Axiomatizing Qualitative Process Theory

Ernest Davis*
Courant Institute

New York, New York

March 17, 1994

Abstract

We show that the type of reasoning performed by Forbus’ [1985] Qualitative Process (QP)
program can be justified in a first-order theory that models time and other measure spaces as
real-valued quantities. We consider the QP analysis of a can of water with a safety valve being
heated over a flame. We exhibit a first-order theory for the microworld involved in this example,
and we prove the correctness of the first two transitions in the envisionment graph. We discuss
the possibility of deriving the closure conditions in the theory via non-monotonic inference.

One way to increase confidence in a reasoning program is to show that the conclusions that it
draws correspond to valid inferences within some easily intelligible logical theory. Such a correspon-
dence has been shown for many of the best known physical reasoning programs. The calculations
performed by QSIM [Kuipers, 86] correspond to theorems in real analysis, under a natural interpre-
tation; [Duchier, 91] exhibits full first-order proofs of these. Likewise the reasoning in NEWTON [de
Kleer, 77] and ENVISION [de Kleer and Brown, 85] can be shown to be valid for a simple physical
theory, easily formalized in first-order logic, in which time and other physical parameters are viewed
as real-valued quantities. (See, for example, [Rayner, 91], [Davis, 90, chap. 7].)

However, no adequate logical analysis has hitherto been given for the Qualitative Process (QP)
program [Forbus, 85]. In QP, processes can come into and out of existence, and the topological
structure of the physical system may change over time. Hence, the problem of finding an appropriate
formulation of the necessary closed-world assumptions on processes and influences seemed daunting.
In a previous analysis [Davis, 90] I was unable to find a reasonable characterization of these closure
principles, and hence left them as intuitively plausible, but wholly unformalized, non-monotonic
deductions.

In this paper, I show that this gap can be closed. It is possible to characterize inference in QP
entirely in terms of a monotonic theory based on real analysis. There are two key points:

e For each parameter, the theory must give an exhaustive enumeration of the types of processes
and parameters that can influence it. These axioms resemble to the kind of frame axioms
advocated by Schubert [1991], which give necessary conditions for a fluent to change its value.
They are also analogous to the circumscription over causes of change discussed in [Lifschitz,

87].

e Since QP uses only qualitative information as to the direction of change and influence, it is
possible to combine influences using only existential criteria. A parameter may change in

*This research was supported by NSF grant #IRI-9001447.



some direction if some influence is pushing it in that direction; it must change in a direction if
there is some influence pushing it in that direction, and there is no influence pushing it in the
opposite direction. These existential criterion means that it is not necessary to individuate
different influences or to sum over different influences, which simplifies the theory.

Though QP theory centers on continuous parameters, these theories can be extended to include
discrete change as well, as we shall show below.

At this point, let us briefly discuss what it is that we are axiomatizing. There is essentially
no knowledge of physics built into QP. Rather, the QP representation gives a language in which
(certain) physical theories can be expressed and associated physical situations can be described; and
the QP algorithm uses the information to predict physical behavior over time. The user of QP must
input both the specific scenario of the problem that interests him and also the physical theory to be
used. Thus, the axioms that are common across all uses of QP are limited: they include the axioms
of real analysis, some basic axioms of temporal reasoning, and a few general axioms constraining the
possible behavior of a physical parameter, and relating it to the influences on it. The other physical
knowledge needed is not associated with QP as it comes from the factory, so to speak; it is part of
the user specification.

Thus, “axiomatizing QP theory” consists largely of showing that user specifications of physical
domains can be translated into systems of axioms. One way of showing this would be to define
formally how QP representations correspond to axioms; essentially, to specify a procedure for auto-
matically translating QP representations into logical axioms. In fact, if we wished to prove formal
properties of QP, such as soundness, we would be obliged to define such a translation.

But such a precise correspondence goes far beyond the purposes of this paper. Indeed for our
purposes, it is almost immaterial whether such a translation is always possible or not,! and this
paper does not discuss the specifics of the actual QP representation. Our object here is to show
that physical theories like those expressible in QP can be expressed in simple physical axioms, and
that the predictions like those made by QP can be justified as inferences. Whether there is a perfect
correspondence between QP and axiomatic theories is relatively unimportant.

Therefore, the approach in this paper is to discuss the general form of a QP axiomatization, and
then to give the specifics of a sample QP domain. The hope is that readers will be able to see how
to generalize from this domain to other domains, without attempting to give an abstract description
that would cover all domains.

Physical prediction programs vary in the degree to which they incorporate specific physical
knowledge. ENVISION [de Kleer and Brown, 85] is like QP; it provides the user with a language
(of components and connections) in which he can specify a physical theory. Thus, like QP, the
axiomatic treatment of ENVISION consists of a demonstration that component specifications can
be translated into physical axioms. Programs like NEWTON [de Kleer, 77], FROB [Forbus, 79] or
CLOCK [Faltings, 87] do incorporate specific physical theories. Their axiomatic treatment consists
of a specific set of physical axioms, together with a demonstration that user specifications of a
particular scenario can be expressed as axioms. Since a scenario description can almost always be
expressed in a collection of atomic ground formulas, supplemented with unique-names and closure
axioms, this translation is much simpler than those of QP or ENVISION. QSIM [Kuipers, 86] is
purely mathematics; it neither expresses nor incorporates any physical knowledge.

The remainder of this paper is organized as follows. Section 1 provides a high-level view of

ITranslating from a representation intended for procedural use to a logical representation can be very tricky, even
if the program is doing something “basically” deductive. For example, many such representations use negation as
failure without worrying about it; such uses are often easy for procedures, but miserable to axiomatize. Some such
gaps relate to clumsinesses in first-order logic; others relate to kludges in the program. My guess would be that there
is at least a well-defined subset of QP for which a translation procedure could be defined.



the axiomatics. Section 2 deals with some fine points in defining certain properties of real-valued
parameters. Sections 3 and 4 give a detailed analysis of a simple physical system combining con-
tinuous and discrete components: a boiling can of water with a safety valve. Section 3 presents a
general language for QP theory and an axiomatization of the particular microworld used for this
example. Section 4 specifies the particular scenario and shows that the predictions of QP theory can
be justified in the logic. Section 5 discusses the application of non-monotonic logic to this theory.
Section 6 discusses some features of the theory, and presents the conclusions.

1 Structure of the Theory

The ontology of QP follows familiar lines. The time line is taken to be isomorphic to the real line,
with no branching. (Branching in envisionments corresponds to disjunctive uncertainty in prediction,
rather than to actual branching in time.) The logic uses two kinds of temporal entities: situations,
which are instants of time, and time intervals, which may be closed or open, bounded or unbounded.

Measure spaces other than time, such as temperature, mass, positional coordinate on some axis,
and so on, are likewise taken to be isomorphic to the real line.

A fluent is a function from time to some range. A fluent with range {TRUE, FALSE} is called
a Boolean fluent or state. A fluent from time to a measure space is called a parameter. If A is
a state and S is a situation, then the predicate “holds(S, A)” means that A is TRUE in S. If F
is a fluent other than a state, then the function “value.in(S, F')” gives the value of F' in situation
S. Alternatively, as a notational convenience, if term 7(a;...ap) denotes a fluent, we may add
the situation as an additional argument, in the form 7(as...ax,S). This will mean the same as
either “holds(S, (a1 ...a))”, if 7 is a state, or as “valuein(S, 7(a1 ... a))”, if 7 is not a state. For
example, we may say that Valve 1 is open in situation s0 either in the form “holds(s0, open(valvel))”
or in the form “open(valvel,s0)”.

A function or a predicate defined on a particular space may be extended in the natural way to
take arguments that are fluents with range in that space. For example, if “square(X)” is a function
mapping the reals to the reals, and F' is a real-valued fluent, then “square(F')” is the fluent that,
at any given instant gives the square of the value of F' at that instant. If “>” is a predicate with
two real valued arguments and F'1 and F'2 are real-valued fluents, then “F'1 > F'2” is the state that
holds whenever the value of F'1 is greater than the value of F'2.

value_in(S,square(F')) = square(value_in(S, F')).
holds(S,F'1 > F'2) < value.in(S, F'1) > value_in(S, F'2).

Equality and inequality are exceptions to this. “F'1 = F'2” and “F'1 # F'2” are sentences, stating
that F'1 is the same fluent as F'2, or F'1 is a different fluent from F'2, respectively. The state of the
current value of F'1 being equal to the current value of F'2 is denoted “eql(F'1, F'2)”; the state of the
two values being different is denoted “neql(F'1, F'2)”.

