �

Pages(t).

2. For a secondary index I 0 = idx(2,� , t,A) of type � on columns A of table t:

(a) Let y be the page yield of A assuming that t has a btree organization.

(We will compare the use of the index against the scan of a btree

primary organization, because this is the most pessimistic assumption

for the scan|a btree stores relatively few records per page (because of

the extra storage needed for the leaf pages), and there is no readahead

(prefetch) on a btree.)

(b) Let z be as in 1b, except for I 0 rather than I.
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(c) Let Pages(t) be the number of pages of t assuming a btree primary

organization.

selective-enough(I 0) is de�ned to be true i� (y + z) � Pages(t).

We have observed the following property to hold for INGRES query plans:

Property 4 INGRES never uses a hash index to �nd tuples satisfying a range

predicate.

Because of Property 4, and because we assume that it is not usually advantageous

to use index columns to the right of a range column when computing a range

query, DAD-I uses a straightforward procedure for generating indexes to support

selection predicates. We �rst require the following de�nition.

De�nition 9 Let S be a set of columns. �(S) is de�ned to be the set of every

sequence of columns that can be drawn from S (not necessarily sequences con-

taining every element of S). In other words, �(S) is the set containing every

permutation of every element of 2S .
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Procedure 1

Input: Q, a query.

t, a correlation name in Q.

S(Q; t), the set of selection columns for t in Q.

E(Q; t), the set of equality columns for t in Q.

Output: A set, X, of indexes on t to be added to useful(Q).

1. For every sequence of columns, �c 2 �(E(Q; t)) do:

(a) If �c 6= hi then

i. If static(t) let � be hash; otherwise let � be btree.

ii. If selective-enough(idx(1,� , t, �c)) then include idx(1,� , t, �c) in X.8

iii. If selective-enough(idx(2,� , t, �c)) then include idx(2,� , t, �c) in X.

(b) For every r 2 S(Q; t)� E(Q; t) do:

i. Let �c : r the column sequence formed by appending r to �c.

ii. Let c be the �rst column in �c : r.

iii. If static(t) and :sequential-key(t:c) then let � 0 be ISAM; otherwise

let � 0 be btree.

A. If selective-enough(idx(1,� 0, t, �c:r)) then include idx(1,� 0, t, �c:r)

in X.

B. If selective-enough(idx(2,� 0, t, �c:r)) then include idx(2,� 0, t, �c:r)

in X.

8Recall from footnote 5 that whenever DAD-I generates an index that su�ers from overow
DAD-I will actually try to add additional columns to it.
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Because of the de�nition of �, this procedure generates a number of indexes that

is exponential in the number of selection columns on a correlation name in a

query. In the workloads we tested (see Section 6.2) this works �ne, because most

correlation names have one or no selection column. (In the tests, the maximum

number of selection columns per correlation name is six, and in this case �ve out

of the six are range columns.)

For the schema of Figure 1.1 and workload of Figure 1.2, DAD-I generates the

following features for selection predicates for Q2, the only query with a selection

predicate:

idx(1,btree,orders,ono)

idx(2,btree,orders,ono)

4.3.1 Sharpening Feature Generation for Selections

Although Procedure 1 was adequate for our tests, for workloads with more com-

plicated selection predicates, DAD-I might need a more sophisticated procedure

for generating possible indexes. (Such queries might arise in so-called decision-

support or strategic-data-access applications [O'N91].)

We might be able to improve Procedure 1 in two ways:

� By generating a single index on a particular set of columns when the order

of the columns in the indexes makes no di�erence in the performance of the

index.

Unless a range column is involved, the order of columns in an index key

is unimportant for a single correlation name in a single query. This makes
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sense, even when compression is used, because the storage requirement for

index keys is independent of the order of columns in the keys.

However, some orders will be better than others if one takes several queries

into account. For example, if we have the queries

select * from t where a = 4 and b = 5 (7)

and

select * from t where b = 3 (8)

then an index on hb; ai might be useful for both (7) and (8), whereas an

index on ha; bi would be useful only to (7).

� By not generating an index on columns c1; : : : ; cn when using one an index

c1; : : : ; cn; cn+1 would require fewer disk access.

For a given correlation name in a query, it is probably always better to

use a single, concatenated index as opposed to using TID intersection on

several indexes. (This is not to say, however, that the concatenated index

should always involve as many selection columns as possible.) For example,

for query (7), a concatenated index on a and b would likely be better than

separate indexes on a and b.

Here again, as with the case of column orders for indexes, when we consider

the possibility of more than one occurrence of t's table inQ, or of occurrences

of t's table in other queries, we see that there are situations where, for several

queries, several indexes, each involving fewer columns, are better than one

index using all the selection columns. For example, if in addition to (7)
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and (8) we had

select * from t where b = 3

then separate indexes on each of a and b might be the best choice.

4.4 Indexes for order by Clauses

INGRES generates query plans that take into account the ordering properties of

primary btree indexes (though not of ISAM indexes). In �guring out which indexes

will support a given order by clause, the main subtlety arises in the interaction

between the order by clause and selection predicates in the where clause. For

example, if we have

select * from t where t.x = :v order by y

and there is an index idx(1,btree,t,x,y), then INGRES can use this index both

to �nd the qualifying tuples and to guarantee the desired order. However, if there

were an index on t.x and a btree index on t.y then INGRES could not use both

indexes; it would have to either use the index on t.y that supports the order, or

use the index on t.x that supports the selection predicate.

So, for equality selection predicates the principle is simple: If the order by

clause begins with columns c1; : : : ; cn drawn from correlation name t, and if we

have equality predicates on columns s1; : : : ; sq of correlation name t, then INGRES

can use a btree index on columns s1; : : : ; sq; c1; : : : ; cn of t's table. (We can assume

without loss of generality that fc1; : : : ; cng \ fs1; : : : ; sqg = ;, since any columns

in the intersection can be removed from the order by clause without changing

the query's result.)
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For range selection predicates and for join predicates, we usually cannot use

the same index to both �nd qualifying tuples and guarantee their order. For

example, if we have

select * from t where t.x > :v order by y

there is no index that INGRES can use to both �nd tuples satisfying the predicate

t.x > :v and maintain t sorted by y.

The only exception occurs when the range selection predicate or join predicate

is on the �rst column of the order by clause. In this case, since the index gener-

ated for the order by will also support the join or range selection predicate, there

is no need to do anything beyond generating the index for the order by clause.

DAD-I generates btree indexes to support a query, Q, with an order by

clause as follows:

1. Let the order by clause of Qj be \order by B", and let the sort speci�ca-

tion, B, be x1; : : : ; xn; xn+1; : : : :

2. Let B0 = x1; : : : ; xn denote the maximal pre�x of B such that each xi,

1 � i � n, corresponds to a column of a single correlation name, t, in Q's

from list.

3. Let S = fs1; : : : ; spg be the equality-selection columns for t in Q.

4. �(S) is as de�ned in De�nition 9.

5. For every � 2 �(S) add the index idx(1,btree, t,�jB0) to useful(Q), where

�jB0 is the concatenation of � and B0.9

9A possible re�nement would be to trim columns from the right if this index is needlessly
selective.
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We generate only btree indexes because INGRES does not recognize the ordering

properties of ISAM indexes, and because hash indexes do not order their data.

The workload of Figure 1.2 contains no order by queries. However, consider

the following query (adapted from [FST88]) on the schema of Figure 1.1.

select orders.pno,orders.qty from orders

where orders.ono=:hostvar

order by qty

DAD-I would generate the following features to support the order by clause in

this query:

idx(1,btree,orders,ono,qty)

idx(1,btree,orders,qty)

4.5 Vertical Partitionings

The basic idea of generating partitionings is simple. Let vp(R; fA; A0g) denote

the vertical partitioning of table R into two tables with column sets A and A0, as

discussed in Section 3.3, above. For query Q on table R let used(R;Q) denote the

set of columns of R that are needed to compute Q. Then to generate the vertical

partitionings for useful(Q) the conceptual procedure is as follows:
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Procedure 2

Input: Q, a query in a workload.

Output: P , a set of vertical partitionings to be added to useful(Q).

1. For each table, R, in Q do:

(a) Let U be the set of column names of R.

(b) Let Z be used(R;Q).

(c) If Z 6= U and R has at least one logical key then

i. If Z contains a logical key of R, let K be a minimal such key (in

terms of the number of columns it contains). Add

vp(R; fZ; (U � Z) [Kg)

to P .

ii. If Z does not contain a logical key of R, let K be a logical key

of R such that the number of columns in K � Z is minimal. If

Z [K 6= U then add

vp(R; fZ [K; (U � Z) [Kg)

to P .

Given the schema and workload of Figures 1.1 and 1.2, DAD-I adds the fol-

lowing vertical partitioning to useful(1):

vp(parts; ffqonhand; pnog; fpno; descripgg)
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and the following to useful(3):

vp(parts; ffqonhand; pnog; fpno; descripgg)

vp(orders; ffono; oprice; pno; qtyg; fdate; ono; snogg)

vp(quotes; ffminqty; pno; price; snog; fmaxqty; minqty; pno; remarks; snogg)

Here DAD-I generates vp(parts; ffqonhand; pnog; fpno; descripgg) twice: once

for Q1, using step 1(c)ii of Procedure 2, and once for Q3, using step 1(c)i of Proce-

dure 2. It so happens that INGRES can compute Q1 using only columns qonhand

and pno, whereas it can compute Q3 using only columns pno and descrip.

DAD-I generates no vertical partitionings for Q0 and Q2 because the test at

step 1c of Procedure 2 fails: Q0 and Q2 both use10 all the columns of orders.

The procedure that DAD-I actually uses to generate vertical-partitioning fea-

tures is complicated by the fact that DAD-I creates the INGRES tables needed for

each vertical partitioning at the beginning of the search phase. Therefore, before it

starts searching, DAD-I must predict which vertical partitionings it might generate

during the search phase. For example, suppose that the procedure above gener-

ates vp(R; ffa; b; cg; fa; d; e; f; ggg) for a query, Q, with used(Q) = fa; b; cg, and

generates vp(R; ffa; b; dg; fa; c; e; f; ggg) for another query, Q0, with used(Q0) =

fa; b; dg. Then vp(R; ffa; b; c; dg; fa; e; f; ggg) would be good for both Q and Q0.

And in fact DAD-I might generate this feature during Search II, when DAD-I tries

to �nd a feature set that is good for both Q and Q0 (which we discuss below).

Such vertical partitionings are not added to useful(Q) or useful(Q0), because if

vp(R; ffa; b; cg; fa; d; e; f; ggg) turns out to be a poor choice for Q, then so will

vp(R; ffa; b; c; dg; fa; e; f; ggg).

