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Abstract. Iterative substructuring methods form an important family of domain decomposition
algorithms for elliptic finite element problems. A p-version finite element method based on continuous,
piecewise (), functions is considered for second order elliptic problems in three dimensions; this special
method can also be viewed as a conforming spectral element method. An iterative method is designed
for which the condition number of the relevant operator grows only in proportion to (1 + log p)?. This
bound is independent of jumps in the coefficient of the elliptic problem across the interfaces between
the subregions. Numerical results are also reported which support the theory.
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1. Introduction. Over the last decade, domain decomposition has developed into
an active research area; see, e.g., [26, 15, 16, 27, 17, 32, 31].

The iterative substructuring methods form an important family of domain decom-
position methods for elliptic problems. They are based on a decomposition of the given
region into nonoverlapping subregions and, as all other domain decomposition methods,
provide preconditioners for conjugate gradient type methods. The preconditioners are
constructed from solvers for local problems and, in addition, a solver of a coarse prob-
lem similar to that used in a multi-grid algorithm. However, the global, coarse problem
can be quite exotic; see, e.g., Dryja, Smith, and Widlund [20] and Widlund [52].

When an iterative substructuring method is used, data is only exchanged between
neighboring local problems through their boundary values. In this they differ from the
Schwarz methods that use overlapping subregions; see, e.g., Dryja and Widlund [23, 24]
for a discussion of recent work on this other major family of methods. We also note
that similar results, for higher order methods and both two and three dimensions, are
given in Pavarino [43, 42].

All these iterative methods are thus two-level methods and convincing arguments
have been put forward supporting the opinion that they are particularly well suited for
the large, relatively loosely coupled computing systems that are becoming increasingly
common; cf. Gropp [29]. The best of these algorithms have proven quite powerful
and very large and very ill-conditioned systems of linear algebraic equations, arising
when elliptic problems are discretized by finite elements and finite differences, have
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been solved quite economically; cf., e.g., Bjorstad et al. [8, 9], Cai, Gropp, and Keyes
[12, 13], Cowsar, Mandel, and Wheeler [18], Gropp and Smith [30], Mandel [39, 41, 40],
and Smith [51].

A well-known bound on the decrease of the energy norm of the error, after k steps,
of the standard preconditioned conjugate gradient method is given by the formula

VE—1
VE+1

Here A is the coefficient matrix of the original system, and B that of the preconditioner.
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Therefore, the principal goal of this paper, and domain decomposition theory in gen-
eral, is to provide good upper bounds on the condition number of the preconditioned
operator.

Early work on iterative substructuring methods focused on the h-version finite el-
ement methods; see, e.g., Bramble, Pasciak, and Schatz [10], Dryja [19], Dryja and
Widlund [21], and Smith [49, 50, 51] for work on three-dimensional elliptic problems.
A recent paper by Dryja, Smith, and Widlund [20] summarizes our knowledge of the
h-version case. The best of these results show that the condition number of the rel-
evant preconditioned operator grows only linearly with the logarithm of the number
of degrees of freedom of an individual subregion. It is important to note that these
bounds are independent of the number of subproblems and that they are independent
of jumps in the coefficients across subregion interfaces. We also note that there are
considerable differences between good iterative substructuring algorithms for two and
three dimensional problems; some algorithms that are successful for problems in two
dimensions are quite mediocre in three.

The development of iterative methods for higher order and spectral methods poses a
special challenge since the stiffness matrices can be much more ill conditioned than those
of lower order methods. The domain decomposition methods that have been proposed
have also been less well understood. Since the number of degrees of freedom per element
increases rapidly with p, it is natural to use individual elements as subregions to be
assigned to individual processors of a parallel computing system. In this paper, we
design and analyze an algorithm with a polylogarithmic bound in the degree p of the
spectral elements. While doing so, we also develop a number of technical tools, which
are likely to be useful in future studies of other domain decomposition algorithms. We
note that the method considered in this paper is directly inspired by a method developed
by Smith [50, 51] for the h-version. Our basic result has previously been announced in
Pavarino [44] and Pavarino and Widlund [45].

Important progress has previously been reported, for problems in two dimensions,
by Babuska, Craig, Mandel, and Pitkaranta [1], in which polylogarithmic bounds for
some methods are proved; see also Pavarino [42] for results in two dimensions, which
are similar to those of this paper. Early experimental work is reported in Babuska
and Elman [2]. In three dimensions, pioneering work has been carried out by Mandel
[38, 37, 36, 41]. Some of his algorithms, which use global spaces which differ from
ours, are used in daily industrial practice. A number of domain decomposition methods
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for spectral elements have been considered by Fischer and Rgnquist [25] and Rgnquist
[47, 48]; for a general introduction to spectral element methods, we refer to Maday and
Patera [35] and Bernardi and Maday [7]. However, we know of no previous theoretical
results that show only polynomial growth in log p for problems in three dimensions.

In our analysis, we use a special basis for our finite element space and we have also
used this basis in our numerical experiments; our analysis relies heavily on separation
of variables. After introducing the elliptic problems and the basic iterative method
in Section 2, we introduce the different subspaces and their bases, in some detail, in
Sections 3 and 4. A number of technical tools and a proof of our main result are given
in Section 5. Section 6 provides a useful alternative description of our problem and
iterative method using matrix notations. We also show that there is a great deal of
flexibility in choosing the bases of our subspaces. The paper is concluded by a report
on some numerical experiments, which support the theoretical results, and an appendix
which contains the long proof of one of our auxiliary results.

We note that it is known that the use of Gauss-Lobatto-Legendre quadrature results
in a coefficient matrix that is uniformly spectrally equivalent to the stiffness matrix
derived from the Galerkin procedure considered here; see Bernardi and Maday [7]. It
therefore appears likely that our algorithm could also be of use for such methods.

2. The elliptic problem and block-Jacobi methods. We consider a linear,
selfadjoint, elliptic problem on a bounded domain Q C R? formulated variationally as

a(u,v) = /Qp(aj)Vu -Vodr = fa(v) Yve V.

V is an appropriate subspace of H(f), which incorporates the boundary conditions
of the problem. We always assume that the boundary conditions do not change type
except at the boundary between two subregions. p(x) > 0 can be discontinuous, with
very different values for different subregions, but we allow this coefficient to vary only
moderately within each subregion €2;. In fact, without decreasing the generality of our
results, we will only consider the piecewise constant case of p(x) = p;,z € Q.

We focus on the case where the subregions {2, form a finite element decomposition of
the region (). The elements are all cubes, or images of a reference cube, under reasonably
smooth mappings; no element can be “too distorted”. Almost all our technical work
can in fact be carried out on a single reference cube Q,.; = (—1,1)°.

The discrete space VP C V is the space of continuous, piecewise (), elements, i.e.
the tensor product of three copies of the space of degree p polynomials of one variable.
This results in a conforming Galerkin method; the finite element problem is obtained
by restricting v and the test function v to the space V?. The finite element solution
is a projection of the exact solution onto the finite element space; this projection is
orthogonal with respect to the bilinear form a(-, -).

The finite element variational problem is turned into a linear system of algebraic
equations, Kx = b, in the usual way. Here K is the stiffness matrix, and b the load
vector. KT = K > 0, a property inherited from the bilinear form a(-, ).

Here we view our iterative substructuring method as a block-Jacobi/conjugate gra-
dient method; see Dryja and Widlund [24]. The stiffness matrix K is preconditioned
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by a matrix K, which is the direct sum of diagonal blocks of K. We can also replace
some of these blocks by spectrally equivalent (or almost spectrally equivalent) block
matrices in order to decrease the cost of the computation. Each block of the Jacobi
splitting corresponds to a set of degrees of freedom that define a subspace V;. In the case
considered in this paper, the space V? is the direct sum of these subspaces. However,
to arrive at a successful method, we must first carry out a suitable change of basis and
then select the blocks carefully.

Block-Jacobi methods such as these can also be viewed differently. For each sub-
space V;, we introduce an orthogonal projection P; : VP — V;, given by

a(Pu,v) = a(u,v) YoeV,, ueV?,
or an approximation thereof, T; : V? — V;, defined by a different inner product,
a;(Tiu,v) = a(u,v) YVveV, ueV?r.

