Efficient Algorithms for Cyclic Scheduling

Franco Gasperoni Uwe Schwiegelshohn
gasperon@cs.nyu.edu uwe@watson.ibm.com
Courant Institute of Mathematical Sciences IBM T.J. Watson Research Center
251 Mercer Street, New York, NY 10012 P.O. Box 218, Yorktown Heights, NY 10598
Abstract

This work addresses the problem of non-preemptively scheduling a cyclic set of interdependent
operations, representing for instance a program loop, when p identical processors are available. For
p = oo we give a simple, efficient, polynomial time algorithm producing optimum results. When
p < oo the problem becomes NP-hard and a slight modification of our algorithm generates provably
close to optimum results.

1 Introduction

With advances in hardware technology most of todays high performance computers offer some
degree of parallelism. To take advantage of this concurrency, parallel extensions to sequential
programming languages have been designed. Such extensions have mostly proved inadequate
as they are usually tailored to some underlying parallel architecture and are consequently
not portable. On the other hand there is a large amount of sequential applications that the
users would like to run on these high performance computers. The high cost of machine specific
software development and the lack of highly portable parallel programming languages is a major
obstacle in their rewriting. A common approach has been to employ parallelizing compilers
which automatically extract the parallelism present in sequential applications [21,3,2]. Most of
the concurrency present in these programs is expressed in the form of loops and considerable
efforts have been devoted to loop parallelization ([22,17,8,16,20] to name a few).

The problem studied in this paper is optimum and nearly optimum cyclic scheduling. More
specifically we propose a simple and eflicient scheduling algorithm which produces optimal
results when the number of processors is infinite and nearly optimum results otherwise.

The framework employed is that of cyclic scheduling [13,4] and consequently our model
encompasses any problem involving the cyclic execution of interdependent activities by a given
number of agents. In the sequel the activities and agents are respectively called operations
and processors and a full cycle of activities is called an iteration.

In brief a cyclic scheduling model is characterized by a number p > 1 of available processors
and a cyclic task system, that is a doubly weighted directed graph G = (O, E, §,d) where the
vertex set O is the set of operations to execute, § is a mapping from O in the positive rationals
giving the time an operation needs to complete, the edge set £ and the weight function d
mapping £ into the non-negative integers specify operation dependences. More specifically an
edge e = (op,op’) € E with weight d(e) implies that operation op’ in iteration i, denoted op[i],
depends on the outcome of operation op[i — d(€)] and cannot be started until its completion.
The only restriction imposed on the edge weight function d is that every cycle in G must contain
at least one edge with positive weight. Our cyclic scheduling model extends those of [13,4] in
that operation op[i] need not depend on op[i — 1] and G need not be strongly connected. In

the remainder of the paper integer entities will be denoted by roman literals, whereas rational

entities will be denoted by greek literals.

Let [0, 00] denote the set of non-negative integers and O]0, o] the set product of O and
[0, 00], that is O[0,00] = {op[i] : op € O and ¢ € [0,00]}. The overall goal is to construct
a rational schedule, that is a mapping o from O[0, o] into the non-negative rationals, which

model time instants, such that
1. o is periodic

Al>1 d7;;,>0 Vi>0 U(Op[i]) = a(op[i mod l]) + 7 - I}J

2. o has optimum asymptotic performance ||o|| = 7;;/1

3. o satisfies G’s dependence constraints
Ve=(op,op') € E Yi>0 o(op[i])+ 6(op) < o(op'li + d(e)])
4. o can be executed by at most p processors

Vr>0 |{op[i] € O[0,00] : 0 <7 —0o(op[t]) < é(op)}| <p

A rational schedule which maps O[0, o] into the non-negative integers, is said to be integral.
A more formal definition of the model will be given in sections 2 and 3.

