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DECOMPOSITION AND FICTITIOUS DOMAINS METHODS
FOR ELLIPTIC BOUNDARY VALUE PROBLEMS

S. V. Nepomnyaschikh®

Abstract.

Boundary value problems for elliptic second order equations in three-dimensional
domains with piecewise smooth boundaries are considered. Discretization of the
problem is performed using a conventional version of the finite element method with
piecewise linear basis functions. The main purpose of the paper is the construction
of a preconditioning operator for the resulting system of grid equations. The method
is based on two approaches: decomposition of the domain into subdomains and using
a new version of the method of fictitious domains. The rate of convergence of the
corresponding conjugate gradient method is independent of both the grid size and
the number of subdomains.
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1. Introduction. In this paper, we consider preconditioning operators for the
system of grid equations approximating the following boundary value problem:
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Here, 2% is the derivative in the conormal direction. We assume that Q is a

polyhedron. Let  be a union of n nonoverlapping subdomains §2;,
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where ; are polyhedrons with diameters on the order of H. Let Q"

Q= |
=1

be a regular triangulation of  which is characterized by a parameter h.
We use H'(€,Ty) to denote a subspace of the Sobolev spaces H'()) of real
functions

HI(Q,PO) ={v € HI(Q) |v(z) =0, 2 €T}
and we introduce the bilinear form

a(u,v):/ﬂ( 23: Ou Ov

2,7=1

(x )ap7 5% + ag(x)uv)dx + N o(x)uv dx

:/Qf(x)v dz .

We assume that the coefficients of the problem (1.1) are such that a(u,v) is a

and the linear functional

symmetric, coercive and a continuous form in H'(Q,Ty) x H'(Q,Ty), i.e.
a(u,v) = a(v,u) , Vu,ve H(Q,Ty) ,

pollvllfne < a(v,v) < mlvllfng . Yve H(Q,To),
and that the linear functional £(v) is continuous in H*(Q,Ty), i.e.,

()] < pllvllaq)

Here o, p1, ¢ are positive constants. A weak formulation of (1.1) is:

Find v € H*(Q,T) such that

a(u,v) =L(v) , Yve HY(Q,Ty) . (1.2)



Denote by W the space of real-valued continuous piecewise linear functions.
Using the finite element method we can pass from (1.2) to the linear algebraic
system

Au=f (1.3)

Our purpose is the construction of a preconditioner B for the problem (1.3) such
that the following inequalities are valid:

c1(Bu,u) < (Au,u) < ey(Bu,u) , Vue RV . (1.4)

Here N is the dimension of W, the positive constants c;, ¢y are independent of h
and H, and the multiplication of B~! by the vector can be at a low cost.

As arule, the most efficient preconditioners for solving boundary value problems
in domains with complex geometry can be constructed by simplifying geometry of
the original domain. We use two approaches: decomposition of the domain into
subdomains [5-7] and a version of the method of fictitious domains; cf. [8-10].

The remainder of the paper is organized as follows. In section 2, we describe ab-
stract results which are useful in constructing the preconditioning operator. Using
Lemma 2.1 we split the original space of grid functions into a sum of subspaces and
using Lemma 2.2 and Lemma 2.3, on the fictitious domains method, we give equiv-
alent norms in subspaces. In section 3, we construct a decomposition of the original
mesh space into a sum of two subspaces. The functions of the first subspace are
equal to zero at the boundaries of subdomains. The second subspace corresponds
to the values of mesh functions at the boundaries of subdomains extended inside
with conservation of the norm. The second subspace has a complex structure, and
to simplify it, we decompose it into a sum of a coarse space and local subspaces [1-
3.9,11]. In section 4, using the abstract results, we design preconditioning operators
for these subspaces. This design uses the fictitious domain (space) method to over-
come two obstacles: complex geometry of the substructures and chaotic distribution
of the nodes of the triangulation.

2. General Framework. In this section, we outline an abstract method for
constructing a preconditioning operator by splitting the original Hilbert space into
a sum of subspaces. Here, we completely follow [5-10].

Lemma 2.1. Let the Hilbert space H with the scalar product (u,v) be split into
a sum of subspaces

H=H +H+ - +H,,

let A: H — H be a linear, self-adjoint, continuous and positive definite operator,
and P; : H — H;, 1 = 1,2,...,m, be the orthogonal projections with respect to the
scalar product (u,v)s generated by the operator A

(u,v)a = (Au,v) .

Assume that positive constants a and [ exist such that for any element u € H there
exists u; € H; such that
upfug+ - Fuy, =u



a (up,ur)a + (ugsuz)a 4+ + (U, U )a) < (u,u)a

and
((Pl +P - —I_Pm)uau)A < B(uvu)A
for any uw € H. Assume further that there are selfadjoint operators B;, 1 =
1,2,...,m, such that
Bi :H — I{2 5
c(Biu,u) < (Au,u) < co(Biu,u), Yue H; .