10For an insert or delete query we consider all columns in the updated table to be used.
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4.6 Column-Su�cient Indexes

As mentioned in Section 3.2.2, in some cases INGRES can compute a query, Q,

by reading only a secondary index for a correlation name, t, in Q. Such an

index is said to be \column-su�cient for t in Q". For example, INGRES can

compute Q1 in Figure 1.2 by scanning only the index idx(2,hash,parts,qonhand)

and without reading any data from the parts table. This is advantageous because

idx(2,hash,parts,qonhand) would involve far fewer pages than the entire table|

around 30 as opposed to the 400 pages needed were parts stored as a heap.

DAD-I generates column-su�cient indexes either

� from an index previously generated for another reason (i.e. for a join or

selection predicate, or for an order by clause), or

� from scratch, when necessary.

4.6.1 Generating Column-Su�cient Indexes from Other

Indexes

Whenever DAD-I generates an index, idx(k,� ,R,c1; : : : ; cn) (of type � on columns

c1; : : : ; cn of correlation name t of table R, k 2 f1; 2g) for query Q that is not an

update of R, DAD-I also attempts to add a column-su�cient index to useful(Q),

using the following procedure, with Z bound to used(t;Q):
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Procedure 3

Input: idx(k,� ,R,c1; : : : ; cn), an index.

Z, a subset of R's columns.

Output: idx(2,� 0,R,c1; : : : ; cn; cn+1; : : : ; cn+m), if this index can be created,

where fcn+1; : : : ; cn+mg = Z � fc1; : : : ; cng, and cn+1; : : : ; cn+m are

sorted by column name (to canonicalize the column-su�cient

indexes).

1. Let the type of the new index be

� 0 =

8>>>>><
>>>>>:

�; if � 2 fISAM; btreeg or Z � fc1; : : : ; cng = ;

btree; if � = hash and sequential-key(R:c1)

ISAM; otherwise

2. If INGRES can create a secondary index with n+m columns, generate the

index

idx(2,� 0,R,c1; : : : ; cn; cn+1; : : : ; cn+m)

At step 1, it is important to \convert" hash indexes to some other index type

when adding more columns to it. The reason is that the new columns render the

hash index useless to the purpose for which DAD-I originally generated it. For ex-

ample, idx(2,hash, t,c) can support the predicate t:c = :v, but idx(2,hash, t,c; c0)

will not necessarily support it. If the initial column of the hash index being ex-

tended is a sequential key, DAD-I must use a btree structure for the generated

column-su�cient index; otherwise DAD-I can use an ISAM index.

In the example of Figures 1.1 and 1.2, DAD-I extends indexes to column-

su�cient indexes as follows:
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� ForQ2, DAD-I extends the two indexes idx(k,btree,orders,ono), k 2 f1; 2g

to

idx(2,btree,orders,ono,date,oprice,pno,qty,sno)

Although this column-su�cient index involves all the columns of orders,

DAD-I generates it because it might be useful if some other primary orga-

nization is useful to another query|for example, in the case that another

query were well-served by a primary btree index on pno.

� For Q3, DAD-I performs the following index extensions (; denotes \extends

to"):

idx(1,btree,parts,pno) ; idx(2,btree,parts,pno,descrip)

idx(1,ISAM,parts,pno)

idx(1,hash,parts,pno)

9>=
>; ; idx(2,ISAM,parts,pno,descrip)

idx(1,btree,quotes,pno) ; idx(2,btree,quotes,pno,minqty,price)

idx(1,ISAM,quotes,pno)

idx(1,hash,quotes,pno)

9>=
>; ; idx(2,ISAM,quotes,pno,minqty,price)

and

idx(1,btree,orders,pno); idx(2,btree,orders,pno,ono,oprice,qty)

4.6.2 Generating Column-Su�cient Indexes from Scratch

If|after generating column-su�cient indexes by extending indexes originally gen-

erated to support join predicates, selection predicates, and order by clauses|it

turns out that some correlation name, t, for query Q, has no column-su�cient
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index and that Q does not write to R, then DAD-I generates an arbitrary index

on used(t;Q) (with columns in a canonical order).

If possible, DAD-I ensures that the leading column is not a sequential key. If

this is possible and static(t), DAD-I generates an ISAM index (which has the lowest

�ll factor and best scanning performance). If this is not possible (because every

column in used(t; C) is a sequential key) and static(t), then DAD-I generates a

hash index. If :static(t) DAD-I always generates a btree index.

For the example schema and queries of Figures 1.1 and 1.2, INGRES generates

a single column-su�cient index from scratch, for Q1:

idx(2,ISAM,parts,qonhand)

4.7 Materialized Aggregates

DAD-I generates a materialized-view feature for queries of the form

select aggregate-list from t

or

select aggregate-list non-aggregate-list from t where W group by c-list11

where

1. t is a single table reference,

2. every column mentioned in W is also in c-list,

11Because of a technical problem with getting cost estimates from INGRES, DAD-I cannot
handle group by queries. See Section 6.1.
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3. aggregate-list is a list of aggregate-column-function applications|i.e appli-

cations of one of max, min, count, sum, avg, and

4. non-aggregate-list is a list of column speci�cations without aggregate opera-

tors.12

However, if the estimated cardinality of the table needed to contain the material-

ized view is no smaller than that of the original table, no feature is generated.

In the example of Figures 1.1 and 1.2, DAD-I would generate a materialized-

aggregate feature for query Q1. Using this feature would involve creating a one-

column, one-tuple table and using it to compute Q1.

Ideally, materialized views would be provided by the DBMS, and designers of

many next-generation DBMS seem to be at least considering supporting them (e.g.

[CW91, SJGP90]). Restrictions 1{2 allowed us to concentrate our implementation

e�ort on cases that demonstrate the exibility and breadth of the feature-set

framework while not requiring us to implement a fully general view-materialization

facility.

Materializing max and min queries is especially useful in INGRES, which does

not use indexes to compute these queries ([ING90], page 9-26).

12The elements aggregate-list and non-aggregate-list can be intermixed.
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Search

After generating useful(j) for each query, Qj, in the workload, W , DAD-I has to

�nd a feature set, F 2 2
S

j
useful(j), with low Cost(W;F ). DAD-I does this in

two phases, Search I and Search II. Search I's job is to �nd, for each Qj in the

workload, a small number of the best features from useful(j). Search II's job is to

look for good features in the union of these \best" feature sets.

Figure 5.3 shows all the features generated for the example of Figures 1.1

and 1.2; each feature is labeled for future reference. Figure 5.4 shows useful(j)

for each query in Figure 1.2.

5.1 Search I

In Search I, DAD-I searches for the \best" features for Qj in each useful(j). The

basic idea is to start with at least a lowest-cost feature set, and then to keep

adding additional low-cost feature sets (in ascending order of cost), until adding

one more would cause the cardinality to exceed max-bestI , as described below.

56
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Label Feature
0 idx(2,ISAM,parts,qonhand)

1 idx(2,btree,orders,ono,date,oprice,pno,qty,sno)

2 idx(1,btree,orders,ono)

3 idx(2,btree,orders,ono)

4 idx(2,ISAM,parts,pno,descrip)

5 idx(1,hash,parts,pno)

6 idx(1,ISAM,parts,pno)

7 idx(2,btree,parts,pno,descrip)

8 idx(1,btree,parts,pno)

9 idx(2,btree,orders,pno,ono,oprice,qty)

10 idx(1,btree,orders,pno)

11 idx(2,ISAM,quotes,pno,minqty,price)

12 idx(1,hash,quotes,pno)

13 idx(1,ISAM,quotes,pno)

14 idx(2,btree,quotes,pno,minqty,price)

15 idx(1,btree,quotes,pno)

16 vp(quotes;
ffminqty; pno; price; snog; fmaxqty; minqty; pno; remarks; snogg)

17 vp(parts; ffqonhand; pnog; fpno; descripgg)

18 vp(orders; ffono; oprice; pno; qtyg; fdate; ono; snogg)

19 materialize(Q1)

Figure 5.3: Features for Example Workload and Schema
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useful(0) = fg

useful(1) = f0; 17; 19g

useful(2) = f1; 2; 3g

useful(3) = f4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18g

Figure 5.4: useful(j) for Example Workload and Schema

An important re�nement of this basic idea is to avoid including in the best

set those features that do not reduce the cost of Qj (see step 4, below). For

example, consider Q3 of Figure 1.2. DAD-I discovers the following costs:

Cost(Q3; f8; 9; 14g) = 480 \C"; 848dra; 1176 pages

Cost(Q3; f8; 9; 14; 17g) = 480 \C"; 848dra; 1260 pages

Feature 17, vp(parts; ffqonhand; pnog; fpno; descripgg), contributes nothing,

and should be excluded from bestI(j).

We formalize \best" as follows.

1. Let max-bestI be a parameter supplied by the database administrator.

2. Let Cost+(Qj; F )
def
= Cost(Qj; F ) + Cost(F ).1

3. Let �F = F1; F2; : : : be the sequence of all the unique feature sets for which

DAD-I evaluated Cost+ during the search for useful(j), ordered so that

(a) Cost+(Qj; F1) � Cost+(Qj; F2) � � � �, and

1We include storage cost (Cost(F )) to provide some pressure toward smaller features sets
during the search for the best features in useful(j). Without including some term such as this
in the objective function for Search I, the iterative improvement algorithm that we present in
Procedure 4 below would become stalled in connected regions of same-cost states.
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(b) for all Fk, k > 1, if (Cost+(Qj; Fk�1) = Cost+(Qj; Fk)) then

jFk�1j � jFkj.

In other words, �F is in ascending order by Cost+(Qj; Fk) and cardinality of

Fk.

4. Let �G be the sequence
D
Fk in �F s.t. Fk0 � Fk ) k � k0

E
. Intuitively, �G is

�F after removing feature sets that really are not an improvement over some

subset to the left within �F .

We then de�ne

bestI(j; �G;max-bestI )
def
= G1 [

x[
k=2

Gj (9)

where x is the maximal x � 0 such that j
Sx
k=1Gkj � max-bestI . When �G and

max-bestI are understood, we write bestI(j).
2

Complexity of Search I

Clearly, the size of useful(j) can be at least as large as the number of selection

columns in Qj. Since DAD-I generates a unique secondary index for each selection

column, and since these indexes do not conict, the number of conict-free subsets

of useful(j) can be exponential in the number of selection columns in Qj. This

suggests that an exhaustive search will not be acceptable for Search I for every

query, and our experience with the test workloads discussed in Section 6.2 bears

out this assessment. DAD-I's solution is to allow the database administrator

to supply as a parameter the size of the largest useful(j) on which to perform

2We don't use simply
Sx

k=1Gj on the right-hand side of equation (9) because if
jG1j > max-bestI then x = 0. In this case we want at least G1 in bestI(j).
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an exhaustive search|the default value for this parameters is 10. If the size

of useful(j) exceeds this parameter, then DAD-I uses an iterative-improvement

randomized search algorithm similar to that in [IK90]. For smaller feature sets an

exhaustive search is feasible, and hence preferable, because an exhaustive search

can perform fewer data-dictionary updates than II+ to get cost estimates for the

same number feature sets.

