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Abstract

We present a general theory of serializability, unifying a wide range of transactional algorithms,
including some that are yet to come. To this end, we provide a compact semantics in which concurrent
transactions push their effects into the shared view (or unpush to recall effects) and pull the effects of
potentially uncommitted concurrent transactions into their local view (or unpull to detangle). Each
operation comes with simple side-conditions given in terms of commutativity (Lipton’s left-movers and
right-movers [24]).

The benefit of this model is that most of the elaborate reasoning (coinduction, simulation, subtle
invariants, etc.) necessary for proving the serializability of a transactional algorithm is already proved
within the semantic model. Thus, proving serializability (or opacity) amounts simply to mapping the
algorithm on to our rules, and showing that it satisfies the rules’ side-conditions.

1 Introduction

Recent years have seen an explosion of research on methods of providing atomic sections in modern pro-
gramming languages, typically implemented via transactional memory (TM). The atomic keyword provides
programmers with a powerful concurrent programming building block: the ability to specify when a thread’s
operations on shared memory should appear to take place instantly when viewed by another thread.

To support such a construct, we must be able to reason about atomicity. Implementations typically
achieve this by dynamically detecting conflicts between concurrent threads. This can be done tracking
memory operations in hardware [15, 17, 16] or software [14, 6, 8, 25, 4]. Meanwhile, an alternate approach
exploits abstract-level notions of conflict over linearizable data-structure operations such as commutativ-
ity [11, 28, 21, 20]. Both levels of abstraction also chose between optimistic execution, pessimistic execution,
or mixtures of the two. Finally, there are multiple notions of correctness, and circumstances under which
one may be preferable to another.

Unfortunately, we lack a unified way of formally describing this myriad of models, implementations and
correctness criteria. This leads to confusion when trying to understand comparative advantages/disadvan-
tages and how/when models can be combined or are interoperable. For example, with hardware support for
transactions now available (e.g. Intel Haswell [17]), we need to understand how one can combine memory-
level hardware transactions for unstructured memory operations with abstract-level data-structure operations
(e.g. transactional boosting [11]). Today, at best, we have two custom semantics for reasoning about the
models individually, but no unified view.

We present a simple calculus that illuminates the core of transactional memory systems. In our model
concurrent transactions push their effects into the shared log (or unpush to roll-back) and pull in the effects of
potentially uncommitted concurrent transactions (or unpull to detangle). Moreover, transactions can push or
pull operations in non-chronological orders, provided certain commutativity (Lipton left/right-movers [24])
conditions hold. The benefit of this semantic model is that most of the elaborate reasoning (coinduction,
simulation relations, subtle invariants, etc.) necessary for proving the correctness of a transactional algorithm
is contained within the semantic model, and need only be proved once.
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Our work formulates an expressive class of transactions and we have applied it to a wide range of TM
systems including: optimistic read/write software TMs [6, 8], hardware transactional memories (Intel [17],
IBM [16]), pessimistic TMs [25, 4, 11], hybrid optimistic/pessimistic TMs such as irrevocability [34], open
nested transactions [28], and abstract-level techniques such as boosting [11].

Our choice of expressiveness includes transactions that are not opaque [10]: transactions may share their
uncommitted effects. This choice carves out a design space for implementations to take advantage of the
full spectrum of possibilities (e.g. dependent transactions [30]) and is relatively unrestrictive in terms of
TM correctness criteria. However, despite expressive power, the model also gives the appropriate criteria
to ensure serializability [29]. Meanwhile, we can also identify restrictions on the model for which opacity is
recovered.

In our experience we have found that our model provides a mathematically rigorous foundation for
intuitive concepts (e.g. push and pull) used in colloquial conversations contrasting TM systems.

Contributions. Our work includes the following:

• A general model of concurrent transactions in Section 4, capable of expressing a wide range of imple-
mentations, with only a few intuitive rules. Our model is parameterized by a coinductive sequential
specification and the operational semantics of the programming language.

• We have proved that this model is serializable, discussed in Section 5. To cope with the non-monotonic
nature of the model (arising from unpush, unpull, etc.), we devised a novel preservation invariant that
is closed under rewinding both the local and global logs. The serializability proof shows simulation
with an uninterleaved machine.

• We have shown conditions under which we can restrict the model to obtain a sub-model that satisfies
opacity.