Then,
aci(A7 u,u) < (B 'u,u) < Bey(A™ wyu), Yu€e H

where B~ = Bi" + B; + -+ Bt and B;" 18 a pseudoinverse of B;.

Using Lemma 2.1, we will define the preconditioner in the following way. Split
the original space of grid functions W into a sum of subspaces, each having a
definite structure which makes it possible to determine easily invertible equivalent
norms (i.e., operators B;) in these subspaces. The following lemmas will be used in
constructing operators B;, which give equivalent norms in subspaces, and for which
the multiplication of B} by the vector can be performed efficiently.

Lemma 2.2. Let R™ and R" be real Euclidean spaces, and ¥ and S be symmetric
positive definite matrices of order m and n, respectively. Denote by

(¢71/))E = (2¢7¢) ’
(u,v)s = (Su,v)

the scalar products generated by these matrices in R™ and R", and letT: R™ — R",
be a linear operator such that

Of(¢7 ¢)E S (T¢7T¢)S S 6(¢7 ¢)E
for any ¢ € R™. Here, o and B are positive constants. Let
C=T"'T,

where T 1s an operator adjoint to T with respect to the Euclidean scalar products

in R™ and R". Then,
a(C+u,u) < (u,u)s < ﬂ(C+'u,'u)

for anyu e E= Im T. C* is a pseudo-inverse of C.

Lemma 2.3. Let Hy and H be Hilbert spaces with the scalar products (uo, vo)m,
and (u,v)y, respectively, and let A and B be selfadjoint positive definite and con-
tinuous operators in the spaces Hy and H:

AZH()—)H07 B: H— H.



Let R be a linear operator such that
R: H— Hy,
(ARv, Rv)p, < cr(Bv,v)g

for any element v € H. Furthermore, let there exist an operator T such that

T: Hy— H , RTug = ug ,

cr(BTuo, Tuo)u < (Aug, uo)mH,
for any element ug € Hy. Here, cg and ¢y are positive constants. Then

cT(A_luo,uo) < (RB_IR*uO,uO)HO < cR(A_luo,uo)

for any element ug € Hy. Here, R* 1s the operator adjoint to R with respect to the
scalar products (ug,vo)m, and (u,v)g such that

R*: Hy— H
(R*ug,v)g = (ug, Rov)m, -

3. Decomposition into Subspaces. To design the preconditioning operator
B, we will completely follow [9] and decompose the space W into a sum of subspaces

W=W,+W;.

To this end, divide the nodes of the triangulation Q" into two groups: those which lie
inside of Q% and those which lie on boundaries of 2. The subspace Wy corresponds
to the first set. Let

st =] o9t ,
i=1
Wo ={u"eW|u'(z)=0,z¢€S"},
Wo, = {u"eWy|uh(z)=0,2EQ}, i=1,2,...,n.

It 1s clear that W) is the direct sum of the orthogonal subspaces Wy ; with respect
to the scalar product in H'(Q):

Wo=Wo1D-- 3 Wy, .

The subspace Wi corresponds to the second group of nodes Q" and can be defined
in the following way. First, define W;,; which is the space of traces of functions
from W on S™:

Wijp = {¢"¢"(x) = u"[gn , u" € W}

To define the subspace Wi, we need a norm-preserving extension operator of func-

tions given at S" into Q". Let us consider the subdomain Q. Let (s;,s5,n) be a
near-boundary coordinate system [7,8] which is defined in a §-neighborhood of 9Q%.



Here s, s, define a point P at Q" and n is the distance between the given point
and 00", Set
t: HY*(9Qk) — HY(Q!) |

tg =u,

n 1
q = 1 _ — —/ d -1
u(317327n) ( 5)measK(P,n) K(Pn) ¢($) z, (3 )
P c ol 0<n<é,

where

K(P,n) = {(s},s5,0) € 69? |t —s;|<n,i=1,2}.

The function u is extended by zero in the rest of ;. Using Hardy’s inequality [4],
it 1s not difficult to see that ¢ is a norm-preserving operator, i.e.

lullzi@y = Il mren) < alldllmirpa) » Vo€

where ¢; is a positive constant. Using the auxiliary mesh, which is topologically
equivalent to a uniform mesh, we can define the finite-element analogy ¢, of the
operator t from (3.1), such that

1th0" |10 < ‘32||¢h||H1/2(8Qi) , Vo' (3.2)

The cost of the multiplication of ¢t and t* by a vector is proportional to the number
of mesh domain nodes. Here ¢; independent of A, H and t* is an adjoint operator
to t with respect to the Euclidean scalar product (see [8,9] for more details). Set

Wi =Wy .