We note that the choice of @;(-, ) determines the operator T; and vice versa. In a simple
case, when a subspace corresponds to a set of adjacent degrees of freedom of a finite
element method, P; simply corresponds to the inverse of the relevant diagonal block
of K, padded with zero blocks, times K; the sum of these operators represents K;'K.
To obtain T}, the special block of K is replaced by an approximate solver for the given
operator restricted to the subregion. The resulting block diagonal matrix will be called
K ;. We will see that our successful method results from selecting one of the subspaces
quite differently from those of this simple example.
The spectrum relevant for this iterative method is that of the operator

The eigenvalues of K~'K;, which are identical to those of the inverse of the operator
T', are the stationary values of the Rayleigh quotient

Yo i, u;)

alu,u)

(1)

cf. Dryja and Widlund [24].
The most challenging part of our work is to provide an upper bound of this Rayleigh

N
; u= u, u; €V
1=0

quotient. Success is tied to estimating the approximate energies d;(u;, u;) uniformly, or
almost uniformly, from above, in terms of the strain energy a(u,u). An upper bound
on a(ug,u;)/d;(u;, u;), u; € Vi, also enters the bound on ﬁ(K}ll() if inexact solvers are
used for some or all of the subspaces.

In this study, we use the block-Jacobi framework but there is also a more general
theory; see Dryja and Widlund [22]. Thus, any block-Jacobi method can be viewed as
an additive Schwarz method based on a direct sum of subspaces. There are also Gauss-
Seidel-like, multiplicative, as well as hybrid Schwarz algorithms; cf. Dryja, Smith, and
Widlund [20] for a general discussion. Using the estimates of this paper, we can obtain
strong results for a number of these alternative algorithms in a completely routine way.

4



3. A choice of subspaces. Our method is primarily defined by a set of subspaces;
the mathematical description of the method is complete when, in addition, the bilinear
forms a;(-, -) have been specified. In designing methods, we can learn from the h-version
case. The first lesson is that we cannot obtain an asymptotically satisfactory bound if
Vo = ()1 and, at the same time, all the elements of the other subspaces vanish at the
vertices of the elements. Such a choice of the additional, local subspaces is in fact very
natural for the finite element space considered in this paper since any basis function,
except those of the vertices, typically is associated with either the interior of the region,
or the interior of a face or an edge; see, e.g., Babuska, Griebel, and Pitkaranta [3]. In
such a case, all elements of the local spaces vanish at the vertices. We must then choose
ug € Vo as the ();—interpolant in the decomposition v = 3 u;. In three dimensions,
the norm of this interpolant can be larger than the norm of u by a factor p and any
upper bound on the Rayleigh quotient (1) must be on the order of p?. (An example
of a function with small energy and with a ();—interpolant with much larger energy is
given by our vertex basis functions introduced in Subsection 4.3; see further Lemmas
4.1 and 5.4 i) from which a growth on the order of p* can be obtained.) For piecewise
linear finite elements, this point is discussed in detail in Dryja, Smith, and Widlund
[20] where remedies, and their consequences, are also discussed.

As in the case of h-version finite elements, we thus consider several important
geometric objects: interiors, faces, edges, and vertices and subspaces directly related to
them. We merge the edges and vertices of the individual elements, creating wire baskets
W; of the elements ;.

Our new method is based on the following subspaces:

e An interior space for each element: @), N H}(8;).

e A space for each face. These functions vanish on and outside the boundary of
Qi = Q; U Fj U Q. Here two elements share a common face Fj; and ij = ﬁj N Q.
Since it is crucial to have a good, low energy extension of the values given on the
designated face to the interior of the two relevant elements, we use the minimal energy,
discrete harmonic extension.

e A coarse, global space, Vj, of piecewise discrete harmonic functions associated
with the wire baskets W; of the elements. Its elements are defined solely by their values
on the wire baskets. A central issue is how to define the values on the faces of the
elements; once the face values are given, we use a discrete harmonic extension to the
interiors of the elements. It is known from previous work that it is crucial to include the
constants in this coarse, global space; cf. Mandel [37], or Dryja, Smith, and Widlund
[20]. We must therefore make sure that an element of V4, which is constant on the wire
basket of an element, takes on the same constant value everywhere in the element; see
the next section where further details are provided on all the spaces.

For all these subspaces, except the last one, we use exact solver, i.e. the bilinear
form a(-,-). For the subspace Vg, we use the bilinear form

dolu,u) = (1+logp)ijingu—le\%z(wj)
J

if the restriction of the basis elements of this subspace to the wire basket are L?—
)



orthonormal; for a discussion of the general case, see Section 6. Such a choice of bilinear
form leads to a coarse problem with only one essentially global degree of freedom, ¢;, per
element. These values are found by solving a linear system of finite difference type; cf.
Dryja, Smith, and Widlund [20]. In addition, a larger linear system, with a convenient
diagonal matrix, is solved to find all the degrees of freedom related to the wire basket.

The following is the main result of the paper.

THEOREM 3.1. For the iterative substructuring method defined by these spaces and
bilinear forms,

k(T) < C(1+ logp)z.

Here the constant C is independent of the number of elements, their diameters, the
degree p, and the size of the jumps of the coefficient p(x) across element interfaces.

4. Separating variables. It is clear from the work of Babuska, Griebel, and
Pitkaranta [3], Babuska, Craig, Mandel, and Pitkéranta [1], and others that the choice
of bases for the different subspaces is quite crucial for p-version finite element methods
and for the design of good preconditioners. Several different sets of basis functions
have been suggested and some of them have been implemented in industrial codes. For
our analysis, we will select a particular set of basis functions; see however Subsection
6.2 for a discussion of how our algorithm can be used more generally. Our subspaces
are constructed from several sets of special polynomials on the interval [—1,+1] that
will be introduced in Subsection 4.2. We note that similar sets of functions have been
used in the work of Babuska, Griebel, and Pitkaranta [3] and Canuto and Funaro [14].
These polynomials can be regarded as discrete analogs of the sine and hyperbolic sine
functions used when solving Laplace’s equation in a square or a cube by the method
of separation of variables. We briefly describe this method, in order to motivate what
follows.

We will use capital letters Vi, Fi, Fi to denote vertices, edges and faces of the
reference cube ,.5; see Figure 1 for the ordering of these geometric objects. We

(k) (k)

will use lower case, v*) el ;; to denote the basis functions associated with these

geometric objects; they are introduced in Subsections 4.3 and 4.4.

4.1. The continuous case. Consider the continuous problem

—Au = 0 in Q.p =(—1,1)%,
(2) u = g onI' C Q.5
u = 0 on Qs \I'.

We will consider the construction of i) face basis functions and ii) edge basis functions.
i) Consider the case where I' is a face, e.g., the open set Fy defined by @ = 1. Let
u(z,y,z) = X(2)Y(y)Z(2); then (2) becomes
X// Y// Z//

= =
X Y 7 T



FiG. 1. Numbering of the vertices, edges and faces of the reference cube ﬁref =[-1,13
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and we obtain two Sturm-Liouville problems and a boundary value problem for a second

order ODE for X:

Y"+AY =0 Z"+uZ =0
{Y(—l)zY(l)zO ’ { Z(-1)=2Z(1)=0"

(4)

X'~ (A +p)X =0
{x«4):mxu):1

The eigenvalues and eigenfunctions of the first two are the same:

¥is

. AT ,
N=(5)h Yy =sin(+)), izl
i = Ajs Zi(z) = Yj(2), j> 1L

These eigenfunctions form an orthonormal basis of L*(—1,1). The solutions of (4) are:

() VAT (E+1) _ o=\AiAi(=+1)  sinh(y /A 4+ Aj(z + 1)) o
i\ L) = = ] =L

VNN om A sinh(Q\/m) ’

and the solution of (2) is u = 3_,; 3;; X;;YiZ;, where 3;; = I gYiZidydz.