II+ (Iterative Improvement Plus)

DAD-I uses the following algorithm in Search I:

Procedure 4

Input: Qj, a query.

useful(j), the features generated for Qj.

max-bestI , as discussed above.

num-tries, a parameter supplied by the database administrator.

Output: ideal(j), a feature set with the lowest cost found.

bestI(j).

1. Let q-table be a partial mapping from feature set to query cost, initially ;.

2. Let s-table be a partial mapping from feature set to storage cost, initially ;.

3. Do num-tries times:

(a) Let S be a \random" conict-free subset of useful(j).
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(b) Set X = X � fS0g.

(c) Add the pair hS;Cost(Qj; S)i to q-table.

(d) Add the pair hS;Cost(S)i to s-table.

(e) Let X be the set of neighbors of S, where \neighbors" is de�ned below.

(f) While X 6= ; do:

i. Let S0 be a random element of X.

ii. Add the pair hS0;Cost(Qj; S
0)i to q-table.

iii. Add the pair hS0;Cost(S0)i to s-table.

iv. If Cost+(Qj; S
0) < Cost+(Qj; S) then set S = S0 and go to step 3e.

v. If X = ;, then add more distant neighbors of S (which have not yet

been considered) to X, where \more distant neighbors" is de�ned

below.

4. Using q-table and s-table, compute �F , the sequence of feature sets for which

Cost+ of Qj was evaluated, sorted as discussed above.

5. ideal(j) is F1, and bestI (j) is bestI(j; �F ;max-bestI )

The initial value for S at step 3a is chosen from among subsets of 2F that do

not include both a vertical partitioning and a column-su�cient index on the same

table. The set, X, of neighbors of S at step 3e is taken to be the set of immediate

super- and subsets of S that are conict-free. At step 3(f)v, X is re-initialized

to contain the neighbors that di�er from S by the replacement of a feature from

S. For example, a \more distant neighbor" of f1; 4; 5g might be f4; 5; 8g (8 re-

places 1). If this step is omitted we have a generic iterative-improvement (II)

algorithm.
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Figures 5.5 and 5.6 show the e�ect of step 3(f)v. These graphs plot the

minimum query cost found (on the y axis) as a function of the number of di�erent

feature sets tried (on the x axis). Minimum query cost is measured in nominal $,

our name for the common currency to which we convert CPU, disk access, and

storage costs (using the cost coe�cients in Section 6.2.3). Figure 5.5 is for the

query join 4 ncl in the AS3AP workload (query 14 in our numbering in Ap-

pendix B.2), and Figure 5.6 is for query Q3 from Figure 1.2. For Figure 5.5 we

suspect that the observed minimum (for II+) is in fact the minimum, though we

did not perform an exhaustive search. For the query of Figure 5.6, an almost-

exhaustive search revealed the same minimum as II+. (In fact, for the run of

Figure 5.5 each iteration of the loop at step 3 discovered the lowest-cost feature

set.) Both graphs cover more than one iteration of the loop at step 3.

These graphs are typical of the of tests we did on the alternative versions of

iterative improvement for Search I. In these graphs the e�ect of step 3(f)v is to

make it more likely that the algorithm will �nd a minimumwithin a given number

of query optimizations.

In [IK90], a related strategy, two-phase optimization (2PO), is found to be

superior to II for optimizing large join queries. 2PO begins with an II optimization,

and then runs a simulated annealing optimization starting at an optimal result

taken from among results produced by II. This means that the search can move

from one local minimum to another, lower-cost, local minimum, provided that

the intervening states are not too expensive. The authors of [IK90] conclude

that the reason is that the state space for optimizing large joins forms a \cup".

One of the characteristics of a \cup" is that there is a large region of low-cost

states containing many local minima. Once a state in the low-cost region is
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found, simulated annealing can visit a number of local minima in the region,

and hopefully �nd the best. Widening the neighborhood in II+ seems to have a

similar e�ect; it allows the algorithm to visit nearby low-cost states that would

not ordinarily be considered neighbors.

II+ and II were not the only search methods we tried for Search I. We chose

II+ because it seems to yield a low-cost feature set quickly. It would be quite

easy to attempt other methods, (e.g. simulated annealing or two-phase

optimization as discussed in [IK90]).

Search I Results for Example

Given max-bestI = 6, DAD-I produces the following ideal(j) and bestI(j) for the

example of Figures 1.1 and 1.2:

query ideal bestI

Q0 fg fg

Q1 f19g f0; 17; 19g

Q2 f3g f1; 2; 3g

Q3 f8; 9; 14g f8; 9; 10; 14; 18g

5.2 Search II

Once DAD-I has calculated the bestI(j)'s and ideal(j)'s, it begins Search II. The

algorithm depends on bestII(W; �F;max-bestII ), which is similar to bestI , except

that �F contains feature sets for which Cost of W (rather than Cost+ of Qj) has

been evaluated, and the interesting cost for ordering �F is Cost of W rather than

Cost+ of Qj.
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Given this de�nition of bestII , the Search II algorithm is:

Procedure 5

Input: ideal(j) and bestI (j) for every query in a workload, W .

max-bestII , a parameter supplied by the database administrator.

Output: ideal �
S
j bestI (j) such that Cost(W; ideal) is low.

1. Let X be the set fjgh�j;Qji2W .

2. Let j0 be a j 2 X such that Cost(W; ideal(j)) is minimal.

3. Let best be bestI (j0).

4. Let ideal be ideal(j0).

5. Set X = X � fj0g.

6. While X 6= ; do:

(a) Let jworst be a j 2 X such that �jCost(Qj; ideal) is maximal.3

(b) Let S be bestI (jworst) [ best.

(c) Let S0 be the result of applying additional feature-generation proce-

dures to S (see Section 5.2.1, below).

(d) Perform an iterative-improvement search on 2S
0

similar to Procedure 4,

except that the objective function is Cost of W rather than Cost+ of

Qj.

3We use jworst as a heuristic because jworst is making the largest contribution to
Cost(W; ideal) of any j whose bestI features have not yet been considered in Procedure 5. The
hope, then, is that searching feature sets that include elements of bestI(jworst) will result in the
largest reduction in the Cost of W.
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(e) Let �F be as in Procedure 4, step 4, except that we use Cost ofW rather

than Cost+ of Qj.

(f) Set best = bestII(W; �F;max-bestII ).

(g) Set ideal to the �rst element in �F .

(h) Set X = X � fjworstg.

7. ideal is a feature set minimizing Cost of W , among those sets for which Cost

of W was evaluated.

The parameter max-bestII helps bound the size of S at step 6b.

5.2.1 Search II Feature Generation

During Search-II, DAD-I generates features that

1. help join two halves of a vertically partitioned table, or

2. combine pairs of existing vertical partitionings into new vertical partition-

ings.

Point 1 is straightforward: To reconstitute a table that has been vertically parti-

tioned into two tables with column sets A and A0, DAD-I creates a view that joins

on A \ A0 (which must be non-empty|see Procedure 2). Indexes for rejoining

the split table are not necessary for the queries which originally motivated the

vertical partitioning, since these queries don't need to reconstitute the original

table. However, in Search II the entire workload is under consideration, so in-

dexes on the columns in A \ A0 might help. Therefore, DAD-I generates indexes

on these columns, in essentially the same way that it generates indexes for joins
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that are explicit in the workload (as discussed in Section 4.2)|the main di�erence

is that DAD-I does not use these indexes as the basis for generating additional

column-su�cient indexes. We call indexes generated for reconstituting vertically

partitioned tables rejoin indexes.

Point 2 requires more explanation. The idea is to combine a vertical partition-

ing good for a query, Q, and one good for another query, Q0, into a vertical par-

titioning good for both Q and Q0, as discussed on page 50. We de�ne fatten(i; i0),

where i and i0 are vertical-partitioning features on the same table; fatten(i; i0)

produces a set of features as follows:

1. Let i be the vertical partitioning vp(R; fA; A0g), and let i0 be the vertical

partitioning vp(R; fB; B0g).

2. Let it be that some Qj can be computed using only the columns in A and

that some Q0
j can be computed using only the columns in B. (Other cases

are symmetrical.)

3. Perform step 1c of Procedure 2 with Z = A [ B to produce, if possible, a

vertical partitioning.

We can now �ll in the details of step 6c in Procedure 5:

1. Let S be as at step 6b of Procedure 5.

2. Let S00 be the subset of S containing only vertical partitionings.
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3. S0 at step 6c of Procedure 5 is formed by adding to S

(a) the rejoin indexes for the vertical partitionings in S00, and

(b) the results of fatten(i; i0) for every pair, (i; i0), of

vertical partitionings in S00.

5.2.2 Search II Compromise on Example

For our running example from Figures 1.1 and 1.2 we get the following workload

costs for each ideal(j):

Cost(W; fg) = 833:001 \C"; 1058:421dra; 738:0 pages

Cost(W; f19g) = 829:002 \C"; 954:158dra; 739:0 pages

Cost(W; f3g) = 823:002 \C"; 1023:263dra; 809:0 pages

Cost(W; f8; 9; 14g) = 502:002 \C"; 1450:105dra; 1176:0 pages

Cost(W; ideal(3)) is lowest, and the maximum �jCost(Qj; ideal(3)) is that of Q1,

so jworst = 1. Applying step 6c to

bestI(3) [ bestI(1) = f0; 8; 9; 10; 14; 17; 18; 19g

yields no new features.

The result of the search among conict-free subsets of S0 at step 6d reveals

that

ideal = f8; 9; 14; 19g

and that with max-bestII = 8,

best = f0; 8; 9; 10; 14; 17; 18; 19g:
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The query with maximal �jCost(Qj; ideal) is Q2, so jworst becomes 2. Since

bestI(2) = f1; 2; 3g, we have S = f0; 1; 2; 3; 8; 9; 10; 14; 17; 18; 19g, to which again

no new features are added. The search at step 6d updates ideal to

f2; 8; 9; 14; 19g and best to f0; 2; 8; 9; 14; 19g.

