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Abstract

Domain decomposition algorithms based on the Schwarz framework were originally
proposed for the h-version finite element method for elliptic problems. In this thesis,
we study some Schwarz algorithms for the p-version finite element method, in which
increased accuracy is achieved by increasing the degree p of the elements while the mesh
is fixed. These iterative algorithms, often of conjugate gradient type, are both parallel
and scalable, and therefore very well suited for massively parallel computing.

We consider linear, scalar, self adjoint, second order elliptic problems and quadrilat-
eral elements in the finite element discretization. For a class of overlapping methods, we
prove a constant bound, independent of the degree p, the mesh size H and the number
of elements N, for the condition number of the iteration operator. This optimal result
holds in two and three dimensions for additive and multiplicative schemes, as well as
variants on the interface.

We consider then local refinement for the same class of overlapping methods in two
dimensions. Optimal bounds are obtained under certain hypothesis on the choice of
refinement points, while in general almost optimal bounds with logarithmic growth in p
are obtained. In the analysis of these local refinement methods, we prove some results
of independent interest, such as a polynomial discrete Sobolev inequality and a bounded
decomposition of discrete harmonic polynomials.

[terative subtructuring methods in two dimensions are also considered. We use the
additive Schwarz framework to prove almost optimal bounds as in the h-version finite
element method.

Results of numerical experiments, confirming the theoretical results, are conducted

in two dimensions for model problems.
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Chapter 1

Introduction

1.1 Overview

Domain decomposition is a major focus of contemporary research in numerical analysis
of partial differential equations, see the proceedings of the international conferences held
every year since 1987; [42], [29], [30], [43], [31], [71]. Among the reasons for considering
domain decomposition are parallel computing, modeling of different physical phenomena
in different subregions and complicated geometries.

In this thesis, we restrict our attention to boundary value problems for self-adjoint
elliptic PDEs. When discretized by the finite element method, elliptic problems lead to
large and sparse linear systems. In industrial practice, these systems are often solved
by direct methods. However, the use of iterative methods like the conjugate gradient
can offer real advantages. Domain decomposition methods are iterative methods, often
of conjugate gradient type, based on the idea of decomposing the domain into smaller
subdomains. In each iteration, the original problem is restricted to the subdomains and
the subproblems obtained are solved in parallel, approximately or exactly. An additional
global coarse subproblem must be introduced in order to obtain global transportation
of information and fast convergence in case of many subdomains. These algorithms can
therefore take advantage of the new generations of parallel computers, see Gropp [47].

In recent years, a general variational framework has been developed to construct
and analyze domain decomposition methods in terms of subspaces and projections, see
Dryja and Widlund [36], [39] and Widlund [87]. This allows a unified analysis of both

Schwarz methods (where there is overlap of the subregions) and substructuring methods



(where there is no overlap). In particular, the so called additive Schwarz method allows
us to analyze interesting iterative substructuring methods without using finite element
extension theorems.

In this thesis, we apply the Schwarz framework to construct and analyze domain
decomposition methods for the p-version finite element discretization of elliptic problems.
In the standard finite element methods, increased accuracy is obtained by refining the
mesh and using fixed low order polynomials on each element. This is the h-version
finite element method. In the p-version, we instead keep the mesh fixed and increase
the accuracy by increasing the degree p of each element. The hp-version combines the
two approaches. When the exact solution of the continuous problem is smooth, the p
and hp-version have convergence rates that are more than algebraic and exponential,
respectively. If the solution is not smooth, the convergence rate is at least the same as
that of the h-version and it is faster if the singularities are on interelement boundaries,
which is often the case of interest in applications, see Babugka [1], Babuska and Szabo
[7], Babuska and Elman [2].

In this introductory chapter, we review some basic definitions and results about
Sobolev spaces, the p-version finite element method and iterative methods for linear
systems of equations.

In Chapter 2, we describe first the classical alternating Schwarz method and then
the abstract Schwarz theory in Hilbert spaces.

In Chapter 3, we introduce our first algorithm for the p-version finite element method.
It is an additive Schwarz method (ASM) which uses overlapping subregions associated
with each interior mesh point. We prove that the condition number of the iteration
operator of this method is bounded by a constant independent of the degree p, the mesh
size H and the number of subdomains N. This optimal bound guarantees that the
method is parallelizable and scalable. The same result holds for three and »n dimensional
problems using a proof by induction. We then consider a variant of the algorithm on the
interface. First the interior variables are eliminated and the reduced Schur complement
is then solved by ASM. This is also an optimal algorithm. The general Schwarz theory
also allows us to prove optimal results for multiplicative algorithms, with or without

acceleration. The chapter ends with some numerical experiments in two dimensions.

In Chapter 4, we consider local refinement for the ASM of Chapter 3. In this case



some interior points are selected and associated local refinement subregions are intro-
duced. In two dimensions, we prove optimal and almost optimal bounds depending on
the boundary of the refinement region. Some technical tools of independent interest
are obtained, in particular a polynomial discrete Sobolev inequality and a result on the
decomposition of discrete harmonic polynomials. In three dimensions, we have been able
to complete only the first part of the analysis regarding refinement regions with regular
boundaries. The general case is closely connected to the classical analysis of iterative
substructuring methods, involving trace and extension theorems. For the p-version in
three dimensions, these tools have been the subject of intense research and only very
recently have some positive results been announced; see Belgacem [10] and the references
in Chapter 4. Numerical experiments in the plane conclude the chapter.

In Chapter 5, we study some iterative substructuring methods in the additive Schwarz
framework. Only the two dimensional case is considered. Almost optimal bounds are
obtained for the condition number of the iteration operator. Three dimensional itera-
tive substructuring methods are currently the subject of much research, for both A and
p-version finite elements. In the p-version case, the Schwarz analysis is more difficult,
mainly because polynomial basis functions no longer have local support and major techni-
cal tools such as extension theorems are just becoming available. Many problems remain
in this area and there are many possibilities for future research. Numerical experiments
with model problems are reported at the end of the chapter.

In the concluding chapter, we briefly comment on future directions of research and

on connections with other fields.

1.2 Functional analysis tools
1.2.1 Sobolev spaces

Let © be an open, bounded and Lipschitz set in R™. The Sobolev space W™P(Q) is
defined by
W™P(Q) = {u|D% € LP(Q), for all |a|] < m},

where o = (aq, -+, a,) is a multi-index and D® is the distributional derivative
Do 9o _ H°
dz> Qa0



With the norm

S 0%l

|| <m

HUHZ;Vm,p(Q)

W™P becomes a Banach space for 1 < p < oo. It is often useful to work with the

seminorm
|U|me(Q) = Z HDauHip Q
When p = 2, W™? = H™ becomes a Hilbert space with the inner product
(w,0)gm = > (D%u, D)
o] <m

Since we will consider second order elliptic problems in this thesis , we will mainly be
working with H1(Q) and related spaces. An important example of such spaces are the
Sobolev spaces of fractional order. If 0 < s < 1(s € R) and 1 < p < oo, we can define a
family of intermediate spaces between LF(Q) and W'?(Q):

WeP(Q) = {u € LP(Q): w € LP(Q x Q)}.
T - P

These are Banach spaces with the norm

HUH%S,p(Q) = Hu”ip(g) + |u|€vs’p(g) )

where the last term is the seminorm

Ju( y)I”
|u|€v 2 // |x—y|p3+” —————= dady.

As before, we use the notation H*(Q) = W**(Q2). Sobolev spaces of fractional order can
also be defined by interpolation between LP and W or by Fourier transform if p = 2
and © = R", see Lions and Magenes [52]. Finally, the Sobolev space W*?(Q) with s € R
not integer, s > 1 is defined as follows. We write s = m + o, with m = integer part of s

and define
WP(Q) = {u e W™P(Q): D%u € W7P(Q), Ya with |a| = m}.

We will need also Sobolev spaces defined on the boundary d€2. These spaces can in

general be defined on manifolds which are part of boundaries of regular open set of R",



see Grisvard [45]. We are interested here only in the definition of H*(9€2) for 0 < s < 1.

First, we define
12(09) = {u :/ lu|? ds < oo},
o0
with the natural norm

lellagony = ([ _luf? ds)' 2
o0

Then, we can define
HA*(09) = {u e L*(09): lu|ge(aq) < oo},

where

u(y)[?
|U|H €) /89 /&JQ |$_y|n+25 T Tiizs 4szdsy .

The norm for this space is given by

lullre a0y = H“”%?(afz) +ulFrs(aq) -

We remark that the standard definitions of Sobolev norms we have given are appropriate
for domains  with diameter O(1). We will often work in this thesis with domains of
diameter O(H ), in which case the Sobolev norms contain certain scale factors obtained

from the standard definition by a change of variables. For example, for p = 2
2 =201, 12 1 2
el () = H*“(lultna) + g llelliz)),

e 1
Hu|’12111(80) =H 2(|U|12111(aﬂ) + ﬁuu”%%aﬂ))-

1.2.2 Trace and extension theorems

One of the most important consequences of Sobolev embedding theorem is the continuity
(up to the boundary) of functions of W™P(£2) when mp > n. In this case, we have an
obvious definition of boundary value, or trace on 02, of these smooth functions. This
can be generalized to functions in H*(?) and, more generally, to functions in W*?(Q)
under specific hypotheses on the boundary of €, see Necas [67] or Lions and Magenes
[52]. We consider for simplicity 1/2 < s < 3/2, and we assume only that Q is a Lipschitz

region. For smooth domains, the result also holds for s > 3/2.



Theorem 1.1 (Trace) Let 1/2 < s < 3/2. The trace map v : u — ulsq defined from
C52(Q) to L*(99Q) can be extended by density to a linear, continuous operator from H*(Q)
to L*(09). Moreover, the range of v is H*~'/%(9Q):

v Q) H Y (09),

and

HV“HHs—lﬂ(aQ) < C(st)HUHHS(Q)-

When s = 1, the kernel of 7 is the important space H}(£):
HY(Q) = {uc HY(Q): yu = 00n 6Q}.

This space can also be defined as the closure of C§°(Q) in H'(Q) with respect to the H!-
norm. This is a proper subspace of H'(Q) and it is the maximal subspace for which the
extension by zero to the complement of 2 defines a bounded operator into H!(R™). Let
now I' be a nonempty proper subset of Q. The closure of Cg°(T) in H'/%(T') with respect
to the Hl/Q(F)—norm, which by analogy we could denote by Hé/Z(F), can be proved to
be equal to H'/%(T). On the other hand, we obtain a new subspace H(}({Q(F) c H'?(0Q)
when considering the maximal subspace of H'/%(T') for which the extension by zero to
the complement of T' defines a bounded operator into H'/2(9€). A norm on HééQ(F) is
given by
ol ey = Nl

where @ is the extension of u by zero on 9Q \ I'. For n = 2, if we parametrize the curve

I'as {z(s) : 0 < s <1}, we can define an equivalent norm by
Fluz(s)I? Flua(s))?
= |ul|? ———d ———ds.
R e e

Similar formulas also hold for n > 2; see Grisvard [45]. Hég{“)(r) is a proper subspace of

2
v

H'Y*T): the last two terms in the definition of the norm cannot be bounded in terms
of HuHip/Q(F). By using the K-method of interpolation, see Lions and Magenes [52], we

can also use the definitions
HYA(T) = [LA(L), HY(D)], 12

6



and

Hb*(T) = [LA(T), HE (D) -

Since the trace map v maps H*(£2) continuously onto Hs_l/Q(aﬂ), we can apply the

open mapping theorem to obtain an extension theorem:

Theorem 1.2 (Extension) With the same hypotheses as in the Trace Theorem 1.1,

the trace map v has a continuous right inverse I
E: H7Y(0Q) — H(Q).

Therefore, F salisfies
vEg =g, Vg € H*7Y2(9Q)

and

1E9 ) < C(2,9)lI9llge-12(50) -

For a proof and details, see Necas [67].

Trace and extension theorems are very important tools in the analysis of domain
decomposition methods. In particular, when considering finite element spaces, it is
important to obtain extension theorems with bounds independent of the discretization
parameters. For the h-version finite element method, Widlund [83] proved an extension
theorem in R™ analogous to Theorem 1.2 with the constant C' independent of h. For the
p-version, in one and two dimensions, polynomial extension theorems have been obtained
by Maday [54], Bernardi and Maday [11], Babuska, Craig, Mandel and Pitkdranta [8].
A three dimensional extension theorem for the p-version finite element method has been

announced very recently by Belgacem [10]; see Chapter 4 for more details.

1.2.3 Some inequalities

We state the following important inequalities for a region Q of diameter H. For proofs
and details, see Netas [67] and Lions and Magenes [52]. It is often very important
to establish the equivalence of certain norms. Friedrichs’ inequality proves that the

H'—seminorm is equivalent to the H'—norm on H}(Q).



Lemma 1.1 (Friedrichs) There exists a positive constant C' such that
ull L2y < CH?|ulpiqy Vu € Hg(R).

By using the following inequality, we can prove that the H'—norm and seminorm are
equivalent on the quotient space H*(2)/Qo(Q), where Q,(2) is the space of polynomials
of degree < p on ().

Lemma 1.2 (Poincaré) There exists a positive constant C'(Q) such that

1
luli) < CEOE(ulfe) + ([ wd)),  Yue H'(9).

We will study elliptic problems with Dirichlet conditions on part of the boundary I'p C
9. The natural Sobolev space in this case is H}(Q2) = {v € H*(Q) : yv = 0onl'p}. The

equivalence of H!—norm and seminorm on this space is given by the following inequality.

Lemma 1.3 (Poincaré-Friedrichs) Let I' be a subset of 0Q with positive measure.

Then there exists a posilive constant C(2,1') such that

1
lullaey < OO DNl + 37 [ lufde),  Vue HYQ).

1.3 The p-version finite element method

In this thesis, we consider linear, self adjoint, elliptic problems on a bounded Lipschitz
region 2 C R", n = 2 or 3. A discretization of the problem is obtained applying the
p-version finite element method. This is one of three standard versions of the method.
In the standard one, known as h-version, low order polynomial elements are used (of-
ten the degree p of the elements is 1 or 2) and the mesh is refined in order to increase
accuracy. Instead, in the p-version the degree of the piecewise polynomial elements is
increased in order to achieve the desired accuracy, while the mesh is fixed. The hp-
version combines these two approaches. While the standard h-version has been known
and studied extensively in the last four decades, the p and hp-versions are more recent
developments, stimulated by singular problems in structural mechanics and mechanics
of solids. Experimental programs and the first convergence proofs appeared in the late
seventies, see Szabo and Mehta [82] and Szabo [80], while theoretical analysis of the op-

timal convergence rate and approximation results appeared in the eighties, see Babuska,



Szabo and Katz [6], Babuska and Suri [4], and Dorr [32], [33]. For an overview and a
good introduction on the p-version, see Babuska and Suri [5], Babuska [1], Babuska and

Szabo [7].

1.3.1 The model problem

For simplicity, we consider the following problem in R? on a bounded Lipschitz domain

Q:

—-Au = f in £,
u o= g on 9Qp (1.1)
g—z =y on 00y .

We suppose that the boundary 0Q = 0Qp|J0QyN is a piecewise smooth curve I' =
Uf\il I';. The I'; are closed arcs (edges) with endpoints A;, A;4+1 . We can consider €2
to be a curvilinear polygon with vertices A; . This problem is a classic example of an
elliptic problem on a nonsmooth domain. The structure of its solutions, with possible
vertex singularities, is well understood in two dimensions, while only partial results are
available in the three dimensional case, in the presence of vertex and edge singularities;
see Grisvard [45] and Kondrat’ev and Oleinik [50] for details and proofs. Here we follow
the exposition of Babuska and Suri [4].

Introducing local polar coordinates (r;,6;) with the origin at the vertex A;, we can

write the solution of (1.1) in the form
M .
u:ul—l—UQ—I—Zué, (1.2)
=1
where w; is related to the solution of (1.1) with homogeneous Dirichlet conditions on
0Qp, us is related to the nonhomogeneous Dirichlet conditions and the ué’s describe the

singular behavior of the solution due to the corners of {2 or to the change of boundary

conditions. More precisely, let
HLH(Q) = {uc H'(Q)|yu = 00n 0Qp }

and

Hp(Q) = HE(Q) [V HH(9),

We can then specify the structure of the terms in (1.2):

up € HY(Q), ¢> 1,



uy € H¥(Q), u = up on d0p, k > 3/2,
uy = Ci[logri|" r;' @}(6;) x'(rs) € Hp(D)
=1
where o} > 0, aj,; > af, 7/ > 0, ®}(8;) and x'(r;) are C*° functions, x*(r;) = 1 for
0<r;<p<1/4, and x'(r;) = 0 for r; > 2p.
We will assume, without loss of generality, that ug = 0. If not, we can always
subtract from u an harmonic function w that equals ug on I'p. The standard variational

formulation of this problem is:

Find u* € V = H},(Q) such that
a(u*,v) = F(v), Yoe V, (1.3)
where

a(u,v) = / Vu-Vvdz and F(v) = / fodx + / guds .
Q Q 'y

Our analysis works equally well for any general self adjoint, continuous, coercive, bilinear
form

du 0v
b(u,v :/ a;; ——— dxdx
(7) QZ 2]a$20$] 1 2

15=1,2

since the H}—norm and the one induced by b(-,-) are equivalent:
clulfp < b(u,u) < Clulf, .