It is easily to seen that the resulting harmonic functions, X;;(z)Y;(y)Z;(z), are
H'—orthogonal and that

(5) HuHip(Qref) == Z/BZ\/)\Z —|— )\j COth(:Z\/)\Z' —|— )\])
1

A simple computation of norms of the boundary data g(z,y) = >,; 3;;Y;Z; shows that

oMoy =285 and gl = 2 0500+ 4)
]



We can use Peetre’s K-method, see, e.g., Lions and Magenes [33] pp. 66-69, 98-99, to
compute the HSéQ(Fl)—norm of the same function by interpolating between the Hilbert
spaces L*(Fy) and Hj(Fy). We recall that the functional K(¢,g) and the norm are
defined by

K(t,g) = ig})f(|90|12qg(F1) + tQHEI - 90H%2(F1))1/27

and

9122 e, = [ 17K (2 g)

By separating the variables and solving a variational problem, we can find an explicit
formula for K(t,¢g). We find, by a straightforward computation, that

X+ A T
0 Mol iy = 255 f, 3o 32 = g 20N+ A
¥ 2 i

We note that the formulas (5) and (6) for the energy- and trace-norms, provides proofs,
in a special instance, of both a trace and an extension theorem.

1/2

We will also find it convenient to use alternative formulas for the Hy/"-norm. We
note that the space Hoé (F1) is the completion of C§°(Fy) with respect to the norm

H9H12111/2(aﬁmf) = |9|12111/2(aﬂmf) + HQH%%@QM),

where

g(=)I*
inin= ., L., P2 gy
ref

ref

As demonstrated in Grisvard [28] and Lions and Magenes [33], a norm equivalent to (6)
is given by

2 lg(=)[?
1/2 7d ‘
|91/ ) T 7y dist(z,0F)) )

Since Fy = {1} x (—1,1)?, this norm can be replaced by

2 Lot gf? Lot g)?
O e [ e [

ii) In the second case, let I' be the union of an edge F; defined by & = y =1

and the two faces sharing this edge. We are looking for a function that coincides with
g(z),z € [-1,1],9(=1) = ¢g(1) = 0, on E;. There are of course many ways of extending
this function to the two faces which share this edge. Here we use the same Ansatz as
before and obtain
X// Y// Z//
Xy~ 77"
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We satisty these equations by solving a Sturm-Liouville problem for Z and a boundary
value problem for each of X and Y:

2" 4 A7 =0
(8) { Z(=1)=Z(1) =0

X"—32X =0 Y'Y =0
2 2
(9) { X(=1)=0,X(1) =1 { Y(=1)=0,Y(1) =1
The eigenvalues and eigenfunctions of (8) are:
N=(5) L) =sin(G(+1), iz

while the two equations (9) have the same solutions

Xi() = sinh(1/A;/2(z + 1))7 Yily) = Xi(y). -

sinh(24/);/2)

Then v =%, o X;Y; Z;, with o; = fil gZidz.

We note that we can obtain the same formulas by first solving two two-dimensional

elliptic problems
(10) ey + Uy, =0 and 2uyy +u,, =0

on the two adjacent faces with a Dirichlet boundary condition given by ¢(z) continued
by zero onto the other edges. We then extend the boundary values, thus obtained,
by zero onto the four additional faces and extend harmonically to the interior of the
region. It is clear that we could also define the values on the faces in terms of solutions
of ugy + u,, = 0 and uyy + u,, = 0. We will not consider the resulting, alternative
algorithm in this paper.

As in case i), several equivalent characterizations can be given of the Hééz(El)—
norm. One of them is

lg/?
(11) 1902y = 1oy + [ T2

where now

— g(z2)]?
dzydzy .
|g|H1/2 (F1) /E1 /E1 |Zl - 22|2 a1

Another follows by using interpolation in Hilbert spaces. Since ¢ = 3, a; Z; on F;, we
obtain

lgliomy = d_0f  and gl = Do efh

As before, we also obtain

™
(12) 91202y = 5 20 @3V -



Fia. 2. The polynomial vy for p = 10

-0.2
-1

4.2. Some special sets of polynomials. Let P? be the space of degree p polyno-
mials on [—1,1] and let P} be the subspace of polynomials that vanish at the endpoints

of the interval.
DEFINITION 1. Let g be the degree p polynomial satisfying

min [|[|z2 -1, p(1) =1, p(=1) =0.

We also define pg () = po(—2) and will also use the notation o (z) = po(z).
See Figure 2 for the case of p = 10.
It is possible to compute the Legendre expansion of g explicitly.

LEMMA 4.1.
~ n (2n + 1)rg if n is even
wo nZ::O ?Lm where "= { (2n + 1)r1/3 if n is odd and
2 ™ 2
= —"——, -
S+ +2) 3 plp+1)
when p is even. When p is odd, then ro and r1/3 must be interchanged. Moreover,

2

s = —7 d ? o < 1.
[ollz (-1,1) p(p+2) an ol (-1,1) =

See the Appendix for a proof. The next result shows that pf and y, are almost

orthogonal.
LEMMA 4.2.
~ (=1)ptt
(SO(J% Yo )L2(—1,1) = ﬁ|\@0|\%2(_1,1)-
10



Proof. The Legendre polynomials satisfy the relation L, (—z) = (—1)"L,(x). There-
fore,

P P 2
ry 2

_ nrn — n
Yo = Z(—l) — L, and (@53% )LQ(—LI) = E(—l) 12n+1'

2 n=0

From the proof of the previous lemma

B 1 ) 1 r .
(65 ) =4 X rEnt1) -5 X (2PEa+1)

even mn odd n

r1

(ro = %) = somnerg = srllvollizciy if pis even,

(%1 —1o) = m = ﬁ”@o”%z(_m) if p is odd.

[

O

DEFINITION 2. Let ®; € P} and )\gp),i =1,---,p—1, be the etgenfunctions and
etgenvalues defined by

L do,(z) dv(z) ) /1 | | )
/_1 dz dz de =X . ¢, (z)v(x) de Vv e Pf.

We normalize these functions to have unit H'—norm.

We note that if we replace P} by H}, then we would obtain the sine functions
discussed on the previous subsection. Similarly, the next two definitions provide sets of
polynomials that replace the hyperbolic sine functions.

DEFINITION 3. Let {Agp)}f;l be the eigenvalues of Definition 2. Define a set
{@: b1 of degree p polynomials by

Ldpi(z) dv(z Aﬁp) 1
/_1 d;f: ) di ) dx + 5 /_1 vi(z)v(z)de =0 VYve P
and ¢;(—1) =0, ¢;i(1)=1.

See Figure 3 for the case of p = 10. We also note that we can use the ®; and ¢; to
solve a finite element approximation of (10) by separation of variables.

DEFINITION 4. Let {)\gp)}f:—ll be the eigenvalues of Definition 2. Define a set
{%J’}ﬁ;il of degree p polynomials by

Ldp; i(x) do(s 1
#ij(@) dv(z) dz + (AP 42\ ii(z)v(z)de =0 VYve P}
d 2 7 1 2J

-1 dx x
and 992']'(—1) = 0, 99”(1) =1.

We will also need the polynomials that satisty the same boundary conditions at the
opposite end points. They are obtained by changing = into —z and we denote them by
{¢i} and {¢;;}. Sometimes, we also will use the notation ¢ = ¢; and ¢f; = ¢y;.

The polynomials introduced in Definitions 2, 3, and 4, are different from the sine
and hyperbolic sine functions used in the continuous case in several respect; e.g., )\](Dp_)l
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Fia. 3. The family of polynomials {y; 5_;:—11 for p=10

0.8F

0.6 b

0.4r b

_02 1 1 1 1 1 1 1 1 1
21 N N N R

grows approximately as C'p®?®, not as Cp?. A bound proportional to p* follows from a
classical polynomial inverse inequality attributed to E. Schmidt, and to Hille, Szego,
and Tamarkin, by Bellman [4].

LeEMMA 4.3. Let f be a polynomial of degree p on the interval [—1,1]. Then

(p+1)°
|flar1i) < 7 I fllz2(=1,0)-

A short proof, based on an expansion in Legendre polynomials, is given in Bellman’s
paper.

A more general form of the following lemma has already appeared in Bernardi and
Maday [6]; see also Canuto and Funaro [14]. For completeness, we include a proof.
We note that quite similar inequalities, for the hyperbolic sine functions, were used to
arrive at formula (5).