• In Section 6 we describe how our model accounts for the serializability of many transactional memory
systems that range from software to hardware, pessimistic to optimistic, read/write-conflict to abstract-
conflict, nesting and non-opaque features such as dependent transactions.

Limitations. The work presented in this paper models safety properties of transactions (i.e. serializability,
opacity). A direction for future work is to consider liveness/progress issues.

Related work. In previous work [20] we provided a formal semantics for transactions that perform
abstract-level data-structure operations. Our work involves two separate semantics: one for pessimistic
transactions and one for optimistic transactions. There are several distinctions of our work: (i) The model
presented in this paper is more expressive because it permits mixtures of these two flavors. This is par-
ticularly useful when combining hardware transactions [17, 16] with and abstract-level reasoning [11] for
data-structures. (ii) In our mode, transactions may observe the effects of uncommitted, non-commutative
transactions as seen in dependent transactions [30] and open nesting [28]. (iii) We have a simulation result
which involves nontrivial formal groundwork such as a coinductive definition of state equality and left-mover.

Lesani et al. [22] describe a method of specifying and verifying TM algorithms. They specify some
transactional algorithms in terms of I/O automata and this choice of language enables them to fully verify
those specifications in PVS. In our work, we have aimed at a more abstract goal: to uncover the fundamental
nature of transactions in the form of a general-purpose model. We leave the goal of full algorithm verification
to future work.

There are other works in the literature that are focused on a variety of orthogonal semantic issues, includ-
ing the privatization problem [32, 26, 1], correctness criteria such as dynamic/static/hybrid atomicity [33],
and message passing within transactions [23]. These works are concerned with models that are restricted to
read/write STMs and limited in expressive power (e.g. restricted to opacity [10]). Semantics also exist for
other programming models that are similar to transactions [2, 3] but are not serializable. Finally, Cohen et
al. [5] described some small hand proofs for particular transactional memory algorithms.
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Figure 1: A diagram of Push/Pull

2 Overview

In this paper we distill the essence of reasoning about transactional implementations into a semantic model
we call Push/Pull transactions. The model consists of a few simple rules—named push, pull, etc.—that
correspond to natural stages in a transactional memory algorithm. For example, after a transaction applies
an effect locally it then may push this effect out into the shared view, where other transactions may pull
the effect into their local view.

The Push/Pull model has no concrete state, only a shared log of the object operations that have been
applied, as well as per-thread local logs. An illustration is given in Figure 1. The full formal detail of the
model is given in Section 4. We will now discuss this model informally.

Once a transaction (logically) applies an operation in its local log via the app rule, it may push the
operation to the shared log. Note that, at this stage, the transaction may not have committed. Meanwhile,
other threads may pull the operation into their local log. The pull case enables transactions to update their
local view with operations that are permanent (that is, that correspond to committed transactions) or even
to view the effects of another uncommitted transaction (e.g. for early conflict detection [14] or to establish
a dependency [30]). Push/Pull also includes an unpull rule which discards a transaction’s knowledge of
an effect due to another thread, and an unpush rule which removes a thread’s operation from the shared
view, perhaps implemented as an inverse. The unapply rule is useful for rewinding a transaction’s local
state. Finally, there is a simple commit rule cmt that, roughly, stipulates that all operations must have
been pushed and all pulled operations must have been committed.

Different algorithms will use different combinations of these rules (cf. Section 6). Push/Pull is expressive
enough to describe a wide range of transactional implementations, all with only a few simple, tangible rules.
Pessimistic algorithms [11, 25, 4] push immediately after a local app, optimistic algorithms [6, 8] push
their operations on commit, and hybrid [34] algorithms do a mixture of the two. Opaque [10] transactions
do not pull uncommitted effects. Non-opaque algorithms, such as dependent transactions [30], permit a
transaction to pull in uncommitted effects. From different patterns of Push/Pull rule usage one can derive
correctness proofs for many transactional memory algorithms.

Example. Consider the transactional boosting [11, 12] hashtable implementation given in Figure 2. Recall
that a boosted transaction uses a linearizable base object (in this case a ConcurrentSkipListMap), along
with abstract locking to ensure that only commutative operations occur concurrently. In this example a
thread executing the atomic block in put or get acquires a lock corresponding to the key of interest. In this
way, no two transactions will conflict because if they try to access the same key one will block. Within the put
method there are two scenarios depending on whether key is already defined in the map and, consequently,
there are two cases for how to handle an abort. Finally, put ends by updating map and unlocking the
abstractLock.