A triangulation of the region Q is introduced by dividing it into non-overlapping brick-
like elements €2; ,2 = 1,---, N, . For simplicity, we will analyze square and brick-shaped
elements; however, using afline mappings onto a reference square or cube, our analysis
also works for general quadrilateral elements. We suppose that the original region is a
union of such elements and we denote the mesh size by H.

Let (), to be the set of polynomials of degree less then or equal to p in each variable,

i.e. in two dimensions
Qp = span{a’y’ 1 0<i,j < p},

and discretize the problem with continuous, piecewise, degree p polynomial finite ele-

ments:

VP = {Ob € CO(Q) : ¢|91 € Qp7 i = 17 te '7*7\'76} .

10



Then the discrete problem takes the form:
Find uy € VH ={v € V? :v =0o0nTp} such that

a(uy,vp) = F(v,), Vv, € Vp. (1.4)

1.3.2 Approximation results

The basic approximation properties of the space VP have been established mainly by
Babugka et al. in a series of papers; see [6] and [4] for proofs and details.
Let Q = [~1,1]? be the reference square and 7;, i = 1,2,3,4, be the sides of @ and

~5 be the diagonal z1 = x5 of Q.

Theorem 1.3 Lel u € H*¥(Q). Then there exists a sequence z, € VP(Q),p=0,1,2,---
such that
lu = 2l zag) < Cp~ D Jull e () (1.5)

forkZO,qu,l,---,k;

= 2ol < Co~* Pl yaggys i = 1,75, (16)

for k> 1/2;
= 2ol < Co~® D llull gy i= 1,5, (L7)

for k> 3/2;
|(a = 2z)(2)] < Cp™ 5D Jull g gy, (1.8)

fork>1and any z € Q.

In general the constants C' depend on k, not on uw and p.

The proof is based on elaborated estimates of truncated Fourier series expansions of u;

see Babuska and Suri [4].

1.3.3 Rate of convergence

In a first paper, which appeared in 1981 (see [6]), Babugka et al. proved that the rate of
convergence of the p-version finite element method was optimal up to an arbitrary small
€ > 0, namely

lw = wpllr < C(e)p™ ¥ fu|

11



when v € H* and

[Ju = wpl| g < Cle)p2F

when the solution w has a singularity of type u = r® ,a > 0 and the vertex of the
elements is at the origin. Following computational experiments indicating that the term
€ could be removed, they were able to establish, in a paper which appeared in 1987, the

following optimal bounds, see [4].

Theorem 1.4 Let u € H*(Q), k > 3/2, be the solution of (1.1). Then there exists

u, € VPT w, = ug on T'p , such thal

lu = upllgay < Cp~ 51 |Jull g
where C' depends on the triangulation of Q and on k, but is independent of w and p.
Theorem 1.5 Let u € H¥(Q), k > 1, be the solution of (1.1) such that

u=uy + uz, uy € HE(Q), uy € H®2(Q), ko > 3/2, k1 < 3/2.

Then there exists u, € VP* w, = ug on I'p, such that

e = wpll @y < Cp™F D ul rrq)
where k = min(kq, k3).
There remains to consider the case u = u} in the decomposition (1.2), i.e.

u = 1] log r["x(r)®(6)

fora > 0,7 > 0 and x and ® smooth functions satisfying certain technical hypotheses,
see [4]. Then

Theorem 1.6 (Singular solutions) Under the previous hypotheses, there exisls u, €

VP | such that
[ = up|| g1y < Cllogp["p~>*,

where C' is independent of p.

12



These results can be summarized in the following way. Assume that the solution u of
the model problem (1.1) can be written in the form (1.2), with & > 3/2, and assume

that u, is the p-version finite element solution of the discrete problem. Then,
[|u — up”Hl(Q) < Cp~*|logp|”R.
Here, letting o = min; a? ,

p=min(q — 1,k —1,2a}) = min(q — 1,k — 1,2a),

L max{“;'{ : a{ =a} if p =2«
10 otherwise,

and

R = [lus|lgagay + lluallar) + D ICH-
1,1

1.3.4 Advantages of the p-version finite element methods

The choice of the finite element method version, h,p or hp, to be used in a specific case,
depends mainly on the properties of the exact solution w. Szabo [81] and Babuska and

Szabo [7] classify the exact solution u into three categories.

Category A: w is analytic on each finite element, including the boundaries of each finite

element.

Category B: u is analytic on each finite element, including the boundaries of each finite

element, with the exception of some of the vertices (singular points).

Category C: the mesh cannot be constructed so that singular points are at vertices or
the locations where abrupt changes occur in the derivatives of u, such as material
interfaces, are at interelement boundaries. This is usually because the locations of

singular points are solution-dependent.

According to these authors, for problems in category A, the most effective method is
the p-version, since in this case the strain energy of the approximation error decreases
exponentially with p. For problems in category B, the best method is the hp-version.

The mesh is graded so that the sizes of the elements decrease in geometric progression
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toward the singular point and the polynomial degree of the elements is increased. The
strain energy of the error decreases exponentially, provided that there is a sufficient
number of elements in the vicinity of the singular points. For problems in category C,
the h-version with adaptive mesh refinement is considered the best approach.

The large majority of solid mechanics problems solved in engineering practice are
problems in linear elastostatics and elastodynamics. These and many nonlinear problems
belong to category A or B. Therefore, the use of p and hp-version finite element methods
is of great importance in engineering design and analysis. The p and hp-version are
closely related to spectral methods, in particular to the spectral element method; see
Patera []. Traditionally, spectral methods have been used in fluid mechanics problems
in simple domains and in the context of smooth solutions. With the introduction of new
methods like the spectral element method, it has become difficult to clearly distinguish

the two approaches; see the concluding Chapter.

1.3.5 The basis functions for the p-version finite element method

In contrast to the h-version finite element method, there are only a few commercial
implementations of the p-version. The first experimental code called COMET-X was
developed at Washington University in St. Louis in the mid-seventies. In Bergamo, Italy,
the Instituto Sperimentale Modelli e Strutture (ISMES) developed a three dimensional
finite element code called FIESTA, with some p-version capabilities in the early 1980s.
The commercial system PROBE by Noetic Tech., St. Louis, was first released in 1985,
implementing p and hp-version for two dimensional problems and successively extended
to three dimensional problems. The Aeronautical Research Institute of Sweden has
developed a new three dimensional program called STRIPE.

In this thesis, we adopt the standard choice of a hierarchical basis for VP, well-
known in the literature and used for example in PROBE, consisting of nodal, side and
interior functions for n = 2. For n = 3, it includes also face functions. For a more
complete description of this and other possible bases for V7, see Babuska and Elman [2]
and Babugka, Griebel, and Pitkdranta [9]. Let us introduce this basis on the reference

square Q = [—1,1]% For j > 2, let

oi(0) =[5 [ Liatoras,
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where L; is the Legendre polynomial of degree j. The different basis functions are the

following.

a) Nodal functions:

ch’l(w,y; = %(1 + w)gl —y) ¢Nx,y) = li(l +2z)(1+y)
T,y) =3 x 1 T .

Nz, (1—2)(14y) oM (e,y) =11 -2)(1-y)
b) Side functions, 2 < j < p:
¢ (2, y) = 21+ 2)0i(y) 67 (2,y) = 3i(2)(1+ y)
6% (,y) = H(1—2)ei(y) &7 (w,9) = 1oi(2)(1 - y)

¢) Interior functions, 2 < 7,k < p:
&1 (x,y) = 65(2)or(y).

Each nodal function is associated to a vertex of the reference square (). Each side function
is associated to one side of @) and is zero on the three other sides. There are 4(p — 1)
of them in VP. The interior functions are zero on all four sides of @) (they are bubble
functions) and there are (p — 1)? of them, completing the set of (p + 1)? basis functions
needed for VP. This basis is hierarchical, meaning that the set of basis functions for VP
is contained in the set of basis functions for V?*1,

There are many other bases for the p-version finite element method, but in this thesis
we will only use the one just introduced. The stiffness matrix associated to this basis is
quite ill conditioned and the linear system representing the finite element problem needs
good preconditioners (see the next section for a definition of a preconditioner). We
illustrate here the conditioning of the stiffness matrix in the simplest case of one square
element. In the following table, we give the condition numbers of the stiffness matrix
and the submatrices associated to the interior and side functions and to their couplings
(I=interior, S=side, N=nodal). Since the first eigenvalue vanish, we define the condition
number as the ratio of the maximum and the minimum positive eigenvalues. The stiffness
submatrix associated with the nodal functions is of course singular, therefore it is not
given in the table. It is clear from the table that the condition number of the global
stiffness matrix grows like p and that this is due mainly to the coupling between interior
and side functions. This is the main motivation for eliminating first the interior functions
and using the Schur complement approach in devising domain decomposition algorithms

for the p-version finite element method; see Section 4 in Chapter 3.
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I4+S+N I S S+N | I+N I4S

1.5 1.5
22.25 1 1.3 | 5.32 1.5 22.25
36.63 4.2 2.33 | 5.32 5.25 25.55
103.73 | 10.35 | 2.68 | 5.53 | 12.77 | 103.73
159.29 | 20.31 | 2.83 | 5.53 | 25.06 | 118.62
321.16 | 35.56 | 2.90 | 5.54 | 43.87 | 321.16
462.53 | 57.80 | 2.94 | 5.54 | 71.32 | 353.68
783.61 | 89.05 | 2.96 | 5.54 | 109.86 | 783.60

0 ~1 O O W N T

Table 1.1: Condition number of stiffness matrix and submatrices

1.4 Iterative methods for linear systems of equations

The discretization of our model problem with the p-version finite element method pro-

duces a linear system of equations

Az =0, (1.9)

where the M X M matrix A is symmetric, positive definite and relatively sparse. The
system (1.9) can be solved directly or iteratively. In this thesis, we will consider iterative
solvers of conjugate gradient type preconditioned with various Schwarz methods.

Most of the engineering and commercial applications use direct solvers. Iterative
solvers, which have been mainly academic projects until recently, are beginning to be
used in large scale applications. In [59], Mandel concisely compares the two categories
in the table 1.2:

Even if iterative methods do not involve fill-in, their performance depends on the
numerical values of the problem and in particular on the spectrum of the iteration
operator and on its condition number. Mandel then summarizes the requirements for a

practical iterative method, that should be:
o Faster and require less storage than existing direct methods.

¢ Robust: handle distorted geometries, strong anisotropies, etc. It might slow down

for hard problems, but must not fail.
e Predictable: give an apriori estimate of the solution cost.
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‘ Direct ‘ Iterative ‘

Solution exact approximate
Performance nonzero structure numerical values
Solution cost predictable unknown in advance

New right-hand side cheap repeat all
Irregular geometries no problems slows down
Solution time degrades for smart methods
~ NDOF? or worse ~ NDOF
Storage required fill-in requires only original data
~ NDOF'» + small data structures
Current usage commercial use academic projects

Table 1.2: Comparison of direct and iterative methods

o Fully automated: select solution strategy using available data, transparently to the

user.

We believe that iterative solvers for the p-method based on Schwarz techniques can
eventually achieve these goals (at least the first three, the fourth being more a matter of

engineering and implementation).

1.4.1 Conjugate gradient method and preconditioning

Since the stiffness matrix A is symmetric and positive definite, the standard choice in
most domain decomposition methods is the preconditioned conjugate gradient method.
For a detailed presentation of this and other iterative methods, see Golub and Van Loan
[44]. An essential feature of the conjugate gradient method that allows its application to
domain decomposition algorithms, is that an explicit representation of A is not needed:
it is enough to be able to apply it to a given vector. In its basic form, with a tolerance

€ > 0, the conjugate gradient method is:

Set &£ = 0 and choose zg

rg = b— Axg

While |rx| > €|ro]
E=k+1
if k=1
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P1=To

else
Br = (rh—1,7h—1)/(Th—2,Th—2)
Pk = Th—1 + BrPr-1

endif

ak = (7% )/ (ks Apr)

Tp = Tk + QP

L =T — QpApg

end

Here (z,y) is the A-inner product 2T Ay. Tt is a well known result that in the absence
of round-off errors, the conjugate gradient method gives the exact solution after at most

M steps, since the search directions pp are A-conjugate:
pidp] =0, i #j.
The subspace
Wi(A,rg) = span{rg, Arg, - - -,Ak_lro} = span{po, -, Prk—1}

is called the Krylov subspace related to the matrix A and rg. An important result is
that ||z — zk||a is the norm of the difference between the initial error ¢ — z¢ and its
projection on Wy. Using results from approximation theory, it is possible to prove that

after n steps, the reduction in the A-norm of the error satisfies the bound:

VE(A) -1
VE(A) +1

Here k(A) is the condition number of A:

| — znlla <2 )*[le = o4 -

When A comes from the discretization of an elliptic problem, k(A) is usually large: for
example, in the h-version finite element method, x(A) = O(h™*™) for problems of order

2m. A preconditioner B is then introduced, with the properties that
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o k((B~YHTAB-1/?) << k(A),
e the system Bz = d is computationally easier to solve than Az = d.

The conjugate gradient method is therefore applied to the preconditioned linear system
B~'Az = B7'b.

Standard preconditioners used in practice are diagonal scaling and incomplete factoriza-
tions (e.g. Cholesky). In this thesis, we will study domain decomposition preconditioners
based on the Schwarz framework.

The condition number of A can be approximated during the conjugate gradient it-
eration by using a variant of an eigenvalues algorithm due to Lanczos [51]. Let Ry be
a matrix with columns chosen as the normalized residual vectors. It is possible to prove

that
1/a0 —\/50/040
—VBo/ao 1/ay + Bo/ag —+/Bi/ax

—\/51/041

RYAR, = J), =

is tridiagonal. Ji is the matrix representation of the restriction of the operator A to the
space spanned by the residual vectors rqg,-- -, rg_1. Since Ji is symmetric and tridiagonal,
approximations of the eigenvalues of A can be obtained from the eigenvalues of J; at a
small extra cost. Moreover, the eigenvalues of J; interlace those of Jiyq1 , therefore we
obtain improved estimates of the extreme eigenvalues at each step. See Parlett [68] for

a full discussion of the Lanczos method.

1.4.2 GMRES

In the application of some multiplicative Schwarz schemes, we need to solve linear systems
that are positive definite, but no longer symmetric. Schwarz methods can in fact be
applied to nonsymmetric and indefinite problems, see Cai and Widlund [24], [25]. In this
case, the acceleration of the algorithm with an iterative method can no longer be done
by the conjugate gradient method. Alternative iterative methods have been developed
in the last decade. In this thesis, we will consider the generalized minimum residual

method (GMRES), that has performanced well for many nonsymmetric and indefinite
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problems. For a more complete description, see Eisenstat, Elman, and Schultz [41] and
Saad and Schultz [73].

In the n-th iteration of GMRES, a correction vector z, is computed in the Krylov
space W, minimizing the norm of the residual

min [Ib = A(zo + 2.

It can be proved that in exact arithmetic, the exact solution is reached in at most M

iterations, where M is the size of A. A basic form of the GMRES algorithm is:

Choose zq

ro = b — Azg; po =10

For : = 0,1, - -, until convergence do
a; = (i, Api)/(Api, Api)
Tip1 = Ti+ ap;
riy1 =i — e Ap;
Pi+1 = Tit1 + E;':o bg'i)pi
where for j < 1, by) = —(Ari41, Ap;)/(Ap;, Ap;).

end for;

The rate of convergence of GMRES can be characterized by the two quantities

cq = inf (z, Az)
20 (z,z)
and
A
S Ve
w0 |||

In [41], Eisenstat, Elman, and Schultz have established that if ¢4 > 0, then GMRES

converges and at the n — th iteration the residual is bounded by

2
Cc
7l < (1 = Z5)"2Irol.
Ch
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Chapter 2

Domain decomposition methods

2.1 The Classical Alternating Schwarz method

This method is believed to be the oldest domain decomposition method. It was intro-
duced by H. A. Schwarz in 1870 in the case of two overlapping subregions, see [74]. In

order to find the solution u to the problem

—-Au = f in Q,
u = g on 012,

on the plane region

Q:QIU927

a sequence of functions {u,} converging to u is computed. The sequence is constructed
in the following way.

Choose an initial guess ug . Fach step consists of two fractional steps:

i) solve
_Aun+1/2 = f in le
Upyi/2 = Un on 08 .

to find w417 ;

ii) solve

—Atpyy = f in Q,
Upt1 = Upgi/2 on 08 .

to find w41 .