A process is a particular category of state. For processes, we use the special predicate “active(S, P)”
(process P is active in situation S); this is synonymous with “holds(S, P)” Besides processes, there
are events, which occur over finite, non-point, intervals. We write “occur(l, £')” to mean that event
FE occurs over interval I. In this theory, we deal only with state, fluent, process, and event types,
rather than tokens.?

Finally, there are physical objects. We use this term loosely to include practically any entity
of physical interest that does not fall into the other categories. For example, in modelling water

2This differs from [Davis, 90] where a process was a state token.



flowing through a tank, one object could be a particular “piece” of water that comes in at one time
and goes out at another; another object could be “the water in the tank”, which has a mass that
changes over time.

A axiomatic QP theory involving only continuous parameters contains axioms of the following
forms:

1. Process definitions. Necessary conditions and sufficient conditions (they need not be the
same) for a process of a given type to be active in a given situation.

2. Direct influences. For each parameter that is directly influenced, an exhaustive enumeration
of the processes that influence it, with the directions of influence.

3. Indirect influences. For each parameter that is indirectly influenced, an exhaustive enumer-
ation of the parameters that indirectly influence it, with the directions of influence.

4. General axioms of influence. Two axioms relating the behavior of a parameter to the
influences on it:

A. A parameter F' can only change in direction G (up or down) if there is some influence on
F pushing it in direction G.

B. A parameter F' must change in direction G if there are influences on F' in direction G,
and there are no influences on F' in direction —G.

5. Well-behavedness conditions.

A. Certain specified physical parameters are “well-behaved” functions of time.
B. A well-behaved function is continuous.

C. A well-behaved function does not asymptotically approach a value without attaining that
value.

D. At each instant, a well-behaved function is differentiable from the right and from the left.
(See section 2.)

E. States do not change infinitely often in finite time intervals. “States” here includes values
of discrete fluents; order relations between parameters; and activity states of processes.
(This condition will be discussed in detail in [Davis, in prep.])

6. Unique names axioms. Axioms specifying that objects, processes, and parameters with
different names are unequal.

7. Real analysis. An axiomatic theory describing basic properties of the real numbers and of
real-valued functions. In this paper, we will not spell out these axioms, which are well-known;
rather, we will cite theorems from this theory ad hoc as needed.

If the theory contains discrete states that are changed by events, these are characterized by:

8. Necessary conditions and sufficient conditions for each discrete fluent to change its value.

9. Necessary conditions and sufficient conditions for each event to occur.

If the theory contains parameters that may change discontinuously, but are piecewise continuous,
then [5A] above must be changed to

10. For each parameter, necessary conditions and sufficient conditions for the parameter to be
discontinuous in a given situation.



An example of such a parameter is velocity in a theory of solid object dynamics with collisions.
The use of axioms of this kind is discussed by Rayner [1991]. The example that we will discuss here
does not include any discontinuous parameters.

There does not seem to be any physical need for parameters that are not piecewise continuous.

2 Finicky details about real-valued parameters

As often in using the real numbers as a basis for a physical theory, it is necessary to worry about fine
details of small-scale topology to give precise and correct ontological definitions. Since this paper
serves no purpose other than finicky precision, I need not apologize.

The problem is to define what it means for parameter to be “increasing,” “decreasing,” or
“constant” at an instant of time. Most of the literature on qualitative reasoning uses the sign of
the derivative of the parameter at the instant, which is perfectly fine as long as everything can be
assumed to be everywhere differentiable. However, this assumption does not seem reasonable within
all domains we would like to address in QP. Consider, for example, cutting a string supporting a
weight at time ¢t = 0. (Figure 1). The acceleration changes instantaneously (up to the precision of
the model) from 0 to —g, so the velocity is not differentiable at ¢ = 0.

How shall we characterize its behavior at ¢ = 07 In fact, what we want to do depends on how
we characterize the state of the string. If the string is whole for ¢ < 0 and broken for ¢ > 0, then
we should say that the downward velocity is increasing at ¢ = 0;, if the string is whole for t < 0
and broken for ¢t > 0, then we should say that the velocity is constant at ¢ = 0. How we want to
characterize the string may in turn depend on considerations external to the QP analysis, such as
the desired geometric theory.

One might be tempted, from this example, to refuse to deal with characterizing behavior at an
instant, and demand that characterizations refer to open intervals. But that will hardly do. Very
often, parameters are in a constant state only for an instant, such as a ball thrown in the air at the
top of its path. Avoiding this would necessarily create a lot of clumsiness.

The solution we propose is as follows: Assume that every parameter is differentiable at every
instant both from the right and from the left. We define the “true derivative” to be, disjunctively,
either the derivative from the right or the derivative from the left. The disjunction allows the logic
to “pick” whichever value will fit in better with the rest of the theory. “Increasing,” “decreasing,”
and “constant” are then defined in terms of the sign of the “true” derivative. Thus, the velocity
shown in figure 2 may be either increasing or constant at ¢ = 0, whichever fits better with the rest
of the world state. It cannot be decreasing, though.

Note that this means that there can be two parameters F'1 and F'2 that are always equal, but
F'1is increasing at a time that F'2 is decreasing. Thus, “increasing” and “decreasing” are properties
of physical parameters, not of the associated functions of time.

3 The axiomatic theory

This section gives an axiomatic theory for the following example (Figure 3): A can of water is heated
over a flame. The can has a safety valve with two states, open and closed. The valve opens when the
pressure in the can exceeds a certain fixed pressure; it closes when the pressure drops below another
(lower) fixed pressure. The processes we will model are the heat flow from the flame to the can,
the heat flow from the can to its contents, the boiling of the water, and the flow of steam from the



can through the safety valve to the outside air. We treat the flame as a heat reservoir, capable of
supplying arbitrary heat-flow without being affected, and the outer air as a gas reservoir, capable of
absorbing arbitrary gas-flow. We ignore the heat flow to the outside air. We make the idealization
that water changes from liquid to gas only during a boiling process.

We use a sorted first-order logic with equality. The sorts of variables is indicated by the first
letter of the variable name. We use the following sorts: situations (.S), real-numbers (X,Y), signs
(G) parameters (F'), processes (P), states(A), objects(O). The signs are “pos”, “neg” and “zero”.
For reasons of technical convenience (see axiom 5.5), we take pos and neg to be equal to 1 and —1
respectively, rather than being the intervals (0, 00) and (—o0, 0) as is more usual. For a microworld
with events, it would also be necessary to include events and intervals.

The theory below contains only the physics needed for this particular example, and thus does
not satisfy the “no function in structure” principle. Obvious extensions within the same general
microworld, such as the processes of melting, freezing, condensing, or liquid flow, have not been
included. However, it can be seen that these could be added with minor modifications to the
analysis of this example.

3.1 Formal Language

The following non-logical primitives are used.
Arithmetic

X1 < X2 — Predicate. Order relation. Likewise the other order relations.
X+Y,X-Y,X Y, X/Y. — Functions. Plus, minus, times, divide.

within(Y, X, X D) — Predicate. Y is within XD of X. X - XD <Y < X 4+ XD.
pos, neg, 0 — Constants. The three signs.

General properties of parameters and states

(Some of these are formally defined in axioms 5.1-5.11 below.)

holds(S, A) — Predicate. State A holds in situation S.
value_in(S, F') — Function. Value of parameter F' in situation S.
continuous(F, S) —Predicate. F' is continuous at time S.
oneside_deriv(F, S, X, G) — Predicate. F is differentiable from the side indicated by sign G
at time S, and the derivative from that side is X.
direction(F') — Function. The fluent of the sign of the direction in which F is changing
(pos if increasing, neg if decreasing, 0 if constant.)
no_asymptotic(F') — Predicate. As ¢t — oo, F' does not asymptotically approach a constant value
with a fixed sign of derivative.
no_chatter(A, S) — Predicate. State A does not change infinitely often in the neighborhood of S.
good_param(F') — Predicate. F'is a well-behaved parameter.

Influence

d_influence(P, F') — Fluent. The sign of the direct influence of process P on parameter F' in each
situation. 0 if no influence.

iinfluence(F'l, F') — Fluent. The sign of the indirect influence of parameter F'1 on parameter F' in
each situation. 0 if no influence.



influence(@, F, S) — Fluent. The sign of the net influence of @ on parameter F' in situation S.
() may be either a process or another parameter

directly_influenced(F) — F' is the sort of parameter that is subject to direct rather than indirect
influences.