At this point jworst becomes 0 (with bestI (0) = ;). The �nal application of the

feature generation rules at step 6c yields no new features, and step 6d applied to

best yields no lower-cost set than the current value of ideal, so the solution to the

example problem is

Label Feature

2 idx(1,btree,orders,ono)

8 idx(1,btree,parts,pno)

9 idx(2,btree,orders,pno,ono,oprice,qty)

14 idx(2,btree,quotes,pno,minqty,price)

19 materialize(Q1)

with Cost(W; f2; 8; 9; 14; 19g) = 480:007 \C"; 856:0dra; 1371:0 pages.

This result is plausible, though for Q3 many human designers might use pri-

mary indexes on pno (features 10 and 15) rather than the column-su�cient indexes

9 and 14. This choice would certainly make Q3 more expensive; DAD-I estimates

that Q3 on f8; 10; 15; 16g requires 1109dra as opposed to 848dra for f8; 9; 14g.

The vertical partitioning of quotes (16) does reduce the number of disk accesses

over what they would be on the full table, but using a primary btree on pno to

read the data pages requires more disk accesses than the using secondary index 14,

because the secondary index (considered apart from its base table) has a sparse

organization, whereas the primary key (in conjunction with its base table) has a

dense organization.
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In fact, there are organizations with lower cost estimates for this example

workload, but that were excluded because of the stringent rule of secondary index

conict (see Section 3.3). For example, f3; 8; 9; 14; 19g uses less space (and slightly

less CPU) than f2, 8, 9, 14, 19g: 1248 pages as opposed to 1371 pages. (Feature

3 is idx(2,btree,orders,ono), and feature 2 is idx(1,btree,orders,ono).) The

reason is that there is less unused space on data pages in a primary heap orga-

nization for orders than in a primary btree organization. Nonetheless, DAD-I's

result appears to be quite good, considering the approximate nature of the data

statistics, query frequencies, and query-plan cost estimates used. Over a �ve-year

system lifetime, this di�erence amounts to less than 5 nominal $ (our name for

the common currency to which we convert CPU, disk access, and storage costs).

This cost is trivial compared to the estimated total cost of running the workload

for �ve years, which is about 47,600 nominal $.

Appendix A.2 shows the query plans INGRES selected for f2; 8; 9; 14; 19g.
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Experiments

6.1 Implementation of DAD-I

DAD-I's implementation follows closely the description in the preceding chapters.

The entire system is coded in about 13,000 lines of Common LISP. We chose

Common LISP for portability and ease of experimentation. The LISP part of

DAD-I was not a performance bottleneck; the salient bottleneck appeared to be

the time used by INGRES to update its data dictionary (catalog tables), and to

plan the workload queries.

DAD-I runs the INGRES line-oriented terminal monitor (see [ULT90], Sec-

tion 3) as a separate process. For our tests, DAD-I and INGRES were on separate

machines. To get INGRES's cost estimates for queries on a feature set, DAD-I

�rst ensures that INGRES's data dictionary (catalog tables) reect the feature

set to be evaluated. This can require creating or dropping both secondary and

primary indexes.1 It can also involve altering the data statistics associated with

1Primary indexes are created and dropped with the INGRES modify statement.

72
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tables or secondary indexes, because di�erent organizations of the same logical

data have di�erent storage requirements.

For example, a heap organization uses little space above that needed for the

tuples themselves|they are packed as tightly as possible in each page. On the

other hand, a btree organization requires much more space|for the internal

nodes in the index, for the leaf pages (it is dense), and for free space in the data

pages. These estimates of storage utilization are crucial not because of the storage

cost per se, but because they determine INGRES's estimates of the number of disk

accesses needed for various query plans.

Once DAD-I has arranged for the data dictionary to correspond to the feature

set to be evaluated, it sends queries, one by one, to INGRES and reads back, for

each query, INGRES's query plan and cost estimate. For some queries and feature

sets DAD-I must transform the query. For example, if a feature set contains a

vertical partitioning, queries on the partitioned table may involve a join of the

two halves of the vertical partitioning.

After receiving a query from DAD-I, INGRES generates the query plan and

cost estimate (because DAD-I has executed INGRES's set qep statement). IN-

GRES does not actually execute the query because DAD-I has executed INGRES's

set noqueryrun statement.

INGRES's interface for obtaining query plans and cost estimates is really de-

signed to be used by database administrators, not by physical design software.

As a result, it would be too di�cult to make DAD-I capable of understanding

the query plans INGRES presents. But it is usually simple to extract INGRES's

cost estimate. However, there are two situations in which it is not possible to get

INGRES's cost estimate.
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1. When the query is not a join and there is no secondary index that INGRES

can possibly use in computing the query:

In this case INGRES does not use its so-called JOINOP query processor

[RS86], and consequently produces no cost estimate or query plan. DAD-I

recognizes situations in which INGRES does not use JOINOP, and in these

situations DAD-I produces the cost estimate. (The query plan in these cases

is obvious.)

2. When INGRES, in a stereotypical way, executes a query by performing

several suboperations, for each of which the query optimizer produces a

plan:

Queries with a group by clause are an example. If we were to use set

noqueryrun to prevent INGRES from executing the workload queries, IN-

GRES would produce a plan only for the �rst suboperation. If INGRES

did execute the query, a crash would likely result, because DAD-I has up-

dated the catalog tables in ways that don't correspond to the actual state

of the database. For this reason, DAD-I cannot work with queries for which

INGRES produces multiple plans.

In addition, INGRES's cost estimates to not include the cost of database writes

in update, insert, and delete queries; DAD-I estimates these.

We constructed DAD-I to support extension and retargetability. Dependencies

on INGRES arise in the design of features, in the feature-generation procedures,

and, of course, in the code that communicates with INGRES. It would be fairly

easy to add new kinds of features, especially if they didn't involve query transfor-

mations. To retarget to another relational database also would be straightforward,
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provided there is some way to get query costs; the feature-generation procedures

could be easily adapted. A rule-based implementation of feature generation would

probably make retargetability easier, but might also be slower.

6.2 Description of the Tests

We used DAD-I to determine physical database designs for three physical design

problems (besides the example of Figures 1.1 and 1.2).

6.2.1 Test Problem 1

Test Problem 1 is an adaptation of a physical database design problem given

in [FST88]. (The di�erences are in queries 5, 6, and 9, which are multi-tuple

updates in the original workload,2 and in query 2, which is a group by query in

the original workload.3 ) The schema and workload for this test are shown in

Appendix B.1.

Some properties of the data, notably selectivities and logical keys, were not

reported in [FST88]. For such situations we invented properties consistent with

the characteristics speci�ed in [FST88].

6.2.2 Test Problems 2 and 3

Test Problem 2 is based on the AS3AP benchmark [TOB91]. We used the AS3AP

schema and most of the queries from the AS3AP \single-user" test|a test designed

2 In the case of the multi-tuple updates, we wanted to avoid having to implement the cost
estimating procedures for multi-tuple updates in INGRES. They could be implemented along
the lines described in [ST85].

3Section 6.1 describes the di�culty with group by queries.
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to measure how well a DBMS deals with individual queries, as opposed to how

well it deals with contention for data among concurrent transactions. We chose

these queries as a workload because they provide a reasonably rich and complete

set of operations on a reasonably complex logical schema.

From the AS3AP single-user tests we omitted only

� queries designed to test \operational issues", such as bulk loading and index

building,

� queries designed to test the relative e�ciency of output to screen, �le, and

table,

� updates designed to test a DBMS's ability to detect violation of uniqueness

and inclusion (foreign key) dependencies,

� multi-tuple updates (see footnote 2), and

� two group-by queries (for the reason discussed in Section 6.1).

This left 30 queries and updates, comprised of

� eight single-table selections,

� eight joins,

� two projections that, by using select distinct, yield far fewer tuples than

contained in the input table,

� four aggregates, and

� eight updates involving single tuples.
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In Test Problem 2, we arbitrarily assigned a frequency of one to all 30 queries.

In Test Problem 3, frequencies of queries that involve writes are increased (Ap-

pendix B.3 provides the frequencies.)

6.2.3 Cost Coe�cients for Tests

Based on comparisons of optimizer estimates with actual CPU resources used in

queries, we estimate that each unit of CPU cost in INGRES (a \C") corresponds

roughly to 100ms of CPU time on a 6MIPS machine. New York University's

Academic Computing Facility (NYU ACF) charges $75.00 for one hour of CPU

on the test machine, and assuming a 5-year system horizon, this makes the cost

of one \C" per hour $91.25. NYU ACF charges $.0001 per dra, making the cost

of 1 dra per hour $4.380.

Finally, although NYU ACF does not charge directly for storage space (but

does limit the amount available to each user), we estimate the cost per 2kbyte

page by assuming that we can buy and maintain for 5 years a 1Gbyte disk at a cost

of $20,000. This yields a cost per page of approximately $.03815. Of course, as

discussed in Section 3.1, DAD-I is parameterized so that, for a particular system

under design, database administrators can specify the coe�cients for \C" per

hour, dra per hour, and storage pages.
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6.3 Experimental Results and Discussion

6.3.1 Test Problem 1

The lowest-cost physical design found by DAD-I consists of the following features

(the integer feature labels are those generated by DAD-I)

Label Feature

1 idx(1,hash,quotes,partno)

10 idx(2,ISAM,quotes,maxqty)

17 idx(1,hash,parts,partno)

23 idx(2,btree,orders,date,orderno,partno,qty,suppno)

29 idx(2,ISAM,quotes,suppno,partno,price)

33 idx(1,btree,orders,orderno)

with estimated workload cost 1234:275 \C"; 8389:0dra; 5507:0 pages. The asso-

ciated query plans are in Appendix A.3. The values for parameters supplied by

the database administrator are: max-bestI = max-bestII = 8, num-tries = 3 for

Search I, and num-tries = 2 for Search II (with the initial try starting at ideal).