It is obvious that W = W, + W) and according to (3.2) this decomposition of
W satisfies Lemma 2.1 with « independent of h and H.

According to Lemma 2.2, to define the preconditioning operator By for the
subspace W; we need to define the preconditioning operator By, which generates
the norm in the space W /,. The set S" has a complex structure. Therefore we will
split Wi/, into subspaces associated with the following substructures. Let S" be a
union of k& nonoverlapping triangles 7;:

k
Sh=T:, T.NT;=0,i#j. (3.3)

=1

We assume that k and n are of the same order of magnitude. Split the space W/,
into a sum of subspaces

Wip=W+Vi+--+Vp, (3.4)



where Vj is the coarse space which consists of continuous functions linear on the
triangles T;, ¢ = 1,2,...,k, and V;, « = 1,...,k correspond to 7; and are defined
below. Denote by

Wi = {# € Hm(Ti) | ¢’?($) = ¢’h($) ,x €T, ¢t e W1/2} ;

Wip: = {@h € Wija, | qﬁ?(r) =0, z€9T;} .

For any triangle 7}, we define the explicit extension operator 7;:
T;: Wl/?,i - W1/2 .

Denote by 7} the union of adjacent triangles:

- | T,.
TjﬂTﬁé@

Let ¢" be a function given on T;. We will define the extension of the function ¢"
using two tricks: reflection and semi-reflection. First let us define reflection ¢" of
the function ¢". Let T; be a triangle from 77, which has a common side with T}

(see Fig. 3.1a).

Figure 3.1

Let u, v, w, u + v+ w = 1 be the barycentric coordinates on the triangle T;.
Then any point = from 7; can be represented in the following form

z=u-P+v - P+w- P

where P;, P,, P; are the vertices of the triangle 7;. Set

$(y)=dp(u-Pi+v-Py+w-P))=¢(c)=¢(u-P,+v- P+ w- Py)

Now let us define semi-reflection ¢ of the function ¢ given on T; for the case when
a triangle T; has a vertex common with the triangle T; (see Fig. 3.2).



Fig. 3.2

Set ~
¢(z)

$(u-Pi+v-Pi+w-05-(Pj+ Fj))
dy)=¢(u-Pr+v-Py+w-05-(Py+ P;))
=¢(z)=¢(u-Pr+v-Po+w-05-(P,+ Ps)) .

It is clear that we can define the “semi-reflection” for the case when a triangle T;

has a side common with the triangle 7; too. Combining both approaches, we can
define an extension ¢" of the function ¢" onto T}. Using the piecewise linear cutoff

function §; defined by
1, zeT;
‘Ei(x)_{o’ xQ/Tily

we can define the extension operator 7; by
it = fz’(Z’h .

Set o
V;'ZTZ'WUQ,{‘{‘WI/?J? 1=1,2,..., k. (35)

Using Lemma 4.1 from [9] it is easy to see that the decomposition (3.4), (3.5)
satisfies Lemma 2.1 with « independent of h and H.

4. The Fictitious Space Method. In this section we will design a precon-

ditioning operators for the subspaces Wy,, + = 1,2,....,n, and V;, : = 0,1,...,k
constructed in Section 3 using Lemmas 2.2 and 2.3.

There are two obstacles to using the finite-element approximation of the Laplace
operator as a preconditioning operator for Wy ;. The first is related to the geometry
of 2; while the second relates to the chaotic distribution of nodes of the triangulation
Q.

Let the domain 2; be embedded in the cube II;. We extend the triangulation
Q% to the entire cube I1” in such a way that 11" is a quasi-uniform. We will denote

by W(II*) the space of continuous functions which are linear on each simplex of the



triangulation II”

&, and by A the approximation of a symmetric elliptic operator

in W(II*). According to Lemma 2.3, we need a continuous operator
Ry, W(IIF) — W, .

Let
Rn, = Ig, — th - Ipq, ,

h

(2

where Iq,, Inq, are the trace operators from II* onto QF, 90, respectively. The
operator t; is the extension operator which was described in section 3. From the
continuity of Ig,, Isq, and t5, we obtain the continuity of Rp,. We can define the
operator

Tn,: Woi — W(IIH) |

as an extension by zero. It is easy to see that the hypotheses of Lemma 2.3 are
valid. Hence there exist positive constants ¢; and ¢,, independent of & and H, such
that

e fu’ Fiay < ((RHi(_AHf)_lR*Hi)_luau) < 02||uh||%11(9¢)

for any u” € Wo.
Further, along with the mesh II% in the cube II; we will also consider an auxiliary

uniform mesh th with a mesh step hg: csh < hg < hmin/\/g. Here A, 1s the
length of the minimal edge of simplices of the triangulation II”, and constant c3 is

independent of A and H. Denote the nodes of the mesh Q" by Z;,, = (X;, Y%, Z,),
7.k, 0 =0,1,...,M; and denote the cells of the mesh Q" by

Qujr =1(2,y,2)| X; S < Xjpn , Vi Sy <Y, Ze <2< Zia g,
0 k=01 M —1.

