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Abstract

We consider the following quasiconvex optimization
problem: minimize the largest eigenvalue of a sym-
metric definite matrix pencil depending on parame-
ters. A new form of optimality conditions is given,
emphasizing a complementarity condition on primal
and dual matrices. Newton’s method is then applied
to these conditions to give a new quadratically con-
vergent interior-point method which works well in
practice. The algorithm is closely related to primal-
dual interior-point methods for semidefinite program-
ming.

1. Introduction

Many matrix inequality problems in control can be
cast in the form: minimize the maximum eigenvalue
of the Hermitian definite pencil (A(z), B(x)), w.r.t. a
parameter vector z, subject to positive definite con-
straints on B(x) and sometimes also on other Hermi-
tian matrix functions of 2. The maximum eigenvalue
is a quasiconvex function of the pencil elements and
therefore of the parameter vector xz if A, B depend
affinely on z. This quasiconvexity reduces to convex-
ity in the important special case that B(z) = I, i.e.
the pencil reduces to an affine matrix function A(z).
In this case, the eigenvalue optimization problem is
equivalent to semidefinite programming (SDP), i.e.
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the problem of minimizing a linear function subject
to semidefinite constraints on linear matrix families.
A duality theory, completely analogous to the theory
of linear programming (LP) is known for SDP [1]. In
the general case as well as in the special case of SDP,
the eigenvalues are generally not differentiable at the
solution point. This is because the eigenvalues of a
matrix or pencil fail to be differentiable functions of
its elements when multiple eigenvalues are present,
which is normally the case at the optimal solution of
practical problems.

We discuss optimality conditions and algorithms, and
our practical experience with these algorithms. For
simplicity we restrict the discussion to the case of real
symmetric pencils, although extension to the Hermi-
tian case is not difficult.

2. Optimality conditions

Let Ao B = tr AB denote the Frobenius inner prod-
uct of two symmetric matrices. By A > 0 we mean A
is positive semidefinite. Assume that A(z) and B(z)
are continuously differentiable functions of 2 € R™,
taking real symmetric n by n matrix values, with
B(z) positive definite for all . Let Ag(z), Bp(z)
denote the partial derivatives of A(z), B(z) with re-
spect to xj. In what follows we shall suppress the
dependence of various quantities on the parameter
vector . Let Ay > --- > A, be the eigenvalues of the
symmetric pencil (4, B) = (A(z), B(x)), i.e. solutions
of det(AB — A) = 0. Let @ be an n by n matrix of
eigenvectors, i.e. satisfying AQ = Diag();)B@, with
the normalization condition Q7 BQ = I.



The following result is given in [2].

Theorem 1. Assume that the multiplicity of Ay =
A1(z) is known to be ¢, and let @Q; be the n by ¢t matrix
whose columns are the corresponding ¢ columns of the
eigenvector matrix (). Then a necessary condition
for & to minimize A; is that there exists a positive
semidefinite symmetric £ by ¢ matrix V', such that

trV = 1 (1)
Ve@QTEQ) = 0, k=1,....m.  (2)
where B, = A\ B, — Ayg.

The result in Theorem 1 requires the knowledge of
the optimal multiplicity ¢. In the following result,
one does not need to know the multiplicity ¢.

Theorem 2. A necessary condition for # to min-
imize A; is that there exists a positive semidefinite
symmetric n by n matrix U satisfying

tr U = 1, (3)
Ue(HEHY) = 0, k=1,....,m, (4)
UHEH") = 0, (5)

where
Ey = MBy— Ay, (6)
E = MB-A, (7)

and H is any matrix satisfying HBHT = I, e.g. the
inverse symmetric square root or the inverse Cholesky
factor of B.

Proof. Let @ be defined as above. We have Q7 BQ =
I, QT AQ = Diag(\;) and QT EQ = Diag(n;), where
i = A1 — A; > 0. Define P = H=7Q, which is an
orthogonal matrix. Let ¢ be the multiplicity of Aq,
son = --- =1 = 0, and let D be the diagonal
(n —1t) by (n —t) matrix Diag(ni41,...,7n). Let V
denote a symmetrict by ¢ positive semidefinite matrix
satisfying the conclusions of Theorem 1, and define V'
to be the n by n matrix

o

Finally, write U = PVPT. Then tr U = tr V = 1.
Moreover, it is easily verified that for any 1 < k <m

Ue(HELHY) =V e (QTE,Q1) = 0.
Finally, we verify that U satisfies (5). Observe that
UHEH")=0 < PY(UHEHT))P =0.