Discussion

Judging from the query plans, this design is good, except for the inclusion of

idx(2,ISAM,quotes,maxqty). This anomaly is due to the fact that (i) INGRES

produces a lower cost estimate for query 0 than DAD-I and (ii) if this index is

present, INGRES supplies the estimate. As discussed in Section 6.3.3, estimate

accuracy it the critical limiting factor in the quality of DAD-I's designs; Section 8.2

also discusses how estimate accuracy could be improved.
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6.3.2 Test Problems 2 and 3

The lowest-cost physical design found by DAD-I for Test Problem 2 is

Label Feature

1 idx(1,btree,updates,key)

5 idx(2,btree,updates,code)

7 idx(1,ISAM,uniques,key)

11 idx(2,btree,updates,int)

17 idx(2,ISAM,tenpct,signed)

23 idx(1,hash,hundred,key)

48 idx(2,hash,uniques,address)

55 idx(1,ISAM,tenpct,key)

58 idx(2,ISAM,uniques,code,date,signed)

60 idx(2,ISAM,hundred,code,date,signed)

78 idx(2,ISAM,tenpct,code,date)

98 idx(2,ISAM,tenpct,name,int)

105 idx(2,btree,updates,decim)

198 vp(updates; ffaddress; double; fill; float; key; nameg;

fcode; date; decim; int; key; signedgg)

213 materialize(Q18)

with cost 484:030 \C"; 16652:421dra; 22521:0 pages. (The values for parameters

supplied by the database administrator in Test Problems 2 and 3 are as for Test

Problem 1, with the exception that num-tries = 1 for Search II, with the single

try begun from the current ideal.)
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The lowest-cost physical design found by DAD-I for Test Problem 3 is

Label Feature

0 idx(2,btree,updates,key,code,double,int,name,signed)

7 idx(1,ISAM,uniques,key)

24 idx(1,ISAM,hundred,key)

55 idx(1,ISAM,tenpct,key)

58 idx(2,ISAM,uniques,code,date,signed)

60 idx(2,ISAM,hundred,code,date,signed)

78 idx(2,ISAM,tenpct,code,date)

105 idx(2,btree,updates,decim)

213 materialize(Q18)

with cost 694:245 \C"; 31653:789dra; 17219:0 pages.

Discussion

The large number of secondary indexes in the design for Test Problem 2 may seem

suspect to experienced database designers. However, we believe their inclusion re-

sults from the fact that all queries have the same frequency in Test Problem 2.

By contrast, in the \typical" application, complex queries (multi-table joins and

decision-support queries) are much less frequent than point updates and queries

involving one or two tables. As can be seen in the results of Test Problem 3, in-

creasing the frequency of updates (and of a few two-table joins) results in a design

with far fewer secondary indexes on updates, and with no vertical partitioning of

updates.
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6.3.3 Estimate Accuracy

Errors in the query optimizer's cost estimates appear to be the critical limiting

factor in the quality of DAD-I's results. These errors required us to force some

secondary indexes to conict when they otherwise would not have had to (see

Section 3.3). These errors also led to the anomalous inclusion of a secondary

index in the result for Test Problem 1. Furthermore, in one query that we tested,

INGRES's estimate of disk-accesses was 405, and the actual number was 16; the

optimizer's estimate was o� by a factor of 25. Query plan stability may also be

an issue: for large join queries the query optimizer might not always produce the

same plan.

Even though DAD-I is a competent assistant, human oversight is still required.

On the other hand, design using such an assistant would be much easier than

manual design. In a system where plans, in addition to costs, could be obtained

from the query optimizer, a system like DAD-I could provide its own estimates

where needed. As observed in [FST88], it doesn't make sense to try to second

guess the optimizer's plans, but, unlike [FST88], we think it might make sense

to second guess the optimizer's cost estimates. Section 8.2 discusses how, in the

longer term, estimate accuracy could be improved.
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Related Work

We categorize software systems for physical database design in a number of di-

mensions:

� What \linguistic levels" does the design span? Does it include aspects of

logical as well as physical design?

� How big is the solution space?

� How much does the system rely on inspection methods to generate the so-

lution space?

� Does the system rely on explicit search among a solution space using a cost-

based objective function? If not, how are various criteria applied to produce

a design? If so, does the query optimizer produce the plans and estimates?

� How much human mediation is required and allowed? Can the database

administrator constrain the designer to a partial solution?

82
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� Is the design process limited to achieving performance goals, or are other

possible design objectives represented?

We next discuss several systems in detail.

7.1 FCDS

The authors of [CMD83, DJCM89] do not name their system but we will call

it FCDS (for Form, Convert, Design, and Select, the four main phases of the

design process in their system). We share FCDS's broad objectives: FCDS is \a

tool to support a DBA [database administrator] in the task of physical database

design. [It] facilitates the explicit speci�cation of the design problem and greatly

expands the number of design alternatives which can be considered for a particular

design problem ([CMD83], pg. 223)." Like FCDS's designers, we think this is best

approached using a balance of knowledge- and search-based components.

A key di�erence between DAD-I and FCDS is that FCDS was begun in the

context of CODASYL databases, with navigational query processing. Although

[DJCM89] mentions the possibility of adapting FCDS to systems with relational-

style query optimization, apparently this has not been done.

FCDS operates as follows. Its inputs are

� \LDS" (Logical Data Structure)|a conceptual-level schema1 in an E/R-

like model [Che76] (all relations are binary and 1-1 or 1-n; no attributes are

allowed on relations). The LDS also provides entity cardinality, relationship

degree, and domain cardinality (of attributes).

1This \Logical Data Structure", corresponds to what would more commonly by called \con-
ceptual" in the context of logical design for relational databases.
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� Workload|this is navigational, though expressed in an SQL-like notation,

and also contains query frequency and selectivity information.

� Hardware Environment Description|\secondary-memory access time (ran-

dom and sequential), data transfer rate, maximum blocksize, cost of CPU

and retrieval time, and cost of storage space."([DJCM89], pg. 74) These

parameters are used to develop the objective function.

In addition, there is a degree of retargetability in terms of the solution space,

which can be adapted to model the implementation of a particular DBMS.

The outputs of FCDS are

� physical record structures (including vertical-partitionings, data item dupli-

cation, and horizontal partitions), and

� primary and secondary access paths (in the CODASYL sense, so this in-

cludes heap, hashed, ISAM, pointer, and repeating-�eld structures.)

In [CMD83, DJCM89] the authors recognize that the problem is so hard that only

a heuristic approach is possible. In [CMD83] the authors take a \DSS" (Decisions

Support System) approach to the problem, and rely heavily on human guidance|

that is, the authors conceive of FCDS as a decision support system for the database

administrator's physical design decisions. A contribution of [DJCM89] is to re-

place much of that human guidance with a rule-based system. This system em-

ploys backward-chaining rules, with classical \certainty factors" (see e.g. [LS93],

pages 329{331) to determine con�dence in its conclusions. The report [Dab89])

o�ers a detailed description of the rules and their operation.
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FCDS uses four phases to produce a physical database design:

1. FORM uses the rule-base system discussed in [DJCM89] to enumerate some

of the possible representations of the LDS in terms of record types and

relationship representations, (e.g. direct pointers or nesting).

2. CONVERT transforms operations on LDS to operations on the record types

and relationship representations produced by FORM.

3. DESIGN selects a �le organization for each record type, using

(a) a detailed cost model, and

(b) algorithms for vertical partitioning and for selecting access paths, given

a record type and a (�xed) access pattern.

The algorithms can use classical mathematical programming techniques,

such as integer linear programming, because there is no query optimization

here, and the system is dealing with accesses on single �les. The algorithms

for vertical partitioning and access path selection are separate, even though

the problems are not separable. Therefore DESIGN iterates once. The

database administrator can also specify partial solutions.

4. SELECT chooses the lowest-cost set of �le organizations implementing the

particular set of record types. It can also display the set of solutions whose

cost is within a speci�ed percentage of the lowest cost.

Besides the fact that FCDS works in the context of the CODASYL model, a salient

di�erence between DAD-I and FCDS is that FCDS operates from a conceptual

design. Given that there are many systems and widely accepted methodologies
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to aid in logical design for relational databases, we decided that DAD-I's input

should be a logical design. To some extent, of course, logical design can a�ect

performance, and in some cases DAD-I changes the logical design if the conse-

quence is a lower-cost physical design. Philosophically, however, we take the view

that DAD-I does this simply to improve an incomplete separation of logical from

physical design|we think that, for example, view materialization would be a good

addition to the physical design options of relational DBMS.

Additional information on FCDS appears in [Mar83, CM83, MC85, MC87].

7.2 Relational Design Tool

Relational Design Tool for SQL/DS (RDT) is a system for index selection [FST88,

IBM85] for IBM's SQL/DS [IBM], and appears to be still available from IBM.

RDT is based on a prototype, DBDSGN, for System R [Ast76]. In many ways,

DAD-I is an attempt to

� enlarge the solution space available in RDT (which covers index selection|

single-column indexes plus those multi-columns indexes that the database

administrator explicitly adds to the solution space),

� generalize from RDT's notion of \plausible columns" (discussed below), and

� construct a more-easily retargetable architecture.

The inputs to RDT are a schema and workload with statistics, much as for

DAD-I. RDT presents the workload queries to the SQL/DS optimizer, and using

the EXPLAIN REFERENCE statement, obtains for each query a set of \plausible
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columns", i.e. columns that the optimizer considers \plausible for indexing".

Then RDT computes a set of \atomic con�gurations", a kind of basis set of

indexing designs, from which the cost of all other designs can be computed. The

ability to use atomic con�gurations to calculate the cost of all indexing designs

relies on

1. the optimizer actually �nding the lowest-cost plan, and

2. the fact that the optimizer uses at most one index for each correlation name

in a query (because SQL/DS does not use TID intersection).

The advantage of using atomic con�gurations is that, as a function of the

number of plausible columns, there are asymptotically fewer atomic con�gurations

than indexing designs in general, for workloads seen in practice.

RDT then gets from the SQL/DS query optimizer the cost for each atomic

con�guration using the EXPLAIN COST command. At this point, RDT, at the

database administrator's option, may use heuristics to discard some possible in-

dexes. Finally, RDT searches among indexing designs involving the remaining

indexes. At the database administrator's option, RDT can use additional heuris-

tics to avoid considering all such designs. In addition, if so instructed, RDT,

instead of having SQL/DS evaluate the cost of all atomic con�gurations, can have

SQL/DS evaluate query costs as needed during the search.

In the process of creating a more general design system than RDT we have

lost the ability to use atomic con�gurations: INGRES, unlike SQL/DS, performs

TID intersection, so such an approach using atomic con�gurations is invalid for

INGRES. Also, DAD-I's more general search methods mean that it is not possi-

ble to minimize database catalog updates as in RDT. In abandoning reliance on
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atomic con�gurations we had little choice (because INGRES does use TID inter-

section), and we are con�dent that the larger solution space and more retargetable

architecture of DAD-I are worth the attendant reduction in e�ciency.

7.3 Knowledge-Based Approaches

RdbExpert is a DEC product that uses a knowledge-based approach to cre-

ate physical designs for VAX Rdb/VMS databases [DEC92, DEC]. In another

knowledge-based approach, [CBC93] describes how to use the Dempster-Schafer

theory of evidence [Sha76] to assign a measure of \promise" to alternative physical

database designs. An even earlier work, [BN87], apparently also took a knowledge-

based approach.

7.3.1 RdbExpert

According to [DEC92], RdbExpert's core is a \knowledge base (KB) of Rdb/VMS

physical design expertise" (pg. 1-3) that RdbExpert uses|given an application-

execution environment, workload, schema, and statistics|to produce a physical

database design. This knowledge base was originally prototyped in OPS5, and

later reimplemented using C and SQL [Gio91].