On the mesh Q”, we will consider the space W(Q!) of mesh functions U(Z; ). Let
us define the operator Rg;:

Rg,: W(Q!) — W(IL)

which introduce a correspondence of each function U(Z;;,) < W(Q") to a function
u” € W(II!) in the following way. Let z,, be a node of the triangulation II* and let
Zm € Qj,k,ﬁ' Let

u"(2m) = U(Zjpe) -
Note that by the assumptions on ko at most one node z,, of the triangulation IT"
can belong to the cell ). The operator Tj,,

To.: W(IL) — W(QY)

is now defined as follows. If the cell (); ;¢ contains a node z,, of the triangulation
%, we set

U(Zj7k7g) = uh(zm) .

10



At the other nodes of the mesh Q! the function U(z; ) can be defined in a relatively
arbitrary way, for instance, as follows. Let the node z;;, belong to the simplex 7,

of the triangulation II* with the vertices z,,,. .., zm,. Set
1
U(zjke) = 7" (zm) -+ 0 (2m,) 5 ) -

It can be easily shown that the operators Rg,, T, defined in this way satisfy the
hypotheses of Lemma 2.3 and that the corresponding constants do not depend on
h and H. Thus, there exist positive constants c4, c5, independent of & and H, such
that

callu i 0, < ((Bm,Ro.(—Aq,) ™ Ry, Riy,) ™ u,u) < esl|u’|[ipnq;)
for any u® € Wy,;. Here Ag, is the mesh approximation of a symmetric elliptic
operator in W(Q"). The preconditioning operator BS:Z- for Wy, can now be defined
as an extension by zero of the operator Ry, Rq,(—Aq,) "Ry, Ry, Set

BJ:B;1+---+B§;H.

We now define the preconditioning operator B for the subspace W;. According to
Lemma 2.2, we can define
Bf =t;,27';

where the operator ¥ generates an equivalent norm in the trace space Wi, and the
extension operator t; was described in section 3. To define the operator ¥ we will
use the decomposition (3.3). Let us first consider the coarse subspace V. Let W, be
a mesh space which corresponds to the values of the functions ¢* € V; at the nodes
of the triangles T; from (3.3). Define, in the space Wy, the symmetric operator Sy:

k

(So,d) = S (S(H*(69)? + H(g! — )2 |

=1 j=1

where ¢§1)7 ¢>§2)7 ¢§3) = ¢§°) are the values of the function ¢* € Vj at the nodes of
the triangle 7;. The dimension of the operator Sy is equal to the number of the
nodes which belong to $" \ T'y. Let 7y be a piecewise linear interpolation operator:

To- WO — W1/2 .
According to Lemma 2.2, we can set
S =S5t

Let us now consider the subspaces V;, 2 = 1,..., k. From Lemmas 2.1, 2.2 and the
definition of V;, we can define

E+ _TZSZNT +SZD 5

k3

where S; n, S;p generate norms in W;,,; and Vf/l/lia respectively. To define S; x
and S;'D we will again use Lemma 2.3. Let 7; be embedded into the square 1I; and

11



the triangulation of T; be complemented to triangulation II? of the larger region.
In the square II;, we will also consider the auxiliary square mesh Q% with the step
ho: cgh < ho < Bmin/V2. Let W(Q") be a space of mesh functions which is defined
on Q" and let X, be an operator which generates an equivalent norm in the trace
space W(Q"). According to Lemma 2.3, we can define

Sin = BnnRo, 25, Ry Ry, »

Sz’,D = RD,HiRQiEC_Q}RZQiRDﬂi s

where

Ryn, = P(LO;) P .
Here I; is the identity matrix which corresponds to nodes belonging to T;, O; the
nullmatrix which corresponds to nodes belonging to II; \ T;, and P; a permutation
matrix. The operators Rpp,, Rg, are defined exactly as were those used when
constructing By, in the case of three dimensions. The operator S; p is the extension
of the operator 52'71) by zero. We can thus define

U =848+ 48
Bf =#X"1t (4.1)
B~' =Bf + B}

The following theorem is valid.
Theorem. There exist positive constants c7, cs, independent of h and H, such
that
cr(Bu,u) € (Au,u) € cs(Bu,u) .
Here A is defined by (1.3) and B s defined by (4.1).
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