A central problem in unveiling periodic schedules with asymptotically optimum perfor-
mance is determining the maximum duration-to-weight ratio of the cycles in G' [18]. More
precisely let P be a path in G traversing operations opy,...,op; and edges ey, ..., e., where

c¢=k if Pis acycle and ¢ = k — 1 otherwise. If one defines

k c
8(P) = E 0(op;) and d(P)= E d(e;)
=1 =1
then the maximum duration-to-weight ratio of the cycles in G, which we denote pg, is
p max —6(6)
G g
C cycle d(C)
in G

If G is acyclic, pg is zero by definition. When é(op) = 1 for every operation op, 1/p¢q is called

the minimum cycle mean of G. Efficient algorithms for the minimum cycle mean problem have

been given by Karp [15], Ahuja & Orlin [1] and Young, Tarjan & Orlin [23]. Let n and m respec-
tively denote the number of operations and dependence edges in G and dy,. = max.cg d(e€).
Karp’s algorithm runs in O(nm) time, Ahuja & Orlin’s runs in O(y/nmlog(n dy,y;)) and
Young, Tarjan & Ortlin’s runs in O(nm + n? logn) time in the worst case but experiments
on random graphs have suggested that its expected running time is O(m + n logn). All min-
imum cycle mean algorithms can be extended to compute pg in the case where operations
have arbitrary integer durations by adding an additional O(log(n 6,4z dingz)) factor in time
complexity, where 6,4, = max,,eo 6(op) [11]. The general case where operation durations are
positive rationals can be reduced to the integer case by multiplying every é(op) by lem, the
least common multiple of the denominators of the é(op). The pg obtained by this transforma-
tion must be divided by lem in order to obtain the actual maximum duration-to-weight ratio
of the cycles in G. The algorithm of Young, Tarjan & Orlin can also be used directly in the
general case when operations have rational durations. In that instance the worst case running
time increases to O(dqz(nm + n? logn)). The expected running time should also increase
but by a much smaller factor than O(d,..). Note that to improve the running time of the
previous algorithms in the case where pg > 6,4, one can initially delete all dependence edges
e such that d(e) > n. This guarantees that d,,. < n.

The first problem studied (section 4), is to efficiently generate a periodic schedule with
optimum asymptotic performance when there is an unbounded number of processors available,
that is p = oo. Previous work by Iwano & Yeh assumes integral schedules and integral operation
durations [14]. They give an O(nm % + 7T) pseudo-polynomial time algorithm where I is the
denominator of pg in its irreducible form and 7 the time to compute pg. Note that I can
be as big as ndq.. We give a simple O(7) time algorithm for the general case of rational
schedules and rational operation durations. When the schedule and operation durations are
required to be integral the algorithm generates periodic schedules a factor [pg|/pe away from
the asymptotic optimum. A slight modification of the algorithm generates in O(nml% + 7)
time, asymptotically optimum results.

When the number of processors p is finite the problem of generating an asymptotically
optimum periodic schedule becomes NP-hard. Our second contribution, section 5, is to ef-

ficiently generate near optimum schedules. Most previous work in this domain has been of

empirical nature and performance bounds have solely been validated by benchmarking. Our
algorithm is simple, runs in O(7) time and guarantees a maximum factor from optimality of
(2—1/p)+(p—1)/p-b6mac/||L]|p, where || L||, denotes the optimum asymptotic performance for
the input cyclic task system L when p processors are available. A better performance bound
of (2—-1/p)+(p—1)/p-bpmaz/(l-]||L]|p), where [is a user selected parameter, can be obtained
at an additional O(nmi?) cost in time complexity. If operation durations are integral and
the generated schedule is also required to be integral a slight modification of the algorithm

guarantees a worst case performance bound of 1+ (p —1)/p- ((6paz — 1) + [|| Lo 1) /1| L]]p-

2 Task Systems and Admissible Schedules

We first introduce task systems [5,12]. Informally a task system is a collection of several

interdependent operations all of which must be executed in order to complete the task.

Definition 1 A task system T is a triple T = (0,6, <) where:

1. O is the operation sel of T, a non necessarily finile set of operations.
2. 6 is the duration function of T, a function mapping O into the positive rationals.