LEMMA 4.4. Forallp>1and 1 <u1,5 <p—1,

)\Ep)
(13) |99i|12111(—1,1) + TH%H%Q(—LU <C )\Ep) )

(14) (@iilZ cry + O AP il 2210y < CYAP + AP

Proof. From the variational characterization of ¢;, we know that for any polynomial
o of degree < p satisfying o(—1) =0, o(1) = 1, we have
2 AP 2 2 AP 2
(15) |99i|H1(—1,1) + THWHLQ(—LU < |U|H1(—1,1) + THUHLQ(—LU-
12



By Lemma 4.3 and Definition 2,

AP < opt) 1<i<p-—1.
Therefore, there exists an integer ¢ < p such that
(16) Clg—1)* <A < ogh.

We select o = goéq), the polynomial of degree ¢ given by Definition 1. By Lemmas 4.1

and 4.3, this polynomial satisfies

(17) 6" i 1) + @ lles Nz 1 < O
We obtain, by using (16), (17),
2 )‘('p) 2 2 2 /y(»)
|99i|H1(—1,1) + .ZTH‘PZ'HL’Z(—LU <C¢"<20(¢q—-1)°<C A

The proof of the other inequality is very similar.
O
We note that by using Lemma 4.4, it is easy to prove a constant bound for the
maximum of ¢; and ¢;; over [—1, 1] since

z 2 S 1 d i
19) @) = [ <o [ 1B s = slpdin el < €
A more precise estimate, given in Canuto and Funaro [14], shows that ¢?(z) < 1 and
that, in fact, p;(z) decays monotonically with decreasing x; see also Figure 3.

4.3. The basis functions. We are now ready to describe our basis on the refer-
ence cube .5 = (—1,1).
e The interior basis functions are defined by

(19) (I)z(r)q)J(y)(I)k(Z)v ,,7,k=1,---,p—1.

They are a(-,-)— and L*(,.s)—orthogonal.
e One of the sets of face basis functions, for the face Fy = {x = 1}, is given by

(20) fz(gl)(xay72) = 9927]($)(I)2(y)q)1(2)7 l7] = 17 L, P L.

It is easy to show that any two face basis functions, associated with the same face, are

a(-,-)— and L*(£,.;)—orthogonal; see the proof of Lemma 4.5 for a similar argument.
The wire basket space is given in terms of edge and vertex basis functions. As we

will see, the elements of the subspace spanned by these functions are later “corrected”

so that they also contain certain components from the face spaces.

e One of the sets of edge basis functions, for the edge £y = {z = 1,y = 1}, is given

preliminarily by

13



Fi1G. 4. Vertez function o(x)po(y)po(l) and edge function ®3(x)ps(y)es(l), forp=>5

It is easy to show that any two edge basis functions, associated with the same edge, are
a(-,-)— and L*(f,.s)—orthogonal.

e One of the eight vertex basis functions, the one for the vertex V4 = (1,1,1), is given
preliminarily by

(22) W (2, y, 2) = wo(x)po(y)po(z).

See Figure 4 for examples of a vertex and an edge basis functions on a face.
An easy computation shows that
LEMMA 4.5. The face, edge, and vertex basis functions are discrete harmonic.
Proof. i) Consider, without loss of generality, the face F; = {z = 1}:

/me V(pij(2)@i(y)2i(2)) - V(@i2) P (y)Pn(2))dudydz

1 dg@ij dq)l

1 1 1
_ Lkl / <I>Z-<I>md'/ ®,,d / 1@
-1 dx dzx ¢ —1 Y o ! et —1@] L

L do,; dd 1
Sy [ 00,
-1 dy dy Y Y ‘

1 1 1 d®; do,
+/ soz'jq’zdw/ <I>¢<I>mdy/ — "z
-1 -1 -1 dZ dZ

) ; 1

Y Y A J . —

=mdin " tiw T A(_p))/ﬁ”q)’d”f =0.
7 7 3

ii) Consider the edge £y = {z =y = 1}:

/me V(gil@)ei(y)®i(2)) - V(@) B, (y) @ (2))dwdyd=

14



1 dp; d® 1 1 1
/ L —ldaj/ a,oiCI)mdy/ CI)Z-CI)ndZ—I—/ ©;®dx
1 -1 -1 _

+/ Wbd:z:/ 0P dy/

1 dz dx

1 A(p)

1Al
)\(p) 2

2@ 2

iii) Consider the vertex V4 = (1,1,1):

L dy; do,,
1 dy

d/(b(l)dz

dd; dCI)
dz dz

/(,oZCI)dx/ ©; P, dy = 0.

/me V(ro(2)po(y)eo(2)) - V(Pi(2) P (y) ®n(2))dadydz

vanishes for all 1 < I, m,n < p — 1, because

1
/ wo®Prdzr = 0,
—1

1<k<p-—1.

This follows from the definition of ¢g and a simple variational argument.

O

Let F be a face of Q,.5. If uis a polynomial of degree p which vanishes on 0F| then

we can try to compute HuHHm
00

argument of Subsection 4.1; cf. (6).

For u = Y,

different normalization of the discrete eigenfunctions, that

and

p—1 By
[ullzem = 22 (=)
w ij=1 \/)\gp))\;p)

By using the K-method, we can conclude that

>]

(23)

7,7=1 B

2 o By
el < 5 22 € AN

Bij

p—1
lullig i = 32 (g PN + A7)
Hy (F) = )\gp))\gp) i

(p) (p)
))2 )\Z_p +)\jp .

") using the basis just introduced and the interpolation

3;;®;®; on F, it follows, with the

2]1

The quite subtle question if the expression on the right hand side is in fact equivalent
to the left hand side, has been settled affirmatively by Maday [34] and Ben Belgacem

Similarly, let £ be an edge of €,.5. Let v =}, ;®; be a polynomial defined on E.

[5].
Then,
p—1 2
&
HuH%?(E) = Z N2 and
=1 Ay
and HUHJQEIS({Q(E) is equivalent to
p—1 2
o
(24) > 7
i=1 )\(p)

p—1

_ 2
- § :aiv
=1

HuHiIé(E)



4.4. Extension from the wire basket. As we have previously noted, the key
part of the proof of our main result involves a decomposition of an arbitrary polynomial
on {1,.s into components in the different subspaces and estimates of the energy norms
of these components. In this subsection, we will define these components and also give
a full description of the coarse, wire basket based space.

Let u be a polynomial in Q,(€,.7). We will use the decomposition

6
u=uw+ Y up, +ur,
k=1

which is a sum of a wire basket component (vertex and edges), six face components
each with nonzero values only on one face, and an interior component which vanishes
on the boundary of €,.;. In order to define this decomposition, we need to extend the
values of a function, given at a vertex, on an edge, or on a face, to the whole of €2,.s in
an appropriate way.

Vertex components: For the vertices Vj, of Q,.y, let

uy,(z,y,2) = u(—1,—1, —1)17(8)(x, Y, z).

The vertex component of u is then

8
uy = Z Uy, .
k=1

Fdge components: On each edge Fy, u—uy can be expanded in the {®;} basis: u—uy =
st agk)q)i, with agk) = AEp) Jp, (u —uy)®;ds. Let

ug, (z,y,2) = Ef:_ll ozg égl)(x,y,z), for By ={z =1,y =1}
) 52)652)($7'y72)7 for E2 = {.f = _1,'3/ = 1}

uEz(JjayVZ) = Ei:l a;

‘ME12($7'!/72) = Z?:_ll 05512)&512)(1’73/72)7 for E12 = {y = _172 = _1}

The edge component of u is then

12
wr =Y up,.
k=1

Wire basket component: We first introduce a preliminary interpolation operator

IV . VP =V, defined by I"u = uy + ug. However, this operator will not reproduce

constants; see Figures 5 and 6. It is known that the bound for the condition number
16
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then must depend on the number of subregions; cf. Mandel [37], or Dryja, Smith, and
Widlund [20]. In order to overcome this difficulty, we construct the function F =
1 — ™1, which vanishes on the wire basket, and which naturally can be split into six
discrete harmonic components, each with nonzero values on only one face:

6
F=YF,
7=1

We then define the wire basket component as the image of v under a new interpolation

operator
~ 6
uw = I"Mu=1"u + ZﬂaF]fj,
J=1
where Usp, = éfaF] u. With this definition, the wire basket space will contain the

constants, since if u = 1 on W, then uw = 1 on 9€Q,.s. This interpolation operator
defines a change of basis in the space; the preliminary vertex and edge basis functions,
given above by (22) and (21), are mapped into:

o) = Wik = 5k Ejgng)fj
= e = W 4y dF

7 7

(25)

We note that for a vertex basis function, the sum is only over the three faces sharing
the vertex and that the weights are

o L sm _l/l
Uor, = g o 0\Wds = 1L wo(s)ds.