But
PYUHEHT)P = V(QT'(MB - A4)Q)

Il
S —

o<

o O~
[

—

o O

oo

[E—

A key component of Theorem 2 is the complemen-
tarity condition (5). Let us consider the matrices U
and HEHT further. The eigenvalues of HEHT are
0=m < - < ny, le. the eigenvalues of the shifted
pencil (E,B). Let 6, > --- > 6, > 0 denote the
eigenvalues of U. We see that from the definition of

U,9t+1:-~~:€n:0. Thus
mﬂizo, i:l,...,n. (8)

Furthermore, let W be a ¢t by t orthogonal matrix
which diagonalizes V', i.e. WTVW = Diag(0y,...0;).

Then
W 0
o5 7]

is an eigenvector matrix for both HEHT and U i.e. it
diagonalizes both matrices simultaneously. We refer
to HEHT as the primal matrix and U as the dual
matrix. Recall that two symmetric matrices commute
if and only if they share a basis of eigenvectors. It
follows that the complementarity condition (5) holds
if and only if the primal and dual matrix commute
and their eigenvalues satisfy (8).

In the special case of SDP, i.e. if A(z) is affine and
B(z) = I, Theorem 2 is known in the context of the
duality theory given in [1]. In the general case, there
is no such general duality theory, but it is remark-
able that the complementarity form of the optimality
conditions still hold as expressed in Theorem 2.

3. Interior Point Methods

In recent years it has been realized that the inte-
rior point methods which have been so successful for
LP can be extended to solve eigenvalue optimization
problems. For optimizing the eigenvalues of pencils,
see [3,4,5]. These methods are based on Huard’s
method of centers and they consist of an “outer it-
eration”, each step of which requires the solution of
a nonlinear problem using an “inner iteration”. Usu-
ally Newton’s method is used to solve this nonlinear
problem, in which case each step of the inner iteration
requires factoring a dense Hessian matrix whose order
is m, the number of unknowns. The method of [6] is
a modified method of centers for which the objective
values of the outer iteration converge quadratically.
Note that this method still requires a nonlinear prob-
lem to be solved by an inner iteration at every step
of the outer iteration.

In the case that B(z) = I and A(z) is affine, the
eigenvalue optimization problem reduces to SDP and
the options for interior point methods become more



numerous. In [1] it is argued that essentially any in-
terior point method designed for LP can be extended
to solve SDP. In LP it is now generally agreed that
primal-dual interior-point methods are especially ef-
ficient [7]. A specific primal-dual method for SDP
with a proof of global convergence was given by [8].
A related method was given by [9]. A different ap-
proach to primal-dual interior point methods for SDP
is given in [10].

4. Quadratically Convergent Local Methods

In [2], the authors derived a quadratically convergent
local method for optimizing eigenvalues of pencils.
This method extended earlier work on optimizing
eigenvalues of matrices [11,12]. Note that each step
of this algorithm requires only the solution of a linear
system of equations, though the form of the equa-
tions is quite complicated. Even in the case of ma-
trix eigenvalue optimization, the proof of quadratic
convergence is nontrivial [13], since the method can-
not be described as the straightforward application of
Newton’s method to a nonlinear system. The method
verifies optimality by explicitly computing the matrix
V given in Theorem 1. The primary limitation of
this method is that it is necessary to guess the opti-
mal eigenvalue multiplicity ¢ before it can be applied.
A secondary limitation is that B(z) must be affine,

though A(x) need not be.

We now give a new quadratically convergent local
method for optimizing eigenvalues of pencils, based
on Theorem 2. Because there is no need to guess the
eigenvalue multiplicity, this method seems much more
practical than that of [2]. The new method can be
viewed as a local primal-dual interior-point method.
This is because primal-dual interior-point methods
for LP and SDP can be viewed as applying Newton’s
method to a set of nonlinear equations which define
primal feasibility, dual feasibility, and complementar-

ity [7,9,10].
Let vec denote the map from the space SR"*" of
symmetric matrices onto ®7(**+1)/2 gatisfying

MeN = vec(M)Tvec(N)

for any M,N € SR"*". Let l =n(n+1)+m+1
and let z = (z,w, h,u) € B! where z € R, w € R,
and h,u € R*(*+1/2 The optimality conditions of
Theorem 2 can be written as

F(z,w,h,u)=0, wB(z)—A(z)=0, U=0

where F: ! — R! is the nonlinear map with F(z) =

Ue HwBi(x) — Ai(x))H

U o H(w B () — A (2))H
1—trU
vec(I — HB(z)H)
vec(U(wl — HA(2)H) + (wI — HA(z)H)U)

and where U = mat(u), H = mat(h), and
mat : RH(HD/2 __ gRpnxn

denotes the inverse of vec. Note that we now explic-
itly choose H = HT.