Invariant Object and System Characteristics

boiling_point(O) — Function. Boiling temperature of object O.
heat_reservoir(O) — Predicate. O is a heat reservoir.

gas_reservoir(O) — Predicate. O is a gas reservoir.

valve_between(OV, O1,02) — Predicate. OV is a valve connecting O1 with O2.
thermally_connected(O1,02). — Predicate. O1 is thermally connected to O2.

Parameters

temperature(O) — Function. Fluent of temperature of object O.
heat(O) — Function. Fluent of heat of object O.

pressure(0) — Function. Fluent of the pressure of object O.
liquid_mass(O) — Function. Fluent of the mass of the liquid part of O.
gas_mass(O) — Function. Fluent of the mass of the gaseous part of O.

Object States

open(O) — Function. State of valve O being open.
conduit(OC, 01, 02) — Function. State of OC serving as a conduit connecting O1 with O2.

Processes

heat_flow(O1, 02) — Function. Process of a heat flow from O1 to O2.
boiling(O) — Function. Process of object O boiling.
gas_flow(0O1,02,0C) — Function. Process of a flow of gas from O1 to O2 through conduit OC.

Envisionments

These are primitives that are useful in describing envisionments. They are not used either in
the axioms describing the microworld or in the axioms describing the scenario. They are defined in
axioms 9.1-9.4. Envisionments are described in terms of “modes”, which are states. We use variables
with initial letter M for modes.

throughout(S1, 52, A) — Predicate. State A holds over the open interval (S1,52).

dense(S1, 52, A) — Predicate. State A holds over a dense subset of the interval (S1,52).

borders(M A, M B,S) — Mode M A borders mode M B in situation S.

transition(MO0, T, M1, M2 ... Mk) — Mode M0 may transition to one of M1 ... Mk. If the Boolean
argument 7' is “terminal,” then M0 may be a terminal state; otherwise it cannot be.

3.2 Microworld Theory

We now enumerate the axioms for our microworld, organized according to the outline in section 1.



1. Process Definitions

We include here a number of atemporal axioms and state coherence axioms (axioms constraining
the states that can hold in a single situation) constraining relations and states strongly associated
with activation conditions.

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.1

[ thermally_connected(OS, OD) A temperature(OS,S) > temperature(OD, S) | =
active(S heat_flow(OS, 0O D)).
(Sufficient condition for heat flow: If source OS is thermally connected to destination OD and

OS is hotter than OD, then heat will flow from OS to OD.)

active(S, heat_flow(0S,OD)) =

[ OS # OD A thermally_connected(0S,0OD) A temperature(OS, S) > temperature(OD, S) A
—active(S,heat_flow(OD, 0S)) ]

(Necessary conditions for heat flow: For heat to flow directly from OS to OD, they must be
thermally connected; OS must be at least as hot as OD; and there must not be heat flow in
the other direction.)

thermally_connected(0O1, 02) < thermally_connected(02, O1).
(Thermal connections are symmetric.)

active(S,boiling(OB)) <

[ liquid-mass(OB, S) > 0 A temperature(OB, S) = boiling_point(OB) A
direction(heat(OB),S) = pos.

(Necessary and sufficient conditions for boiling: An object OB will boil iff it is partially liquid
and is at its boiling point and its heat is increasing.)

liquid_mass(OB, S) > 0 = temperature(OB, S) < boiling_point(OB).
(Constraint: An object can be partially liquid only if its temperature is below the boiling
point.)

active(S,gas_flow(01,02,0C))

[conduit(OC, 01,02, S) A gas_mass(O1,S) > 0 A pressure(O1, S) > pressure(02, 5)]
(Necessary and sufficient condition for gas-flow: Gas flows from O1 to O2 through OC if and
only if OC is a conduit between O1 and 02, and O1 is partially gaseous, and the pressure in
O1 is greater than that in 02.)

conduit(OC, 01,02, S) < conduit(0OC, 02,01, 5).

(The conduit relation is symmetric in the two ends.)

liquid_mass(O, S) > 0 A gas_mass(O, S) > 0.

(Masses are non-negative.)

gas_mass(O) = 0 = pressure(0) = 0.
(If there is no gas, there is no pressure.)

2. Direct Influences

[directly_influenced(F') = i_influence(F, S)=0] A

[—directly_influenced(F') = d_influence(F, S)=0] A

[directly_influenced(F') < Jo F=heat(O) V F=liquid-mass(O) A F=gasmass(O)].

(Division of parameters into those that are directly influenced and those that are indirectly
influenced, and an enumeration of the directly influenced.)



2.2

2.3

2.4

25

2.6

2.7

3.1

3.2

3.3

3.4

4.1

4.2.

4.3

d_influence( P heat(0),S) = pos < —heat_reservoir(O) A Jo1 P=heat flow(O1, O)
(Heat in objects that are not reservoirs is increased by incoming heat flow, and nothing else.)

d_influence( P heat(0), S) = neg < —heat_reservoir(O) A o1 P=heat_flow(O, O1)

(Heat in objects that are not reservoirs is decreased by outgoing heat flow, and nothing else.)

—d_influence( P,liquid_mass(0),S) = pos.
(There are no processes, within this theory, that tend to increase liquid mass.)

d_influence( P liquid-mass(0),S) = neg < P=boiling(O)
(Liquid mass is decreased by boiling, and nothing else.)

d_influence(P, gas_mass(0), S) = pos <
—gas_reservoir(O) A [P=boiling(0) V J02,0c P=gasflow(02,0,0C)]

(Gas mass is increased by boiling and by incoming flow.)

d_influence(P, gasmass(0), S) = neg < —gas_reservoir(0) A o2 0c P=gasflow(0,02,0C)
(Gas mass is decreased by outgoing flow.)

3. Indirect influences

i-influence(F' temperature(0),S) = pos < F=heat(O) A —-active(S,boiling(0))
(Heat is a positive influence on temperature, as long as the object is not boiling.)

—iinfluence( F,temperature(0),S) = neg.
(There are no negative indirect influences on temperature.)

i_influence(F',pressure(0),S) = pos &
F=gas_mass(0) V [gas_mass(O, S) > 0.0 A F=temperature(O)]
(Heat and gaseous mass are positive influences on pressure.)

—iinfluence( F,pressure(0),S) = neg.
(There are no negative indirect influences on pressure.)

4. General axioms of influence.

influence(Q, F, S)=G &

[directly_influenced(F') A active(S, Q) A d-influence(Q, F, S)=G] Vv

[~directly_influenced(F) A G=i_influence(Q, F') - direction(Q, S)]

(Definition: @ influences parameter F' in direction G in situation S if () is a process active in
S that directly influences F' in direction G, or if @) is a parameter whose change in S indirectly
influences F' in direction G.)

G=direction(F, S)# 0 = ¢ influence(Q, F, S) = G.

(A parameter F' can only change in direction G # 0 (pos or neg) if there is some influence on
F pushing it in direction G.)

[J¢ influence(Q, F, S)=G A —3q influence(Q, F, S)=—G] = G=direction(F, S).

(A parameter F' must change in direction G if there are influences on F' in direction G, and
there are no influences on F' in direction —G.)

5. Well-behavedness conditions



5.1

5.2

5.3
5.4

9.5

5.6

5.7

5.8

5.9

5.10

5.11

5.13

good_param(F') = continuous(F, S).
(Well-behaved parameters are continuous functions of time.)

continuous(F, S) <
VxEe>o 3xp>0 Ys1 within(S1, S, X D) = within(valuein(S1, F'), value_in(S, F'), X E).
(Standard delta-epsilon definition of continuity.)

within(X,Y D)oY -D< X <Y +D.

good_param(F') = Ix1,x2 oneside_deriv(F, S, X1,pos) A one_side_deriv(F, S, X2 neg).
(A well-behaved parameter is differentiable from the right and from the left.)

one_side_deriv(F, S, X, G) <
[G#0A
VE>0 E|D>0 Vs1 0 < (51—5)~G<D:>
within((valuein(S1, F') — valuein(S, F') / (S1 = 5)), X, E) ].