For an edge basis function, the sum is only over the two faces sharing the edge and

L amy :l/lqy d
€ioF, = g o &ds=o | i(s)ds.

Face components: u — uw vanishes on the wire basket. On each face Fj it can be
expanded in the {®;®;} basis: u —uw = >} ;_, ﬂl-(f)q)iq)j, with

/32.(]@ = )‘Ep))‘gp) /F (u — uH/)(I)Z-(Sl)(I)J-(SZ)dSIdSZ_
k

The six face components are defined by

up (2,y,2) = Y00 801 (2,y,2),  for Fy = {x =1}

1,7=2 Mij Jij

up (2,y,2) = Y0, 8P e,y 2),  for Fy={z = -1}

uF@(xvyaZ) = ?,]:2 IBZ(f)fZ(G)($7y7Z)7 for F6 = {Z = _1}

Interior component: u — uw — 22:1 up, vanishes on 0€,.¢. The final component of
the decomposition is given by
6
Uy =u —uw — Z Uy, -
k=1
18



5. Technical tools and a proof of the main result. The proof of the main
result, Theorem 3.1, is based on local arguments concerning polynomials on the reference
cube Q,.5. We note that our final bounds are independent of the diameter H of the
elements. We have chosen not to show how the constants of our auxiliary estimates

depend on H.

5.1. Technical tools. We will now give a series of lemmas that are needed in the
proof of Theorem 3.1. We begin with the classical Markov inequality; cf. Rivlin [46].
LeMMA 5.1. Let f be a polynomial of degree p defined on [—1,1]. Then

()] < p? x)].
[rggﬁlf(r)l <p [rgfﬁlf(f)l

The following result is a discrete Sobolev inequality for polynomials; see Theorem
6.2 in Babuska, Craig, Mandel, and Pitkéaranta [1].
LEMMA 5.2. Let F = (—1,1)* and let u € Q,(F). Then

(26) [ul| 1 oo ey < C(1 + log p)||ee]| 7y
Moreover, if xg € F, then
(27) lu — u(o)|7oo () < C(1 + log p)|uliy -

Proof. We apply Lemma 2.2 in Bramble and Xu [11]: If D is a bounded Lipschitz
domain in R?, then

(28) l[ullzo) < C(log el llulls oy + cllullws =py) Yu € WI2(D), ¢ (0,1)
By Lemma 5.1
lullwseo @y < (14 2p°)[[ull oo ().

Choosing ¢ = ﬁ in (28), we obtain:

) 1+ 2p?
Jullge) < C1og6C + 2log o “fulnry + o i
: 142p°
and finally, since 6p§ < %,

]| oo gy < C(1 + log p)||e]| 71 (y-
To prove (27), we use the fact that if v vanishes at some point in F, then
[el| ooy < [l + al|poe () + el ooy < 2|u + @l
for any constant a. Then, by (26),
[ul|Foe (i) < C(1+logp)llu+ allF -
Minimizing over « and using Poincaré’s inequality, we obtain
]| oo sy < C(1 4 log p)|ulFa ey

To prove (27), we apply this estimate to u — u(xo).
19



O

LEMMA 5.3. Let I be a line segment in Q,.;, which is parallel to a coordinate azis.
Then

Jull72y < C(1+ 10%P)H“H%11(me)-
Moreover, if uw is the average of u over the wire basket W, then
lu = ww|[F2wy < C(1 +log p)lultpq, .-

Proof. Let I be parallel to the z-axis. We apply Lemma 5.2 to a two dimensional slice
F of Q,.;, orthogonal to the z-axis. Then,

1 1
lelif = [ Tule,y.2)Pde < [ Jule, ) da

< (1 +1ogp) [ N, M < OO+ logp)ullinge,.
The second estimate for u — wyy, is obtained by a quotient space argument.
It follows immediately from Lemma 5.3 that
(29) (@) < (1 +logp)ullg,.,

LEMMA 5.4.
i) The energy of a vertex basis function v (x,y, 2) salisfies

™%, < CI8W Ity = 3ClvollZ2(1,)-
ii) The energy of an edge basis function égk)(x,y,z) satisfies

|é£k)|12111(9 ) S C|é§k)|i2(Ek) = Cl|®]|72(-1,1):
iii) The energy of a face basis function, fz-(f)(:c,y,z) satisfies

(k)2 (k)12
|fij |H1(Qref) < OHfij ”Hgo/?(Fk)'

Proof. i) By a direct computation

1 1 1
e, = [ [ [ Vet @t @)e(:) dedyds

. dipo .
= 3”990H4L2(—1,1)HEH%Q(—LU < 30”990"%2(—1,1)-

20



The last bound follows from Lemma 4.3 and the explicit formula H‘POH%’Z(—LU =

ii) By a direct computation

1 1 1
= [ [ IVt w)oiz) | dedyds

permutations

dp; A :
= !\%!\%2(_1,1)(!\@H%z(—m) + 5 leillze )20 @il ze 1,0y

From Lemma 4.4

do: )\gp) 1/2
H@”%Q(—Ll) + TH@Z-H%Q(_LI) < C)\Ep) ‘

/

2 (p)~1/2
It follows that ||992HL2(_171) <CN\ . Therefore

dipi AP
H‘Pil‘%?(—m)(”@H%Q(—l,l) + TH%H%Q(—M)) <C.

iii) By a direct computation and Lemma 4.4

1 1 1
ey = [ ][IV e5@)@un)0,(2) [* dedyd

permutations

(p) (p)
_ 1 dgij o ® | @) 2 AT A
= )\Ep))\gp)(H 7y 21 + AT+ A @iillza 1) = C AP

From the characterization of the HégQ(Fk)—norm given by (23), we conclude

(k)2 : ] (k)2
e, < O g = O ey

(A

2

p(p+2)°

a

Since edge basis functions associated with the same edge and face basis functions
associated with the same face are a(-,-)— and L*(f),.;)—orthogonal, we can generalize
Lemma 5.4 to provide bounds for any edge and face components of a function u €

Qp(Lrey):

COROLLARY 5.5.

|UEk|12111(Qref) < C|uEk|%2(Ek) )

|qu|%Il(Qref) < CHquHiIéO/Q(Fk) '
21



LEMMA 5.6. The energy of the IV interpolant is bounded by
|]~W‘U|%11(Qref) < C’\]NW’U’\%2(W) = CHUH%%W)

Proof. By definition

N 8 ' 12 p-1
My = > (VZ)T) T,Y, 2 —{—ZZ& ék (z,y,z2).
=1 k=1 j=1

Hence, by the orthogonality of the edge functions on a given edge and by Lemma 5.4,

8 12 p—1
7 k
Muling,.,) < COC VOPles e i@, + 2 (@) @0Fef [ing,,,)
=1 k=1 j=1 S———
permutations
8 12 p— 1 (k)
‘ 2
(30) < OO V) Plleollzz—iy + 22 D (i ) [1®95]72(-1,1))-
=1 k=1 j= 1
On the other hand
- 8 _ L
7" ullZowy = 1 D0 w(Va) o ey + 1122 D0 05 &5 172w,
=1 k=1 j=1

because (®;,wo0)r2(—1,1) = 0. Since the wire basket is the union of the closure of the
edges, W = U}2Z F}, we have

12 p—1 12 p—1 (k
(31) 1Y 2 ol = zj‘za ®;)ds = 3 3 (o) ]lEa(1.
k=1 j=1 k=1 ;=1

Here, we have used that only the k — thedge component differs from zero on Ej. Anal-
ogously, denoting by Vj, and Vj, the endpoints of Ej and using Lemma 4.2, we obtain

8
I3 (Vo) = 2/ (Vi) + ulVe, )0 ) ds
=1

12

(2) 2> Sl + Vi llleolloorn =

k=1

[\)IOJ

8

Z (Vk) H‘POHL’Z -1,1)

The desired bound is obtained by combining inequalities (30), (31), and (32).
LEMMA 5.7. For each face Fy, of Qe bk =1,---,6,

= T ul3asz s,y < C(1+ log p)[lullfn

22
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Vy £ Vi

Es F ki

Vs Vi

E4

FiG. 7. Renumbering vertices and edges of the face F's

Proof. We consider, without loss of generality, the face F5 = {z = 1}, and, for

simplicity, we renumber its vertices and edges as in Figure 7. On this face, w = u—I"u

can be written as

UJZIL—lKVDVo()vd ) — (V)vo()wd ) — u(Va)po(®)eg (y) — u(Va)eg (2)eg (v)
Za e Za 7 (2)5(y) — 2 a0 (2)e5(y) — 3 ol @;(2)e7 (9):

Since w vanishes on JF5, we can use the characterization of the HI/Q(F5)—norm given

by (7).