In addition, RdbExpert helps database administrators organize the physical

and logical design process (it interfaces with logical design software), and produces

the necessary procedures to create the generated design. Input information can

come from an implemented database or from SQL statements; database adminis-

trators can create data statistics (for not-yet-implemented systems), or can have
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them gathered from running applications by trace utilities. RdbExpert also o�ers

a language for specifying physical database design problems.

For each logical schema, workload, and associated statistics, RdbExpert pro-

duces a physical design. This can include a summary or detailed rationale for the

design.

Neither [Gio91] nor [DEC92] reveals any concrete speci�cs of RdbExpert's

internals. However, one di�erence between DAD-I and RdbExpert is that, un-

like RdbExpert, DAD-I considers design strategies|aggregate materialization and

vertical partitionings|that involve changes to the logical schema. Also, it is re-

portedly di�cult to extend RdbExpert to take into account new features, and it

is tied to Rdb/VMS.

7.3.2 Using Dempster-Schafer Theory

As we suggest at the beginning of this chapter, most approaches to physical

database design involve some mixture of a knowledge-based component and a

search component. One way to make the search cheaper is to rely more heavily on

the knowledge-based component, and [CBC93] proposes a very strong knowledge-

based component to do much of the work done in DAD-I's search phase.

The approach is to use the Dempster-Schafer theory of evidence to assign a

belief value to each design, the magnitude of which is, intuitively, a measure of

con�dence that that design is good. For example, if there is a query, Q, with an

equality predicate on column c of table R and a query, Q0, with a range predicate

on column c of table R, then there might be one rule that proposes (for Q) a hash

index on R, and two rules (one for Q and one for Q0) that propose an ISAM index
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on R. (An ISAM index would be proposed for each query, because ISAM indexes

are good for both range and equality predicates|though inferior to hash indexes

for equality predicates.) Using Dempster-Schafer theory, these indexing proposals

can be combined to say that either a hash index or an ISAM index is a good idea,

with a belief value for each possibility determined by a weighting of the original

rules. So in this example, the belief value for an organization with the ISAM index

might be higher, assuming all of the original rules had equal weight.

After designs and associated belief values have been generated, the tool would

request (from the query optimizer) the cost estimates for the workload on some

of the physical designs with the highest belief values. The report [Wal90] o�ers a

set of rules that might be used in this approach for physical database design for

INGRES (though without belief values).

There is continuum in the reliance on knowledge-based and search-based ap-

proaches. Probably only experimentation with actual physical design tools will

tell us where on this continuum a physical design tool performs best both in terms

of e�ciency and in terms of the quality of the output design.

7.4 Other Related Work

Other work takes a knowledge-based approach to the larger problem of infor-

mation system development, including the translation of a conceptual schema to

a logical schema [JMSV92]. The problem of physical database design arises as

an instance of the problem of satisfying non-functional requirements. For exam-

ple, [Nix91, Nix93] discuss the issue of performance as a non-functional require-

ment, and [MCN92] describes the general framework of goal \satis�cing" used to
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develop implementations that are likely to satisfy their non-functional require-

ments.

Physical database design also arises in transformational approaches to im-

plementing database programming languages, as in [Feg91], which describes an

implementation technique for the functional database programming language AD-

ABTPL.

Finally, there has been some work on main memory data structure design:

[RK77, Low78, SSS81, KZG81]. Some of this work is similar to DAD-I, in that it

involves the selection of representation of logical operations on an abstract data

type (e.g. set or list) from a �xed repertoire of implementations, based on uses of

an instance of the abstract data type.
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Conclusion and Future Work

8.1 Conclusion

This thesis has accomplished the following:

� We successfully generalized the approach pioneered by [FST88], in which

a design assistant uses a query optimizer's cost estimates to �nd low-cost

physical designs.

� We devised a framework|consisting of feature-sets and the separation of

feature generation from search|that allows us to use generic search algo-

rithms, and that supports retargetability of design assistants to di�erent

DBMSs, and even to :1NF or object-oriented DBMS.

� We designed and implemented a heuristic search algorithm that involves

(i) �nding the best features for individual queries, and then (ii) combining

the best features for individual queries to �nd a feature set with a low cost

for the workload as a whole. This heuristic can manage the complexity

92
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of realistically sized physical design problems, and still produce low-cost

designs.

� We designed and implemented procedures to generate features for the IN-

GRES relational DBMS. These procedures are applicable or easily adaptable

to other relational DBMSs. Our experiments with INGRES show that these

procedures are fast and e�ective.

� The implementation of our prototype design assistant, DAD-I, isolates de-

pendencies on the speci�cs of INGRES. This substantiates the claim that our

framework could accommodate many relational and post-relational DBMSs.

� We experimented on several physical design problems using DAD-I. The

experimental results support the conjecture that a design assistant based on

our framework can produce good designs, and that design quality is limited

not by the expense of search but by the accuracy of the query optimizer's es-

timates. In Section 8.2 we propose several approaches to improving estimate

accuracy.

8.2 Future Work

A closer integration between the design assistant and query optimizer could lead

to a major improvement in the quality of the output designs and to faster search:

� When producing designs for an existing, o�-the-shelf DBMS, the assistant

could produce better designs if it could examine queries and override the

optimizer's cost estimate when necessary.
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� In a (hypothetical) DBMS in which the design assistant and query optimizer

are tightly integrated, the database administrator could provide additional

information to the optimizer/designer to allow it to improve the accuracy of

query cost estimates. For example, the cardinality of intermediate join re-

sults might be useful, given the di�culty of estimating these [IC91]. The op-

timizer could then spend more time on compile-time optimization of queries

when the database administrator has supplied additional statistics.

� If the design assistant and query optimizer were tightly coupled it might be

possible to pass query plan information sideways among di�erent physical

designs, in a way analogous to sideways information passing in parametric

query optimization [INSS92].

We think a design assistant that (like DAD-I) relies on both knowledge- and

search-based approaches can produce designs superior to those that can be pro-

duced by an assistant without an explicit, cost-based, search. DAD-I's knowledge-

based component, feature generation, is implemented procedurally, with the result

that feature generation is fast. However, we might be able to reduce the complex-

ity of the search with a rule-based implementation of feature generation. The

rules might be able to exclude some features or feature sets from consideration,

or even assign some measure of promise to feature sets (as proposed in [CBC93]).

Using rule-based feature generation might also ease the task of retargeting to

other DBMSs. We do not know how much a physical design assistant should rely

on a smart, precise feature generation as opposed to explicit search. We hope to

investigate this question in a successor to DAD-I.
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Finally, we would also like to see if the feature-set framework could be used to

select main-memory data structures for very-high-level languages such as SETL

[SDDS86], Gri�n [New93], or Bulk [RS91b].





Appendix A

Query Plans

The following query plans were produced by INGRES, and have been edited to

improve readability.

A.1 A Secondary Index Join With Excessively

Low Estimate

This is a query plan for query 8 in Test Problem 1 (see Appendix B.1):

97
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Join(suppno)(CO)

Sorted(partno)

Pages 6 Tups 58

D18 C11

/ \

Join(partno) iddx47

Sorted(partno) Isam(suppno)

Pages 1 Tups 1 Pages 444 Tups 72000

D10 C1

/ \

Sort(partno) iddt63_1

Pages 1 Tups Hashed(partno)

D9 C1 Pages 1000 Tups 8000

|

Join(date)(CO)

Sorted(date)

Pages 1 Tups 1

D9 C1

/ \

Proj-rest Proj-rest

Sorted(date) Sorted(date)

Pages 1 Tups 60 Pages 1 Tups 60

D2 C0 D1 C0

| |

iddx23 iddx54

B-Tree(date) B-Tree(date)

Pages 419 Tups 24000 Pages 354 Tups 24000

The low estimate is the number of tuples at the node headed Join(date)(CO);

the estimate should be 60 rather than 1, because the tuples selected from iddx23
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and iddx54 have the same value in the date column. (Each of iddx23 and iddx54

is a secondary index whose �rst column is orders.date.)

A.2 Example Problem

Costs and plans for all queries except Q3 are provided by DAD-I.

Q0 The query plan is trivial; it is only necessary to insert the new tuple into

orders. (This would involve updating and the primary and secondary in-

dexes on orders, as well as updating a data page.)

Q1 The query plan is a scan of the one-tuple table containing the materialized

aggregate query.

Q2 The query plan is to use feature 2, idx(1,btree,orders,ono) to �nd any

tuple satisfying the equality predicate on ono.
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Q3 Join(pno)

Sorted(pno)

Pages 8334 Tups 83333

D848 C480

/ \

Join(pno) Proj-rest

Sorted(pno) Sorted(pno)

Pages 1112 Tups 10000 Pages 121 Tups 10000

D657 C180 D186 C0

/ \ |

Proj-rest Proj-rest iddx9

Sorted(pno) Sorted(pno) B-Tree(pno)

Pages 400 Tups 4000 Pages 91 Tups 10000 Pages 186 Tups 10000

D511 C0 D141 C0

| |

parts iddx14

B-Tree(pno) B-Tree(pno)

Pages 511 Tups 4000 Pages 141 Tups 10000
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A.3 Test Problem 1

Plans produced by INGRES, edited to improve readability.

Q0 Proj-rest

Sorted(partno)

Pages 1 Tups 0

D0 C0

|

quotes

Hashed(partno)

Pages 1637 Tups 72000

Q1 Join(partno)

Sorted(partno)

Pages 1 Tups 1

D3 C0

/ \

Sort(partno) parts

Pages 1 Tups 1 Hashed(partno)

D2 C0 Pages 1143 Tups 8000

|

Proj-rest

Sorted(date)

Pages 1 Tups 1

D2 C0

|

iddx23

B-Tree(date)

Pages 419 Tups 24000
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Q2 Proj-rest

Sorted(partno)

Pages 1 Tups 0

D0 C0

|

quotes

Hashed(partno)

Pages 1637 Tups 72000

Q3 (Estimate produced by DAD-I.)

Q4 Sort()

Pages 1 Tups 2

D1 C1

|

Proj-rest

Sorted(orderno)

Pages 1 Tups 2

D1 C0

|

orders

B-Tree(orderno)

Pages 1683 Tups 24000



A.3. TEST PROBLEM 1 103

Q5 Proj-rest

Sorted(partno)

Pages 1 Tups 0

D0 C0

|

quotes

Hashed(partno)

Pages 1637 Tups 72000

Q6 (Estimate produced by DAD-I.)