(Epsilon-delta definition of one-sided derivative.)

good_param(F') = I x one_side_deriv(F, S, X, G) A sign(X)=direction(F, S).
(Partially determined definition of direction: F'is changing in direction G if G is the sign of
either the derivative from the left or from the right. See section 2.)

good_param(F') = no_asymptotic(F)
(A well behaved parameter does not asymptotically approach a value without attaining it.)

no_asymptotic(F') <
Vazo [[Vs13s2>s51 G=direction(F, S2)] A [s1Vs2»51 —G # direction(F, S2)]] =

Vs1 x3s2> 51 sign(valuein(S2, F) —X) = G.
(The “no asymptotic” property for a parameter F' is as follows: If past a certain point, F
never decreases, and there are points arbitrarily late where F' is increasing, then F' eventually
exceeds any fixed value X. Likewise a decreasing function will eventually be less than any
fixed value.)

no_chatter(4, S)
\V/G7£0 351 Sigl’l(Sl — S)IG A
Vso [sign(S2 — S) = sign(S1 — S2) = [holds(S2, 4) < holds(S1, A)]].
(State A does not “chatter” around situation S if in some interval before S and in some interval
after S it has a constant truth value.)

Vri1,r2,6 good_param(F1) A good_param(F2) =
4 [Vs holds(S, A) < G=sign(value_in(S, F'1) — value_in(S, F'2))] A Vg no_chatter(A4, S)

(The state defined by the order relations between two parameters does not chatter.)

Vx Jr good_param(F') A Vg value_in(S, F)=X.
(Existence and good behavior of the constant parameters.)

good_param(temperature(O)) A good_param(heat(O)) A good_param(pressure(O)) A
good_param(liquid mass(O)) A good_param(gas_mass(0O)).
(Physical parameters are well-behaved.)

no_chatter(conduit(OC, O1,02)) A no_chatter(open(O)) A no_chatter(heat_flow(O1,02)) A
no_chatter(boiling(O)) A no_chatter(gas_flow(0O1, 02, 0C)).
(Physical states are well-behaved.)

10



The “no chatter” axioms 5.9 and 5.10 are not generally needed for constructing envisionment
graphs, but they are sometimes necessary for interpreting them. In particular, if an envisionment
graph has a cycle, the “no chatter” rule may be needed to rule out histories in which the system
traverses the cycle infinitely often in a finite interval, and then “appears” somewhere else in the
graph.

6. Unique names

6.1 distinct(temperature(O1), heat(02), pressure(O3), liquid_mass(0O4), gas_mass(05)).

6.2 O1 # 02 = temperature(O1) # temperature(O2) A heat(O1) # heat(O2) A
pressure(01) # pressure(O2) A liquid_-mass(O1) # liquid_mass(02) A
gas_mass(O1) # gas_mass(02).
(Note that it is consistent with this axiom that the two parameters should sometimes be equal
in value, or even that they should always be equal in value. All that the axiom says is that
they are distinct entities.)

6.3 distinct( conduit(OA, OB, OC) open(OD), heat_flow(OE, OF), boiling(OG),
gas_flow(OH,01,0.)).

6.4 conduit(0O1,02,03) = conduit(OA,0OB,0C) = Ol =0OAAN02=0BA03=0C.
open(01,02)=open(0OA,0OB) = O1 = 0OAANO2=0B.
heat_flow(01,02) = heat_flow(OA,OB) = 01 = OAAO2 = OB.
boiling(O1)=boiling(0A) = O1 = OA.
gas_flow(01,02,03) = gasflow(OA, OB, 0C) = 01 =0AN02=0BA03=0C.

These unique names axioms are not used in the proofs below. However, they could be important
for other kinds of inference, such as the interpretation of a scenario description that specifies that
the only active process is the boiling of water.

7. Real analysis
The usual axioms for real analysis. These are not enumerated here.
8. Discrete changes (Valves)

8.1 valve_connects(OV, 01, 02) A pressure(O1, S) — pressure(02, S) > open_pressure_diff(OV) =
open(OV, S).
(A valve OV must be open if the pressure difference exceeds the “open pressure.”)

8.2 valve_connects(OV,01,02) A
pressure(01,S) — pressure(02,S) < close_pressure_diff(OV) =
—open(0OV, S).

(A valve OV must be closed if the pressure difference is less than the “close pressure.”)

8.3 [S1 < S2 A valve_connects(OV,01,02) A —open(OV, S1) A open(OV, S2)] =
Jds S1 < S <52 A pressure(O1, S) — pressure(02,S) > open_pressure_diff(OV).
(Frame axiom: The valve opens only if the pressure attains the open pressure.)

8.4 [S1 < S2 A valve_connects(OV,01,02) A open(OV, S1) A —open(OV, S2)] =
Jds S1 < S <52 A pressure(01, S) — pressure(02,S) < close_pressure_diff(OV).

(Frame axiom: The valve closes only if the pressure difference falls under the close pressure.)

11



8.5 0 < close_pressure_diff(OV) < open_pressure_diff(OV).

(The close pressure is less than the open pressure.)

8.6 valve_connects(OV, 01,02) = [conduit(OV, 01,02, S) < open(OV, S)].

(A valve is a conduit for gas flow just if it is open.)
Definition of Envisionment Primitives.

9.1 throughout(S1,52,4) <
[S1 < S2 AVs S1 < S <52 = holds(S, A)].
(State A holds throughout the open interval (S1,52).)

9.2 dense(S1,52,A) < Vsa spS1 < SA< SB < S2 =337 SA<SZ < SB A holds(SZ, 4).
(State A holds on a dense subset of (51, 52).)

9.3 borders(MA, M B, S) &
[[holds(S, M A) A Js15s throughout(S, S1, M B)] V
[[holds(S, M B) A Js1<s throughout(S1, S, M A)]] (In state S, the system goes from mode M A
to mode M B.)

9.4 transition(M0,T,M1,M2.. Mk) &
[Vs holds(S, M0) =
[[T=terminal A Ygass holds(SA, M0)] vV
Jds1 [S1 =S V throughout(S, S1, M0)] A
[borders(M0, M1,S1) V ...V borders(M0, Mk, S1)]].
(If the system is in mode M0 then it may change to mode M1 or to mode M2 ...or to mode
Mk or, if T' is “terminal” it may remain in MO0 forever.)

4 Scenario Description and Envisionment

In this section, we first give a formal account of our sample scenario. Second, we define some of the
modes of the systems; namely, those that can actually be attained from an initial state in which the
water in the can is completely liquid and is below the boiling point of water. (Other modes do exist,
such as modes in which the water is hotter than the flame and cooling down.) Figure 4 shows the
envisionment graph for these twelve modes. Thirdly, we prove the first two outward transitions in
the graph: mode 1 must be followed by mode 2; mode 2 must be followed by mode 3, mode 7, or
mode 8.

4.1 Scenario Description

SC.1 in_scenario(0) < O=oflame V O=ocan V O=owater V O=ovalve V O=outside_air.
(Enumeration of the objects in the scenario. Note: owater is the collective HyO in the can,
both liquid and steam. This decreases as steam is released through the valve.)

SC.2 in_scenario(O) = [heat_reservoir(0) < O=oflame]
(The flame is the only heat reservoir.)

SC.3 in_scenario(O) = [gas_reservoir(0) < O=outside_air]
(The outside air is the only gas reservoir.)

SC.4 thermally_connected(O,ocan) < O=oflame V O=owater.
(The flame and the water are the only things thermally connected to the can.)

12



SC.5 thermally_connected(O,owater) < O=ocan.
(The can is the only thing thermally connected to the water. We ignore any heat flows involving
the valve or the outside air.)

SC.6 valve_connects(ovalve,owater,outside_air).
(The valve is a valve connecting the water in the can to the outside air.)

SC.7 conduit(OC owater,0D,S) = OC=ovalve A O D=outside_air.
(The valve is the only conduit from the water in the can to the outside air. The statement
that the valve is a conduit when open is in axiom 8.6 above.)

SC.8 distinct(oflame, ocan, owater, ovalve, outside_air).
(Unique names.)

SC.9 boiling_point(ocan) > temperature(oflame,S1) = temperature(oflame,S2) > boiling_point(owater).
(The temperature of the flame is constant, greater than the boiling point of water, and less
than the boiling point of the can.)

SC.10 pressure(outside_air,S1) = pressure(outside_air,S2)
(The pressure of the outside air is constant.)

SC.11 open_pressure=pressure(outside_air,S) + open_pressure_diff(ovalve).
close_pressure=pressure(outside_air,S) + close_pressure_diff(ovalve).
(Landmarks on the pressure of the steam in the can to open or close the valve.)