N ol
(3) 0l = Vol + [, 7osdedy + [ 1= dody,

The idea of the proof is to bound each of these terms by the L%norm of u over an
interval on 0f),.s parallel to one of the axes and then use Lemma 5.3 to complete the
argument.

i) Consider the first term in (33). By a trace theorem and Lemma 5.6,

1Y ulipregry < CH Y uling,. ) < Cllulliaw)-
Again by a trace theorem and Lemma 5.3, we then obtain

[wlipremy < 20ulfnrge) + 1" ulin ) < C(L+logp)|lulling, )

ii) In order to bound the second term of (33), we divide w = w! + w!! into two parts,
which both vanish on the two opposite edges F; and Fs:

wh = u— [u(Vi)go(z)po(y) + u(Va)es (x)eo(y) + u(Va)eo()es (y) + w(Va)eg (2)es (v))]
— 5, aMei(@)8;(y) — 25 Vs (2)0,(y)
wl = = 00;(2)¢i(y) — 5, o) @ (w)e; ()

We now bound the first term of w!!, associated with the edge E,, by using the two
equivalent characterizations of the HééQ(Eg)— norm given by (11) and (24):

(2) (2)
/ 152, q’j(iﬁ)w(y)PdIdy _ /1 (/1 12259 ‘I’j(x)w(y)de)dy
F 1 —a? R L—a?

23




<[ 120 5C)es0) e <o [ Ya)e

1
< O (o)) 5 =

, NG CHZa ;3205 = Cllull}as,)-
J J

In the same way, we bound the second term of w!!, associated with the edge F,:

/ 15, a0, (2)e7 (y)]?
Fy

1 — 22

dedy < Cllullzeg,).

I we divide the integral with respect to = into three:

_ |wl($,y)|2 ‘ _/1 |"wl(5’/’7')”%2(—11) _/ LIe /
(34) /F5 1 —z2 dudy = -1 1 —z2 de = + 1+e 1—e¢

and choose ¢ = 2/p?. The second integral is easily bounded by

To obtain a bound for w

/1 e flw! (2, )iz 1)

1—¢ dx
1 do < max||! (@, )£+ |
—1+¢ —CC

—14e 1 — 22

< 2log pmax [[w’ (2, )[|72(_1 1);

since [175, 12 1‘2 =log(% — 1) =log(p* — 1) < 2log p.
Moreover, Hw (z, )HL2 (-11) can be bounded in terms of |ju(z, ')"%2(—1,1):

[l (2, M E2 10y < 3(lu@, )Ee 1)
(35) 155 0 s (x )<I>()+M(V1)9oo($)¢o() u(Va)eo (€)e0 (llz2 (1,1
+1 525 afe7 (2)5() + u(Va)eg (2)p0(-) + u(Va)eo(2)ea ()[22-1.):

Because of the L?—orthogonality of ®; and g, we find that

/ 5= a3 3()®3(0) + u(V)pola)en(s) + u(Va)es (e} (1) dy

= ¢;(z / Ea y)*dy + max{po(z), ¢ ( }/ (Vi)eoly) + u(Va)eg (y)]*dy

< lu(1, ) 72m,)-

Here we have used the fact that ||¢;|[z~ < 1 and ||@ol|re < 1 ; see Lemma 4.1. In the
same way, we can bound the last term of (35) by |[u(—1, ')H%Q(ES)- Therefore

/1 e Jlw! (@, ) llZ2 1)

: , 2
~1+e 1 — 22 de < Clngxé?fo,(l] (=, .)HB(—M)'

24



We now consider the first integral in (34). Since |w!(z, )||z2(=1,1) is still a polynomial of
degree p in x, we can obtain an estimate by using the mean value theorem and Lemma

5.1

—1te ||w! x, - 2, —14¢ 2
[ Wi gy = Tt )

1 — 2?2 (1 —a?)

—1+4e€ 62
< ptmax ! (z, )iy [ (1 @)de < max el (e )t S

< C max ||l u(z, ')H%Z’(—Ll)'

We bound the last integral in (34) in the same way:

1 wlr,- 22 —
/ [w (2, )72 LD gz < € max ||u(z, a1,
1—e¢ i |

1 — 22

and have proved that

[w(z,y)|

[ I hray < 01+ tog p) max (e, Ny
1 —2x2

iii) Estimates for the third term in (33) are the same as for the second term after

11

exchanging z and y. We now divide w = w! 4+ w!! into two parts vanishing on the two

opposite edges E, and Fy of F; (see Figure 7):

w! = [u(‘/l)vo(w)tpo(y) u(Va)wg (@)poly) + u(Va)pol(x) ey (y) + u(Va)eg (x)eq (y))]
—zm %@w@ ¥, a8, (2)e7 (y)
wl = =5, alVei(2)0,(y) — 52, 007 (2)0;(y).

As in step ii), we can prove that

|'w($7'y)|2 2
/F5 ﬁdxdy < (1 +logp) max s y)Iz2 10

We conclude by combining the estimates from step i), ii), and iii) and by applying
Lemma 5.3 and obtain

e = Yl s ) < OO+ log p)(ma (e, V3o gy + ma ul )l Eaa)

< C(1 +logp)*lull g

ref
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LEMMA 5.8. Let F}. be the special face function for the face Fy, defined in Subsec-
tion 4.4. Then

HFkHZéO/Q(Fk) S C(l + 1ng)

Proof. On Fy, Fx = 1 — I"1. Therefore we can repeat the proof of Lemma 5.7 with
u =1 on 0Q,.5. We are now able to avoid the second (1 4 log p) factor.
O
A bound for the full interpolation error u — I"u, and of ug,, is now obtained by
combining Lemmas 5.7, 5.8, (29), and Poincaré’s inequality:
LEMMA 5.9.

sy = It = 17l ) < OO+ logpPlulinga,

5.2. Proof of main theorem. We are now in a position to prove Theorem 3.1.
In order to obtain a bound for the condition number (7"), we provide an upper and
lower bound for the Rayleigh quotient (1). To this end, it is enough to prove the local
bounds
~ (i)

. ia;” (i, u;) () ~(3)
< aW(y u) < 2: Do o
(36) 01(1 + 1ogp)2 = (uj U) =6 i “ (u“ LLZ)

N
Yue VP u= Zui, u; €'V,
=0

where V7 is the subspace of discrete harmonic functions of V? and a9 (u,v) is the
contribution to the bilinear form a(u,v) from the substructure Q;, etc. We refer to
Section 2 for the necessary background.

i) The lower bound follows from

6
(1 +log p)llu — Gwl| 72wy + ; ||quHZéo/2(Fk) < Ci(1 +1logp)?|ulfpg,.,)-

The required estimates are provided by Lemmas 5.3 and 5.9.
ii) If we shift v by a constant such that @y = 0, then the upper bound in (36) is
equivalent to

6
il < Co(L+ Dozl + 2 g )
This bound is obtained by applying Corollary 5.5, Lemmas 5.6, 5.8, and (29):
- w
|’U|12111(me) =Y up +1 uﬁfi(gmf)

k=1
26



6
<7 |qu|?JJ(QT6f) + |IW‘U|121IJ(QM))

k=1

6
< CY lum gy, + (L + log )l
k=1

O

Remark. If we do not scale the part of the preconditioner corresponding to the wire

basket with a factor proportional to (1 + logp), then, we obtain a bound of a condition
number proportional to (1 + log p)®.