Q7 Join(partno)

Sorted(suppno)

Pages 72 Tups 720

D727 C57

/ \

Proj-rest parts

Sorted(suppno) Hashed(partno)

Pages 4 Tups 720 Pages 1143 Tups 8000

D7 C0

|

iddx29

Isam(suppno)

Pages 606 Tups 72000
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Q8 Join(suppno)(CO)

Sorted(suppno)

Pages 187 Tups 1860

D377 C327

/ \

Sort(suppno) iddx29

Pages 6 Tups 60 Isam(suppno)

D62 C5 Pages 606 Tups 72000

|

Join(partno)

Sorted(date)

Pages 6 Tups 60

D62 C4

/ \

Proj-rest parts

Sorted(date) Hashed(partno)

Pages 1 Tups 60 Pages 1143 Tups 8000

D2 C0

|

iddx23

B-Tree(date)

Pages 419 Tups 24000
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Q9 Join(partno)(CO)

Sorted(partno)

Pages 1 Tups 1

D2 C0

/ \

Sort(partno) parts

Pages 1 Tups 1 Hashed(partno)

D1 C0 Pages 1143 Tups 8000

|

Proj-rest

Sorted(orderno)

Pages 1 Tups 1

D1 C0

|

orders

B-Tree(orderno)

Pages 1683 Tups 24000



Appendix B

Test Problems

B.1 Test Problem 1: Schema and Workload

B.1.1 Test Problem 1: Schema

This schema is similar to that in Figure 1.1, but there are some important di�er-

ences in data statistics, and in schema of orders. The logical schema, but not

the key information and data statistics, are from [FST88].

parts #tuples=8000

column partno qonhand descrip

type integer integer char(184)

# values 8000 4000 8000

min, max 1, 8000 1, 8000 "0", "Z: : :"

106



B.1. TEST PROBLEM 1: SCHEMA AND WORKLOAD 107

orders #tuples=24000

column orderno partno suppno date qty oinfo

type char(6) integer char(3) integer integer char(71)

# values 12000 8000 100 400 12000 24000

min "0" 1 "AAA" 19850101 1 "0"

max "Z: : :" 8000 "ZZZ" 19930101 1000000 "Z: : :"

quotes #tuples=72000

column suppno partno minqty maxqty price remarks

type char(3) integer integer integer money char(15)

# values 100 8000 4000 4000 32000 72000

min "0" 1 1 1 0.10 "0"

max "ZZZ" 80000 1000000 1000000 1000.00 "Z: : :"

The logical keys of quotes are

fsuppno; partno; minqtyg

and

fsuppno; partno; maxqtyg

Both parts and orders have one key each, comprising the underlined columns.
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B.1.2 Test Problem 1: Workload

Test Problem 1: Workload

�j

j (=hour) Qj

0 5 select quotes.suppno,quotes.price from quotes

where quotes.partno=:pno

and quotes.minqty<1000

and quotes.maxqty>2000

1 5 select orders.orderno,orders.partno,

parts.descrip,orders.date,orders.qty

from orders,parts

where orders.date<=831216

and orders.date>=830000

and orders.suppno=:sno

and orders.partno=parts.partno

2 5 select min(quotes.price),max(quotes.price)

from quotes

where quotes.partno=:pno and quotes.suppno=:suppno

3 20 insert

into orders (orderno,partno,suppno,date,qty,oinfo)

values (:ono,:pno,:sno,:date,:qty,:oinfo)

4 10 select distinct orders.partno,orders.qty from orders

where orders.orderno=:ono

order by qty
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Test Problem 1: Workload (cont.)

�j

j (=hour) Qj

5 20 update quotes set price=:price

where quotes.suppno=:sno

and quotes.partno=:partno

and quotes.minqty=:minqty

6 20 delete from orders

where orders.suppno=:sno

and orders.orderno=:orderno

and orders.partno=:partno

7 10 select parts.partno,parts.descrip,quotes.price

from parts,quotes

where quotes.suppno=:sno

and parts.partno=quotes.partno

8 2 select orders.suppno,orders.orderno,

parts.partno,parts.descrip

from parts,orders,quotes

where orders.date=:date

and quotes.price<:price

and orders.suppno=quotes.suppno

and parts.partno=orders.partno
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Test Problem 1: Workload (cont.)

�j

j (=hour) Qj

9 5 delete from orders

where orders.date>:date

and orders.orderno=:orderno

and orders.suppno=:suppno

and orders.partno

in (select parts.partno from parts

where parts.qonhand>:qoh)

Within this workload, each of queries 0, 1, 3, 4, 7, and 8 is semantically equivalent

to the corresponding query in [FST88].
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B.2 Test Problem 2: Schema and Workload

We used the AS3AP schema and data statistics as presented in [TOB91], Table

4.3 (pg. 178), modi�ed only to make all data distributions uniform. This we did

because

� DAD-I cannot provide non-uniform data statistics to INGRES version 5.0,

and

� only three columns in the workload (uniques.float, uniques.double, and

updates.float) have non-uniform distributions, and none of these is a se-

lection or join column in the tests.

In the workload we included from [TOB91], Appendix 2 (pages 196{202), the

queries with the following identi�ers:

0. sel 1 cl

1. sel 1 ncl

2. sel 10pct cl

3. sel 100 cl

4. sel 100 ncl

5. sel 10pct ncl

6. variable select (�rst)

7. variable select (second)

8. join 2 cl

9. join 2 ncl



112 APPENDIX B. TEST PROBLEMS

10. join 2

11. join 3 cl

12. join 3 ncl

13. join 4 cl

14. join 4 ncl

15. join 1 1 pct

16. proj 100

17. proj 10pct

18. scal agg

19. info retrieval

20. simple report

21. total report

22. app t mid

23. mod t mid

24. del t mid

25. app t end

26. mod t end

27. del t end

28. mod t int

29. mod t cod
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B.3 Test Problem 3: Frequencies

The queries with frequency 6= 1/hour are:

AS3AP Frequency

Query (/hour)

join 2 cl 2

join 2 ncl 2

join 2 2

app t mid 20

mod t mid 20

del t mid 20

del t end 20

mod t int 20

mod t cod 20





Bibliography

[Ast76] M. M. Astrahan et al. System R: Relational approach to database

management. ACM Trans. Database Syst., 1(2), June 1976.

[BBG+90] Don S. Batory, J. R. Barnett, J. F. Garza, K. P. Smith, K. Tsukuda,

B. C. Twichell, and T. E. Wise. GENESIS: An extensible

database management system. IEEE Trans. Software Engineering,

14(11):1711{1730, November 1990.

[BN87] Michael L. Brodie and S. Nesson. Physical design advisor (PDA):

An expert system design aid for the physical design of Model 204

databases. Technical report, Computer Corporation of America,

March 1987.

[Car75] Alfonso F. C�ardenas. Analysis and performance of inverted data base

structures. Communications of the ACM, 18(5), May 1975.

[CBC93] Sunil Choenni, Henk M. Blanken, and Thiel Chang. On the automa-

tion of physical database design. In Symposium on Applied Computing,

February 1993.

115



116 BIBLIOGRAPHY

[Cha76] D. D. Chamberlin et al. SEQUEL 2: a uni�ed approach to data de�-

nition, manipulation, and control. IBM J. Research and Development,

20(6):560{575, 1976.

[Che76] P. P. Chen. The entity-relationship model: Toward a uni�ed view of

data. ACM Trans. Database Syst., 1(1):1{36, January 1976.

[CM83] John V. Carlis and Salvatore T. March. A computer-aided physical

database design methodology. Computer Performance, 4(4):198{214,

December 1983.

[CMD83] John V. Carlis, Salvatore T. March, and Gary W. Dickson. Physical

database design: A DSS approach. Info. & Management, 6:211{224,

1983.

[COD71] CODASYL Data Base Task Group April 71 Report. ACM, New York,

1971.

[Com78] D. Comer. The di�culty of optimum index selection. ACM Trans.

Database Syst., 3(4):440{445, December 1978.

[CW91] Stefano Ceri and Jennifer Widom. Deriving production rules for in-

cremental view maintenance. In Proceedings of the Seventeenth Inter-

national Conference on Very Large Databases, pages 577{589, 1991.

[Dab89] Christopher E. Dabrowski. A detailed description of the knowledge-

based system for physical database design. Technical Report NISTIR



BIBLIOGRAPHY 117

89-4139 (volumes 1 and 2), National Institute of Standards and Tech-

nology, National Computer Systems Laboratory, Information Systems

Engineering Division, Gaithersburg MD 20899, August 1989.

[Dat87] C. J. Date. A Guide to INGRES. Addison-Wesley, 1987.

[DEC] Digital Equipment Corporation. VAX Rdb/VMS Reference Manual.

[DEC92] Digital Equipment Corporation. DEC RdbExpert for VMS, April 1992.

Manual Number AA-LE46B-TE for DEC RdbExpert for VMS Ver-

sion 2.0.

[DGLS79] Robert B. K. Dewar, Arthur Grand, Ssu-Cheng Liu, and Jacob T.

Schwartz. Programming by re�nement, as exempli�ed by the SETL

representation sublanguage. ACM Trans. Prog. Lang. and Syst.,

1(1):27{49, July 1979.

[DJCM89] Christopher E. Dabrowski, David K. Je�erson, John V. Carlis, and

Salvatore T. March. Integrating a knowledge-based component into a

physical database design system. Info. & Management, pages 71{86,

1989.

[EHR80] W. E�elsberg, T. H�arder, and A. Reuter. An experiment in learning

DBTG database administration. Information Systems, 5(2):137{147,

1980.

[Feg91] Leonidas Fegaras. Using type transformation in database system im-

plementation. In Proceedings of the Third International Workshop



118 BIBLIOGRAPHY

on Database Programming Languages, pages 337{353. Morgan Kauf-

mann, August 1991.

[Fre87] Johann Christoph Freytag. A rule-based view of query optimization.

In SIGMOD'87 Proceedings, pages 173{180, May 1987.

[FST88] S. Finkelstein,M. Schkolnick, and P. Tiberio. Physical database design

for relational databases. ACM Trans. Database Syst., 13(1):91{128,

March 1988.

[GD87] Goetz Graefe and David J. DeWitt. The EXODUS optimizer genera-

tor. In SIGMOD'87 Proceedings, pages 160{172, 1987.

[Gio91] Mike Gioielli. Developing an expert system for database design. AI

Expert, 6(10):42{46, October 1991.

[GP87] Jim Gray and Franco Putzolu. The 5 minute rule for trading memory

for disc accesses and the 10 byte rule for trading memory for CPU

time. In SIGMOD'87 Proceedings, pages 395{398, 1987.

[GW87] Richard A. Ganski and Harry K. T. Wong. Optimization of nested

SQL queries revisited. In SIGMOD'87 Proceedings, pages 23{33, May

1987.

[Haa90] Laura Haas et al. Starburst mid-ight: As the dust clears. IEEE

Trans. Knowledege and Data Engineering, 2, March 1990.