We can describe this algorithm intuitively, in terms of rules in the Push/Pull model. We have de-
composed the code accordingly in Figure 2. After the transaction begins, it implements a pull implicitly
because, in transactional boosting, modifications are made directly to the shared state so the local view is
the same as the shared view. Skipping the abort cases for the moment, the transaction then performs an
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import java.util.concurrent.ConcurrentSkipListMap
class BoostedSkipListMap[Key,Value] {
  val abstractLock = new AbstractLock()
  val map = new ConcurrentSkipListMap[Key, Value]()

  def put(key: Key, value: Value, t = Tx.current) {
   atomic { 
     abstractLock lock key
      
      if (map contains key) {
        var oldValue = map(key)
        Tx.onAbort( () =>
           map.put(key, oldValue) 
           abstractLock unlock key
        )
      } else {
        Tx.onAbort( () => 
           map.remove(key)
           abstractLock unlock key
        ) 
      }
      map.put(key,value)
      abstractLock unlock key
    }
  }

  def get(key: Key) {
    atomic {
      abstractLock lock key
      Tx.onExit(() => abstractLock.unlock(key) )
      key k = map.get(key)
      return k
    }
  }
}

abstractLock lock key;

BEGIN

import java.util.concurrent.ConcurrentSkipListMap
class BoostedSkipListMap[Key,Value] {
  val abstractLock = new AbstractLock()
  val map = new ConcurrentSkipListMap[Key, Value]()

  def put(key: Key, value: Value, t = Tx.current) {
     atomic { 

(implicit because shared access to map)

PULL(map)

if (map contains key) {
   var oldValue = map(key)
   Transaction.onAbort( () =>

map.put(key, oldValue)
abstractLock unlock key

UNPUSH(map.put(key,value)) and

UNAPP(map.put(key,value))

)

} else {
   Transaction.onAbort( () =>

map.put(key, value)

APPLY(map.put(key,value)) and

PUSH(map.put(key,value))

map.remove(key)
abstractLock unlock key

UNPUSH(map.put(key,value)) and

UNAPP(map.put(key,value))

)

}

abstractLock unlock key

CMT

     }
  }

  def get(key:Key) { . . . }
}

Figure 2: On the left, an implementation of transactional boosting [11] which uses abstract locking and
commutativity to safely access a shared Set, implemented as a ConcurrentSkipList. On the right, decom-
position of the boosting implementation into Push/Pull rules such as app, push, pull, cmt, as well as
unapp, unpush used for aborting a transaction. Each of these rules comes with a correctness criteria (see
Figure 5) which, if proved to hold, implies that the implementation is serializable.

apply (effecting the local view) and a push (sending the effect to the shared view) by updating the map.
If the transaction aborts, it performs the opposite of these two Push/Pull rules in reverse: unpush and
then unapply by performing the appropriate inverse operation. The abstract locking of boosting ensures
that the only operations in the shared log belong to committed transactions or else commute with all other
uncommitted operations in the shared log.

Proofs of serializability. Each rule in Push/Pull comes with a few correctness criteria. In Section 5 we
prove that if an implementation satisfies these criteria, then it is serializable. In this sense we have done the
hard work of reasoning about transactional memory algorithms. The Push/Pull model encapsulates the
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difficult components involved in a correctness argument (e.g. simulation proofs, coinduction, etc.) while, on
the outside, offering rules that are simple and intuitive. For a user to prove the correctness of their algorithm
they must simply:

1. Demarcate the algorithm into fragments: push, pull, etc.
2. Prove the implementation satisfies the respective correctness criteria.

Proofs of correctness criteria typically do not involve elaborate simulation relations or coinductive reasoning,
but rather algebraic (i.e. commutative) properties of sequential code.