6. Matrix form of the preconditioner. In this section, we will first consider
the matrix representation of the stiffness matrix and the preconditioner for the special
basis that has been used in our analysis and then, in a separate subsection, consider
the changes needed in a much more general case.

6.1. The case of the special basis. We order the interior basis functions first,
and then those related to the faces, and finally the wire basket basis functions. For the
time being, we use the basis functions introduced in Subsection 4.3, i.e. those introduced
prior to the corrections with the components constructed from the special functions F.

Since all face and wire basket basis functions are discrete harmonic, the stiffness
matrix is of the form

Dy 0 0
0 Srr Srw
0 Sty Sww

The leading block Dj, which corresponds to the interior spaces of all the elements, is
diagonal, because the ®; are H'—orthonormal. The diagonal element corresponding to
the interior basis function ®;®;®; is equal to

Ai + A+ Ap

,0;0,]7: =

We note that, with all other basis functions discrete harmonic, the submatrix associated
with the interface unknowns already forms a Schur complement S. The contribution to
S, from the element ();, can be written as

so_ [ SER S
Sy SWw

The preconditioner g, for the reduced system of interface variables, is obtained by
subassembling local contributions S, constructed independently element by element.
We first change the basis of the wire basket space introducing the edge and vertex
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basis functions defined by (25), while keeping the face basis functions the same. The
transformation matrix from the old to the new basis takes the form

I 0
RG T )
S is then transformed into

( 7 0 ) SI(;])V Sl(sjl)v ( I RW” ) B ( 51(7‘71)? nonzero )
RO 1 51(«21)5 S%)W 0 I ~ \ nonzero g%)w .
We construct the local preconditioner S by:

o ehmmatmg the coupling between face and ere basket spaces;

) replacmg SFF by its block diagonal part SFF with one block for each face. In our
special basis SFF is diagonal because each pair of basis functions, associated with the
same face, are a(-,-)—orthogonal;

e replacing the wire basket block 51(/5)1»’ by a much simpler matrix g{i)w that corre-
sponds to the special bilinear form d(-,-) chosen for the wire basket space.

In the h-version algorithm of Smith [50], gg)w is just a rank-one perturbation of a
multiple of the identity matrix. In the case of our special basis, we begin by considering
the mass matrix M associated with the L?*—norm over the wire basket; gg{})w will be a
rank-one perturbation of the diagonal part D of this mass matrix. We will now show
that the mass matrix is increasingly diagonally dominant, with increasing p, and always
spectrally equivalent to its diagonal part D.

Let, for the time being, W denote the wire basket of the reference element. Let

further z be the vector of wire basket coefficients of the constant function 1, and let uy,
be that of u. Then, the mass matrix M is defined by

T
uy Muy = HUH%Q(W) :
We also find, by a simple computation, that

(Mz) - (Mz)”

ZTMZ )MVV .

uds)?
inf [lu — cllizwy = /W u’ds — vav% = upy (M —
w

The wire basket block Sy of the preconditioner, is obtained by replacing the matrix
M by its diagonal D and by introducing an appropriate scaling factor:

(Dz) - (Dz)"

(37) Sww = C(1+logp)(D = —77=—) .

The matrix M is almost diagonal, because all the edge basis functions are L?(W)—orthogonal.
The edge and vertex basis functions are also orthogonal to each other, but the vertex ba-

sis functions are not mutually orthogonal. However, by Lemma 4.2 and a computation
similar to that of the proof of Lemma 5.6, we have

8 8
1—— ) 2wt (VilleollEa -y < I D2 u(Vi)o® 12z
k=1 k=1
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Fic. 8. Sparsity pattern of SU) (left) and of SG) (right), for p =5.

OF;
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100F° o i

1s0fl B E w s

50

1
nz = 8896 nz = 1720

8
1+— Z“ Vi) HS‘QOHLQ -1,1)
k=1

Therefore, for p > 1,

3 9
§M{VDMW < ujy Muyy < §M{VDMW .

This completes our description of ag(-,-), the bilinear form for the wire basket space.
We can now return to the old basis:

30 )T
(38) §<i):( L 0)(5517 ” )(I —RY )
—RW [ 0 SV, 0 I

Since the actions of R®) and R on the common face F;; are the same, the precondi-
tioner can be obtained by subassembly:

g 1 0 Spr 0 I —RT
- —-R 1 0 SWW 0 I '

5718 = > R, Si BES + RoSyAy RES,

Therefore

where Ry = (R, I); see Dryja, Smith, and Widlund [20]. We have thus obtained an
additive preconditioner, with independent parts associated with each face and the wire
basket; see Fig. 8 for the sparsity patterns of SU) and the preconditioner S using our
basis functions.
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6.2. Other bases. The basis functions used in our proof of Theorem 3.1, and in
the previous subsection, are not necessarily ideal in computational practice. There are,
e.g., a number of advantages of using a hierarchical basis in particular if the order of the
elements are determined only during a run by using a posteriori error bounds. Tensor
products of integrated Legendre polynomials have been used for such purposes; see
Babusgka, Craig, Mandel, and Pitkaranta [1] and Mandel [36]-[41]. Another basis, given
in terms of fundamental Lagrange interpolating polynomials and the Gauss-Lobatto-
Legendre quadrature points, also have their strong advocates; see Bernardi and Maday
[7] and Maday and Patera [35].

We can use the fact that our algorithm is defined primarily by our subspaces and
bilinear forms. We will now explore how to use our algorithm given any basis that,
restricted to .5, can be decomposed into an interior, six face, and a wire basket
subspace. We could of course make a complete change of basis but here we are instead
interested in trying to keep the given bases of the subspaces to the extent possible.

Let us assume that the element stiffness matrix K has already been computed.
We note that, whatever the basis of the interior subspace, we can factor the submatrix
K}ZI) which corresponds to the interior variables using the Choleski algorithm. The
resulting triangular factor implicitely introduces a new orthogonal basis of the interior
subspace.

These Choleski factors can also be used to compute the Schur complement which
corresponds to the interface variables. This effectively produces new iterface basis
functions which are discrete harmonic. During this process, all the face and wire basket
spaces maintain their identity; for each of the original face subspaces, there is a well
defined discrete harmonic counterpart. The values of the interior basis functions are not
changed during this process nor are the values on 99,5 of the interface basis functions.

For each basis function of any given edge space, we can compute a corresponding
element in our special edge spaces using the following idea. We first solve two discrete,
two-dimensional elliptic problems, which are the discrete counter parts of (10). The
Dirichlet boundary conditions for each of these problems is given by the basis element
on the given edge, continued by zero to the rest of the boundary of the face. The
identity of the edge space is maintained since the new basis functions remain zero on
the same four faces as before; they are also discrete harmonic, being linear combinations
of discrete harmonic functions.

The vertex basis functions (22), which have been introduced in this paper, are de-
fined in terms of a simple variational problem. @ can be expressed in terms of elements
of the current edge space by solving this variational problem. The resulting formulas
form part of the mapping between the two bases. Similarly, we need to orthogonalize
the edge functions in the L? sense in order to design an effective bilinear form agf(,-).

We also need to write the special functions F; in terms of the basis at hand; they
can be found using exactly the same recipe as before.