4.2 Mode Definitions

MD.1 holds(S,model) <
temperature(owater,S) < temperature(ocan,S) < temperature(oflame,S) A
temperature(owater,S) < boiling_point(owater) A liquid_mass(owater,S) > 0.0 A
gas_mass(owater,S)=0.0 A pressure(owater,S) < open_pressure A
—open(ovalve).
(The water is liquid and not boiling, the valve is closed.)

MD.2 holds(S,mode2) <
temperature(owater,S) < temperature(ocan,S) < temperature(oflame,S) A
temperature(owater,S) = boiling_point(owater) A liquid_mass(owater,S) > 0.0 A
pressure(owater,S) < open_pressure A —open(ovalve).
(The water is boiling, the valve is closed. This is actually a superset of modes 5 and 6.)

MD.3 holds(S,mode3) <
temperature(owater,S) < temperature(ocan,S) < temperature(oflame,S) A
temperature(owater,S) = boiling_point(owater) A liquid_mass(owater,S) > 0.0 A
pressure(owater,S) > open_pressure A open(ovalve).
(The water is boiling and the pressure is enough to open the valve.)

MD.4 holds(S,moded) <
temperature(owater,S) < temperature(ocan,S) < temperature(oflame,S) A
temperature(owater,S) = boiling_point(owater) A liquid_mass(owater,S) > 0.0 A
open_pressure > pressure(owater,S) > close_pressure A open(ovalve).
(The water is boiling, the pressure is between the open and close pressures, and the the valve
remains open.)

13



MD.5 holds(S,mode5) <
temperature(owater,S) < temperature(ocan,S) < temperature(oflame,S) A
temperature(owater,S) = boiling_point(owater) A liquid_mass(owater,S) > 0.0 A
pressure(owater,S) = close_pressure A —open(ovalve).
(The water is boiling and the pressure has fallen to the close pressure.)

MD.6 holds(S,mode6) <
temperature(owater,S) < temperature(ocan,S) < temperature(oflame,S) A
temperature(owater,S) = boiling_point(owater) A liquid_mass(owater,S) > 0.0 A
open_pressure > pressure(owater,S) > close_pressure A Zopen(ovalve).
(The water is boiling, the pressure is between the open and close pressures, and the the valve
remains closed.)

MD.7 holds(S,mode7) <
temperature(owater,S) < temperature(ocan,S) < temperature(oflame,S) A
boiling_point(owater) < temperature(owater,S) < temperature(oflame,S) A
liquid_mass(owater,S) = 0.0 A pressure(owater,S) < open_pressure A
—open(ovalve)
(The water has boiled away, and the valve is closed. This is a superset of modes 10 and 11.)

MD.8 holds(S,mode8) <
temperature(owater,S) < temperature(ocan,S) < temperature(oflame,S) A
boiling_point(owater) < temperature(owater,S) < temperature(oflame,S) A
liquid_mass(owater,S) = 0.0 A pressure(owater,S) > open_pressure A
open(ovalve).
(The water has boiled away, and the pressure is enough to open the valve.)

MD.9 holds(S,mode9) <
temperature(owater,S) < temperature(ocan,S) < temperature(oflame,S) A
boiling_point(owater) < temperature(owater,S) < temperature(oflame,S) A
liquid_mass(owater,S) = 0.0 A open_pressure > pressure(owater,S) > close_pressure A
open(ovalve).
(The water has boiled away, the pressure is between the open and close pressures, and the the
valve remains open.)

MD.10 holds(S,model0) <
temperature(owater,S) < temperature(ocan,S) < temperature(oflame,S) A
boiling_point(owater) < temperature(owater,S) < temperature(oflame,S) A
liquid_mass(owater,S) > 0.0 A pressure(owater,S) = close_pressure A
—open(ovalve).
(The water has boiled away and the pressure has fallen to the close pressure.)

MD.11 holds(S,modell) <
temperature(owater,S) < temperature(ocan,S) < temperature(oflame,S) A
boiling_point(owater) < temperature(owater,S) < temperature(oflame,S) A
liquid_mass(owater,S) = 0.0 A
open_pressure > pressure(owater,S) > close_pressure A —open(ovalve).
(The water has boiled away, the pressure is between the open and close pressures, and the the
valve remains closed.)

MD.12 holds(S,model2) <
boiling_point(owater) < temperature(owater,S) A
temperature(owater,S) = temperature(ocan,S) = temperature(oflame,S) A
liquid_mass(owater,S) = 0.0 A pressure(owater,S) > close_pressure A open(ovalve).
(The water has attained the temperature of the flame. The valve is open.)

14



MD.13 holds(S,model3) <
boiling_point(owater) < temperature(owater,S) A
temperature(owater,S) = temperature(ocan,S) =
temperature(oflame,S) A
liquid_-mass(owater,S) = 0.0 A pressure(owater,S) = close_pressure A —open(ovalve).
(The water has attained the temperature of the flame. The pressure has fallen to the close
pressure.)

MD.14 holds(S,model4) <
boiling_point(owater) < temperature(owater,S) A
temperature(owater,S) = temperature(ocan,S) = temperature(oflame,S) A
liquid_mass(owater,S) = 0.0 A
close_pressure < pressure(owater,S) < open_pressure A —open(ovalve).
(The water has attained the temperature of the flame. The valve is closed.)

4.3 Proof of the first two transitions

The presence of the two coupled heat flows, from the flame to the can, and from the can to the
water, gives rise to complexities in the predictions and the proof. It is perfectly consistent with the
above theory that the can should either attain the temperature of the flame, or that it should attain
the temperature of the water. (These are achievable states even if axioms 1.1 and 1.2 are changed to
read that no heat flow can occur unless there is a temperature differential.) In fact, the temperature
of the can can do anything it wants to as long as it stays between the temperature of the flame and
the temperature of the water. If the can gets as hot as the flame, then the heat-flow from the flame
to the can may cease. It can only cease for an instant, though, because the heat flow from the can
to the water will bring down the temperature of the can immediately. Similarly, if the can gets as
cool as the water, then the heat flow from the can to the water will cease, and the temperature of
the water will stop rising; but, again, this can only happen for an instant. (This problem was called
“stutter” in [Forbus, 85].) Therefore, some of our results are stated, not in the form “Such and such
a condition must hold throughout an interval,” but in the form, “The condition must hold over a
dense subset of the interval.” It is possible to prove mathematically that these conditions must, in
fact, hold almost everywhere on the interval. Indeed, if we impose the “no-chatter” condition (axiom
5.9), it follows that they must hold at all but finitely many points in the intervals. However, since
neither of these stronger conclusions give us any additional leverage, we have not included them in
the proof below.

Lemmas of a purely mathematical content are merely stated and not proven below.

Lemma 1:
temperature(owater,S) < temperature(ocan,S) = active(S, heat_flow(ocan,owater)).
(If the water is cooler than the can, there must be a heat flow from the can to the water.)

Proof: 1.1, SC.5. O

Lemma 2:
temperature(ocan,S) < temperature(oflame,S) = active(S,heat_flow(oflame,ocan)).
(If the can is cooler than the flame, there must be heat flow from the flame to the can)

Proof: 1.1,5C.4. O

Lemma 3:

good_param(F'1) A good_param(F'2) A throughout(S1, S2,eql(F1, F'2)) =

dense(S1, 52 eql(direction(F'1),direction(F'2)))

(Mathematical. If functions F'1 and F'2 are equal throughout the interval (S1,52) then their direc-

15



tions have to be equal on a dense subset.)

Lemma 4:
[good_param(F') A throughout(S1, S2,eql(direction(F),0))] < Ix throughout(S1, S2,eql(F, X)).

(Mathematical: A parameter is constant over an open interval just if its direction is always 0.)

Lemma 5:

throughout(S1, 52 eql(temperature(oflame),temperature(ocan))) A
throughout(S1, 52, temperature(ocan) > temperature(owater)) =

throughout(S1, 52 heat_flow(oflame,ocan)).

(If the can and the flame are the same temperature and hotter than the water throughout an open
interval, then there must be heat flow from the flame to the can throughout the interval. Note: This
does not apply to a closed interval.)