Synchronization in Figure 2 is accomplished using abstract locks to ensure that only commutative opera-
tions proceed in parallel. One correctness criterion of push(map.put(key,value)) is that the put operation
must be able to commute with (more precisely: move to the right of) concurrent, uncommitted operations.
We can show that this correctness criterion holds by showing that the two sequential sequences:

map.put(key1,value1); map.put(key2,value2)

vs.
map.put(key2,value2); map.put(key1,value1)

lead to the same final state, provided that key1 ≠ key2. Moreover, such proofs involving commutativity
can been aided by recent works in the literature [7, 18]. Note that, without Push/Pull, the full formal
argument would say that the data structure is atomic because there is a simulation relation between any
configuration of concurrent transactions and a sequential history. The benefit of the Push/Pull semantic
model is that the simulation relation has been identified and the difficult aspects of the correctness argument
have already been proved. We believe that our work will cleanup transactional correctness proofs because it
suffices to show that the implementation satisfies the correctness criteria given in our proof rules.

3 Language and Atomic Semantics

In this section we describe a generic language of transactions and define an idealized semantics for concurrent
transactions called the atomic semantics in which there are no interleaved effects on the shared state. We
later introduce the Push/Pull semantics and show that it simulates the atomic semantics.

Language. We assume a set M of method calls (e.g. ht.put(’a’,5)). Threads execute code from a
programming language that includes transactions tx c, method names such as m, and a skip statement.
Our first trick is to abstract away the threads’ programming language c with two functions:

step(c): Pair (m,c′) ∈ step(c) if m is a next reachable method in the reduction of c, with remaining code c′.

fin(c): This predicate is true if there is a reduction of c to skip that does not encounter a method call.

These two functions allow us to obtain a simple semantics, despite an expressive input language, by introduc-
ing functions to resolve nondeterminism between method operation names and at the end of a transaction.
We assume that code is well-formed in that a single operation name m is always contained within a trans-
action (orthogonal, is this issue of isolation [26]).

Example 1. One could use the generic language:

c ∶∶= c1 + c2 ∣ c1 ; c2 ∣ (c)∗ ∣ skip ∣ tx c ∣ m

This grammar additionally consists of nondeterministic choice, sequential composition, and nondeterministic
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looping. The corresponding functions for this example are:

step(skip) ≡ ∅
step(c1 ; c2) ≡ (step(c1) ; c2) ∪ (fin(c1) ; step(c2))
step(c1 + c2) ≡ step(c1) ∪ step(c2)
step((c)∗) ≡ step(c) ; (c)∗
step(tx c) ≡ step(c)
step(m) ≡ {(m,skip)}
fin(skip) ≡ true
fin(c1 ; c2) ≡ fin(c1) ∧ fin(c2)
fin(c1 + c2) ≡ fin(c1) ∨ fin(c2)
fin((c)∗) ≡ true
fin(tx c) ≡ fin(c)
fin(m) ≡ false

S ; c1 ≡ {(m,c1; c2) ∣ (m,c1) ∈ S}
B ; S ≡ {(m,c1) ∣ B ∧ (m,c1) ∈ S}

Thus, if c = tx (skip ; (c1 + (m + n)) ; c2), then one path through c reaches method n with a contin-
uation of c2. Hence, (n, c2) ∈ step(c).

To make things more concrete, we instantiate our semantics with the above language through the re-
mainder of this paper. We ignore nested transactions1, however our model permits threads to roll backwards
to any execution point [19] (thus modeling the partial abort nature of nested transactions).

Operations and logs. State is represented in terms of logs of operation records. An operation record (or,
simply, an “operation”) op = ⟨m,σ1, σ2, id⟩ is a tuple consisting of the operation name m, a thread-local pre-
stack σ1 (method arguments), a thread-local post-stack σ2 (method return values), and a unique identifier
id . We assume a predicate fresh(id) that holds provided that id is globally unique (details omitted for lack
of space). In the atomic semantics defined below, the shared state ` ∶ list op is an ordered list of operations
(more information is needed in the Push/Pull semantics, discussed later).

Parameter 3.1 (Sequential specification: allowed). The sequential specification is a predicate on operation
lists: allowed `. We require that it be prefix closed.

For convenience we will also write ` allows ⟨m,σ1, σ2, id⟩ which simply means allowed ` ⋅ ⟨m,σ1, σ2, id⟩. For
example, if we have a simple TM based on memory read/write operations we might specify allowed ` ⋅
⟨a := x, [x ↦ 5], [x ↦ 5, a ↦ 5], id⟩, but ¬allowed ` ⋅ ⟨a := x, [x ↦ 5], [x ↦ 5, a ↦ 3], id⟩ or more elaborate
specifications that involve multiple tasks.