Our algorithm essentially amounts to applying New-
ton’s method to solve the nonlinear system of equa-

tions F'(z) = 0.

Algorithm Let € > 0 be very small, e.g. ten times
the machine precision. Let 20 = (2% w° k%, u°) with
U% = mat(u®) > 0, H° = mat(h®) = B(z%)~'/2,
and w® = A1 (A(2°), B(2%)) + €. For k =0,1,...do

1. Solve
F(4)(A2) = —F(:*)

for Az = (Az, Aw, Ah, Au), where F'(z) de-
notes the Jacobian matrix of F' at z.

2. Update uft! = u* + Au, 2%+t = 2F + Az,
Compute the smallest eigenvalue 6, of U =
mat(uft1). If 0, < ¢, replace u**! by uft! +
(e — 0y )vec(I).

3. Let h**! = vec(B(zF+1)=1/2) and let wkt! =

M(A(zFH) B(zF+1)) + €, and set zFt1 =
(£k+1’wk+1’ hE+L uk+1).

Thus z and u are updated using the Newton step,
without performing any line search. Then the re-
sulting matrix U = mat(u) is shifted, if necessary,
by a suitable multiple of the identity to ensure that
the dual matrix U remains positive semidefinite. The
choice of w guarantees that the primal matrix remains
positive semidefinite at every step. H = mat(h) is
equal to the symmetric square root of B(z) through-
out the algorithm.

In primal-dual algorithms for LP or SDP one usu-
ally performs some form of a line search on the New-
ton step in order to force the variables to remain in
the positive cone (LP) or positive semidefinite cone
(SDP). The convergence rate of the resulting algo-
rithm is very sensitive to the particular scheme that
used in the line search [10,14]. We have found that
the use of the full Newton step followed by a shift, if
necessary, to be very efficient: quadratic convergence
was achieved in every test problem.



5. Numerical Results

The algorithm was implemented in Matlab. We ob-
serve fast local convergence generically, at a quadratic
rate. We show results in Table 1 for a random prob-
lem with n = 10 and m = 15, and with the pencil
(A(z), B(z)) depending affinely on the parameters z,
i.e.

m m
A(m):Ao+inAi, B($)230+Z’3i3i
i=1 i=1

with A;, B; € SR"*" for 0 < i < m. The ma-
trix By was set to the identity and Ag,...,A1s
and Bj,..., By5 were generated using the Matlab
rand function, and symmetrizing. The matrices
By, ..., Bys were then scaled by a factor 0.05 in order
to ensure the existence of a reasonable-sized domain
with B(z) = 0. Finally, 2° and U° were initialized
with random data and U° was shifted so that U° > 0.
The total number of flops for this example was about
25 million, which is less than the number of flops for
a single iteration of the method of centers, used by
[2,3,6], as implemented by the authors. The data is
available from the authors upon request.

Iteration [Az] (=) w
1 6.231e+01 | 1.038e+02 | 1.617e+00
2 1.852e+01 | 8.697e+01 | 1.580e+00
3 6.520e400 | 1.712e+00 | 5.012e-01
4 1.564e+00 | 6.571e-01 | 2.057e-01
5 1.068e+00 | 1.388e-01 | 2.389e-01
6 4.372e-01 1.558e-01 1.600e-01
7 2.877e-01 4.013e-02 1.478e-01
8 1.163e-01 | 1.422e-01 | 1.428e-01
9 6.037e-02 | 3.321e-03 | 1.423e-01
10 2.214e-02 5.812e-04 1.422e-01
11 4.040e-03 8.105e-05 1.422e-01
12 1.437e-04 2.737e-06 1.422e-01
13 1.818e-07 3.470e-09 1.422e-01
14 2.897e-13 2.924e-14 1.422e-01

Table 1: Sample Output from the Algorithm
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