The convergence of the sequence u, was first proved by Schwarz using the maximum
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principle. We can write the method in a variational form, using the bilinear form
a(u,v) = /QVU-Vvdw :
i) find 6u,q1/2 € Vi = Hj(1) such that
a(dtpqq)2,v) = a(t — Uy, v), VveW

and update w, 1/9 = up + 0Upqq/9;
it) find du,qq € Vo = H3(Q2) such that

a(8tng1,v) = a(t — Upyq/9,0), Yoel

and update uy41 = Upq1/0 + OUnyr -

Define the projections P; : V — V; by
a(Pv, ¢) = a(v,¢), VoeV; (2.1)
and the error by e, = v — u,. In the two fractional steps, we have:
€nt1/2 = (I - Pren

€nt1 = (I— P2)€n+1/2

and therefore the error propagation equation is
Ent1 = (I — PQ)(I — Pl)en.

Thus the algorithm proceeds by serially projecting the error onto the orthogonal com-

plements of the subspaces.

2.2 Abstract Schwarz framework

Schwarz methods can be introduced in a general variational setting for nonsymmetric
and indefinite problems, see Cai and Widlund [24], [25], mixed problems, see Mathew
[61], [63], [62], systems of equations, see Smith [76], problems of order higher than two,
see Zhang [89]. Here we limit our discussion to symmetric, positive definite, scalar elliptic

problems.
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Let V be a finite dimensional Hilbert space with inner product a(-,-) and f a con-
tinuous linear functional on V. We want to solve the discrete problem:
Find u € V such that
a(u,v) = f(v), Voe V. (2.2)

If we introduce a basis in V, this is just a symmetric, positive definite linear system. A

Schwarz method is defined by a decomposition of V into N + 1 subspaces:
V=Vot Vit tVy.

In most applications to elliptic problems, these subspaces are related to a decomposition
of the domain 2 into subdomains ; . For example, in the classical Dryja-Widlund
algorithm introduced in [35], V; = H3(Q) NV , where V = V" is the h-version finite
element space and €} are extensions of the subdomains ;. The subspace V has a special
role: it corresponds to a coarse mesh and provides global transportation of information
in each iteration.

For each subspace, we introduce the symmetric, positive definite bilinear form
bi(+,):VixV,— R

and the operator

T,:V —=V;,

that can be regarded as an approximate projection onto V;. T;v € V; is the solution of

the following problem on V;:
bi(Tiv,w) = a(v, w), Vw e V.

This formalism allows the consideration of inexact solvers for the subproblems. If we
use exact solvers, then b;(-,-) = a(-,-) and T; = P;, the usual projection onto V;. Note
that the approximate projection T;u of the exact solution u can be computed without

knowing u by solving
bi(Tiu,v) = a(u,v) = f(v), Yv eV,
since f is given.
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2.2.1 Multiplicative methods

Multiplicative Schwarz methods generalize to N subregions the classical alternating

Schwarz method.

Classical multiplicative Schwarz algorithm:
i) compute g; = Tju, for i = 0,1,---, N;

i) given u, , compute u,4+1 in N + 1 fractional steps:

Ui =u, i +(gi—Tiu, ), 1=0,1,---,N.

Nfl—l
In general these N + 1 steps are sequential. However, if some subspaces V; are mutually
a-orthogonal, then we can solve some of these subproblems concurrently (in parallel).
In the standard case when the subspaces V; are associated to subdomains ; forming
a decomposition of {2, we can define an undirected graph in which the nodes represent
subdomains and the edges intersections of subdomains. This graph can be colored such
that no connected nodes have the same color. Subspaces of the same color are then
considered together as one subspace and the total number of sequential steps in each
iteration is decreased. Numerical experiments show that minimizing the number of
colors improves the convergence, see Cai, Gropp and Keyes [23].

It is easy to see that the error ¢; = u — u; satisfies
€ir1 = Ene;
where Fp is the multiplicative Schwarz operator
En={U-Ty){-TN-1)---(I=T1)I - Tp).

The convergence rate of the multiplicative algorithm is therefore determined by the

reduction in the error in each iteration:
|Env]e < 7]v]a -

Important theorems giving explicit bounds for v have been proved by Bramble, Pasciak,

Wang and Xu [21] and Xu [88].

Theorem 2.1 Letl there exist
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i) a constant Cy such that

N
a(v,v) < C3 Za(Tiv,v), Vo eV,

1=0

it) a constant 1 < w < 2 such that fori=10,1,---, N,

a(v,v) < wbi(v,v), Vo e Vi
ii) constants ¢;; , fori,j =1,---, N such thal
a(v;,v;) < eija(vi,vi)l/{‘)a(vj,vj)l/:), u € Vi, u; €V

Then

|Envle < 7v]vla,

with

_ |- 2—w
TV T @@y
N

Here p(&) is the spectral radius of the matriz & = {e;;};;_; -

Assumption ¢¢) and the definition of 7; imply that ||7}||, < w, see the proof given later
in Theorem 2.2. The inequalities in assumption 7¢) are known as strengthened Cauchy-
Schwarz inequalities. We remark that ¢i¢) does not make any assumption on the coarse
space, while in ¢) and ¢¢) the coarse space is included.

The classical multiplicative Schwarz algorithm can be accelerated by different itera-
tive methods. Since the polynomial I — £ does not contain any constant term, we can

compute
g=(U—-En)u

without knowing the exact solution u. We remark that for a given vector v, the matrix-

vector product vy = (I — En)v can be computed recursively by

Yo = To’l)
1 = v —|— Tl(’{) — ’Uo)
oy = oy-1+In(v—on_1).

Then, we can consider the following algorithm:
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Accelerated multiplicative Schwarz algorithm:
i) compute g = (I — En)u;

i) solve the nonsymmetric operator equation
(I-—En)jv=g
by a conjugate gradient-type iterative method, such as GMRES.

Another possibility, since we are considering the case when the T; are symmetric and
positive definite, is given by the symmetrized multiplicative Schwarz: the operator Fy
is symmetrized by doubling the number of fractional steps and reversing the order of the
subspaces. Since in this case the last forward and the first backward steps are the same,
we can avoid performing one of the two. We can then use the standard CG to accelerate

the convergence.

Symmetrized multiplicative Schwarz algorithm:
i) compute g = (I — ELEN)u ;

i) solve the symmetric operator equation
(I-EXEn)o =g
by the conjugate gradient method.

2.2.2 Additive methods

In the multiplicative Schwarz algorithm, each iteration involves N +1 or 2N 41 fractional
steps, depending on whether the classical or symmetrized version is considered. Even if
with a good coloring strategy some fractional steps can be performed concurrently, in
general there can be a relatively large number of sequential fractional steps. In order
to remove this limitation, Dryja and Widlund introduced the additive Schwarz method,
see [35], [36], [34]. Independent work on additive Schwarz methods can also be found
in Matsokin and Nepomnyaschikh [64], [66]. In recent years, the method has been
generalized in several directions, see Dryja and Widlund [39], [40].

The basic idea of the method is to work with the simplest possible polynomial T in
the operators T;’s, namely

T=To+ T+ +Ty.
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T is known as the additive Schwarz operator. Since T" does not contain any constant
term, we can compute g = T'w = 5_; T;u without knowing the exact solution u of (2.2).

The algorithm can then be written:

Additive Schwarz algorithm:
i) compute g = T'u ;

i) solve the operator equation

by the conjugate gradient method.

The convergence properties of the algorithm depend on the spectrum of T'. It is therefore
of fundamental importance to be able to estimate the condition number of 7. In order

to do this, we use two lemmas from Zhang [89].

Lemma 2.1 The additive Schwarz operator T' =3, T; is invertible and

with v; € V; . The minimum is achieved at v; = T;T 0.

Proof. We use the properties of T; and the Cauchy-Schwarz inequality:

(T v, v) = Z (T v, v;) = Z bi(T; T v, v;) <

< (b o, T ) A b, i) =

= (O a(T o, LT o)A bilws, 00) V2 = (a(T ™o, )2 biwi, 0) V2.

Therefore
(a(T™'v,v)) < Z bi(v;, v;).

Equality holds if and only if v; = T;7 v

As direct consequence of Lemma 2.1, we obtain:
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Lemma 2.2 LetT =), T;. Then

A (T) = /\maz(T_l) = max M — max min M
min v (L(’U,’U) v EUz‘ZU (Z(’U,T))

and

(T~ v, v) o bi(v )
7 —min min =~ -2,
ooy S o)

A (1) = Apin(T™) = min

v
We can now prove the main result of this section.
Theorem 2.2 Lel there exist

i) a constant Cy such that Yv € V there exists a decomposition v = Zf\;o v, v; €V,

such that

N
Zbi(ﬂi,%‘) < Céa(v,v);
1=0

ii) a constant w such that for i =0,1,---, N,

a(v,v) < wbi(v,v), Vo e Vi
iii) constants ¢;; , for i,7 =1,---, N such that
a(v;,v;) < q]'a(vi,vi)lpa(vj,vj)l/Q, v, €V, v, €V
Then
Cita(v,v) < a(Tv,v) < (p(€) + Vwa(v,v), veV.

Again, p(&) is the spectral radius of the matriz £ = {Qj}%-:l .

Proof. The left inequality is a direct consequence of Lemma 2.2: by assumption ¢),
we have A,i,(T) > C’0_2 . In order to prove the right inequality, we first remark that

assumption ¢7) implies that ||T;]|, < w:
a(Tiv, Tiv) < wbi(Tiv, Tiv) = wa(v, Tiv)
< wa(v, v) 2a(Tw, Tiw)/? .
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Therefore
a(Tiv, Tiv) < w?a(v,v).

Let us now prove the right inequality by using assumption ) and %:%):

N N N
a(z Tw,ZTiv) = Z a(Tiv,T;v)
1=1 1=1 7,7=1
N N
< Z ei;a(Tiw, Tiw) 2a(Tiv, Tjv)/? < p(E)Za(Tw,Tm)
7,j=1 1=1

IA
>
=
€
.MZ

N N
a(v,Tw) < p(é’)wa(v,v)l/?a(z Tiv,ZTiv)l/Q.

=1 =1
Therefore

N N

a(z Tiv,ZTiv) < p(€)*w?a(v,v),

=1 =1

from which follows N
a(z Tiv,v) < p(&)wa(v,v).
=1
This last inequality, added to
a(Tov,v) < wa(v,v)

completes the proof.
a

We have seen that assumption i) and Lemma 2.2 imply that A,.;,(7) > C5?. This
result is often known as Lions’ Lemma and it is a very important tool in estimating the
minimum eigenvalue of T'. See Lions [53], for the multiplicative case when N = 2, and
see Nepomnyaschikh [66] and Widlund [86] for the general case. Theorem 2.2 allows us

to estimate the condition number of 1" by
K(T) < CRolp(€) + 1),

Comparing Theorem 2.2 and 2.1, we can see that the same parameters Cyy, w and p(&)
determine bounds for the convergence rate of the additive and multiplicative variant of

the Schwarz method. However, there is no general theory comparing the two convergence
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rates and little can be said in the case of many subspaces. In the case of two subspaces the
relation between the two versions is well understood, see Bjgrstad [13] and Bjorstad and
Mandel [14]. For numerical comparison of the two versions in the case of many subspaces
using massively parallel computers, see Bjorstad and Skogen [16], Skogen [75], Gropp and
Smith [46]. In these experiments, it appears that multiplicative versions have a better
convergence rate than additive ones, but they are more expensive. The architectures of
the various parallel computers available and the nature of the applications will probably

determine which version to prefer.
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Chapter 3

Overlapping ASM for the
p-version finite element method

3.1 Introduction

In this chapter, we study some domain decomposition methods using p-version finite
elements in the Schwarz framework introduced in the previous chapter. We consider
linear, self-adjoint, second order elliptic problems and brick-shaped elements in the finite
element discretization. We show that the condition number of the iteration operator of
these algorithms is bounded by a constant independent of p, H and N. The basic result,
illustrated in the next section for an additive Schwarz method (ASM), appeared first in
Pavarino [70]. It was inspired by a similar method for the h-version described in Bramble
et al. [18] and by results of Dryja and Widlund [36]. Next, we consider a variant of the

method on the interface and some multiplicative variants.

We recall that our model problem (1.1) is given on a bounded Lipschitz region Q.
Dirichlet boundary conditions are given on I'p, a closed subset of 99 of positive measure,
and Neumann conditions are given on I'nyy = 9Q \ I'p . A triangulation of the region
is introduced by dividing it into non-overlapping brick-like elements Q; .2 = 1,---, N,
Using afline mappings onto a reference square or cube, our analysis also works for general
quadrilateral elements. We assume that the original region is a union of such elements
and we denote the mesh size by H. Where Q is locally L-shaped, we call the corre-
sponding non-convex vertex on the boundary an L-point. For every element €; in three

dimensions, we require that at most three faces belong to the boundary 9€Q. Similarly, in
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Figure 3.1: Regular and L-shaped substructures €’

two dimensions, we require that at most two sides of an element belong to the boundary.
We also assume that the other endpoint of each interior edge connected with an L-point,
is an interior point. This is always possible by choosing an appropriate mesh size H and
is not a restriction on the shape of 2. Our analysis of L-points can be generalized, in the
Dirichlet case, to cracks, i.e. to edges on the boundary of © that do not belong to the
boundary of the interior of the closure of Q. Thus,  can be a non-convex polyhedron

with cracks.

Let (), be the set of polynomials of degree less than or equal to p in each variable,

i.e. in three dimensions

Qp = span{z'y’ 2" 1 0 <i,j,k < p}.

We discretize the problem with continuous, piecewise, degree p polynomial finite ele-

ments:

VP = {qb € CO(Q) : ¢|Q1 € va i = 17 te '7*7\’76}'

Then the discrete problem takes the form:

Find u} € VH ={v € VP :v =00nTp} such that

a(u,, vy) = F(v,), Vo, e V). (3.1)
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3.2 Overlapping ASM using square elements in two di-
mensions

We now consider square elements ; in two dimension. We start by considering the
simplest case, with homogeneous Dirichlet boundary conditions everywhere. At the end
of this section, we will illustrate how to modify the method and the analysis to include
Neumann and mixed boundary conditions.

Let N be the number of interior nodes. Our finite element space is represented as

the sum of N + 1 subspaces
VE=Vi+VP+- 4V
The first space Vj serves the same purpose as the coarse space in the h-version. Here:

o V' =V}, ie. the space of continuous, piecewise 1 functions on the mesh defined

by the elements €2;;

o VI = VPN HI(Q) where Q! is the 2H x 2H open square centered at the i-th
vertex. In other words Q/ is the interior of Q;, U@, UQ, U, , see figure 3.1.

As in the h-version, the algorithm consists in solving, by an iterative method, the equa-

tion

Pu, = (FPo+ P+ ...+ Pn)uy, = g, (3.2)
where the projections P; : V], — V/” are defined by
a(Fivp, dp) = a(vp, 6p) , Vo, € V. (3.3)
gp = Ef\;o Pyu; can be computed without knowing the solution u; of (1.4) by
a( Py, ¢p) = f(0p) Vo, € VI (3.4)

The following is the main result of this chapter. It is first given here for two dimen-

sions and then extended to three in the next section.

Theorem 3.1 The operator P of the additive algorithm defined by the spaces V' satisfies
the estimate xk(P) < const. independent of p, H, and N.
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Proof. The idea of the proof is similar to a result given in Dryja and Widlund [36] for
the h-version, but the technical details are quite different. A constant upper bound for

the spectrum of P is obtained directly by noting that for ¢ > 1
a(Piup, up) = a(Pruy, Puy) = agr(Piup, Piup) < agi(up, up).

Each point is covered by no more than four subregions Q) and the norm of Fy is equal
to one; therefore A, 4. < 5.

A lower bound is obtained by using Theorem 2.2. We have to define a partition of
the finite element function w, = >N u,;, u,; € V¥, and obtain a good bound of the
constant C3. To define the first term wu, o, we can use either the L?— projection onto
Vg or a standard construction by smoothing and interpolation, see Bramble and Xu [22]

or Strang [79]. In both cases, there exists a linear map I :ve— VJ, which satisfies

lap = Frup||72(0) < CrH*|uplin g (3.5)
and
|yl ) < Caluplip - (3.6)
Let
Up,0 = jlupv Wp = Up — Upyo -

The construction of u,; requires two technical tools: a special partition of unity {6;}
and an interpolation operator I, .
Step 1: Construction of the partition of unity {6;}. In order to define {6;}, we consider

linear combinations of the standard basis functions for @) :

N
6, ¢ Vi, supp(6;) = Q 0<6,<1, ZHi(x,y)zl.