Ultimately, we expect the allowed predicate to be induced by the implementation’s operations on the
state, JopK ∶ P(State × State), and the initial states, I. If we give a denotation to logs as J` ⋅ opK ≡ J`K; JopK,
and JεK ≡ I , where S;R ≡ {s′ ∣ ∃s ∈ S.(s, s′) ∈ R}. Then we can define allowed ` simply by checking if the
denotation is non-empty, (J`K ≠ ∅).

We define a precongruence over operation logs `1 ≼ `2 coinductively, by requiring that all allowed ex-
tensions of the log `1, are also allowed extension to the log `2. This definition will ultimately be used in
the simulation between Push/Pull and an atomic machine. We use a coinductive definition so that the
precongruence can be defined up to all infinite suffixes.

Definition 3.1 (Shared log precongruence ≼). For all `1, `2,

allowed `1 ⇒ allowed `2 ∀op. (`1 ⋅ op) ≼ (`2 ⋅ op)
`1 ≼ `2

We use a double-line here to indicate greatest fixpoint.

1For a discussion, see [19].
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(c, σ1), `1 ⇓ σ2, `2

(m1, c2) ∈ step(c1)
`1 allows ⟨m1, σ1, σ2⟩
(c2, σ2), `1 ⋅ [⟨m1, σ1, σ2⟩] ⇓ σ3, `2

(c1, σ1), `1 ⇓ σ3, `2
bsstep

fin(c)

(c, σ1), `1 ⇓ σ1, `1
bsfin

c1, σ1, `
a
Ð→ c2, σ2, `

(c, σ1), `1 ⇓ σ2, `2

tx c, σ1, `1
a
Ð→ skip, σ2, `2

am runtx

c1 + c2, σ1, `
a
Ð→ c1, σ1, `

am nondetL
c1 + c2, σ1, `

a
Ð→ c2, σ1, `

am nondetR

((c))∗, σ1, `
a
Ð→ (c ; ((c)∗)) + skip, σ1, `

am loop

c1, σ1, `1
a
Ð→ c′1, σ2, `2

c1 ; c2, σ1, `1
a
Ð→ c′1 ; c2, σ2, `2

am semi
skip ; c1, σ1, `1

a
Ð→ c1, σ1, `1

am semiskip

A1, `1
a
Ð→

∗

A2, `2

A1, `1
a
Ð→

∗

A1, `1
ams refl

c1, σ1, `1
a
Ð→ c2, σ2, `2

A1 ⋅ (σ1, c1) ⋅A2, `1
a
Ð→

∗

A1 ⋅ (σ2, c2) ⋅A2, `2
ams one

A1 ⋅ (σ1,skip) ⋅A2, `1
a
Ð→

∗

A1 ⋅A2, `1
ams end

A1, `1
a
Ð→

∗

A2, `2

A2, `2
a
Ð→

∗

A3, `3

A1, `1
a
Ð→

∗

A3, `3
ams trans

Figure 3: Atomic semantics of concurrent threads.

Informally, the above definition says that there is no sequence of observations we can make of `2, that we
can’t also make of `1. This is more general than just considering the set of states reached from executing
the first log is included in the second: unobservable state differences are also permitted.

Atomic semantics. We define a simple atomic semantics, given in Figure 3 in which transactions are

executed instantly, without interruption from concurrent threads. The semantics is a relation
aÐ→
∗

over pairs
consisting of a list of concurrent threads A and a shared state `. A single thread (σ, c) ∈ A is a local stack

and code c. The relation
aÐ→
∗

is reflexive, transitive, and permits a thread to complete (rules ams refl,
ams trans, ams end, respectively).

According to the rule ams one, a single thread can be reduced using the
aÐ→ relation which is defined

inductively over the structure of c. The rules for + , ; , c∗ and skip am nondetL, am nondetR,
am loop, am semi, and am semiskip are standard. The rule am runtx atomically executes the entire
transaction tx c via the ⇓ reduction (i.e. big step semantics). The big step semantics ⇓ uses step() and fin()
(rules bsstep and bsfin, respectively) to scan through the nondeterminism in tx c to find a next operation
name m or a path to skip denoting the end of the transaction. bsstep can be taken provided that the
operation op is permitted by the sequential specification and that c2 can be entirely reduced.