3. < is the dependence relation of T, a partial order on O.

If O is finite then T is said to be acyclic otherwise T is said lo be infinile.

The machine model considered comprises p identical processors operating in parallel. There
is no preemption: once started, an operation has to be executed without interruption. Given

some task system 1T we formalize the notion of a rational schedule o for T

Definition 2 Let T' = (0,6, <) be some task system. An admissible p-schedule o for T is a

mapping from O inlo the non-negative rationals such that:

1. No more than p operations are being processed at any given moment:
Vr>0 [{opli] € 0[0,00] : 0 <7 —0(op[i]) < é(op)} <p
2. No operation can start executing until all operations on which il depends have completed:

Yop,op' € O op<op’ = o(op)+ (op) < o(op')

If the schedule o maps O into the non-negative integers, o is said lto be integral. When the
task system T' is acyclic one defines |o|, the length of o, as |o| = max,peo(o(op) + 6(op)). If

no admissible p-schedule for T has a length smaller than |o|, o is said to be p-optimum for T'.

For any finite p > 1, the problem of generating a p-optimum schedule for an acyclic task
system is NP-complete [19]. If operations are restricted to have same duration a polynomial
time optimum algorithm for the case p = 2 was presented by Coffman and Graham and an
almost linear time algorithm was given by Gabow [6,9]. The problem remains open for any fixed
p > 3 that is, NP-hardness has not been proved or disproved [10]. If however p is considered
to be a parameter the problem becomes NP-hard [19].

The algorithms of Coffman & Graham and Gabow build on the list scheduling framework
[5]. List scheduling algorithms work as follows. The operations in the acyclic task system are
implicitly ordered in a priority list. At any given instant where a processor is free an opera-
tion is scheduled by selecting the first operation in the priority list all of whose predecessors,
with respect to the dependence relation, have finished executing. Note that for p = oo any
list scheduling algorithm yields optimum schedules. If p < oo any list scheduling algorithm
guarantees a schedule length of at most (2 — 1/p) times the p-optimum [5]. The NP-hardness
proof given by Lenstra & Rinnooy Kan [19] implies that, unless P = NP, no polynomial time

algorithm can approximate p-optimality for arbitrary p, by less than a factor 4/3.

3 Cyclic Task Systems and Periodic Schedules

The following definition models the behavior of a system which must continuously execute a

fixed set of interdependent operations.
Definition 3 A cyclic task system L is an infinite task system L = (0|0, 00], 8, <) where:

1. O[0, 0], the operation set of L is the product of O, a finite set of operations, and [0, c].

2. Forallop€ O andi,j > 0, 6(op[i]) = 6(op[j]). We will denote such number é(op).

3. For all op,op’ € O and i,j > 0, op[i] < op'[j] implies i < j. Furthermore let d(op,op’) =
min {j—1 : op[i] < op'[j]}, where the minimum of the emply set is equal to oo by definition.
Then if d(op, op") # o< it is required that for all i > 0, op[i] < op'[i + d(op, op')].

The cyclic task system L = (0[0,], §, <) will be portrayed by a doubly weighted directed
graph G = (O, F,6,d) called L’s dependence graph. G’s vertex set is O. To each vertex op of

G we associate its duration é§(op). G’s edge set £ must verify the following two requirements:
1. If e = (op, 0p") € E then d(op,op’) < co. The weight of e is set to d(op, op’).
2. Yop,op' € O d(op,op’) < 0 = IJpath P from op to op’ s.t. d(P) = d(op,op).
Note that E is not necessarily unique. The edge set

E = {(op, 0p') : d(op, 0p') < o0}

has the biggest cardinality, whereas the edge set

E = {(op,0p’) : d(op,0p) < 0o and Zop” d(op,op”) + d(op”, op") < d(op,op’)}

is the edge set with the smallest cardinality. By computing the all pairs shortest paths of G
it is easy to transform the original edge set into the one with the least amount of edges. This
step can be implemented in O(nm + n® logn) time, where n and m respectively denote the
cardinality of G’s vertex and edge set [7].