Proof: By Lemma 1, there is a heat-flow from the can to the water. By 2.2, SC.1, SC.2, this is
a negative influence on heat(ocan)

By SC.9. temperature(oflame) is constant, so, by assumption, temperature(ocan) is likewise
constant. By Lemma 4, the direction of temperature(ocan) is 0. By SC.10 and 1.4, the can is not
boiling. By 3.1, 3.2, heat(ocan) is an influence and the only influence, on temperature(ocan). By 4.1,
4.3, the direction of heat(ocan) is 0. Since we know that there is a negative influence on heat(ocan),
by 4.3, there must be a positive influence on heat(ocan). By 2.2, this must be a heat flow into ocan.
By 1.2 and SC.4, the only possible heat flow into ocan is from oflame.O

Lemma 6:
direction(temperature(0),S)=pos = Jo1 active(S heat_flow(O1, O)).
(The temperature of O can increase only if there is a heat flow into it.)

Proof: From 3.1, 3.2, 4.1, 4.2, the temperature of O can increase only if the heat of O increases.
From 2.2, 4.1, 4.2, heat(O) can increase only if there is a heat flow into 0.0

Lemma 7:
direction(temperature(0),S)=neg = Jo1 active(S,heat_flow(O, O1)).
(The temperature of O can decrease only if there is a heat flow out of it.)

Proof: From 3.1, 3.2, 4.1, 4.2, the temperature of O can decrease only if the heat of O decreases.
From 2.2, 4.1, 4.2, heat(O) can decrease only if there is a heat flow out of O.

Lemma 8:

throughout(S1, S2,temperature(oflame) > temperature(ocan)) A

throughout(S1, S2,eql(temperature(ocan), temperature(owater))) =

Jds S1 < S < S2 A active(S,heat_flow(ocan,owater)).

(If the can and the water are the same temperature and cooler than the flame throughout an open
interval, then there is heat flow from the can to the water at some time during that interval.)

Proof: By Lemma 2, there is a heat flow from oflame to ocan. By 1.2 and SC.4, the only possible
heat flow out of ocan is to owater.

We prove by contradiction that at some time between S1 and S2 there must be a heat flow from
ocan to owater. Suppose not. Then, from the above remark, there is no heat flow out of ocan. By
2.3, there is no negative influence on the heat of ocan, and by 2.2 there is a positive influence. By
4.3, the heat of ocan is rising throughout the interval (S1,52). By SC.9 and 1.4, the can is not
boiling, so by 3.1 and 3.2, the heat of the can is the unique influence on temperature. Therefore,
by 4.3, the temperature of the can rises throughout (S1,52). By Lemma 3, since the assumptions
specify that the temperature of ocan and owater are equal throughout (S1,52), it follows that the
temperature of owater is rising at a dense subset of (S1,.52). By lemma 6, there must be a heat flow
into owater from somewhere. By 1.2 and SC.5, the only possible source for a heat flow into owater

16



is ocan; but by assumption there is no such heat flow. This completes the contradiction.O

Lemma 9:

[throughout(S1, S2,temperature(oflame) > temperature(ocan)) A

throughout(S1, S2,temperature(ocan) > temperature(owater)) A
throughout(S1, 52 temperature(oflame) > temperature(owater))] =

s S1 < 5 < 52 A active(S heat_flow(oflame,ocan)) A active(S,heat_flow(ocan,owater)).

(If the temperature of the can is (not strictly) between the temperature of the flame and the tem-
perature of the water throughout an open time interval, then at some time in between there must
be both heat flow from the flame to the can, and heat flow from the can to the water.)

Proof: There must be some subinterval SA, SB of S1, 52 throughout which one of the following
holds:

o temperature(oflame) > temperature(ocan) > temperature(owater).
By lemmas 1 and 2, the two heat flows are active.

o temperature(oflame) = temperature(ocan) > temperature(owater).
By lemmas 1 and 5, the two heat flows are active.

e temperature(oflame) > temperature(ocan) > temperature(owater).
By lemmas 2 and 6, the two heat flows are active.O

Lemma 10:

[Vsa,sp throughout(SA, SB, Al) = 35 SA < .S < SB A holds(S, A2)] =

[Vsa,sp throughout(SA, SB, Al) = dense(SA, SB, A2)].

(Mathematical. If every interval satisfying A throughout contains a point satisfying B, then every
interval satisfying A contains a dense collection of points satisfying B.)

MODEL1.1:

throughout(S1, S2,model) =

dense(S1, 52 heat_flow(oflame,ocan)) A dense(S1, 52 heat_flow(ocan,owater)).

(If mode 1 holds throughout an interval, then there is heat flow from the flame to the can and from
the can to the water over a dense subset.)

Proof: Immediate from MD.1, Lemma 9, Lemma 10.0

Lemma 11:

[active( S, heat_flow(ocan,owater)) A —active(S,boiling(owater))] =
direction(temperature(owater,S)) = pos.

(If there is a heat-flow from the can to the water, and the water is not boiling, then the temperature
of the water is rising.)

Proof: By 1.2 and SC.5, there cannot be any heat flow out of the water. By 2.2, 2.3, 4.1, and
4.3, heat(owater) must be increasing. By 3.1, 3.2, this is the only influence on the temperature of
the water. By 4.1 and 4.3 temperature(owater) must be rising.0

Lemma 12:

good_param(F) A G # 0 A dense(S1, S2,eql(direction(F),G)) =

throughout(S1, S2,neql(direction(F'),—G)).

(Mathematical: If direction(F') has non-zero value G over a dense subset of (S1,.52), then it cannot

be —G anywhere on (S1,52).)

MODE1.2:
throughout(S1, S2,model) =
dense(S1, 52 eql(direction(temperature(owater),pos))) A

17



throughout(S1, S2,neql(direction(temperature(owater),neg)))
(In mode 1, the temperature of the water is increasing over a dense set, and it is never decreasing.)

Proof: From MODEL.1, MD.1, Lemma 11, and Lemma 12.

Lemma 13:

good_param(F'1) A good_param(F2) A

S1 < S2 A valuein(S1, F'1) < valuedin(S1, F'2) A valuein(S2, F'1) > value_in(S2, F'2) =

dsa S1 < SA < 52 A valuein(SA, F'1) > valuelin(SA4, F2) A

[direction(F'1, SA)=pos V direction(F'2, SA)=neg]

(Mathematical: If F'1 < F'2 at time S1 but F'1 is greater than F'2 later, then there is a time later
when F'1 is greater than F'2 and either F'1 is increasing or F'2 is decreasing.)

Lemma 14:

temperature(oflame,S) > temperature(ocan,S) > temperature(owater,S) =

Vs1>s temperature(oflame,S1) > temperature(ocan,S1) > temperature(owater,S1).

(If the temperature of the can is (not strictly) between the temperature of the flame and the tem-
perature of the water, then these inequalities will hold at all future times.)

Proof: By contradiction. Suppose that this does not hold for some particular S and S1. Then
in S1 either (a) the water is hotter than the can; or (b) the water is not hotter than the can, but
the can is hotter than the flame. We consider these two possibilities in turn.

A) By lemma 13, there is some time SA between S and S1 during which the water is hotter
than the can and the temperature of the water is increasing. But (lemma 6) the temperature of the
water can increase only if there is heat flow into the water, which is impossible by 1.2 and SC.5.

A) By lemma 13, there is some time SA between S and S1 during which the can is hotter than
the flame and the temperature of the can is increasing. But (lemma 6) the temperature of the can
can only increase if there is heat flow into the can, which means (1.2 and SC.4) that the water must
be hotter than the can, contrary to assumption.

This completes the contradiction.O.

Lemma 15:

temperature(owater,S) < boiling_point(owater) =

direction(liquid_mass(owater),S) = direction(gas_mass(owater),S) = 0.

(If the water is cooler than boiling temperature, then neither liquid mass nor gas mass are changing.)

Proof: From 1.4, the water is not boiling in S. From 2.4, 2.5, 4.1, 4.2, the liquid mass of the
water is not changing. From 2.6, 2.7, 4.1, 4.2, the gas mass of the water is not changing either.O

MODE1.3:

holds(S,model) =

direction(liquid _mass(owater),S) = direction(gas_mass(owater),S) = 0.
(In mode 1, neither liquid mass nor gas mass is changing.)

Proof: Immediate from Lemma 15.0

Lemma 16:

[gas_mass(owater,S1) = 0.0 A

[Vs S1 < S < 52 = temperature(owater,S) < boiling_point(owater)]|] =

pressure(owater,S2) = pressure(owater,S1).

(If no part of the water is gaseous at S1, and the temperature of the water remains below boiling
until S2, then there is no change in pressure.)