=1

We define 8; by specifying its values at the nine nodes of ﬁ; and making it zero at all
other nodes. At the interior node z;, 6;(z;) = 1. At each node z; on the boundary 0%,

two boundary edges I';, ,T;, € 0Q% meet. Let

1 if both I';, and I';, are on the boundary of Q
0i(z;) =

0 otherwise,

Some cases are illustrated in figure 3.2. It is easy to see that this construction does
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0 0 0 010 011
010

0 0 0 0 0 p
0 0 0

Figure 3.2: Partition of unity functions 8; for 2-dim regular subregions

00 0 1/2

of el—1/2 of o0
00 0 00 0
00 00
of *—o o—* o
00 0 00 0

Figure 3.3: Partition of unity functions 6; for 2-dim L-shaped subregions
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not work for L-points. Therefore, we introduce some additional subspaces. In the case
of Dirichlet boundary conditions, these additional spaces are introduced only in the
proof to obtain a good partition of unity; they are not actually needed in the algorithm,
because their functions can be decomposed into a sum of functions belonging to regular
subspaces. This will be shown in Lemma 3.2 at the end of this section. The situation is
different in the case of Neumann boundary conditions: if we want an optimal algorithm,
these special spaces have to be included in the algorithm, see the remark regarding other

boundary conditions below. For every L-point z; , let

‘/[Lpi = ‘/[p ﬂ H(} (Q/Lz)7

where Qf is the L-shaped subregion consisting of the three elements sharing the L-point
x;, see figure 3.1. Assuming that these L-shaped subregions do not overlap, we construct
f; in the same way as in the regular case. If they overlap, then 8; can be constructed in
each special case, see figure 3.3 for the cases with two L-points. Let N; be the number
of points on 02 with additional subspaces introduced for L-points. In our proof, we will
work with N 4+ Ny, subspaces V', corresponding to regular and L-shaped subregions,
respectively.

Step 2: Construction of the interpolation operator I, . It is easy to see that 6w, is
an element of VP! vanishing outside Q}. Since in our partition we need an element of
VP | we interpolate 6;w, back into V" . We define this interpolation operator I, on one
of the elements €2;; of Q% on the others the construction is completely analogous. We
transform this element into the reference square [—1, 1] x [—1,1]. Our partition of unity

function is a linear combination of the four standard V! basis functions
1
0, = Z(m +1)(y+1),

Let u,; = I,(6;w,), i.e. the polynomial in @, which interpolate 8;w, at the (p + 1)?
points (&, z,,), where the 2/ s are the zeros of the polynomial

Ly () = /1 L,(s)ds. (3.7)
Here L,(s) is the Legendre polynomial of degree p. This definition makes sense for p > 1
because £,41 has p+1 distinct real zeros in [—1,1]. In fact £,41(£1) = 0 and p—1 roots

interleave those of L,, which, as is well known, has p distinct real zeros in [—1,1]. We
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define £y = 1. We remark that while this definition of the interpolation operator is local,
we obtain an element in V. In fact, u,; is continuous across element boundaries, because
on each edge there are p + 1 interpolation points uniquely determining a polynomial of
degree p. Since I, is a linear operator, we have

N4+N;

E : Upyi = Up — Up,o -
=1

We note that
L,|q, = identitly .

Since |-|y1 is a seminorm on @),, it is natural to introduce the quotient space Qp =Qp/Qo,
on which | - |z is a norm. Clearly dim@, = (p+ 1)?, while dimé)p =(p+1)2-1.
We now need to establish that the interpolation operator is uniformly bounded in the

H!'—seminorm.

Lemma 3.1 The interpolation operator I, : Qp_H([—l, 1% — C:)p([—l, 1]%) is uniformly

bounded in the H' —norm, i.e.

|Ip(f)|H1 < ConSt'|f|H1 3 Vf € Qp-i—l([_lv 1]2) :

Proof. If f is a function of z only, then I,(f) is a function of z only and

LN lasle(NlIE
- a

Similarly, if f is a function of y only

LD ey l(DlZ:
2 - E]
| [l 132012

In general, if both % and % do not vanish identically, it is easy to see that

LN 5L (DIEe + 155Dz

2 - 5 B
|/l 152032 + 1152013

NELWDIE: | I5hUIE

- af 2 af 12
521172 1551172
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We consider the two terms separately. By symmetry, we need only to study the first

term. We form a basis for Qp-l—l using the polynomials

1 £;(y) :
. = — 1< < 1
PileV)= B TSIEPED
1 Li(z) .
i 1<i<p+l,
<b0(95 y) \/_HLZ 1HL2 _Z_p—l—
and
L; L; .
Bij(a,y) = i) Lily) I<ij<ptL (3.9)

I Zi-1llzz 1£;]le
We can disregard the space spanned by the ¢ ;’s because every function fy in that space

will not contribute to the z-term we are considering. In fact, if f = fo + f, then
J J . - J 0 -
5,1/l = N5 1o 2 and 55 e = Ml Sllee -
In the resulting space Qp-l—l of dimension p' = (p+ 2)(p+ 1), we choose the order

¢107 ¢117 tt qblp-l—la ¢207 ¢217 Tty Qb?p-l—lv R ¢p+1,07 ép-}-l,lv Tty ¢p+1,p+1-

If, for simplicity, we relabel the basis as {¢x(z,y), k =1,2,---,p'}, we obtain

pl
z,y) =Y apgr(z,y),
k=1

& . 0 iforeQp—0Q
— kz::l arly,(or) , with I,(¢r) = { b0 if 6y € Qz-lj p

The last relations follow from the fact that the coordinates of the interpolation nodes

(2, &y,) are the zeros of £,41 and Ip|Qp is the identity. Hence

P 0 P 0 Do O
HL2: Z k ¢k Z le _E kal( aﬁbk’ail) _

k|l
=al'S,a,

where (S5;)k1 = (ai, 3_¢)L2 is a symmetric, positive definite matrix of order p’. Similarly,

d

5Tl = T BS. Ba,
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where

0

is a projection matrix onto Qp . Here the identity matrices are all of order p 4+ 1, the last

zero block is of order p 4+ 2 and the other zeros are of order 1. We find

I LI _ aTBS.Ba

] T
152112 a’ Szo

The proof of Lemma 3.1 follows from a bound for the eigenvalues A of the generalized

eigenvalue problem

BS:Ba = AS;o. (3.10)

The structure of S, can be made explicit by using the orthogonality of the Legendre

polynomials and the formula

i Lny1(2) = Lpa(2)
L(s)ds = , > 1. 11
/_1 (s)ds ot 1 n > (3.11)
In fact, if ¢p(z,y) = J_LIIL¢_1II ||]£(Jy||) and ¢(z,y) = A_LIIanII J_lllﬁmyll , we find

0 0 Lioa(2) £i(y) Ln-a(z) Lin(y)
Sx =z Ob v Y )y 0] ) 2 = ) 2 =

_ (Lin®) Lna(@),  Li) Lnly))
WLicall N[ Ln—1l| Ly 1C Nl L2

This expression differs from zero iff

j—2
n=1 and m = J )
Jj+2
and therefore each row of 5, has at most three nonzero elements. They are
L, Lo
(e e =)
L L
Se)e =1 (mEmmzm) = 1
Ly Lj42
(e g




The only exceptions to this rule occur when one of the indexes is 0,1 or 2. In this case

we cannot use formula (3.11), but we can use Lo = 1 = Lo and L4(z) = [T ds=z+1 =

L1 + Lg. The exceptional elements are then

(Sz )k = (6%@,07 (.%@,1) =1 (% Hﬁlu ; N
) ) 1 >
(Sz)k = (8—$¢i07 9 - Pi2) =1 (\/— H£2H \/g
0 La(y) La(y) L— ]2
(S = (G o) = (b T ﬁ
00 Lly) Laly) !
(Seh = (g g7 %0) = U (- e = Vg

This shows that S, has the structure

Ap+2
Ap+2

Ap+2
Each block A,4, is symmetric, pentadiagonal and of order p 4 2

1 Co bo

Co 1 (4] bl

bo (5] 1 0 bg
by 0 1 0

Ap+2 = b2 0 1

The elements cg, cq and bg, by have been defined above and

[’j 'Cj-l-? )

; 722,
Lill" 15+

bj = (

By using (3.11) and HLTLH%Q[_1 1= ﬁ , we can compute the b;’s explicitly .

4 ) 8
Il = gz gal=yE

(27 =3)(2 - D)2+ 1)
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2 2
. 2
CEVCTE TR T

RN CEE O
b“‘?ﬁ%—mw+m’ 2 (3.12)

Our generalized eigenvalue problem (3.10) can now be written as

(Eﬁ Ej+2) = -

and therefore

Bpis a1
Bpis Qs
a3 =
Bpia :
0 Qp+1
Apt2 a1
Apta ay
=) as ,
Ap+2
Apta 41

where

A
Bp+22< p+1 0) .

The last zero is a scalar and the a;’s are vectors of length p 4+ 2. This is equivalent to

apy1 =0 and

( Ap1 0 ) a; = My a0, 1<i<p. (3.13)
But
Apya2 = ( Agi;l“_l li ) )
with b7 = (0,--+,0,by-1,0) = bp_leT, where e is the p—th column of the identity matrix

of order p 4 1. Therefore, (3.13) is equivalent to
Ap+1 0 v -\ Ap_|_1 b v
0 0 w b1 w |’

Mo (3.14)

l.e.

App1v = A Apy1 — b;_lee

Since ee! has rank 1, we see immediately that we have p eigenvalues equal to 1, cor-

responding to the eigenvectors v with v, = 0 . In order to find the only non-trivial
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eigenvalue, we apply the Shermann-Morrison formula (see Golub and Van Loan, [44], p

51)
1

14+ 0TA- 1y

to Apyq —bg_leeT. Clearly, A,4 is positive definite, because aTAp_Ha defines a L2-norm

(A+uv?)y ™t =A71 - Aty AT (3.15)

of a function with components {a;} , and therefore it is invertible. We obtain

b2
Apgr — b2 = A = Al eeT AL
(Apsr = by_jee)™ p+1Jr — 52 leTAp_He p+1€€ Hpyr -

With this formula, we have reduced (3.14) to the standard eigenvalue problem

Mv = (Apy1 - b§—1€€T)_1Ap+1U = Av, (3.16)
with
b;‘; 1 1 T
M=1+ A [ ee .
1—02_1eTA] e i

By substituting v € nullspace(A;ileeT) into (3.16), we see that the eigenspace corre-
sponding to A = 1 has dimension p. We obtain the non-trivial eigenvalue by substituting

v = A;ile into (3.16):

Mv=A"le+ b2 16TA p+1° AL e = ATl e = Av,
p+1 1— b2 1€TAp+1 p+1 p+1
with . o
A=l 1 i b216 eAjle e b2 16 TAl e (3:17)
1 p+1 -1 p+1

In order to obtain an upper bound for A, we need some properties of A;il and the

sequence of b;’s . Since from (3.12), b2_; < 7, we find that

1

_ 1T
1- e Ap-l—le

A<

What remains is to find a bound on eTAp_I_le = the p—th diagonal element of Ap-l—l Let
a, = det(A,) . By Cramer’s rule,

T 4—1 dp
e A e=——, 3.18
p+1 ap+1 ( )
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where the cofactor a, is the determinant of the matrix obtained from A,y; by deleting
the p-th row and column. Applying Laplace’s Theorem for the expansion of determinants

to ap41 and Gy , it is easy to prove the following recurrence relations:
2 2
Apy1 = Gp — bp_Q(ap_g — bp_3ap_3) , p >4, (3.19)

iy = ap_1 — b2_yap_3 p>4. (3.20)

(3.19) can be written as

a, — a
%27”1 = ap_y — b2 30,3, (3.21)
p—2
which shows that
ap > Gpy1 iff ap—z > b2_sa,_3. (3.22)

Since A;jl is positive definite. substituting (3.20) into (3.18) and using (3.21), we get

2
ap-1 — bp_2(lp_2 _ Opy1 — Gpy2 1 (1 N a’p-l-?) (3 23)
b2 b2 ' '
Up+1 p—1%p+1 p—1 Up+1

-1
0< eAp_l_le =

This implies that 1 — %ﬁ > 0, ie. apy1 > apy2 ,Vp. By (3.22) we then obtain

Op+2
ap+1

Gpyo > b;+1ap+1 , l.e. > b;29-|-1 ,Vp . Hence

1

T —

e Apile < b2—(1—b]29+1)
p—1

1 1

Since lim,_, b; =7 and b; < g, for every € > 0 we have b; > %(1 —¢€) for p large

enough. This gives us the desired bound
1 3+e¢

4
T 41
€ Ap+1e<i(1_1(1—€))=1_€=3+€'

for p large enough, and finally

1 4

A< = .
1-2B3+¢) 1-¢

In other words, A < const. uniformly in p . Numerical experiments in MATLAB show
that a stronger result is actually true : lim, .o A = 2.
In conclusion, we have found a bound for the z-term in (3.8):
e}
AR

152112
ozr L2

< const. .
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Reasoning in the same way for the y-term, we find from formula (3.8)

2o (f) 3
1%

which completes the proof of Lemma 3.1.

< const.,

a

We can now conclude the proof of Theorem 3.1 by applying Lemma 3.1 to bound the

H'-norm of each component up; = I,(0;w,) over a single element €y, .

|wpiltr () < C|9iwp|12t11(9k) =

00; owy 1y

ow
8—xwp‘|‘0i3—HL2 (%) ‘|‘” wp—|—0 p”%Q

= (]

06; ow ow
ER prL2 () + 116 Ee p”L2 @) T H prL2 (@) T 116 ayp”m ) -

@) <

<20(|| 5=

On a square element ; of side H , |81‘ and |%| are bounded by 1/H and, by

construction, ||6;||~ < 1. Therefore

2
2 2 2
|Up,z’|H1(Qk) < QC(ﬁprHB(Qk) + |wp|H1(Qk)) :
Since at most 4 components u,; are nonzero for any element {}; , we obtain, when

summing over ¢,
N4N;

2
> lwiltng,) < 8C(ﬁ”wp”%2(ﬂk) + |wplEay)) -
=1

and summing over all the elements €2,

N 2 2 2 2
2 Juiling < 8C(5llwnlEa e + lwlin) - (3:24)

=1
Using equations (3.5) and (3.6), we conclude

N+N,
Y lupiltngg) £ 8C(201 + Co)lupl(q) = const |up| g -

=1
By Lemma 3.2, proved below, we decompose the functions belonging to the Ny, additional

subspaces and distribute them among neighboring regular subspaces. If we still denote

by u,; the terms of the decomposition, we obtain
Z |up; |H1 < const |up|H1 @) -
By Theorem 2.2, Theorem 3.1 is then proved.
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As mentioned before, we can remove any additional subspace V" | corresponding to
an L-point, from the algorithm in the Dirichlet case. In fact, the following Lemma proves
that each function in such spaces can be decomposed, in an acceptable way, into a sum

of two functions belonging to regular subspaces.

Lemma 3.2 Let v € V}i and . be represented as in figure 3.4, with a and b internal

points. Then there exists two functions v, € VP and vy € pr such that v = v, + vy and

a(vq,vq) + a(vp, vp) < Ca(v,v).

Q;
T,
a i
Qs I'y

Figure 3.4: Decomposition of Vﬁ, in 2-dim

Proof. Define

reflection across I'y, from Q3 onto 3.

{ vin QUL
Vg =
Since the support of v, is contained in Q3 UTl', , we have v, € VP, and

[val g1 (,) = 2[val 1 (0y) = 2[0lH1(0,) < 200|102 -

v — v, vanishes on I', and by the triangle inequality |v —v4|g1(qry < 3|v|g1(qr) . We can

therefore define vy = v — v, .
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Remark: Neumann and mized boundary conditions Away from the boundary, we use
the previous regular spaces V” = VP H}(Q!). Consider now a subregion Q/: it is the
union of four squares if it is a regular subregion and it is a union of three squares if z;
is an L-point. We have to describe the case when 09} intersects 0f2.

a) If 0Q;NI'y = 0, we are in the Dirichlet case considered before.
b) If 9Q, NIy # 0, we define a Neumann subspace associated with €} as

VP = VP Hy(9),

where HY,(Q) = {v e H(Q)) : v = 00ndQ;\T'ny}. With this modification, we can repeat
the analysis given before for the Dirichlet case. The partition of unity is constructed in
the same way. If we want to prove a constant bound, we cannot eliminate the subspaces
corresponding to points z; with 9Q Ty # 0, i.e. with part of the boundary subject to
a Neumann condition. However, it is proved in the next chapter, that Lemma 3.2 can
be generalized to such a case with a bound growing logarithmically with p. Therefore,
the Neumann subspaces, regular or not, have to be included in the algorithm if we want

an optimal bound.

3.3 Overlapping ASM using cubic elements in three di-
mensions

Theorem 3.1 can be extended to dimension three and brick-shaped elements and, by
induction, to an arbitrary dimension. We assume for simplicity that the region Q C R3
is the union of non-overlapping cubic elements €2; of side H. We consider the simplest
case, with homogeneous Dirichlet boundary conditions on d€2; the extension to Neumann
and mixed boundary conditions can be carried out as in the two dimensional case. If NV

is the number of interior nodes, we represent V} as
Vp — Vg) + le 4ot V]{; ,
where
° Vp — Vl%
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00 1

1]
=N\

Figure 3.5: Partition of unity functions 6; for 3-dim regular subregions

o VP =VPNHN).