For cyclic systems one is interested in generating regular schedules which can be finitely

encoded. We introduce the notion of a periodic schedule.

Definition 4 Let L = (0[]0,], 8, <) be some cyclic system, o an admissible p-schedule for
L andl > 1, 15 > 0 respectively an integer and a rational. The schedule o is said to be

(I, 7;)-periodic for L if and only if
Yope O Yi>0 o(opli]) = o(op[i mod I]) + 7 - [%J

The numbers | and 7;; are respectively called the unfolding and initiation interval of o. The

asymptotic performance of o, denoted ||o||, is defined as ||o|| = /1.

Note that a (I, 7;)-periodic schedule is perfectly determined by the initiation interval 7;
and the time in which operations in the first [iterations start executing.

When there is an unbounded number of processors, that is p = 0o, we show in the next
section how to efficiently construct a periodic schedule with asymptotically optimum perfor-

mance. When p < oo let ||L]|, denote the p-optimum asymptotic performance for the input

cyclic task system L. Because of Lenstra & Rinnooy Kan’s result [19] it will be shown in

section 5 that no periodic p-schedule ¢ admissible for L and satisfying

el
<4/3
L]l

can be constructed in polynomial time unless P=NP. We will however provide an eflicient
algorithm that generates periodic p-schedules at most a factor (2—1/p)+(p—1)/p-bpmaz/||L||,

away from ||L||,.

4 Achieving Optimality for Infinite Processor Machines

In this section we examine the problem of generating periodic rational schedules which are
asymptotically optimum when the number of processors p is infinite. We provide a very simple

and efficient algorithm.

Algorithm 1

Input: A cyclic task system L represented by a dependence graph G = (O, E, ¢,d).
Output: A (1, pg)-periodic rational schedule ¢ for I with optimum asymptotic performance.

Method:

1. Compute pg, the maximum duration-to-weight ratio of the cycles in G, with any of

the algorithms mentioned in the introduction. This step takes O(7) time.

2. Associate to each edge e = (op,0p’) € E the length 7(e) = é(op) — pg - d(e). Add a
vertex s to G and the edges (s, op) for each op € O. Set the length of these edges
to 0. Because of the definition of pg no cycle in G has positive length with respect
to 7. Thus for each op € O the longest path from s to op, denoted 7(s,op), is well
defined. These longest paths are produced as side results of Karp or Young, Tarjan

& Orlin algorithms. Otherwise they can be computed in O(nm) time [7].

3. For all op € O and ¢ > 0 set o(op[i]) = 7(s,0p) + pg - .

The overall algorithm requires O(7') time if Karp’s or Young, Tarjan & Orlin’s algorithms

are used to compute pg and O(nm + 7) time otherwise.

Theorem 1 The schedule o generated by algorithm 1 is an admissible (1, pg)-periodic schedule

for L, the cyclic task system represented by G. Furthermore o is asymptotically optimum.
Proof: It is fairly obvious that o is (1, pg)-periodic. Let C' be a cycle in G' comprising edges
(op1,0p2), ..., (0p;,0p1). Then

Vi>0 opi[i] < opali + d(op1,0p2)] < -+ < op1[i + d(C)]

thus at most d(C') iterations can be executed every §(C') cycles and consequently no schedule
can have an asymptotic performance better than pg. It remains to show that ¢ is admissible

for L, the cyclic task system represented by G. This is true if and only if
Ve=(op,op') e E Yi>0 o(opi+d(e)])— o(op[i]) > é(op)

This is certainly true since o(op'[i + d(e)]) — o(opli]) = 7(s,0p") + pg - d(e) — 7(s,0p) and
T(s,0p") — 7(s,0p) > é(op) — pc - d(€) by virtue of the longest path inequalities. O
=7(e)

If operation durations are integral and the schedule is also required to be integral, algo-
rithm 1 continues to work if in steps 2 and 3 one replaces pg with [pg] that is one sets
7(e) = 6(op) — [pg] - d(e) in step 2 and o(op[i]) = 7(s,0p) + [pc] - ¢ in step 3. The proof
that the generated schedule is (1, [pg])-periodic and admissible for G is unchanged and the
ratio to the asymptotic optimum performance is clearly [pg]/pa. To generate asymptotically

optimum integral schedules we introduce the notion of unrolling.