Proof: If the pressure changes between S1 and S2, then by lemma 4, it must have a non-zero
direction at some time in between. From 3.3, 3.4, 4.1, 4.2, the pressure can change only if the gas

18



mass is changing or if the gas mass is greater than 0.0 and the temperature is changing. From
Lemma 15, the gas mass is never changing. From lemma 4, this implies that the gas mass remains
equal to 0.0 throughout (S1,.52). Thus the result follows.

MODEL1.4:
holds(S,model) = direction(pressure(owater),S) = 0.
(In mode 1 there is no change in pressure.)

Proof: Immediate from lemma 16.0

MODE1.5
holds(S,model) = g5 g1 ~holds(S,model)
(Mode 1 cannot be a final state.)

Proof: Suppose that mode 1 were a final state. Then, by MODE1.2, the temperature of owater
would be forever rising. By 5.8, it would eventually exceed boiling point(owater), but then the
system would no longer be in model, which is inconsistent.O

Lemma 17:

good_param(F) A X1 < value.in(S, F') < X2 = Js155 throughout(S,51,X1 < F < X2).
(Mathematical: If F' has value X strictly between X1 and X2 in situation S, then it continues to
lie between X1 and X2 for some interval after S.)

Lemma 18:

good_param(F'1) A good_param(F2) A throughout(S1,S52, F'1 < F2) =

value_in(S1, F'1) < valuein(S1, F'2) A valuein(S2, F'1) < value_in(S2, F'2).

(Mathematical: If a non-strict inequality holds over an open interval, it holds at both end points.)

Corollary 19:

good_param(F'1) A good_param(F'2) A throughout(S1, 52, eql(F'1, F'2)) =

value_in(S1, F'1) = value_in(S1, F'2) A value.in(S2, F'1) = value_in(S2, F'2).

(If two parameters are equal over an interval, they are equal at the endpoints. Corollary of lemma

18.)

MODEL1.6: transition(model,nonterminal,mode2).
Mode 1 must transition to mode2.

Proof: By MODEL.5, mode 1 cannot be a final state. Let S be a state in which mode 1 holds,
and let S1 be the greatest lower bound of all situations greater than S in which mode 1 does not
hold. Then mode 1 holds in S and over the open interval (S, S1); but either mode 1 does not hold
in S1 or there is no interval (S1, S2) such that mode 1 holds throughout (S1, 52).

Let us begin by considering what is the situation in S1. If S1 = S, then, of course, mode 1
holds in S1. Suppose S1 > S, so that mode 1 holds throughout the interval (S,S1). By lemma
14, in S1 the temperature of the water must still be less than or equal to the temperature of the
can, and the temperature of the can must be less than or equal to the temperature of the flame.
By lemma 16, the temperature of the water in S1 is less than or equal to the boiling point of
water. By MODEL.3, MODE1.4, and lemma 4, the liquid mass, the gas mass, and the pressure
are all constant over the interval (S, S1), so by lemma 16 they are unchanged in S1. Therefore
the constraints liquid_mass(owater,S1) > 0.0, gas_mass(owater,S1) = 0.0, pressure(owater,S) <
open_pressure must all hold. By 8.3, since the pressure stays less than open_pressure throughout
(S, S1], the valve cannot open.

Putting these together, we conclude that in S1, either the temperature of the water has reached
the boiling point and the system is in mode 2, or it has not and the system is in mode 1. In the first
case, there is a transition from mode 1 to mode 2. We will show that the second case is impossible
by considering what happens in short intervals following S1. By lemma 17, if the temperature of

19



the water is below boiling in S1 then there is an interval (S1,52) during which it remains below
boiling. By lemmas 15 and 16, the directions of change of the liquid mass, the gas mass, and the
pressure are zero throughout (S1,S52). Hence, by lemma 4, these parameters remain constant. By
same argument as above, the valve remains closed throughout (S1, S2). Hence, the system remains
in mode 1 throughout (S1,52), contrary to assumption.O.

MODE2.1:
throughout(S1, S2,mode2) =
dense(S1, 52 heat_flow(oflame,ocan)) A dense(S1, S2,heat_flow(ocan,owater)).

Proof: Immediate from MD.2, Lemma 9, Lemma 10.0

MODE2.2:

throughout(S1, S2,mode2) =

dense(S1, S2,boiling(owater)) A dense(S1, 52, eql(direction(heat(owater)),pos)) A

dense(S1, 52, eql(direction(liquid_mass(owater)),neg)) A

dense(S1, 52, eql(direction(gas_mass(owater)),pos)) A

dense(S1, 52, eql(direction(pressure(owater)),pos)).

(If mode 2 holds during an open interval, then the water is boiling, the liquid mass of the water is
decreasing, and the temperature, gas mass, and pressure of the water are increasing over a dense
subset of the interval.)

Proof: From MODEZ2.1, there is a heat flow from the can to the water at a dense set of instants.
Let S be any such instant. By 1.2 and SC.5, there cannot be any heat flow out of the water in
S. Hence, by 2.2, 2.3, 4.1, 4.3, the heat of the water is increasing. By MODE2.1, MD.2, 1.4., the
water must be boiling in S. By 2.4, 2.5, 4.1, 4.3, the liquid mass of the water is decreasing in S. By
SC.7, 8.6, the valve is the only possible conduit for gas flow, and only when it is open. Since, by
MD.2, it is not open in mode 2, there is no possible conduit for gas flow, so by 1.6 there is no gas
flow. Hence, by 2.6, 2.7, the only influence on gas mass is positive, so by 4.1, 4.3, gas mass must be
increasing in S. By definition of mode 2, the temperature is constant, and so (lemma 4) it is neither
increasing nor decreasing during (S1,.52). There is thus one positive influence on the pressure, and
no negative influences (3.3,3.4) so the pressure must be increasing (4.1, 4.3).0

MODE2.3: transition(mode2, nonterminal, mode3, mode8, mode9)

Proof: Mode 2 cannot be a terminal mode. Since liquid mass steadily decreases, by 5.8 it must
eventually attain zero, at which point (if not before) the system is no longer in mode 2.

Let S be a situation in which mode 2 holds, and let S1 be the greatest lower bound of situations
after S in which mode 2 does not hold. Thus, if S1 > S, then mode 2 holds throughout the interval
(S, S1). By lemma 9, the water is cooler than the can which is cooler than the flame in S1. By
lemma 19, the temperature of the water is equal to the boiling point of water in S1. By lemma 17,
the liquid mass of the water is greater than or equal to zero in S1, and the pressure is less than or
equal to the opening pressure, since both of these non-strict inequalities hold over (S, S1). By 8.1,
if the pressure in S1 is equal to the opening pressure, then the valve must be open in S1; by 8.3, if
the pressure in S1 is less than the opening pressure, then the valve must be closed in S1. (Note that
by definition of mode 2, the valve is closed in S, and the pressure is less than the opening pressure

throughout (S, S1).

Combining these conditions, it follows that the system in S1 is either in mode 2, mode 3, mode
8, or mode 9. It remains to eliminate the first of these possibilities, by showing that if mode 2 holds
in S1, then it holds over some interval (S1,52), contrary to hypothesis. From lemma 18, we know
that if the strict inequalities liquid_mass(owater) > 0 and pressure(owater) < open_pressure hold
in S1 then they must hold for some interval after S1. Therefore, by 8.3, the valve remains closed
throughout (S1,52). The temperature of the water cannot fall below the boiling point, since there

20



is no negative influence on it, and it cannot rise above the boiling point by 1.5 The inequalities on
the temperature of the water, the can, and the flame continue to hold by lemma 9. Thus, all the
conditions of mode 2 are satisfied, and mode 2 continues through (S1,52), contrary to hypothesis.O

5 Non-monotonicity

There are (at least) two possible roles that non-monotonic inference could play in QP theory:

1. It may be possible to infer parts of a theory like that above, particularly closure conditions,
by applying non-monotonic inference to a simpler theory.

2. Tt may be desirable to modify a theory like that above by changing some of the axioms from de-
ductive rules to default rules, thus allowing inferences to be drawn provisionally and withdrawn
if they lead to contradictions with other information.