Now € is the open cube of side 2H centered at the i-th interior node.

We now prove the main theorem in dimension three. The upper bound is obtained as
before. Using the same notation as in the two dimensional case, we define a partition of
the finite element function u, , required by Theorem 2.2. u, ¢ is defined in the same way
by L?—projection or by smoothing and interpolation. The piecewise trilinear partition
of unity {6;}, needed to define u,; , is constructed in a similar way by specifying the
values of 6; at the mesh points of Q). In the closure of each subregion, there are 27 mesh

points: the center z; and the 26 nearest neighboors z; . We define: 6;(z;) = 1 and

0i(z;) = 1 if all the faces meeting at z; are on 9Q
ST 0 otherwise,

Some cases are illustrated in figure 3.5.  Again, this construction does not work for
L-points. In two dimensions, there is essentially one kind of L-shaped region, obtained

by removing one square from the union of four. In three dimensions, the situation is
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Figure 3.6: Some 3-dim L-shaped subregions

more complicated, because there are three kinds of L-shaped subregions, obtained by
removing one, two or three cubes from the union of eight (we consider only Lipschitz
subregions), see figure 3.6. It is not difficult to see that we can generalize the construction
of partition of unity functions for two dimensional L-shaped subregions to these three
dimensional cases . In our analysis, we introduce additional subspaces Vﬁ, associated
to the L-points. Because of our hypothesis on the interior edges meeting at an L-point,
we can then decompose theses additional subspaces into regular ones, in the Dirichlet
case. This is proved in Lemma 3.4 at the end of this section. Therefore, they are only
auxiliary tools in the proof and are not needed in the algorithm.

We then proceed to the definition of the components u,; using the interpolation
operator I, in three dimensions. On the reference cube [—1,1]%, 6; is a linear combination

of the eight standard V! basis functions
1
0; = g(x +1)(y+1)(z£1).

Recalling that w, = u, — upo , we define u,; = I,(6;w,) as the polynomial in @,
interpolating 6;w, at the (p + 1) points (2, @, 2,) , where the z,’s are the zeros of
the integrals of the Legendre polynomials £,4; defined in (3.7). Working again with the
quotient spaces Qp = Qp/Qo , we establish

Lemma 3.3 The interpolation operator I, : Qp_|_1([—1, 1?) — C:)p([—l, 1]3) is uniformly

bounded in the H' —norm, i.e.

|L,(f)|g2 < const.|f|p Vf € Qpra([-1,1]).
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Proof. Since

o) 2
LDl Nazle(DIZe | e le(Dlze | 15 LD
B = IR IR N
H oz L2 oy L2 0z L2

(3.25)

we need only consider one of the three terms, for example the z-term. As before, if in
one term the denominator is zero, we can prove that (3.25) is still valid after dropping

that term. We form a basis using the polynomials

Li(z) Li(y) Li(z) .
Gigi(T,y,2) = , 1<, 5,l<p+1.
(@ 9:2) = T Tl Bl

and the same modification with the constant term %= when one index is zero; cf.(3.9).

We do not consider polynomials that do not depend (;f x, because they do not contribute
to the z-term we are considering. We order the remaining basis functions in such a way
that we can use the results obtained in the two dimensional case. For every fixed I,
we have a two dimensional subspace and we order the basis of this subspace as in the
two dimensional case. We do this for [ = 0,1,---,p + 1. Relabeling the ¢; ;;’s as a one
dimensional array, we have

of

i 0
ox

5

”%2 = aTCl?a 5 Ip(f)H%Q = OéTDCIDa .

We are interested in an upper bound for the eigenvalues of the generalized eigenvalue

problem

DCDa = Ao . (3.26)
Here the stiffness matrix C,, of order p’ = (p+ 2)%(p + 1), has the structure

S$ CoSI bo
Cosz SJ; clSI blSI
boS: c15: S 0 by S,

b25$ 0 51; bp_lsx

. .. 0
by1S. 0 S,
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and the interpolation matrix D, of the same size, has the structure

B

B
0

The matrices S, and B have already been defined in Section 3. Clearly, DC,D is the

matrix ~ _ _
Sli CO:SI? bO‘S:a:
oSz Sz clﬁx b

Sz 155 )
boSe @1S: Sp 0 bS,
bS. 0 S, 0 7
bySe. 0 Sy by_15.
0

by,_15, 0 S,
where S, = BS,B . Therefore equation (3.26) gives us the block equations

Sz(a1 + cpaz + bpas) = ASz(a1 + coaz + bpas) ,

Se(bi—ati_g + a; 4+ biaiya) = ASa(biaai_g + a; + biaiys)

gx(bp—lap—l + apt1) = ASa(bp_1ap—1 + apy1) .

These are all generalized eigenvalue problems of the form
Spv = ASpv, (3.27)

where v is a linear combination of some «; . But this is the same generalized eigenvalue
problem considered in the two dimensional case; see eq. (3.10). We then apply the
two dimensional result and conclude that the eigenvalues A are bounded by a constant

independent of p. Reasoning in the same way for the terms in y and z, we complete the

proof of Lemma 3.3.
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Qs| Q4

Figure 3.7: First step in the decomposition of V]i in 3-dim

a

In order to complete the proof of Theorem 3.1 in three dimensions, we just repeat the
arguments given in the two dimensional case. We first apply Lemma 3.3 to bound the
H'-norm of each component up; = 1,(0;w,) over a single element Q. We then sum over
t, recalling that at most 8 components u,; are nonzero for any element € and finally
we sum over all elements. We conclude the proof using Lemma 3.4, proved below, to

remove the additional subspaces, and equations (3.5) and (3.6).
a

The additional subspaces Vﬁ_ associated to L-points, can be decomposed into a sum of
regular subspaces in case of Dirichlet boundary conditions. The following Lemma proves
this result using the idea of extension by reflection as in the two dimensional Lemma
3.2. We consider the more general case of 2! formed by seven elements as in figure 3.7.

Other cases follow from this one.

Lemma 3.4 Letv € V]i, and Q. be represented as in figure 3.7, with a, b, and ¢ internal
points. Then there exisls three funclions v, € VP and vy € pr and v. € VP such thal

v =10, + vy + v, and

a(vq,vq) + a(vp, vp) + a(ve, v.) < Ca(v,v).
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Proof. Define

vin QU Fr2U Fia

reflection across Fj; from €y onto €
reflection across Fj4 from ; onto Q4
reflection across Fys from Q, onto Q3

Clearly v, € V} and

[Val 111 (04) = 4lvalm1(0y) = 4l0lH1(0,) < 4lolE1(02) -

v — v, vanishes on Fjy and Fi4 and it has support in )\ €;. This subregion is now an

L-shaped plane region times [0, 1] and we can proceed as in the two dimensional case.

a

Remark: The n dimensional case. The result can be extended to any dimension by
induction. The only nontrivial part is the proof of the lemma about the interpolation
operator. The induction step from dimension n to n + 1 is essentially analogous to the
arguments in the proof of Lemma 3.3. We consider one term at a time and order the
basis in the following way: first fix the (n 4 1)-th index to be equal to 1 and order the
resulting subspace in the same way as in the case of n variables; then fix the (n + 1)-th
index to be equal to 2 and repeat the process, until the (n+1)-th index is equal to p+ 1.
With this choice, the stiffness and projection matrices have a block structure that allow
us to reduce the (n+ 1) dimensional generalized eigenvalue problem to one of dimension

n.

3.4 Overlapping ASM on the interface

The basis functions of V¥ can be hierarchically ordered into nodal, side, face, and interior
functions. On a reference, brick-like element, these polynomials vanish on 3, 4, 5 and all
faces, respectively; see Mandel [59]. Let us order first the unknowns associated with the
interior basis functions and then the ones associated with the interface I' = [ J; 99, . The
vector of unknowns can then be written z = (27, zp) and the linear system corresponding

to our discrete problem 1.4 becomes:

Kir Kip Ty . b[
fir?B Kggp B o b )
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Eliminating the interior variables z; from the system, we are left with the Schur com-

plement equation

S$B = I;Bv
where
_ T g1 7 A |
S—ABB_E[BA[[ ]\IB and bB_bB_BIBEII b[.
The interior unknowns x; are then the solution of the system

Kz =0b; — Kipep,

which naturally decouples element by element and can be solved in parallel. The re-
duced Schur complement is solved with the overlapping ASM introduced in the previous
Section. Now only the interface unknowns are involved and the Schur complement is
better conditioned than the original system.

It is easy to see that the variational formulation of the discrete problem is now:

Find u} € f’g such that

a(w),vy) = f(vp), Vo, € f/g , (3.28)

p?

where f/g is the subspace of the discrete harmonic functions of V5. A function v € V¥

is discrete harmonic if

a(v,¢) =0,

for every ¢ € VP that vanishes on the interface I'. In other terms, v = (vy, vg) is discrete

harmonic if

Kyjvr + Kigvg = 0.

The algorithm is defined by the following decomposition of ‘75:

f/g :IT’§+ITflp_|_...+ff]€’
where
° f/p — Véo

. f’ip =yr ﬂH(}(Q;) and the Q}’s are defined as before;
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In terms of projections P; : f/g — Vip , the method solves the linear operator equation
Pu,=(Po+ P+ + Py)u, = g, , (3.29)

by an iterative method such as the conjugate gradient. We can then prove the analogue

of Theorem 3.1:

Theorem 3.2 The operator P of the additive algorithm defined by the spaces f’ip satisfies
the estimate k(P) < const. independent of p, H and N .

Proof. The proof of the upper bound is the same as in Theorem 3.1. To obtain a
lower bound, we use the decomposition of a function of Vg C V}; obtained in the proof

of Theorem 3.1:

N N
Uy = Zup,i and Za(um,um) < Cialay, @y).

We then restrict each component u,; to I' and extend it as a discrete harmonic poly-
nomial u,; € Vip . Since the discrete harmonic extension is the one that minimizes the

energy, we have obtained the desired decomposition.

3.5 Overlapping Multiplicative Schwarz methods

We consider now some multiplicative schemes (MSM) based on the space decomposition

introduced before:

VE=Vo + V4 Vi,
with:
. VI =V,
o VI = VPN HID).
In terms of projections P; : V}, — VI the algorithm can be written:
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MSM algorithm:
i) compute g; = Pu, fori =0,1,---, N;

i) given u, , compute u,41 in N + 1 fractional steps:

i —I-(gZ'—PZ"un_I_ ),iIO,l,---,IV.

N
Using the estimates for the constant p(£) and Cy obtained in the previous sections

for the additive scheme, we can easily apply Theorem 2.1 and obtain:

Theorem 3.3 The MSM defined by the spaces V' is convergent and the convergence rate
1s tndependent of p, H and N. This holds in any dimension and also for the algorithms

accelerated with GMRES or CG.

For a more detailed description of the accelerated versions of MSM, see Chapter 2.
As for the additive case, we can consider these multiplicative schemes (accelerated or
not) on the interface, namely, we can apply them to solve the Schur complement system
obtained after eliminating the interior unknowns. The results proved in the additive case

can then be translated into the multiplicative case by considering the discrete harmonic

subspaces VP of VI :

Theorem 3.4 The MSM on the inlerface defined by the spaces ‘N/Z-p s convergenl and
the convergence rate is in in two dimensionsdependent of p, H and N. This holds in any

dimension and also for the algorithms accelerated with GMRES or CG.

3.6 Numerical experiments in two dimensions

In this section, we describe some numerical experiments with the additive Schwarz p-
methods introduced previously. In these experiments, we are not concerned with the
issue of parallel or efficient implementation of the method; the main goal here is to
verify our theoretical results and to get a sense of the sharpness of the bounds.

For general considerations about parallel implementation of domain decomposition
algorithms, see Keyes and Gropp [49], [48], Gropp [47]. For numerical experiments
with h-version Schwarz methods and different parallel architectures, see Bjgrstad, Moe,
and Skogen [15], Bjgrstad and Skogen [16], Moe [65], Skogen [75], Gropp and Smith
[46], Smith [78]. A detailed analysis of the parallel implementation of the hp-version
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finite element method can be found in Babugka, Elman, and Markley [3]. For numerical
experiments with other important methods using the p-version finite element method
and iterative substructuring ideas, see Babugka, Craig, Mandel, and Pitkdranta [8] and
Mandel [56], [57], [58], [55] for three dimensional experiments.

The programs, written in MATLAB, have been run on Sun Sparc workstations. We
have considered the Poisson equation in two dimensions with homogeneous Dirichlet
boundary conditions. The equation Pu, = g, is solved iteratively using the conjugate
gradient method. The iteration process is stopped when the relative /?—norm of the
residual is less than 1079, The eigenvalues of P are approximated by using the Lanczos
method. In the following tables, x(P) = i’;ﬁ and k(L) are the condition number of
the operator P and of the stiffness matrix K respectively. [? — err is the normalized

I?~mnorm of the error u — u,, for cases when the exact solution u is available.

3.6.1 Overlapping ASM

We consider first a problem with a trigonometric exact solution.
Problem 1:
{ —Au = —QCL;sm(%x)sm(%y) in Q,
v = 0 on 0N

We consider three decompositions of a square region 2 into 9, 16 and 25 elements (4, 9, 16
subregions, respectively). The constant ¢ is chosen such that the right hand side vanishes
on Jf). The graph of the solution u is illustrated in figure 3.8 and the numerical results
are reported in table 3.1. In this case, A4, is constant, while A,,;, oscillates and seems
to converge as p increases. The condition number is clearly bounded independently of p
and the number N of subregions. The number of iterations increases with the number
of subregions, but we remark that the theoretical bound for the number of iterations is
2V/K(P)log(2-10?) ~ 21.4. The algorithm is therefore performing better than expected
and this is probably due to the distribution of the other eigenvalues of the spectrum
of P. Numerical quadrature is used to compute the right hand side g with tolerance
~ 1078 . This affects the precision reached by the algorithm for p = 7 and 8, see Table
3.1.

Next, we consider a problem on an L-shaped region, which can have singular solutions

due to the presence of corners in the non convex domain 2. We decompose the region
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into 27 elements and 16 subregions.
Problem 2:

—Au = 1 in Q,
u = 0 on 02

The graph of the solution u is shown in figure 3.9, and table 3.2 reports the numerical
results. Again, A,q. is constant. A, decreases monotonically and x(P) grows very
slowly and seems to converge when p is increased.

We also run the algorithm without the coarse space V{' , see tables 3.5 and 3.6
for results for problem 1 and 2, respectively. The theory says that in this case the
condition number grows proportionally to the number of subdomains across the domain,
see Widlund [84]. This is confirmed by our results. Note that in the absence of the
coarse space Apq; does not change, while A,,;, decreases considerably. In this case the
number of iterations is much better than the theoretical prediction using the condition
number.

In figures 3.10, 3.11, 3.12, 3.13, we report also some graphs plotting the convergence
history of the basic overlapping ASM for problems 1 for N = 9,16 and p = 8, with
and without coarse space. It is interesting to note that without a coarse space the
convergence of the algorithm is worse only in the first few iterations. After this bad

start, the convergence is essentially the same as in the algorithm with coarse space.