[Han87] Eric N. Hanson. E�cient Support for Rules and Derived Objects in

Relational Database Systems. PhD thesis, University of California at

Berkeley, August 1987.



BIBLIOGRAPHY 119

[HHR90] Eric N. Hanson, Tina M. Harvey, and Mark A. Roth. Experiences in

DBMS implementation using an object-oriented persistent program-

ming language and a database toolkit. Technical Report AFIT/EN-

TR-90-8, Air Force Institute of Technology, December 1990.

[IBM] IBM. SQL/Data System for VSE: A Relational Data System for Ap-

plication Development. Manual Number G320-6590.

[IBM85] IBM. Relational Design Tool|Structured Query Language/Data Sys-

tem, 1985. Manual Number SH20-6451-1.

[IC91] Yannis E. Ioannidis and Stavros Christodoulakis. On the propagation

of errors in the size of join results. In SIGMOD'91 Proceedings, pages

268{277, June 1991.

[IK90] Yannis E. Ioannidis and Younkyung Cha Kang. Randomized algo-

rithms for optimizing large join queries. In SIGMOD'90 Proceedings,

pages 312{321, May 1990.

[INGa] ASK Computer Systems, Inc., INGRES Products Division, 1080 Ma-

rina Village Parkway, Alameda CA 94501-4026. INGRES Documen-

tation.

[INGb] INGRES technical note note013.all. Distributed with INGRES soft-

ware.

[ING90] ASK Computer Systems, Inc., INGRES Products Division, 1080 Ma-

rina Village Parkway, Alameda CA 94501-4026. INGRES Database



120 BIBLIOGRAPHY

Administrator's Guide for the UNIX Operating System, Release 6.2,

April 1990.

[INSS92] Yannis E. Ioannidis, Raymond T. Ng, Kyuseok Shim, and Timos K.

Sellis. Parametric query optimization. In Proceedings of the Eighteenth

International Conference on Very Large Databases, pages 103{114,

August 1992.

[JMSV92] M. Jarke, J. Mylopoulos, J. W. Schmidt, and Y. Vassiliou. DAIDA:

An environment for evolving information systems. ACM Trans. In-

formation Syst., 10(1), January 1992.

[Kim82] Won Kim. On optimizing an SQL-like nested query. ACM Trans.

Database Syst., 7(3):443{469, September 1982.

[KKD89] Won Kim, Kyung-Chang Kim, and Alfred Dale. Indexing techniques

for object-oriented databases. In Won Kim and Frederick H. Lo-

chovsky, editors, Object-Oriented Concepts, Databases, and Applica-

tions, pages 371{394. ACM Press (Addison-Wesley Publishing Com-

pany), 1989.

[Koe81] Shaye Koenig. A Transformational Framework for Automatic De-

rived Data Control and Its Application in an Entity-Relationship Data

Model. PhD thesis, New York University, 1981.

[KZG81] Shmuel Katz and Ruth Zimmermann-Gal. An advisory system for de-

veloping data representations. In Proceedings of IJCAI (International

Joint Conference on Arti�cial Intelligence), Vancouver, Canada, 1981.



BIBLIOGRAPHY 121

Revised version accepted for publication by The Science of Computer

Programming.

[LKD+88] V. Linnemann, K. K�uspert, P. Dadam, P. Pistor, R. Erbe, A. Kemper,

N. S�udkamp, G. Walch, and M. Wallrath. Design and implementation

of an extensible database management system supporting user de�ned

data types and functions. In Proceedings of the Fourteenth Interna-

tional Conference on Very Large Databases, pages 294{304, 1988.

[Loh88] Guy M. Lohman. Grammar-like functional rules for representing query

optimization alternatives. In SIGMOD'88 Proceedings, pages 18{27,

1988.

[Low78] James R. Low. Automatic data structure selection: An example and

overview. Communications of the ACM, 21(5):376{385, May 1978.

[LS93] George F. Luger and William A. Stubble�eld. Arti�cial Intelligence

Structures and Strategies for Complex Problem Solving, second edition.

The Benjamin/Cummings Publishing Company, Inc., 1993.

[Mar83] Salvatore T. March. A mathematical programming approach to the

selection of access paths for large multiuser databases. Decision Sci-

ences, December 1983.

[MC85] Salvatore T. March and John V. Carlis. Physical database design:

Techniques for improved database performance. In Won Kim, David S.

Reiner, and Don S. Batory, editors, Query Processing in Database

Systems, pages 276{296. Springer Verlag, 1985.



122 BIBLIOGRAPHY

[MC87] Salvatore T. March and John V. Carlis. On the interdependencies

between record structure and access path design. Journal of MIS,

4(2), 1987.

[McG89] David McGoveran. Secrets of relational performance tuning. Database

Programming & Design, 2(7):26{35, July 1989.

[MCN92] John Mylopoulos, Lawrence Chung, and Brian Nixon. Representing

and using nonfunctional requirements: A process-oriented approach.

IEEE Trans. Software Engineering, 18(6):483{497, June 1992.

[MJC88] Scott L. Vandenberg Michael J. Carey, David J. DeWitt. A data model

and query language for EXODUS. In SIGMOD'88 Proceedings, pages

413{423, June 1988.

[MS86] David Maier and Jacob Stein. Indexing in an object-oriented DBMS.

In Proc. Int'l Workshop on Object-Oriented Database Systems, pages

171{182. IEEE Computer Society Press, September 1986.

[Mur92] M. Muralikrishna. Improved unnesting algorithms for join aggregate

SQL queries. In Proceedings of the Eighteenth International Confer-

ence on Very Large Databases, pages 91{102, 1992.

[New93] New York University Programming Langauges Group. Gri�n Refer-

ence Manual, 1993.

[Nix91] Brian Nixon. Implementation of information system design speci-

�cations: A performance perspective. In Proceedings of the Third



BIBLIOGRAPHY 123

International Workshop on Database Programming Languages, pages

149{168. Morgan Kaufmann, August 1991.

[Nix93] Brian A. Nixon. Dealing with performance requirements during the

development of information systems. In RE '93, IEEE International

Symposium on Requirements Engineering, San Diego, CA, January

1993.

[O'N91] Patrick E. O'Neil. The set query benchmark. In Jim Gray, editor,

The Benchmark Handbook for Database and Transaction Processing

Systems, pages 209{245. Morgan Kaufmann, 1991.

[ORA88] Oracle Corporation, 20 Davis Drive, Belmont CA 94002. ORA-

CLE RDBMS Database Administrator's Guide, Version 6.0, Novem-

ber 1988.

[Pai84] Robert Paige. Applications of �nite di�erencing to database integrity

control and query/transaction optimizations. In Gallaire, Minker, and

Nicholas, editors, Advances in Database Theory, Volume 2, pages 171{

209. Plenum Press, 1984.

[RC87] J. E. Richardson and M. J. Carey. Programming constructs for

database system implementation in EXODUS. In SIGMOD'87 Pro-

ceedings, 1987.

[RK77] Stan Rosenshhein and Shmuel Katz. Selection of representations for

data structures, in Proceedings of a Symposium on Arti�cial Intelli-

gence and Programming Languages. SIGPLAN Notices, 12(8):147{

154, 1977.



124 BIBLIOGRAPHY

[RS86] Lawrence A. Rowe and Michael Stonebraker. The commercial IN-

GRES epilogue. In Michael Stonebraker, editor, The INGRES Papers:

Anatomy of a Relational Database System, pages 63{82. Addison-

Wesley, 1986.

[RS89] Steve Rozen and Dennis Shasha. Using a relational system on Wall

Street: The good, the bad, the ugly, and the ideal. Communications

of the ACM, 32(8):988{994, August 1989.

[RS91a] Steve Rozen and Dennis Shasha. A framework for automating physical

database design. In Proceedings of the 17th International Conference

on Very Large Data Bases (Barcelona), pages 401{411. Morgan Kauf-

mann, September 1991.

[RS91b] Steve Rozen and Dennis Shasha. Rationale and design of BULK. In

Proceedings of the Third International Workshop on Database Pro-

gramming Languages (Nafplion). Morgan Kaufmann, August 1991.

[SCF+86] P. Schwartz, W. Chang, J. C. Freytag, G. Lohman, J. McPherson,

C. Mohan, and H. Pirahesh. Extensibility in the Starburst database

system. In Proc. Int'l Workshop on Object-Oriented Database Sys-

tems, pages 85{92. IEEE Computer Society Press, September 1986.

[SDDS86] J. T. Schwartz, R. B. K. Dewar, E. Dubinsky, and E. Schonberg.

Programming With Sets. Springer-Verlag, 1986.

[Sha76] G. Shafer. A Mathematical Theory of Evidence. Princeton University

Press, 1976.



BIBLIOGRAPHY 125

[Sha92] Dennis Shasha. Database Tuning: A Principled Approach. Prentice

Hall, 1992.

[SJGP90] Michael Stonebraker, Anant Jhingran, Je�rey Goh, and Spyros

Potamianos. On rules, procedures, caching and views in data base

systems. In SIGMOD'90 Proceedings, pages 281{290, 1990.

[SKWH76] Michael Stonebraker, Peter Kreps, Eugene Wong, and Gerald Held.

The design and implementation of INGRES. ACM Trans. Database

Syst., 1(3), September 1976.

[SSS81] Edmond Schonberg, Jacob T. Schwartz, and Micha Sharir. An au-

tomatic technique for selection of data representations in SETL pro-

grams. ACM Trans. Prog. Lang. and Syst., 3(2):126{143, April 1981.

[ST85] M. Schkolnick and P. Tiberio. Estimating the cost of updates in a

relational database. ACM Trans. Database Syst., 10(2):163{179, June

1985.

[TOB91] Carolyn Turby�ll, Cyril Orji, and Dina Bitton. AS3AP: An ANSI

SQL standard scaleable [sic] and portable benchmark for relational

database systems. In Jim Gray, editor, The Benchmark Handbook for

Database and Transaction Processing Systems, pages 167{207. Morgan

Kaufmann, 1991.

[ULT90] Digital Equipment Corporation. ULTRIX/SQL Reference Manual,

June 1990. Manual Number AA-PBZ6A-TE (for INGRES).



126 BIBLIOGRAPHY

[Val87] Patrick Valduriez. Join indices. ACM Trans. Database Syst.,

12(2):218{246, June 1987.

[Wal90] H. G. Walraven. KOFDO kennissyteem voor ondersteuning van het

fysiek database ontwerp. Technical report, Gemeenshappelijk Ad-

ministratiekantoor (GAK), Staalmeesterslaan 410, Amsterdam, The

Netherlands, PO Box 8300, 1005 CA Amsterdam, April 1990.