The distinction between these two roles mirrors a division throughout the NML literature be-
tween non-monotonic theories as abbreviations for monotonic theories and non-monotonic theories
as theories of defeasible inference. (I don’t present this as a technical distinction, but as a difference
of objective and outlook.) The former approach treats non-monotonic inference as an expansion of a
partial theory into a more complete monotonic theory that is done once and for all at the beginning
of inference. Examples include the application of the closed-world inference to a static database;
the usual view of circumscription; and the inferal of frame laws from causal laws, as in [Lifschitz,
87], and [Lin and Shoham, 91]. The latter approach treats non-monotonic inference as occurring
in the midst of the deductive process, or as part of a time-varying system. Examples include the
application of the closed-world assumption to a dynamic database; the usual view of Reiter’s [1980]
default logic; most procedural implementations of non-monotonic inference, including negation as
failure and non-monotonic truth maintenance systems; solutions to the frame problem where non-
monotonic frame inferences are constructed for the particular scenario as in [Shoham, 88]; and the
chronological minimization of discontinuity in [Sandewall, 89]. On the whole the former type of
inference is easier to reason about than the latter.

Regarding the first role: Clearly many of the closure conditions in the theory and in the scenario
description can be omitted and derived via non-monotonic inference of a standard kind. Specifically:

e In cases (the majority) where it is possible to state conditions that are both necessary and
sufficient for the activity of a process, it will suffice just to state them as sufficient conditions.
That they are also necessary can then be derived by circumscribing “active”. For example,
in axioms 1.4 and 1.6 above, one could just state the axiom with the left-pointing arrow, and
derive the right-pointing arrow by circumscribing “active”.

e In the enumeration of influences, it would be possible just to state axioms of the form “Process
P or parameter F'1 has influence G on parameter F'2,” and then derive that these are the only
influences by circumscribing “d_influence” and “i_influence”. For example, in the above theory,
one would replace axioms 2.2 and 2.3 by the axioms

—heat_reservoir(O) = d_influence(heat_flow(O1, O),heat(O),pos).
—heat_reservoir(0) = d_influence(heat_flow(O, O1),heat(O) neg).

e Every ground instance of the unique-names axioms 6.1-6.4 can be derived via the usual unique-
names assumptions on ground terms.

21



e It is probably possible to derive the frame axioms 8.3 and 8.4 by choosing a suitable causal
language and applying circumscription to the causal axioms 8.1 and 8.2, along the lines of

[Lifschitz, 87] and [Lin and Shoham, 91].

e The exhaustive enumeration of the heat and gas reservoirs in the scenario (SC.1, SC.2, SC.3)
can be achieved by stating that the flame is a heat reservoir and that the outside air is a
gas reservoir, and then circumscribing over those two predicates. Likewise, the exhaustive
enumeration of thermal connections (SC,4,SC.5) can be achieved by stating that the flame is
connected to the can, and the can to the water, and then circumscribing over that predicate.

e The unique-names axiom on the objects in the scene (SC.8) is an instance of the unique-names
assumption on constant symbols.

Non-monotonic inference thus allows us to start with a theory that is clearly substantially simpler.
It is also more additive, in the following sense: If we wish to add a new process to the theory, all that
is required is to add axioms describing its activation conditions and its influences and to “re-run”
the circumscription. None of the existing axioms have to be changed. By contrast, adding a new
process to the monotonic theory will, in general, require rewriting the closure conditions. Consider,
for example, adding “freezing(0)” as a new process and “solid_mass(O)” as a new parameter. In
the monotonic theory, axiom 2.5, which states that the only negative influence on liquid_-mass(O) is
boiling(0), is no longer true. The axiom must be weakened to read that the only negative influences
are boiling(O) and freezing(O). By contrast, none of the axioms of the non-monotonic theory become
false. The weakening of the closure conditions happens automatically as a result of strengthening
the positive part of the theory (in this case, adding the fact that freezing is negative influence on
liquid mass.) Likewise, expanding the scenario by adding new thermally connected objects would
require rewriting SC.4 and SC.5 in the monotonic theory, but only requires adding the new objects
in the non-monotonic theory.

As regards the second type of inference: The modification of the theory so that the closure
assumptions are merely defeasible inferences seems attractive in many instances. For example, the
assumption that all the relevant influences on a parameter have been enumerated could be made
a defeasible inference, that could be withdrawn if the observed behavior of a parameter violated
the predicted behavior. If it is observed that the water is not heating up, contrary to prediction,
then we must posit that the closure assumption was mistaken and some additional process is active.
In terms of circumscription, this would require circumscribing “active” over a theory that included
these very observations. However, this kind of inference tends to be prone to anomalies like the Yale
Shooting Problem, and a careful analysis would be required to determine whether the theory leads
to all and only the reasonable conclusions.

6 Remarks on the theory

Some particular features of the above theory and inference process are worth noting.

The theory largely achieves the objective of locality. It would be possible to posit two separate
scenario running simultaneously side by side, and to reason about them separately. It would even be
possible to posit that these same objects were involved in an entire separate collection of parameters
and process (e.g. electrical processes). The validity of the proof above would not be affected as long
as these additional processes and parameters do not influence our original processes and parameters.
(Influence in the opposite direction would be OK.) Nowhere did either the theory or the scenario
description assert that these are the only objects in the world, or that these are the only processes
or process types.

22



As remarked above, the monotonic theory does not have the property of additivity, either in
expanding the list of processes known to affect a given parameter, or in expanding the list of objects
in a scenario. This additivity can be largely achieved, however, if the monotonic theory is derived
from an underlying non-monotonic theory.

The natural form of reasoning in this theory has a somewhat different flavor from the reasoning
in QP, even in doing the same task of prediction. QP always starts with a complete qualitative
description of some mode, and calculates the next mode. In using the logic, the natural way to
proceed is to develop lemmas that start with partial characterizations of an interval of time, and
derive other partial characterizations. QP, so to speak, works vertically from one time period to the
next; logical inference works most comfortably horizontally, building up constraints among intervals
of time.

For this reason, certain inferences that require special mechanisms in QP do not require any
special treatment in the logic. For example, it is a fact that the cycle “mode 3 — mode 4 — mode
5 — mode 6 — mode 3” cannot persist indefinitely, since the liquid mass drops throughout and
must eventually attain zero. This fact cannot even be expressed in a simple envisionment graph.
However, in the logic, it takes the form of the lemma, “If, throughout an interval interval, the liquid
mass is alway positive and always dropping, then the interval must be finite,” which is a simple
consequence of axiom 5.8.

In a recent extended e-mail discussion, a number of people expressed doubts as to whether QP
could be justified within a well-defined logical theory. This paper, I believe, has answered that
question in the affirmative. Whether this adds to our understanding of QP is another question, of
course.

7 References

E. Davis (1990) Representations of Commonsense Knowledge, Morgan Kaufmann, San Mateo, CA.
E. Davis (In preparation). “Infinite Loops in Finite Time.”

J. de Kleer (1977) “Multiple Representations of Knowledge in a Mechanics Problem Solver,” Proc.
1JCAI-77, pp. 299-304.

J. de Kleer and J.S. Brown (1985) “A Qualitative Physics Based on Confluences,” in D. Bobrow
(ed.) Qualitative Reasoning about Physical Systems, M.I'T. Press, Cambridge, MA.

D. Duchier (1991) “Logicalc: An Environment for Interactive Proof Development,” Yale Computer
Science Dept., Research Report #862.

B. Faltings (1987) “Qualitative Kinematics in Mechanisms,” Proc. IJCAI-87, pp. 436-442.

K. Forbus (1985) “Qualitative Process Theory,” in D. Bobrow (ed.) Qualitative Reasoning about
Physical Systems, M.1.'T. Press, Cambridge, MA.

B. Kuipers, (1986) “Qualitative Simulation,” Artificial Intelligence, vol. 29, pp. 289-338.
F. Lin and Y. Shoham (1991) “Provably Correct Theories of Action,” Proc. AAAI-91, pp. 349-354.

M. Rayner (1991) “On the applicability of nonmonotonic logic to formal reasoning in continuous
time,” Artificial Intelligence, vol. 49, pp. 345-360.

E. Sandewall, (1989) “Combining logic and differential equations for describing real-world systems,”
in R. Brachman, H. Levesque, and R. Reiter (eds.) Proc. First International Conference on Princi-
ples of Knowledge Representation and Reasoning, Morgan Kaufmann, San Mateo, CA | pp. 412-420.

23



L.K. Schubert, (1990) “Monotonic solution of the frame problem in the Situation Calculus: An
efficient method for worlds with fully specified actions,” in H. Kyburg, R. Loui and G. Carlson
(eds.), Knowledge Representation and Defeasible Reasoning, Kluwer, pp. 23-67, 1990.

Y. Shoham (1988) Reasoning about Change: Time and Causation from the Standpoint of Artificial
Intelligence, MIT Press, Cambridge, MA

24