3.6.2 Overlapping ASM on the interface

We consider now the additive method on the interface for problem 1, see table 3.3.
Here 5 is the unpreconditioned Schur complement. We remark on the better condition
number compared with the previous ASM without interior variables elimination, since
the Schur complement is better conditioned. A,;, is almost the same, while A4, in
now smaller. This is due to the fact that now there is less overlap between subspaces.
However, the cost of eliminating the interior variables and the cost of the local interior
solvers have to be considered in addition to the conjugate gradient cost. In table 3.4,
we consider problem 2 on the same L-shaped region. We similarly obtain an improved
condition number and number of iterations; A,,;, is still the same, while A, is smaller

and no longer constant.
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3.6.3 Overlapping MSM

We consider here three multiplicative schemes: the classical Schwarz (MSM), the acceler-
ated version using GMRES (MSGMRES) and the accelerated symmetrized version using
conjugate gradient (MSCG). The algorithms are run on the model problems described
before and the iteration process is stopped when the normalized /?—norm of the residual
p is less than 107°. Results for problem 1 on a square region and for problem 2 on
a L-shaped region, are given in Table 3.7 and Table 3.8 respectively. The convergence
history in the two cases for p = 8 and N = 16 is illustrated in the two graphs of figure
3.14 and 3.15. The theoretical results are clearly confirmed: the number or iterations
and the condition number of the MSCG operator are bounded independently of p and
N. In comparing these methods, we must take into consideration the different amount
of work required in each iteration. In particular, the MSCG operator requires twice the
number of fractional steps required by the other two operators. For the easier problem
1, the effect of the acceleration is almost negligible. This shows that for this kind of
problems, classical MSM is already a good preconditioner. The advantage of the accel-
eration becomes visible for the harder problem 2, where MSGMRES and MSCG are still
running in a constant small number of iterations, but MSM start needing more iterations
for larger p. Considering the amount of work per iteration, MSGMRES seems to be the
best method in these experiments. In figure 3.14 and 3.15, we show the convergence

history for problem 1 and 2 with N = 16 and p = 8.
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Figure 3.8: Solution u of problem 1

Figure 3.9: Solution u of problem 2
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N | p|unkn. | &(K) | &(P) | Mpaz | Amin | iter. | 2 —err
3 64 56.2 | 4.2119 4 0.9497 | 10 0.0083
4 121 154.16 | 4.1138 4 0.9723 | 11 | 8.4248e-4
4 |5 196 275.68 | 4.1414 4 0.9659 | 12 | 7.1026e-5
6 289 539.04 | 4.1112 4 0.9730 | 13 | 5.1892e-6
7 400 844.81 | 4.1032 4 0.9748 | 12 | 3.4483e-7
8 529 1399.2 | 4.0919 4 0.9775 | 13 | 3.0349e-8
3 121 65.75 | 4.2105 4 0.9501 | 14 0.0027
4 225 188.83 | 4.2467 4 0.9419 | 15 | 2.0497e-4
9 |5 361 319.48 | 4.1640 4 0.9606 | 15 | 1.2917e-5
6 529 639.97 | 4.1830 4 0.9563 | 15 | 7.0414e-7
7 729 972.19 | 4.1614 4 0.9612 | 15 | 3.6437e-8
8 961 1634.3 | 4.1705 4 0.9591 | 16 | 3.6643e-8
3 196 71.60 | 4.1825 4 0.9564 | 16 0.0011
4| 361 210.16 | 4.2717 4 0.9364 | 16 | 6.7965e-5
16 | 5 576 311.28 | 4.2090 4 0.9504 | 16 | 3.4208e-6
6 841 701.34 | 4.2304 4 0.9455 | 16 1.4984e-7
71 1156 | 959.90 | 4.2108 4 0.9499 | 16 | 5.3302e-8
8| 1521 | 1776.8 | 4.2202 4 0.9478 | 17 | 6.4125e-8
Table 3.1: ASM for problem 1
p | unkn. | K(K) | K(P) | Mmaz | Amin | iter.
3 208 69.99 | 5.3761 4 0.7440 | 18
4 385 202.51 | 5.6790 4 0.7043 | 19
5 616 339.52 | 5.8843 4 0.6798 | 19
6 901 682.67 | 6.0414 4 0.6621 | 20
7| 1240 | 884.55 | 6.1633 4 0.6490 | 20
8 | 1633 | 2255.1 | 6.2626 4 0.6387 | 20

Table 3.2: ASM for problem 2 on an L-shaped region




N | p | unkn. k(S) k(P) Amaz Amin | iter. | 2 —err
3 28 13.0218 | 2.4872 | 2.3621 | 0.9497 4 0.0083
4 40 23.4768 | 2.3548 | 2.3683 | 1.0057 5 8.4248e-4
4 15 52 31.3066 | 2.4511 | 2.3673 | 0.9658 7 7.1026e-5
6 64 45.5085 | 2.3646 | 2.3675 | 1.0012 7 5.1892e-6
7 76 56.7395 | 2.4289 | 2.3674 | 0.9747 8 3.4483e-7
8 88 74.5727 | 2.3648 | 2.3674 | 1.0011 7 3.0349e-8
3 57 15.2793 | 2.2454 | 2.2454 | 1.0000 4 0.0027
4 81 28.3993 | 2.2449 | 2.2449 | 1.0000 5 2.0497e-4
9 |5 105 36.2878 | 2.2449 | 2.2449 | 1.0000 6 1.2917e-5
6 129 53.6689 | 2.2449 | 2.2449 | 1.0000 6 7.0414e-7
7 153 65.3747 | 2.2449 | 2.2449 | 1.0000 6 3.6437e-8
8 177 | 86.8770 | 2.2449 | 2.2449 | 1.0000 6 3.6643e-8
3 96 16.6324 | 3.0655 | 2.8946 | 0.9443 | 11 0.0011
4 136 31.3978 | 2.9832 | 2.9088 | 0.9751 | 13 | 6.7965e-5
16 | 5 176 39.2160 | 2.9536 | 2.9152 | 0.9870 | 13 | 3.4208e-6
6 216 58.4926 | 2.9696 | 2.9187 | 0.9828 | 13 | 1.4984e-7
7 256 70.4135 | 2.9602 | 2.9211 | 0.9868 | 13 | 5.3302e-8
8 296 94.0759 | 2.9659 | 2.9226 | 0.9854 | 13 | 6.4125e-8

Table 3.3: ASM on the interface for problem 1

p | unkn. k(S) k(P) Amaz Ain | iter.
3 16.3266 | 4.0267 | 2.9960 | 0.7440 | 18
4 30.4453 | 4.2864 | 3.0191 | 0.7043 | 18
5 184 | 38.6854 | 4.4587 | 3.0309 | 0.6798 | 18
6 57.3283 | 4.5891 | 3.0384 | 0.6621 | 19
7 68.7481 | 4.6895 | 3.0435 | 0.6490 | 19
8 92.6457 | 4.7708 | 3.0472 | 0.6387 | 19

Table 3.4: ASM on the interface for problem 2 on an L-shaped region
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N | degree p | k(P) Amaz | Amin | # of iter.
3 6.4899 4 0.6163 10
4 6.5005 4 0.6153 11
4 H 6.4868 4 0.6166 12
6 6.4891 4 0.6164 13
7 6.4856 4 0.6167 12
8 6.4869 4 0.6166 14
3 9.9679 4 0.4013 14
4 9.9771 4 0.4009 15
9 H 9.9345 4 0.4026 15
6 9.9371 4 0.4025 16
7 9.9245 4 0.4030 16
8 9.9245 4 0.4030 16
3 14.5548 4 0.2748 17
4 14.5560 4 0.2748 18
16 5 14.48432 4 0.2762 18
6 14.4855 4 0.2761 19
7 14.4638 4 0.2766 19
8 14.4644 4 0.2765 19

Table 3.5: ASM without coarse space for problem 1

p| K(P) Amaz | Amin | iter.
3| 11.4241 4 0.3501 | 21
41 11.4573 4 0.3491 | 22
5| 11.4354 4 0.3498 | 23
6 | 11.4459 4 0.3495 | 23
7| 11.4412 4 0.3496 | 23
& | 11.4458 4 0.3495 | 24

Table 3.6: ASM without coarse space for problem 2
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Figure 3.10: Convergence history: ASM for pb.1, N =9, p = 8.
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Figure 3.11: Convergence history: ASM for pb.1, N = 16, p = 8.
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Figure 3.12: Convergence history: ASM for pb.1 without coarse space, N =9, p = 8.
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Figure 3.13: Convergence history: ASM for pb.1 without coarse space, N = 16, p = 8.
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MSGMRES MSCG MSM
N |p iter. iter.  K(P) = Anaz/Amin | iter. 12 —err
3 5 4 1.0097 = 1 / 0.9904 6 0.0083
4 5 3 1.0065 = 1 / 0.9935 6 8.4248e-4
415 5 4 1.0076 = 1 / 0.9925 6 7.1026e-5
6 5 4 1.0086 =1/ 0.9915 6 5.1892e-6
7 5 4 1.0086 =1/ 0.9914 6 3.4483e-7
8 5 4 1.0088 =1 /0.9913 6 3.0349e-8
3 6 4 1.0115 =1/ 0.9886 6 0.0027
4 6 4 1.0098 =1/ 0.9903 6 2.0497e-4
9 |5 6 4 1.0098 =1/ 0.9903 6 1.2917e-5
6 6 4 1.0097 = 1 / 0.9904 6 7.0414e-7
7 6 4 1.0096 = 1 / 0.9904 6 3.6437e-8
8 6 4 1.0097 = 1 / 0.9904 6 3.6643e-8
3 6 4 1.0114 =1/ 0.9887 6 0.0011
4 6 4 1.0152 =1/ 0.9850 6 6.7965e-5
16 | 5 6 4 1.0141 =1 / 0.9861 6 3.4208e-6
6 6 4 1.0150 = 1 / 0.9852 6 1.4984e-7
7 6 4 1.0144 = 1 / 0.9858 6 5.3302e-8
8 6 4 1.0147 =1/ 0.9855 6 6.4125e-8
Table 3.7: Multiplicative methods for problem 1
MSGMRES MSCG MSM
P iter. iter.  K(P) = Mnaz/Amin | iter.
3 7 5 1.0772=1/0.9284 9
4 7 5 1.0997 =1/ 0.9093 10
5 7 5 1.1167 =1 / 0.8955 10
6 7 5 1.1304 =1 / 0.8847 10
7 7 5 1.1414 = 1 / 0.8761 11
8 7 5 1.1505 =1 / 0.8691 11

Table 3.8: Multiplicative methods for problem 2 on an L-shaped region
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Figure 3.14: Convergence history: MSM for pb.1, N = 16, p = 8.
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Figure 3.15: Convergence history: MSM for pb.2, N = 16, p = 8.
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Chapter 4

Local refinement for overlapping
Schwarz methods

4.1 Introduction

In the previous chapter, we studied a domain decomposition method using p-version
finite elements in the Schwarz framework. We showed that the condition number of the
ASM iteration operator is bounded by a constant independent of p, H and the number
of subdomains. Here we consider a variant of the method based on local refinement.
It is inspired by work Bramble, Ewing, Parashkevov, and Pasciak for the h-version fi-
nite element method, see [17], [18], and can be of interest in many applications where
the accuracy of the numerical solution needs to be increased only in certain parts of the
domain. For standard h-version finite elements, local refinement can be introduced by se-
lecting and refining some elements of a coarse triangulation. This process can be applied
recursively and multilevel methods considered. For the p-version finite element method
considered here, local refinement consists in increasing the order p of the polynomial

basis functions only in selected elements of the fixed triangulation.

4.2 An overlapping ASM with local refinement in two
dimensions

We consider the same model problem 1.3 for linear, self adjoint, second order elliptic
problems, on a bounded Lipschitz region @ C R? with homogeneous Dirichlet boundary

conditions. The discrete problem is given by the p-version finite element method. As

67



before, the original region € is a union of non-overlapping square elements Q; ;7 =
1,-+-+, No, with mesh size H. Let N be the number of interior mesh points. With

refinement everywhere, we have the finite element space
Vp = VpﬂH&(Q).

In the case of local refinement, we select N" < N interior nodes. Let I" be the set of
refinement indexes. With each selected interior node z;, we associate a subdomain €,

defined as the 2H x 2H open square centered at x;. The region of refinement is then
Q. =9, il
and the finite element space
‘/'rp — ‘/Op _I_ le _I_ ... _I_ ‘//]]\?T .
o VI =V}, is the analogue of the h-version coarse space;
o VI = VPN H}(Q) are the local spaces.

The discrete problem is then:
Find u; € VP such that

a(ul,v,) = f(vp), Vo,e VP. (4.1)

p?
As before, the algorithm consists in solving, by an iterative method, the equation
Pu,=(Po+ P+ ...+ Py, )up, = g, (4.2)

with the projections P; : VP — VI,

The main result of this chapter is:

Theorem 4.1 Let Q@ C R?. The operator P of the additive algorithm defined by the
spaces VP salisfies the estimate

k(P) < const.

if there are no isolated points on 0L),, and
K(P) < C(1+ log p)?

otherwise.
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A point on 99, is isolated if it is not a limit (accumulation) point of 94, ; see the section
on numerical experiments for examples. Before proving this theorem, we need to develop
some technical results concerning the decomposition of discrete harmonic polynomials as
well as review some classical tools in approximation theory such as Markov’s inequality.

We recall that a polynomial w € (), on an element ; is discrete harmonic if
a(w,¢) =0, V¢ €@, that vanish on 09;.

A piecewise polynomial function w € V? defined on Q is discrete harmonic if it is so on

each element, i.e. if
a(w,¢) =0, V¢ € VP that vanish on the interface I' = U 01;.
4.2.1 Preliminary results
We will use the classical Markov’s theorem:
Theorem 4.2 If v is a polynomial of degree p on I = [—1,1], then
max [v'(2)] < p* max[v(z)],

with equality only for v = £T),, the Chebyshev polynomial of degree p. This inequalily is

not scale invariant: on the interval I=[—H, H]

2
P
max|o'(2)] < 2= max |o(2).

A proof and many useful generalizations can be found in Rivlin [72]. The following result

is stated and proved as Lemma 2.2 in Bramble and Xu [22]:

Lemma 4.1 If D is a bounded domain in R? and 0D is Lipschitz conlinuous, then
[]| ooy < C(|log el g1 (py + €llwllwro ()

for every function w € WH*(D) and any € € (0,1).

With this lemma, we can prove a Sobolev-like inequality for polynomial finite element:
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Lemma 4.2 If u, € Q,(%;), where Q; is an element of diameter H, then
[tpll7 0 () < C(L+10g p)luplliq,)-
Proof. Apply Lemma 4.1 to w = u, on one element D = Q;:
lupllre < C(|log e ?uy||r + ellupllwroo ).
The W1 —norm is not scale invariant: on an element Q; of diameter H
upllwo @iy = lupllLec(ay + HIIVupllzeq,) -

By Markov’s inequality:

2
P
lupllwreo () < (L4 H Dl @) = (14 POyl )

Choosing € = we obtain:

_1_
4Cp2 ?

1—|—p2

lusllzi@y < Cllog 4C + 2log plluyllm o) + 5=

llpl Lo ()

and finally
[tpl 7000,y < C(1+1og p)lupl|Fa g,y

Corollary 4.1 If u, of Lemma 4.2 vanishes al some point in §); , then
llpl| 700 (@) < C(1+1ogp)lup + allfq,),
for every constant a.
Proof. Use the inequality
luplloo < llup + alfloo + [[efloo < 2]lup + allo

and apply Lemma 4.2.
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Corollary 4.2 If 3 is any value of u, in §;, then
[ty = Bll7 e (0,) < C(L+1ogp)|uplpg,)-

Proof. Consider the inf over a in the estimate of Corollary 4.1. By a quotient space
argument we obtain

l[upllZee < C(1+log p)luylip.
Then, just apply this estimate to u, — 3.

d

One of the main tools we are going to use is the following p-version analog of Lemma

3.2 in Widlund [84]:

Lemma 4.3 Letw € ), be a discrete harmonic polynomial on a square element ();, that
vanishes at the vertices of Q; . Then there exist discrelte harmonic polynomials w; € @,

with nonzero boundary values only on one side I'; of Q; , such that w =3 ; w; and

2_lwilingaq, < C(1+ logp)lwliq,)-
J

Proof. Yor each side I';, we define
w onl';
w; =14 0onl; #I;

discrete harmonic extension in €2; .

Clearly w = 3_; w;. By definition

P w(a(s) - v
|w]|H1/2(8Qi) = /391 /BQi )= a()? dsds’.

|z(s

Since 9Q; = J;T; we have:

12 _ 12 |w(z(s)) — w(z(sNI*
|w]|Hl/2(8Q¢) - ZJ: |wg|H1/2(r]) + ;/n /FJ =25 dsds'.

|2 (s
The first terms can be bounded using the trace theorem:
2 2 2 2
|wj|H1/2(r]) = |w|H1/2(FJ) < |w|H1/2(aQ€) < C|w|H1(Qi)'
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Now consider one of the other terms. We parametrize the double integral as
/H /0 w(elo) ~w D
o Jon Ta(s) —a(s)]

This integral can be estlmated by

|2
4/ / |5—s’|2 ds’ds—|—4/ / |s—s’|2 ds’d5§
H
<4/ |w ds—4/ ds’,

and bound it by

because

and similarly

/HL <1
o (s—s)2 = &

We divide each resulting integral into two:

[ IECODE D 7 (e

s s H/p2 s

We estimate the first term by using the mean value theorem and Markov’s inequality.

/p? w(z(s))|? /v w x(s)—«x 2
[ D g, _ [ g lefe) =0 5,

K] K] -

2 H/p* —z(0))? 2 H/p?
p TS Z P
< Ol [ O o (g, [ s ds =

S

2
p 1 H
= BP0l )35 = 510l mia.

since z(s) — z(0) = s. We estimate the second term by using the discrete Sobolev

inequality of Corollary 4.2.

H 2
/ [ DE gs < Y] ey 108 sy
H/p? s H/p?

< C(141log p)?|wling

= 2log pllwl|e(q,) <

Combining these estimates, we obtain the result.
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We can prove, in essentially the same way, the result:

Lemma 4.4 Under the same hypotheses as in Lemma 4.3,

J

We will need the following two dimensional extension theorem for polynomial finite
element functions. The proof can be found in Babugka et al. [8] or Bernardi and Maday

[11].