Definition 5 Given a dependence graph G = (O, E, é,d) and a positive integer | one defines
the dependence graph G' = (O, E',6,d"), where
1. O'={opli] : op€ O and 0 < i < I}

2. B' = {(op[i],op'[j]) : €= (op,op’) € E and j = (i + d(e)) mod [}

i+ d(op, op’)J

3. For e = (op[i],op'[j]) € B, dl(e) - { l

The graph G' is said to be obtained by unrolling G | times.

The key result concerning G! is

Theorem 2 Let G be some dependence graph and l a positive integer than peu =l pg.

Proof: Let C' be some cycle in G comprising edges e; = (op1,0p2), e2 = (opz,o0p3), -,
e. = (opc,op1). Consider the cycle C' in G' going through operations

om[0], opald(er) mod 1], ops((d(er) mod 1) + d(es)) mod 1], -+, op.[(Si} d(e:)) mod 1],
=(d(e1)+d(e2))mod {

op1[d(C)mod], -+, op[(d(C)+ Ef;ll d(e;)) mod I], ---,

opr[((1=1) - d(C))mod 1], -+, ope[((l = 1) - d(C) + 327 d(e;)) mod 1], opy[(1 - d(C')) mod 1]

Clearly 6(C") = 1-6(C), furthermore because for any two integers a and b

IRCTUNED

we have d'(C') = [(I-d(C))/l] = d(C) and therefore §(C")/d'(C") = 1-8(C)/d(C) which in

turns implies pg > 1 - pg.

Conversely consider a cycle C! in G' traversing operations opy[i1], - - -, opc[ic], op1[i1] where
1< .7 <ec 7:1—}—]'modc = (1] + d(Op]7 Opl—l—jmodc)) mod [

The corresponding cycle C'in G which goes through operations opy, - -+, op., opy is such that
6(C) = é(CY). In addition

dl(cl) — zc: lZJ + d(opjvlopl-l—jmodc)J

71=1
Because %14 jmod c = (%; + d(0p;, 0p14+jmod) mod [, d(C') must be a multiple of [and d'(Ch =
d(C)/l which in turn implies [- pg > pei. O

It follows that to generate an asymptotically optimum integral schedule o’ when operation
durations are integral it suffices to apply algorithm 1 to G'@, rather than G, where I is the

denominator of pg in its irreducible form. More precisely the schedule ¢’ is defined as
1
Yope O Yi>0 o(op[i]) = 7(s,0p[i mod lg]) + pais - L—J
G
Because pgi; is an integer, o’ is an integral schedule. The proof that o’ is (Ig, pgig)-periodic
and admissible for the input cyclic task L is a straightforward generalization of the proof in

theorem 1. The overall time to generate o’ is O(nm % + 7).

5 Approximating Optimality for Finite Processor Machines

When the number of available processors p is finite even the problem of generating periodic
schedules whose performance is less than a factor 4/3 from the asymptotic optimum becomes
NP-hard. This can be seen as follows. Let T be some acyclic task system. Create the cyclic
task system L where each iteration has the same operations and dependences as the task
system 7. In addition each iteration contains a special serializing operation opy which depends
on all other operations in the iteration and on which every operation in the next iteration
depends. Let ||L||, denote the optimum asymptotic performance of L when p processors are
available and assume one could create in polynomial time a periodic schedule o, admissible for
L, such that ||o||/||L]|, < 4/3. Then by taking the starting time of the operations scheduled
before opg[0] it would be possible to generate, in polynomial time, a schedule for the finite
task system 7" which has a length less than a factor 4/3 from the p-optimum, and this, as we
mentioned at the end of section 2 is possible only if P = NP [19].