4 The Push/Pull Model

In this section we describe Push/Pull, an expressive model of serializable transactions. Concurrent threads
execute the language described in the previous section but now transaction interleavings are possible. More-
over, we describe reductions app, unapp, push, unpush, pull, unpull, cmt, which can be made by a
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T1,G1 Ð→∗ T2,G2

T2,G2 Ð→∗ T3,G3

T1,G1 Ð→∗ T3,G3

ms trans
T1,G1 Ð→∗ T1,G1

ms refl
T1,G1

rtÐ→ T2,G2

T1,G1 Ð→∗ T2,G2

ms one

T1,G1
rtÐ→ T2,G2

T1 ⋅T1 ⋅T2,G1
rtÐ→ T1 ⋅T2 ⋅T2,G2

ms select
T1 ⋅ {skip, σ1,L1} ⋅T2,G1 Ð→∗ T1 ⋅T2,G1

ms end

Figure 4: The machine reductions of Push/Pull. See Figure 5 for individual steps.

given transaction to control how its effects are shared with the environment or view the effects made by the
environment.

As in the atomic semantics, the Push/Pull semantics has a reflexive, transitive reduction T,GÐ→∗ T′,G′

that reduces a list of threads T ∶ list (c × σ × L) and a global log G to T′,G′. L and G are local and global
operation logs, respectively, described in more detail below.

The reductions of the form T,G Ð→∗ T′,G′ are given in Figure 4. As in the atomic machine, Ð→∗ is
transitive (ms trans). and reflexive (ms relf). The ms end rule removes a completed thread (i.e. a
thread that has reached skip) from the list of threads. The ms select rule reduces a single thread via the
Ð→ relation. Finally, the ms one rule incorporates this reduction into the Ð→∗ relation.

The single-thread reduction relation
rtÐ→ is defined inductively over c and has three types:

rtÐ→ ∶∶= structÐÐÐ→ ∣ fwdÐÐ→ ∣ backÐÐ→

The structural
structÐÐÐ→ reductions depend on the language. For the example language mentioned earlier,

there are
structÐÐÐ→ rules for nondeterministic choice, nondeterministic looping and sequential composition as in

Figure 6 (nondetL, nondetR, loop, semi, semiskip). The four
fwdÐÐ→ rules app, cmt, push, and pull

pertain to transactions making forward progress and the
backÐÐ→ rules unapp, unpush, unpull pertain to

transactions rewinding.
Figure 5 lists the seven proof rules that form the core of Push/Pull. These rules pertain to a thread

performing a transaction tx c and manipulate the local stack, local log, and shared log in various ways. The
local log L ∶ list (op × l) is a list of operations, along with an additional flag l per operation, as to the status
of the operation:

l ∶∶= npshd c (local operation)
∣ pshd c (local operation shared to global view)
∣ pld (some other txn’s operation)

The npshd and pshd flags save the code c that was active when the log entry was created. There is also
a global log G ∶ list (op × g) with flag g that distinguishes between operations that have or have not been
committed: g ∶∶= gUCmt ∣ gCmt. Each proof rule comes with criteria, labeled as app criterion (i), app
criterion (ii), etc. Note that we lift ∈,∖,⊆ to logs as follows, using id for equality:

⟨m1, σ1, σ
′
1, id1⟩ ∈ L ≡ ∃i. let L[i] = [⟨m2, σ2, σ

′
2, id2⟩, l] in id1 = id2

G ∖L ≡ filter (λ (⟨m1, σ1, σ
′
1, id1⟩, g). ⟨m1, σ1, σ

′
1, id1⟩ ∉ L) G

L ⊆ G ≡ ∀i. let L[i] = [⟨m1, σ1, σ
′
1, id1⟩, l] in ⟨m1, σ1, σ

′
1, id1⟩ ∈ G

Here the notation L[i] refers to the ith list element of L.