Given the resulting linear transformations, representing changes of bases between
the given and the special sets of subspaces, we can again express the contribution to
the preconditioner from an individual element, and the entire preconditioner, in terms
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TABLE 1 R
Local condition numbers with the wire basket block Sww

P 2 3 1 5 6 7 8 9 10 11
Ofgf?;l) 704 11.83 1441 1616 19.17 20.76 23.30 24.66 26.82 28.00
K

Amaz 2211 2345 2.262 2.230 2.220 2.192 2.176 2.188 2.174 2.183
Armin 0.309 0.198 0.157 0.138 0.116 0.106 0.093 0.089 0.081 0.078

tural
;&f;) 836 1239 14.67 1635 1924 20.76 23.31 24.69 26.89 28.10
Amae | 1792 1.977 2.055 2.095 20137 2.181 2204 2236 2250 2272

Armin 0.214 0.159 0.140 0.128 0.111 0.105 0.095 0.091 0.084 0.081

TABLE 2 ~
Local condition numbers with the original wire basket block Sww

P 2 3 4 ) 6 7 8 9 10 11

£(S7LS) | 533  7.21  9.98 12.08 14.20 15.96 17.74 19.23 20.79 22.08
Amaz 1.736  1.839 1.954 1.985 2.021 2.042 2.060 2.072 2.083 2.091
Armin 0.326 0.255 0.196 0.164 0.142 0.128 0.116 0.108 0.100 0.095

of triangular matrices and the block diagonal matrix given in the right hand side of

formula (38).

7. A numerical study of the condition number. As we have previously pointed
out, an upper bound for the condition number of the problem on all of Q can be ob-
tained by considering a preconditioner for a local problem on the reference element.
It is therefore possible to compute this bound solely from the eigenvalues of a matrix
pencil defined by the contributions to the stiffness matrix, and the preconditioner, from
an individual element. Both of these matrices are singular with the same null space;
only the space orthogonal to this one-dimensional space is relevant in our analysis. We
have carried out a series of MATLAB 4.0 experiments, which closely parallel similar
work by Smith [51] for the case of piecewise linear elements. We note that Smith also
reports on full-scale experiments on multi processor systems with his algorithm. In our
tables, S denotes the part of the stiffness matrix attributable to the discrete harmonic
part of the space and S is its preconditioner. It follows from the general theory for
iterative substructuring methods that Kj(g_lS), the ratio of the extreme non-zero gen-
eralized eigenvalues, provides an upper bound for the condition number of the entire
preconditioned operator.

In Table 1, we provide the local condition numbers and extreme non-zero eigenvalues
of §_IS, where the wire basket block §WW is the scaled rank-one perturbation of D
given by (37). We consider two choices of a scale factor §(p) of the bilinear form ao(-, ).
We refer to them as the optimal and natural scalings. In the first case, we determine,
for each degree p, the optimal scaling 6(p) = C(1 + log p) by minimizing over C. In the
second case, we use 6(p) = 1; this is the natural scaling. We conclude, just as Smith,
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TABLE 3

Least square approzimation of K(§_1S) in Table 1

optimal scaling ag a as as |lerror| L | ||error| e
linear -2.102 12.184 1.35 2.34
quadratic 3.179 4575 2.406 0.72 1.22
cubic -2.444  17.710 -6.730 1.956 0.62 0.98
natural scaling ag a as as |lerror| L | ||error| 2
linear -0.811 11.590 1.49 2.80
quadratic 5.918 1.894  3.066 0.69 1.17
cubic 0.457 14.649 -5.806 1.900 0.57 0.94
TABLE 4
Least square approzimation of k(S™1S) in Table 2
ag a as as |lerror|| e | ||error| Lz
linear -3.345 10.181 1.62 2.59
quadratic | 3.445  0.397  3.095 0.26 0.34
cubic 5.553 -4.528 6.520 -0.734 0.13 0.21

that the natural scaling is only slightly worse than the optimal. We have also considered
a scale factor of the form C; + C3log p and minimized over C; and €. The resulting
condition numbers are very close to those of the optimal ones in Table 1 and we have
found that C; ~ Cy =~ C.

In Table 2, we give the local condition numbers and extreme non-zero eigenvalues
of g_lS, obtained when keeping the original wire basket block Sww. This corresponds
to using the original bilinear form a(-, -) on the wire basket space. The resulting precon-
ditioner is computationally less interesting than the previous one, because it requires
the assembly and solution of a coarse problem with a much less sparse matrix.

It is interesting to note that the condition number estimates obtained with this
original wire basket block quite closely approach those obtained by Smith [51] for the
traditional seven point finite difference scheme, with the same number of degrees of
freedom, as the size of the local problem increases. Thus, for the cases which corre-
spond to p = 7,8 and 9, Smith reports condition numbers of 15.86,17.59 and 19.23,
respectively.

A least square approximation of the data of Tables 1 and 2 indicates a log® p growth
of the condition numbers. The coefficients a; of the linear (n = 1), quadratic (n =
2) or cubic (n = 3) least square approximation f,(p) = ", a;(logp)’, are given in
Tables 3 and 4. We note that the introduction of the additional parameter a3 does not
appreciably improve the fit and that in one case a3z < 0.

8. Appendix: Proof of Lemma 4.1. We recall that ¢g(z) € P?, that ¢o(1) =
1, wo(—=1) = 0, and that this polynomial has a minimal L?*—norm. Any polynomial
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satisfying these boundary conditions can be represented as

14+
2

[1-2(1 - 2)g(a)], gq(z) € PP

We expand 2¢(z) in the Legendre basis

p—2
=Y a,Ly(x)
n=0
Using the classical formula

n+1 n

: L,(z)=———L, —
(39) 2La(2) = gt L (o) + 3=

Ly_1(z),

we find that
1—2(1 —x)q ZtL.

Here to =1 — ag + %al and

n + n+1
Qp_1 — Oy + ———Qp1,
om—1 "t om+3 "t

(40) t, = n=1--,p—1,

with the convention a_; = a1 = a, = 0. Applying (39) once more, we obtain

200(z) = (1 + 2)[1 —2(1 — 2) Zrn n(
where

n n—l—l
41 nzin t n )
(41) I T

with the convention t_; =1, = t,41 = 0. Therefore
5 1
Pop+1°

1 1 1
5”2990"%2(_171) = rg + rfg + rgg 4ty

Substituting (40) into (41), the r,’s can be expressed in terms of the a,,’s :

n n—1 n

Al G L T R i R
n n-+1
T oMt T tg g
n—l—l(n—l—la a +n—|—2a ):
Mm+32m+1 " L Ton 45
2 2
n(n —1) cn n (n+1) o

—1
Gn—Dn+D) e+ )En+3)
33
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(n+1)(n+2)

p Y7 Apy2.

(2n + 3)(2n + 5)
This system decouples: the r,’s with even n depend only on the «,’s with even n
and the r,’s with odd n depend only on the «,’s with odd n. Since all derivatives

with respect to the «;’s vanish at the minimum, a simple calculation and an induction
argument lead to the formula

(2n + 1)rg if n is even
42 n = e
(42) " { (2n + 1)r1/3 if nis odd

In order to find the value of rg, we write the system for the even r,’s as

ro = 1—2ao—l—loz2 =rg
ry = 500 — oz + 50 = 5ro
n(n—1 n+1
T'n = (2n—(1)(273—3) an— + | (2n— 1) 2nt1) L+ (2n—(|—1)(2)n-|—3)]0én +
+7(2(n+113;2’§:j.)5) O[n+2 = (2n —|— 1)T0
r, = —elel) =(2p+1r
P (2p-1)(2p—3) P2 P 0

By adding all these equations, we obtain for p even

+ D(p+2
(43) 1:r0(1+5+9+---+(4§+1)):ro@g#.
In the same way, adding the equations of the system for the odd r,’s,
r -1 r +1
(44) 1:%(3+7+11+---+(4]’_—+1)):.—”J(p_ ),
3 2 3 2
If p is odd, the roles of rq and r1/3 in (43) and (44) are reversed.
By (42), we now have found the components r,, of ¢g in the Legendre basis. More-

over,
I 2 2 p T%
5”29QOHL2(—1,1) =rg(l+5+9+--+(2p+1))+ 32
o 2 N 2 _ 4

3 (p+L(+2) plp+1l) plp+2)

B+7+114+---+2p-1)+1)) =

=T+

and thus HQ.QOH%Q(_M) = Finally, in order to prove that |po(z)| < 1, we use (43)

(p-l-2)
and (44) to rewrite ro and /3 as
1 ™ 1
o = p ) o :
cven k=0(2k +1) 3 odd k=1(2k +1)

and recall that the Legendre polynomials satisfy |L,(z)| < 1,z € [—1,1]. Thus

o) < 3 Xl L) € 5 Era =50 X @nt Drot 3 (2at 12 = 1.

even n odd n
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