Theorem 4.3 Let Q; be a square element and f € Hl/{‘)((?ﬂi) be a polynomial of degree
p on each side of ;. Then there exists a polynomial u € Q,(£;) such that w = f on
o), and

el < Cllifllarean,):-

Using this extension theorem, it is possible to prove the following p-version analog of

a Lemma of Bramble et al. [18]. It is a generalization of Lemma 3.2 of Chapter 3.

Lemma 4.5 Consider an interior node x; with ils associated subdomain . and let
I';,j = 1,2,3,4, denole the four edges connecting x; and 0SY. (see the figure 4.1). Let
w; € VE = VP H(Q)) be a discrete harmonic polynomial that vanishes at the interior
node z; . Let w;; be the discrete harmonic polynomial that equals w; on I'; and vanishes

on the remaining edges.

Then w; = Z]- w;; and
> a(wij, wij) < Ca(w;, w;)
J

if w; vanishes on al least one of the I';, otherwise

Y alwij, wij) < C(1+ log p) a(wi, w;).

J
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Qg FQ QQ
Ls Ly

Lg

Q4 O

Figure 4.1: Decomposition of w; in 2-dim

Proof. a) Let suppose that w; = 0 on the edge I'y. We start by constructing w;; with
support in Q; Q2 JT;:

w; on 7 UTy
Wi =

reflection across I'y from 4 onto £25.

Clearly wy; is discrete harmonic, since w; is, and

\wit| gy ary = 2|lwalmia,) = 2lwilgia,) < 2lwilgiar)-

Now w; — w;; is discrete harmonic, vanishes on I'y and, by the triangle inequality, |w; —
wi1|Hl(Q{) < 3|wi|H1(Q{). We can therefore construct w;y with support in Q9 Q3 J T2

in the same way:

w; — w;; on Qy Uy
Wi = .
¢ reflection across I's from 25 onto £23.

wiy is discrete harmonic, [wia|f1 gy < 6|wilpi (g and [wi — wir — wia|g1qr) < Y wilmq -

Finally, we construct w;z with support in Q3JQs U5 :

w; — w;p — wyg on Q3 Uy
Wiz = .
! reflection across I's from 23 onto £24.

Again, w;3 is discrete harmonic and |w;s|g1(qry < 18|wi|g1(qr).-
2 2

Therefore 2?21 w;; = w; and 2?21 a(w;j, wi;) < Ca(w;, w;).
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b) We suppose now that w; does not vanish identically on any I';. Consider one of
the four elements of Q., for example Q. w; vanishes on the two edges of £; that are on
the boundary of Q! and differs from zero on the other two interior edges I'y and T'y. We
want to write w; as a sum of two discrete harmonic functions each different from zero
on only one of the interior edges. This can be done by using lemma 4.3; we can find
two discrete harmonic polynomials w;; and w;4 with nonzero values only on I'y and I'4,

respectively, such that

|wi1|121[1/2(391) + |wi4|12q1/2(391) < C(l + 1ng)2|wi|121[1(91) :

By the polynomial extension Theorem 4.3

walip @) < Clualipron,

Therefore

|w2-1|%11(91) <C(1+ 1ng)2|wi|%[1(91)
and the same inequality holds for w;4.
Repeating the process on the other elements in Q, we obtain eight discrete harmonic
polynomials. Combining the pairs corresponding to the same interior edge, where they
have the same values by definition, we finally obtain the four discrete harmonic piecewise

polynomials with the desired properties.

4.2.2 Proof of the main result

We can now proceed to prove Theorem 4.1. As in the case with refinement everywhere
studied in [70], we base the proof on the Schwarz framework of Dryja and Widlund [36].
A constant upper bound for the spectrum of P is obtained by noting that for ¢ > 1

a( Piup, up) = a( Piup, Piup) = aq(Piuy, Prup) < agr (up, up).

Each point is covered by no more than four subregions €} and the norm of F; is equal
to one, therefore A, 4. < 5.
A lower bound is obtained by using Theorem 2.2 and Lemma 4.5 and defining a

partition of w € VP with the required properties. We start by defining ug € V3§ by
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specifying its values at the interior nodes z;:

uo(z;) = { Qru(z;) ifz; € Q,

Here Qg is the Ly-projection of VP onto Vj. It has the properties
I(1 = Qu)ovllaqy < CH a(v,v)

a(Quv,Quv) < Ca(v,v)

for every function v € H}(2), see Bramble and Xu, [22]. Since u — ug = 0 outside €.,

we have

ag(u — ug,u — ug) = aq, (¥ — ug, ¥ — ug).

Using the triangle inequality, we have
_ N2 _ _ _ _N1/2
a(u —ug,u— ug)'* = aqg, (v — Quu+ Quu — vo,u — Quu+ Quu — ug) /= <
a'Qr((I - QH)U’ (I - QH)U)I/Z —I_ a’QT(QHu - UO, QHU - u0)1/2

< Ca(u,u)'? + ag, (Quu — uo, Qru — ug)*/2.

By definition Qgzu — ug = 0 in 0, except in those elements §2; with at least one vertex
on 09Q,. Therefore, expanding Qru — ug = >_;(Quu — ug)(x;)¢; in the nodal basis and

using the properties of (), we obtain:

ag, (Quu — o, Quu — uo) Z Qru — ug)*(z;) <
=Rt

<CH™?||Qpu — UOH%Q(Q) < Ca(u,u).

We have then proved
a(u — ug,u — ug) < Ca(u,u). (4.3)

Reasoning in the same way, we prove

lu— uoll72(q) < CH a(u, ). (4.4)

We need now to decompose w = u — ug € H3(Q,). We use a result from the previous

chapter for the case of refinement everywhere; see eqn. (3.24):
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There exists a decomposition w = YN w; such that
al 1

a(wi, w;) < C(a(w,w) + ﬁHwH%%Q))
=1

;
and supp(w;) C supp(w).

Here N is the number of all the interior nodes in 2, therefore this is not the desired
decomposition, since it contains terms w; with ¢ ¢ I, which correspond to z; ¢ ,.
Since supp(w;) C supp(w), these remaining terms w; vanish unless z; € 9Q,. Therefore,
we need to decompose only the terms w; corresponding to x; € 92, and distribute their

contributions among the other terms. First, we write
w;=w’+y

where y = w; on the mesh lines and is extended as a discrete harmonic polynomial inside

each element. w® = w; — y vanishes on the mesh lines and is a-orthogonal to y:

a(w;, w;) = a(w?, w’) + a(y, y).

Y is nonzero only on elements in €,, we can regard these elements as belonging

Since w
to a unique subdomain Q; with j € I, and add the restrictions of w® on these elements
to the corresponding term w;. We still denote these modified terms by w;. We now use
lemma 4.5 to decompose and distribute y. If there are no isolated points on 9€,, there
is at least one edge of the mesh belonging to 02, ending at z;. Since w; = 0 on this

edge, y will vanish there too. Therefore, by lemma 4.5 y = >_; y; and

> aly;, ;) < Caly,y).

J
If z; is an isolated point of 9€2., then lemma 4.5 will give us a decomposition of y

satisfying the weaker inequality:

> a(y;,y;) < C(1+1logp)a(y,y).

J
The functions y; are nonzero only on one edge of the mesh and this edge can be assigned
uniquely to a subdomain ) in ©,. We add the functions y; to the corresponding wy and
still denote the modified terms by wg. It follows then that we have found a decomposition

w:i w;

€1y
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satisfying

1
> a(wi, wi) < Cla(w, w) + ﬁHwH%%m)
i€l,

in the case without isolated points on 02, and

1
> a(wi, wi) < C(1+ logp)*(a(w, w) + ﬁ”w\@(ﬂ))
i€l
in the general case. Using (4.3) and (4.4), we can conclude that the decomposition of u
satisfies the inequality of Theorem 2.2 with a constant independent of p and N, in the
case without isolated points and with C'(1+ logp)? otherwise. By Theorem 2.2, we then
bound in the same way the smallest eigenvalue of the iteration operator P from below

and conclude the proof of Theorem 4.1.

4.3 An overlapping ASM with local refinement in three
dimensions

We now study local refinement in three dimensions. To date, the analysis is incomplete,
since we have been able to generalize from two to three dimensions only some of the
technical tools of Section 4.2. The most important missing tools are a polynomial ex-
tension theorem and a decomposition of discrete harmonic polynomials as in Lemma
4.3 and 4.5. Polynomial extension theorems are known in one and two dimensions, see
Maday [54], Bernardi and Maday [11], Babuska, Craig, Mandel and Pitkdranta [8]. Very
recently, Belgacem [10] proved a three dimensional polynomial extension theorem using
results of Canuto and Funaro [27], but the paper is not yet available to us. More recent
results of Canuto [26] about the uniform equivalence of finite element and spectral in-
terpolation, could also lead to polynomial extension theorems. However, if we consider
regular refinement regions, in the sense specified in the Theorem 4.4, these tools are not
needed and an optimal bound can be established.

Our model problem is given on a region  C R?, which is the union of non-overlapping
cubic elements ; with mesh size H. Homogeneous Dirichlet boundary conditions are
given on 9. With the same notation used in the two dimensional case, we associated

with each selected interior node z; a subdomain Q! defined as the open cube of side 2H
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centered at z;. The refinement region is
Q =9, ier
and the finite element space is decomposed as
VP = VIV V],
where
o VP = VB
o VP = VPN HI) are the local spaces.

The definition of the algorithm in terms of projections is formally the same. The main

result is:

Theorem 4.4 Let @ C R3. If there are no isolated points or edges on the boundary
9, of the refinement region, then the operator P of the ASM defined by the spaces VY
satisfies the estimates

k(P) < const.

Proof. We repeat the two dimensional proof of the constant upper bound and the
construction of the coarse component ug in the decomposition of uw € VP. We then
apply to w = u — ug the three dimensional decomposition result proved in the previous
chapter for the case of refinement everywhere:

There exists a decomposition w = Y0, w; such that
al 1
3 a(ws, w) < Clalw, w) + zrollwla)

=1

and supp(w;) C supp(w).
This is not the desired decomposition, since it contains terms with ¢ € I,. As before, we

need to decompose only the terms w; corresponding to z; € 0€2,.. We write
wi = w’ +y
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QQ Ql 9 - 0 0

Figure 4.2: First step in the decomposition of w; in 3-dim

where y = w; on the interface I' = |JJ9Q; and is extended as a discrete harmonic
polynomial inside each element. w® = w; —y vanishes on the interface and is a-orthogonal

to y:
a(w;,w;) = a(wo, wo) + a(y,y).

Since w?

is nonzero only on elements in €2, it can be distributed as in the two dimensional
case. We now decompose and distribute y. If there are no isolated points or edges on
09),, then there is at least a face of the interface belonging to 0f2, which contains ;.

Since w; = 0 on this face, y will vanish there too. We then apply the following Lemma:

Lemma 4.6 Consider an inlerior node x; with ils associated subdomain Q. union of
eight elements Q; (see the figure 4.2). Let F;; = Q;|JQ; be the face between Q; and
and let x, k = 1,---,6 be the central nodes of the faces of Q. Letw; € V¥ = VP H}(Q)
be a discrete harmonic polynomial that vanishes at the interior node x; . Also assume
that w; vanishes on at least one face F;;. Then there exist discrete harmonic polynomials

Wi € Vkp,k: 1,---,5, such that w; = >, wi and

> a(wik, wik) < Calw;, w;).
p

Proof. Let suppose that w; = 0 on the face between ; and {2 and denote by z, the
interior node shared by the elements 2,9, 3, and Q4. We construct w, € VP by
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reflection across faces:

wiin Qq J Fr2 U F1a

reflection across Fjy from €y onto €,
reflection across Fj4 from Q5 onto Q4
reflection across Fhs from €, onto 5

Wy =

Clearly w, € VP and

\wal g () = 4lwalgi(a,) = 4lwilga,) < 4wilmay -

w; — w, vanishes on Fi3 and Fyi4 and it has support in %\ ;. This subregion is now an
L-shaped subregion formed by seven cubic elements. This is the case treated in Lemma

3.4, which gives us the desired decomposition.

4.4 Numerical experiments

In this section, we describe some numerical experiments in two dimensions with the local
refinement p-method. See Bramble, Ewing, Parashkevov, and Pasciak [18] for similar
experiments with the h-version. More complete experiments with parallel machines and
different methods can be found in Moe [65].

The programs, written in MATLAB, have been run on Sun Sparc workstations.
In each set of experiments, we consider the Poisson equation in two dimensions with
homogeneous Dirichlet boundary conditions. The equation Pu, = g, is solved using the
conjugate gradient method. The iteration process is stopped when the relative [2—norm
of the residual is less than 1072, In the following tables, x(P) = ’;Zﬁ is the condition
number of the operator P.

1) We consider first a problem with no isolated points on 9€2,). We call this case

regular refinement.

8 4

—Au = —ﬁsin(ﬂx)sin(%y). i Q,
u = 0 on 09

The square tegion 2 = [0,8] has 16 elements and 5 refinement subregions, see figure
4.3. The condition number and the number of iterations are reported in table 4.1. In

this case, Ajqz 18 constant, while A, seems to converge as p increases.
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2) Next, we consider an irregular refinement for problem 1. This selection of refine-
ment interior points leaves an isolated point on 0€,, see figure 4.4. From the results of
table 4.2, we see that A, is still constant, but A,,;, decreases considerably. A least
square approximation shows that the condition number grows like (log p)? .

3) Finally, we consider a problem with an isolated edge on the boundary of Q, , see
figure 4.5. Since in this case we do not have isolated points on 9€2, , this is a regular
case and the theory predicts that the condition number is bounded by a constant. This

is confirmed by the results of table 4.3.
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Figure 4.3: Regular choice of refinement points

degree p | unkn. | K(P) | Mgz | Amin | iter.

3 121 | 5.7256 3 0.5240 | 12
4 225 | 5.9885 3 0.5010 | 14
5 361 | 6.1371 3 0.4888 | 15
6 529 | 6.2328 3 0.4813 | 16
7 729 | 6.2986 3 0.4763 | 16
8 961 | 6.3466 3 0.4727 | 17

Table 4.1: Regular refinement for pb. 1

Figure 4.4: Irregular choice of refinement points
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degree p | unkn. | kK(P) Amaz | Amin | iter.
3 121 8.1493 2 0.2454 | 12
4 225 10.4374 2 0.1916 13
5 361 12.4814 2 0.1602 13
6 529 14.3318 2 0.1395 | 14
7 729 16.0255 2 0.1248 | 14
8 961 17.5900 2 0.1137 | 15

Table 4.2: Irregular refinement for pb. 2

Figure 4.5: Refinement points with an isolated edge on 02,

degree p | K(P) Apaz | Amin | iter.
3 9.0330 3 0.3321 | 22
4 10.0987 3 0.2971 | 23
5 10.8288 3 0.2770 | 23
6 11.2881 3 0.2658 | 24
7 11.6386 3 0.2578 | 24
8 11.8852 3 0.2524 | 25

Table 4.3: Regular refinement for pb. 3
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Chapter 5

Iterative substructuring for the
p-version finite element method
in two dimensions

5.1 Introduction

Iterative substructuring methods are domain decomposition methods that use non-
overlapping subdomains. They have been extensively studied in the current literature,
see Bramble, Pasciak, and Schatz [19], [20] Dryja [34], Smith [77], and Widlund [85].
We adopt here the viewpoint of Dryja and Widlund [38], [39], where iterative sub-
structuring methods are analyzed in the additive Schwarz framework. Their analysis
is based on the h-version finite element method. The domain € is decomposed into
non-overlapping subdomains {2; that are assumed shape regular and which form a tri-

H with mesh size H. In each subdomain is then introduced a finer shape

h

angulation T
regular triangulation 7" with mesh size h. Let I';; be the common edge between two

neighboring substructures §}; and (2; and define

Q= Jry; .

Associated with the two triangulations 7% and 77 | we consider the linear finite element
spaces V" and VH . An additive Schwarz iterative substructuring method is then defined

by the decomposition
VE=vH 13 v,
]

where
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e VH is the coarse space,
o Vi = Vv U H3(Q;;) are the local spaces associated with each edge T';; .

Defining the additive Schwarz operator
P =Py + E P;;
]
in terms of the projections onto the subspaces and denoting by u the exact solution of

the discrete problem, the algorithm can be written:

Additive Schwarz iterative substructuring algorithm:
i) compute g = Pu;
ii) solve the operator equation

Pv=yg
by the conjugate gradient method.
In [36], the following fundamental result is proved.

Theorem 5.1 (Dryja, Widlund) The operator P of the additive algorithm defined by

the spaces VH and Vi; salisfies the estimate

#(P) < const.(1 +log(H/h))*.

The same bound holds for other important iterative substructuring methods such as the
BPS algorithm introduced in Bramble, Pasciak and Schatz [19]. We remark that the
additive Schwarz framework developed in Dryja and Widlund [36] allows a quite elegant
and direct proof of Theorem 5.1. In particular, a finite element extension theorem is no
longer required. It is still an open problem to show that similar ideas can be applied to

p-version iterative substructuring methods.