As the previous reduction shows every polynomial time approximation algorithm for the
cyclic scheduling problem can be used to approximate optimality in the acyclic case. The best
such algorithm for the acyclic case guarantees a factor of (2—1/p) from p-optimality [5]. Given
a cyclic task system L, the goal of this section will therefore be that of generating a periodic
p-schedule o, admissible for L, such that ||o||/||L]|, is, in the worst case, as close as possible
to (2 —1/p).

The algorithm which follows is simple, runs in O(7') time and guarantees a maximum factor
from asymptotic optimality of (2—1/p)+ (p—1)/p- bpmaz/||L||p- A better performance bound
of (2—1/p)+ (p—1)/p- bmaxz/(||L]|p), where [is a user selected parameter, can be obtained
with an additional O(nm[?) cost in time complexity. If operation durations are integral and
the generated schedule is also required to be integral a slight modification of the algorithm
guarantees a performance bound of 14+(p—1)/p-((6;maz—1)+ || L]l])/|| L], times the optimum.

The strategy adopted is to transform the input dependence graph G into an acyclic depen-
dence graph G’ and invoke a list scheduling algorithm on G’ to construct the periodic schedule.
The dependence graph G is obtained by deleting edges from G. The difficult part when cutting

edges is to shorten dependence paths as much as possible while preserving admissibility.

Algorithm 2

10

Input: A cyclic task system L represented by a dependence graph G' = (O, E,§,d) and a

number of processors p < 0.
Output: An admissible periodic rational p-schedule o for L with unfolding 1 such that
lell/IIE]l, < (2=1/p)+ (p = 1)/p- bmaz/ || L]],-
Method:
1. Do steps 1 and 2 of algorithm 1.
2. For any two rational numbers A, p define (A mod p) = A — | A/p] - . Delete an edge
e = (op,op’) in G if and only if

7(s,0p") mod pg < 7(s, 0p) mod pg + 6(op)

The resulting graph G’ is acyclic (see lemma 1). This step takes O(m) time.

3. Using any list scheduling algorithm generate a p-schedule o, admissible for the
acyclic task system represented by the dependence graph G’. This step takes O(m+

n logn) time.

4. For all op € O and 7 > 0 set o(op[i]) = oq4(op) + |o4| - (2 + |7(s,0p)/pc]).

The overall algorithm requires O(m+n logn+7) time if Karp’s or Young, Tarjan & Orlin’s
algorithms are used to compute pg and otherwise O(nm + 7') time.
The first step in proving the correctness of algorithm 2 is to show that schedule o, is well

defined, that is G’ is acyclic. As a side result we bound the length of the longest path in G.
Lemma 1 The graph G' obtained in step 2 of algorithm 2 is acyclic. Furthermore

max 0(P) < pg + Omax
P path

of G’

Proof: Let C be a cycle in G comprising edges (op1,0pz2), ..., (0p:, 0p1). Suppose that no edge
is deleted from C'. Then

V1<i<ec 7(s,op;) mod pg+ 6(op;) < 7(8,0p14imod) mod pg
Thus (7(s, op1) mod pg) + 6(C) < (7(s, 0p1) mod pg), a contradiction.

11

For the second claim let P be a path of G’ comprising edges (op1,0pz), ..., (0p.—1,0p.) and
suppose that pg < Ef;ll 0(op;). Then because of the previous inequalities one can write

c—1
pG < 7(s,0p1) mod pG + Y 6(op;) < 7(s, 0pc) mod pi
=1

a contradiction. Thus §(P) < pg + Omaz. O

The previous lemma shows that algorithm 2 does indeed unambiguously generate a periodic

schedule. It remains to prove its admissibility for the input cyclic task system L.

Theorem 3 For any cyclic task L and any number of processors p, the oulpul of algorithm 2

s a periodic p-schedule admissible for L.

Proof: The schedule o generated by algorithm 2 is clearly periodic. Furthermore no more
than p operations are being processed at any given moment because the acyclic schedule o,
created in step 3 is a p-schedule and o’s initiation interval is |o,|. It remains to show that o

is admissible for L. This is true if and only if
Ve=(op,op') e E Yi>0 o(opli])+é(op) < o(op'i + d(e)])
Because of the definition of o the previous inequality can be rewritten as

7a(op) +oa| [%J +8(op) < 0u(0p) + |oa| - (d(e) + {T(‘e’pf;’pl)b

As in theorem 1 the proof that the above inequality holds relies on the longest paths inequality

7(s,0p) + 6(op) — pi - d(e) < 7(s,0p)

There are two cases two consider depending on whether edge e = (op, 0op’) has been deleted by

algorithm 2 in step 2. If e has not been deleted then

aa(0p) + 6(op) < oa(0p’)

furthermore by dividing the longest path inequality by ps and taking the floor one derives the

|| < ey 4 | T2

PG

following inequality:

and therefore if e has not been deleted the dependence constraint is respected in o. If on the

contrary edge e has been deleted in step 2 then it must be that
7(s,0p") mod pg < 7(s,0p) mod pg + 6(op)

Thus by rewriting the longest path inequality as:

/
V(Sp’;p)J - PG + 7(s,0p) mod pg + é(op) — pg - d(e) < [%J -pa + 7(s, 0p') mod pg
one derives
[T(s,op)J <dle)+ lT(S,Op/)J
PG PG

and therefore

o.(op) + 8(op) — o4(0p’) < |o,| < |og] - (d(e) 4 [T(SaOP/)J _ V(saf’l’)J)

ra PG
which shows that the dependence constraint is as well respected in o if e = (op, op’) has been

deleted. O
It remains to bound the performance of o.

Theorem 4 For any cyclic task L and any number of processors p, the p-schedule o generated

by algorithm 2 is such that
||U|| 1 p— 1 (5ma1‘
(gl P p Ll

Proof: The optimum asymptotic performance ||L||, is clearly bounded by the duration of

operations in O, the number of available processors p and pg:

1
=Y Sp) <L, pe < L
p ope0

Let ¢ denote the overall time in ¢, when no more than p — 1 processors are busy. Because o,

is generated by a list scheduling algorithm there must exist a dependence path P in G’ such

that ¢ < §(P). Furthermore lemma 1 implies

¢ < pa + bmaz < Oz + ||L||p

13

Thus

plod < D rlop)+(p—1)-¢

opeO
< p-llLllp+ (p=1) - (bmaz + [L]])

|0a| 1 P - 1 6maz
24—
L[], pp Ll

=

Note that if || L], is small and 6,4, is big, the previous performance bound may be poor. To
improve it, it suffices to unroll G until a satisfactory bound can be guaranteed. More precisely
if for some [> 1, algorithm 2 is to operate on G' rather the G the bound on performance
becomes

|o] 1L p—1 bnas

<2 —
1Ll pop LLf

This improved bound comes at an additional O(nm{?) cost in running time complexity.

If operation durations are integral and the generated schedule is also required to be integral,
algorithm 2 continues to work if, as in section 4, one replaces pg with [pg]. Let o be the
integral schedule generated. The bound on optimum performance becomes

|O' 1+ pP— 1 . (6maz‘ - 1) + [||L||p-|
L, = p L]l

|

14

References

[1] R. K. Anusa anDp J. B. OrLIN, New Scaling Algorithms for Assignment and Minimum
Cycle Mean Problems, Tech. Rep. Sloan Working Paper 2019-88, M.I.T., 1988.

[2] F. ALLEN, M. BurkEe, P. CHaRrLES, R. CYTRON, AND J. FERRANTE, An overview
of the PTRAN analysis system for multiprocessing, Journal of Parallel and Distributed
Computing, 5 (1988), pp. 617-640.