5.2 Iterative substructuring ASM for the p-version finite
element method

We consider here the same model problem 1.1 on a region € which is the union of N,

non-overlapping square elements €2; of uniform size H. Homogeneous Dirichlet boundary
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conditions are given on d€. Our polynomial finite element space V}, is represented as:
p_ P P
Vo =Vg + E Viis
]
where
o VI = Vé is the coarse space,

o Vi=VP N Ha(£;) are the local spaces associated with each edge T';; .

The iteration operator is

P=pR+Y Py,
i
and the algorithm can then be described as in the previous section. A theorem analogous

to Theorem 5.1 holds:

Theorem 5.2 Let @ C R?. The operalor P of the additive algorithm defined by the

spaces Vg and V5 satisfies the estimate

#(P) < const.(1 + log p)?.

Proof. Asin Theorem 3.1, we use Theorem 2.2, i.e. we look for bounds for the constants
p(€) and Cy . A constant upper bound for p(&) is obtained as easily as before.

In order to obtain a good bound for Cy, we use the technical tools of the previous
chapter. First, we must define a decomposition of a function u, € V}, into the subspaces
Vg and Vg . Since all the functions of Vg vanish at the interior nodes, the coarse

component ug € Vj must be the coarse interpolant of u, at the nodes of Q:

up(z;) for all nodes z; € Q
piecewise bilinear in each element £2;.

ug = Igu, = {
Then let w = u, — up . On each element §;, we can write
h 0
w; = wlg, = w + w; ,

i.e w; is the sum of a discrete harmonic polynomial and a polynomial that vanishes on

the boundary of ©; . Note that wf”“ vanishes at the interior nodes, in particular at the
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vertices of ;. We can then apply Lemma 4.3 to w!® : there exist discrete harmonic
polynomials w;, € @, , k = 1,2,3,4, each with nonzero boundary values only on one

side I'; of €;, such that
4
wi =" wy
k=1
and

4
> |wik|3q1/2(agi) < C(1+1log p)*wil F1 (q)
k=1

We can now define the component in Vf; of the decomposition of u, :

We clearly have

Ne
ug + Z Ujj = Up
2,7=1
and we claim that
ol Fpr(q,y < C(1+logp)|uyling,) (5.1)
|uijlina,) < C(1+log p)?luplpq,) - (5:2)

Let us prove (5.1). Let vy = ug(x) = up(z), where the z;, are the vertices of €2, , and
let v = {vr}. Then

|u0|%[1(9i) = a(ug, ug) = vl Ko,

where K; is the local stiffness matrix associated with the element €2; . By a standard

inverse inequality on an element €; of diameter H, we have

C
a(ug, up) < ﬁHUOH%Q(Qi) :

Since in two dimensions ||ug||7. is equivalent to H* )", v} , we obtain
2
a(ug, up) < szk )
k
and for every constant «

a(ug, ug) = a(ug — o, ug — o) < C’Z(vk —a)’.
k
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Taking a = vgyerage = 1/4 Y, vk , We easily obtain the bound

U1 — U2
4

U1 — V4

2 9 2
—I_ ( 4 ) ?

v —?)3)

(01— a)* <2 S

) +2
and similarly for the other indexes. Therefore

Jwol 1,y < C D (vr — v;)?
k#j

and we conclude the proof of the inequality (5.1) by using Corollary 4.2.

Let us now prove (5.2). By the extension Theorem 4.3

|wijltn e, < Clwiilinepay -

Since

e — w on I';;
"1 0 on the other three sides of Q;,

we have
2 2 2
W — |w:: — |w
(wiilbrzoa) = 10l ) = W,y
and we claim that

[wl? 172 < C(1+Tlog p)luylp g, -

00 ( 1])

(5.3)

We can essentially repeat the proof of Lemma 4.3, that follows from the ideas presented in

Widlund [84]. We bound the double integral defining the HééQ—norm by a line integral.

We divide this into two parts, the first bounded using Markov’s inequality, the second

using a discrete Sobolev inequality and obtain

|w]}

2
i, S CU A logp)l[wllieq,) -

Now, for every constant pg

1wl oe(a) = llup = Trttpll Loy = llup + po = Ir(ty + po)lle (i) < 2llwp + poll e (0,)-

Therefore, by the discrete Sobolev inequality of Lemma 4.2

2
w
| |H30/2(Fi])

< C(1+1og p)lup + pollie(a,y < C(1+1ogp)|luy + pollF(a,) -

A quotient space argument (taking inf over pg), concludes the proof of (5.3). Therefore

|wij|12111(9i) <C(1+ 10gp)2|up|121[1(9i) ;
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ha

and, since w/® = 3"}_, w;k, the same bound holds for w® . Combining this bound with

eqn. (5.1), we have
[wlin ) = lup = to — wilip(q,) < C(L+1ogp)ulinq,) - (5.5)

Thus, by (5.4) and (5.5), we have proved (5.2). Since at most four components u;; are
different from zero in each element 25 , we can sum over ¢ and 7 and obtain

N.
lwoli ) + Do wiilt(a,) < C(1+1ogp)*[uylipq,) -

1,5=1
Adding this inequalities over the elements ) , we obtain the desired decomposition of
u,, satisfying
Ne
2 2 20, 12
|U0|H1(Q) + Z |Uij|H1(Q) < C0|up|H1(Q) )
1,5=1

with C2 < C(1+logp)?.

5.3 Iterative substructuring ASM on the interface

As in Chapter 3, where we considered overlapping Schwarz methods, a faster iterative
substructuring method is obtained by first eliminating the interior variables. The remain-
ing Schur complement system is then solved with the algorithm described before. When
the unknowns on the interface I' have been computed, all the others are determined by
solving separate subproblems on each element. It is easy to see that this corresponds to

decomposing the space V}) into N, 4 1 subspaces
Vh = Via © Vo) & -+ & Vo(Q,).

Each subspace Vp(£;) is associated with an element €; and its interior functions that
vanish on 9€Q;. The elements of V/ are discrete harmonic polynomials and they are
a-orthogonal to all the other subspaces. We notice that an element in V)’ is uniquely
determined by its values on the interface I' = [J 0€; . The algorithm is defined by the

decomposition of V7,
foa = ‘/Op—l_ E ‘/Z};’
]

where
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o VP = Vé is the coarse space,

o f’f; = VF N H(Q;;) are the local spaces of discrete harmonic polynomials associ-

ated with each edge I';; .
The following result follows from Theorem 5.2.

Theorem 5.3 Let @ C R%. The operator P of the additive algorithm defined by the

spaces V§ and f/f; satisfies the estimate

k(P) < const.(1+ logp)?.

Proof. The proof is the same as for Theorem 3.2. The upper bound for the spectrum
of P is standard, while a lower bound is obtained by decomposing a function @, € V}

according to Theorem 5.2:
N,

e
up = ug + E Uij

1,5=1

with

Ne
[wol k() + D2 lwiilin (o) < C(1+log )il g -

§,j=1
Then we restrict each component u;; to I' and extend it as a discrete harmonic polynomial
U € Vf; . Since the discrete harmonic extension minimizes the energy, we obtain the

desired decomposition.

a

A very successful idea of Smith to improve Schwarz methods in two and three diman-
sions, is based on introducing some additional spaces in the decomposition of the finite
element space, see [76]. Besides the subspaces TN/Z']- associated with each edge, we consider
vertex spaces associated with each interior node. This construction is well understood in
the h-version finite element method: a function in the vertex space associated with the
vertex z; is obtained by setting to zero all values at the nodes on I" which are at a dis-
tance greater than 6 from z;. This parameter measures the overlap introduced with the
vertex spaces. For example, the maximal overlap § = H, gives us exactly the subspaces

considered in the overlapping ASM on the interface of Chapter 3. The minimal overlap
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in the h-version, § = h, seems to give the best overall performance in several numerical
experiments on different architectures, see the references in Dryja and Widlund [40].
For the p-version finite element method, it is not clear yet what a vertex space might
be. The basis functions in the p-version have support in the whole substructure and the
local support property, fundamental in the h-version, is lost. Local concepts like vertex
spaces and small overlap do not appear to have a p-version counterpart. Recent works

by Mandel might be offering new insight in this field, see Mandel [60].

5.4 Numerical experiments

We now describe some numerical experiments with the iterative substructuring methods
previously introduced. As before, MATLAB programs have been run on Sun Sparc
workstations to solve the Poisson equation in two dimensions with homogeneous Dirichlet
boundary conditions on square regions. The equation Pu, = g, is solved iteratively
using the conjugate gradient method. The iteration process is stopped when the relative
I?~norm of the residual p is less than 107%. In the following tables, x(P) = //\\:;ﬁ is the
condition number of the operator P, while I2 — err is the relative /?— norm of the error

U — up .

5.4.1 Iterative substructuring ASM

We consider our standard model problem with a trigonometric exact solution.

—Au = —i%zsm(%x)sm(%y) in Q,
u = 0 on 09

We consider two decompositions of a square region  with 9 and 16 elements, respectively
with 12 and 24 subregions, each being the union of two elements. The numerical results
are reported in table 5.1. A4, is constant, while X,,;, clearly decreases when p increases.
The growth in the condition number is considerable. Since we have only six values for
each experiment, it is not easy to find out how k(P) grows with p. A least square
approximation appears to give the best residual for a (logp)? approximation to k(P),
but a good residual is also obtained with a linear function in p. As remarked before,
the number of iterations is better than expected when N, is small, but approaches the

theoretical bound, as a function of the condition number, when N, increases.
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N |p| r&(P) Anaz | Amin | iter. | 1?2 —err
3| 16.0163 4 0.2497 9 0.0083
4 | 23.1565 4 0.1727 | 11 8.4248e-4
12 | 5 | 25.3644 4 0.1577 | 12 7.1026e-5
6 | 31.0908 4 0.1287 | 14 | 5.1892e-6
7 | 32.8787 4 0.1217 | 13 | 3.4483e-7
8 | 37.7113 4 0.1061 | 15 | 3.0349e-8
3| 16.8791 4 0.2370 | 17 0.0027
4 | 23.9841 4 0.1668 19 | 2.0497e-4
24 | 5| 26.0059 4 0.1538 | 21 1.2917e-5
6 | 31.8222 4 0.1257 | 22 7.0414e-7
7| 33.3884 4 0.1198 | 23 | 3.6437e-8
8 | 38.3936 4 0.1042 | 23 | 3.6646e-8

Table 5.1: Iterative substructuring ASM

5.4.2 Iterative substructuring ASM on the interface

We consider now iterative substructuring on the interface I' for the same model problem;
see table 5.2. Now the condition number of P has improved, but essentially only because
Amaz has improved. A, still decreases when p increases, essentially in the same way
as before. Therefore, solving the problem on the interface just scales the growth of the
condition number, but it does not change fundamentally as a function of p. The number
of iterations is considerably smaller for this algorithm. For a better understanding, it is
necessary to have more experimental data with larger N..

In conclusion, we report some experiments with “primitive” vertex spaces of dimen-
sion 5. For each interior node z;, we introduce a subspace spanned by the nodal basis
function associated with z; and by the four quadratic basis functions associated with the
four edges meeting at z; . The new additive operator is obtained by simply adding the
projections onto these vertex spaces to the previous operator. The results are reported
in table 5.3. The introduction of these vertex spaces improves A,;;, , but it seems just to
scale it up. A, still decreases with p with the same law as without vertex spaces. A4z
is still constant, with respect to p and N, but greater than before. This is because now
we have more subspaces and more overlap between subspaces than before. The resulting

condition number and number of iterations are sligtly worse than without vertex spaces.
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N |p| &(P) Moz Amin | iter. | 12 —err
3| 5.1895 | 1.4039 | 0.2705 3 0.0083
41 5.9621 | 1.4043 | 0.2355 4 8.4248e-4
12 | 5| 7.9567 | 1.4040 | 0.1765 5 7.1026e-5
6 | 8.5796 | 1.4041 | 0.1637 6 5.1892e-6
7| 10.2524 | 1.4041 | 0.1370 7 3.4483e-7
8 | 10.7776 | 1.4041 | 0.1303 7 3.0349e-8
3| 5.1912 | 1.3100 | 0.2524 3 0.0027
4| 6.7162 | 1.3096 | 0.1950 4 2.0497e-4
24 | 5| 8.0724 | 1.3097 | 0.1622 5 1.2917e-5
6 | 9.2957 | 1.3097 | 0.1409 6 7.0414e-7
71 10.4129 | 1.3097 | 0.1258 6 3.6437e-8
8 | 11.4434 | 1.3097 | 0.1145 6 3.6646e-8

Table 5.2: Iterative substructuring ASM on the interface

N |p| &(P) Moz Amin | iter. | 12 —err
3| 6.0351 | 2.6417 | 0.4377 3 0.0083
41 7.0602 | 2.6435 | 0.3744 4 8.4248e-4
12 | 5 | 10.0665 | 2.6437 | 0.2626 5 7.1026e-5
6 | 11.0034 | 2.6438 | 0.2403 6 5.1892e-6
7 | 13.6006 | 2.6438 | 0.1944 7 3.4483e-7
8 | 14.4173 | 2.6438 | 0.1834 7 3.0349e-8
3| 5.3730 | 2.9050 | 0.5407 4 0.0027
4| 7.5332 | 2.9050 | 0.3857 5 2.0497e-4
24 | 5] 9.6539 | 2.9069 | 0.3011 6 1.2917e-5
6 | 11.6170 | 2.9073 | 0.2503 7 7.0414e-7
7| 13.4569 | 2.9074 | 0.2161 8 3.6437e-8
8 | 15.1813 | 2.9075 | 0.1915 8 3.6646e-8

Table 5.3: Iterative substructuring ASM on the interface with vertex spaces
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Therefore these are not good candidates for vertex spaces. More research needs to be

carried out.
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Chapter 6

Future work and extensions

There are many possibilities for future research and extensions in various directions.

a) Completion of the theory developed in the thesis.

Polynomial extension theorem in three dimensions. This is the main missing technical
tool needed for the three dimensional theory of Chapter 4 and 5. Such a result
has recently been announced by Belgacem [10] as an extension of previous works
of Bernardi and Maday [11] and Canuto and Funaro [27]. Recent work by Canuto
[26] about the uniform equivalence of finite element and spectral interpolation, also

opens new possibilities for proving polynomial extension theorems.

Local refinement in three dimensions. Such results are based on decomposition results
for discrete harmonic polynomials and appear to require extension theorems. In
case of regular refinement, due to the particular geometry defined by our brick-
like elements, we have been able to prove such decomposition results using simple

reflection arguments.

Iterative substructuring. The classic theory is based on results on decomposition of dis-
crete harmonic polynomials. A more modern theory using the Schwarz framework
has simplified the proofs for the h-version, eliminating the need of extension theo-
rems; see Dryja and Widlund [39], Dryja, Smith, and Widlund [37]. Tt is still an
open problem to establish if such an approach could work for the p-version, both
in two and three dimensions. The main technical obstacles are the construction

of a good partition of unity and a good interpolation operator as in Theorem 3.1.
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The p-version of the vertex spaces idea is also an open problem, as well as the

construction of a good coarse space in three dimension.
b) Numerical experiments with the algorithms proposed in the thesis.

Three dimensional numerical experiments. In this work, we have performed only two
dimensional numerical computations. However, the theory has been extended in
many cases to three dimensions. Therefore it will be of great interest to obtain

numerical results to check our theoretical predictions.

Parallel tmplementation on different architectures. The algorithms proposed in the
thesis are parallelizable and scalable. It would be of great practical importance to
actually observe their performances on different parallel SIMD and MIMD archi-

tectures and on networks of workstations.
c) Ideas from the current research for h-version Schwarz methods.

Schwarz methods using the p-version finite elements can be applied to more general
problems than the one considered in the thesis. Many ideas have already been
developed for h-version methods: nonsymmetric and indefinite problems, small
overlap theory, multilevel and multigrid methods, inexact solvers, more general
problems (jump in the coefficients, 2m-order, systems, mixed formulation, time

dependent, nonlinear), more general elements (in particular triangles).
d) Connections with other numerical methods.

Spectral methods and spectral element methods. Even if p-methods and spectral methods
have differences in applications and implementation, they are closely related since
they use higher order polynomial approximation. Spectral methods in fact, expand
the solution in high order Fourier or polynomial series and the coeflicients of these
expansions are determined by weighted residual projections, see Canuto, Hussaini,
Quarteroni, and Zang [28], Patera [69], Canuto and Funaro [27]. Therefore, many
of the technical tools developed in this field can be usefully applied to the analysis

of p-version algorithms, and vice versa.

Non-conforming and mortar methods. These methods present very interesting ideas
applicable to the p-version finite element method. In particular, the idea of weak-

ening the continuity requirement on interelement boundaries and considering other
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requirements such as integral matching conditions is quite promising; see Bernardi,

Maday and Patera [12].
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