[3] R. ALLEN AND K. KENNEDY, Automatic translation of Fortran programs to vector form,

ACM Transactions on Programming Languages and Systems, 9 (1987), pp. 491-542.

[4] P. CHRETIENNE, The basic cyclic scheduling problem with deadlines, Discrete Applied
Mathematics, 30 (1991), pp. 109-123.

[5] E. G. CorrmaN, Computer and Job-shop Scheduling Theory, John Wiley and Sons, New
York, New York, 1976.

[6] E. G. CorrMAN AND R. L. GraHAM, Optimal scheduling for two processor systems,
Acta Informatica, 1 (1972), pp. 200-213.

[7] T. H. CorMmEN, C. E. LEISERSON, AND R. L. RIVEST, Introduction to Algorithms, MIT
Press and Mc Graw Hill, 1990.

[8] R. CyTrON, Doacross: beyond vectorization for multiprocessors, in Proceedings of the
1985 International Conference on Parallel Processing (Penn State University, Pennsylva-
nia), IEEE and ACM, Silver Spring, Maryland, Aug. 1986, pp. 836-844.

[9] H. N. GABow, An almost-linear algorithm for two-processor scheduling, Journal of the
ACM, 29 (1982), pp. 766-780.

[10] M. R. GAREY AND D. S. JoHNSON, Computers and Intractability - A Guide to the
Theory of NP-Completeness, Freeman, New York, New York, 1979.

[11] M. GONDRAN AND M. MINOUX, Graphs and Algorithms, Wiley, 1984.

[12] R. L. Granawm, E. L. LawLer, J. K. LENsTRA, aAND A. H. G. RinNoOY KaN, Op-
timization and Approzimation in Delerministic Sequencing and Scheduling: A Survey,
vol. 5 of Annals of Discrete Mathematics, North Holland Publishing Company, 1979,
pPp. 287-326.

[13] N. S. GriGor’YEvA, 1. S. Larvypov, anDp I. V. Romanovskil, Cyclic problems of
scheduling theory, Tekhnicheskaya Kibernetika, (1988), pp. 3-11. English translation.

15

[14]

[15]

[16]

[17]

[18]

K. IwaNo AND S. YEH, An efficient algorithm for oplimal loop parallelization, in Inter-
national Symposyum on Algorithms, Springer-Verlag, Aug. 1990, pp. 201-210. Lecture

Notes in Computer Science 450.

R. M. Karp, A Characterization of the Minimum Cycle Mean in a Digraph, vol. 23 of
Discrete Mathematics, North Holland Publishing Company, 1978, pp. 309-311.

M. LaM, Software pipelining: an effective scheduling technique for VLIW machines, in
Proceedings of the SIGPLAN 1988 Conference on Programming Language Design and
Implementation (Atlanta, Georgia), ACM, June 1988, pp. 318-328.

L. Lamprorr, The parallel execution of DO loops, Communications of the ACM, 17 (1974),
pp- 83-93.

E. L. LAWLER, Optimal cycles in doubly weighted directed linear graphs, in Theory of
Graphs-International Symposyum, P. Rosenstiehl, ed., Gordon and Breach, Rome 1966,
pp- 209-213.

J. K. LENnsTrA AND A. H. G. RinnooY KAN, Complezity of scheduling under precedence
constraints, Operations Research, 26 (1978), pp. 22-35.

A. MuNsHI AND B. SIMONS, Scheduling loops on processors: algorithms and complezity,
SIAM Journal of Computing, 19 (1990), pp. 728-741.

D. A. PApua AND M. J. WOLFE, Advanced compiler oplimizalions for supercomputers,
Communications of the ACM, 29 (1986), pp. 1184-1201.

R. REITER, Scheduling parallel computations, Journal of the ACM, 15 (1968), pp. 590-599.

N. E. Young, R. E. TArJAN, AND J. B. ORLIN, Faster parametric shortest path and
minimum-balance algorithms, Networks, 21 (1991), pp. 205-221.

16