The app rule. app is similar to the bsstep rule in the atomic semantics: it applies if there is a nondeter-
ministic path in code c1 that reaches a method m1 (with continuation code c2). app criterion (ii) specifies
that method m1 must be allowed by the sequential specification with post-stack σ2. If so, the new operation
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Push/Pull Rules

(i)− (m1, c2) ∈ step(c1)
(ii)− L1 allows ⟨m1, σ1, σ2⟩
(iii)− fresh(id)

{tx c1, σ1,L1},G1
fwd
ÐÐ→ {tx c2, σ2,L1 ⋅ [⟨m1, σ1, σ2, id⟩,npshd c1]},G1

app

{tx c1, σ1,L1 ⋅ [⟨m1, σ2, σ3, id⟩,npshd c2]},G1
back
ÐÐ→ {tx c2, σ2,L1},G1

unapp

(i)− op ◂ ⌊L1⌋npshd

(ii)− ⌊G1⌋gUCmt ∖ ⌊L1 ⋅ L2⌋pshd ◂ op
(iii)− G1 allows op

{tx c1, σ1,L1 ⋅ [op,npshd c2] ⋅ L2},G1
fwd
Ð→ {tx c1, σ1,L1 ⋅ [op,pshd c2] ⋅ L2},G1 ⋅ [op,gUCmt]

push

(i)− allowed G1 ⋅G2

(ii)− ⌊L2⌋pshd ◂ op

{tx c1, σ1,L1 ⋅ [op,pshd c2] ⋅ L2},G1 ⋅ [op, g] ⋅G2
back
ÐÐ→ {tx c1, σ1,L1 ⋅ [op,npshd c2] ⋅ L2},G1 ⋅G2

unpush

(i)− op ∉ L
(ii)− L allows op
(iii)− op ◂ ⌊L⌋pshd ∪ ⌊L⌋npshd

{tx c1, σ1,L},G1 ⋅ [op, g] ⋅G2
fwd
ÐÐ→ {tx c1, σ1,L ⋅ [op,pld]},G1 ⋅ [op, g] ⋅G2

pull

(i)− allowed L1 ⋅L2

{tx c1, σ1,L1 ⋅ [op,pld] ⋅ L2},G
back
ÐÐ→ {tx c1, σ1,L1 ⋅ L2},G

unpull

(i)− fin(c1)
(ii)− L1 ⊆ G1

(iii)− ⌊L1⌋pld ⊆ ⌊G1⌋gCmt

(iv)− cmt(G1,L1,G2)

{tx c1, σ1,L1},G1
fwd
ÐÐ→ {skip, σ1, []},G2

cmt

The cmt rule involves predicate cmt, defined as follows:

cmt(G1, L1,G2) ≡

G2 = map
⎛

⎝

λ (op, g).

⎧
⎪⎪
⎨
⎪⎪
⎩

(op,gCmt) if op ∈ ⌊L1⌋pshd

(op, g) otherwise

⎞

⎠

G1

Figure 5: The Push/Pull rules. Notations ∖, ∉, ⋅,⊆ are all lifted to lists where equality is given by ids,
as discussed below. We will refer to the premise criteria of each rule as, for example, “push criterion (ii).”
Standard rules for reducing nondeterminism in the input language are displayed in Figure 6. Criteria that
are written in gray font are not strictly necessary. See inline discussion.

{c1 + c2, σ1,L},G structÐÐÐ→ {c1, σ1,L},G
nondetL

{c1 + c2, σ1,L},G structÐÐÐ→ {c2, σ1,L},G
nondetR

{((c))∗, σ1,L},G structÐÐÐ→ {(c ; ((c)∗)) + skip, σ1,L},G
loop

{c1, σ1,L1},G1
rtÐ→ {c′1, σ2,L2},G2

{c1 ; c2, σ1,L1},G1
rtÐ→ {c′1 ; c2, σ2,L2},G2

semi
{skip ; c1, σ1,L1},G1

structÐÐÐ→ {c1, σ1,L1},G1

semiskip

Figure 6: Push/Pull transaction reductions for standard input language features. Notice that the type of
the semi reduction is inductive.
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is appended to the local log L1 with fresh operation id1 (formalization of fresh in app criterion (iii) is
omitted). Intuitively, app applies some next method m1 locally but does not yet share it by sending it to
the global log; it is marked as such with flag npshd. The app rule also records the pre-code c1 in the local
log so that the transaction can later be reversed (i.e. aborted or undone). Indeed, the rule unapp moves
backwards by taking the last item in the local log and, provided that it is still npshd, recalls the previous
local stack and code.

The push rule. A transaction may choose to share its effects with the global view via the push rule.
This reduction changes an operation’s flag from npshd to pshd in the local log and appends the operation
to the global log, provided three conditions hold. These conditions use the notion of left-mover which is
an algebraic property of operations and due to Lipton [24]. We provide a novel coinductive definition of
left-mover that builds upon log precongruence (i.e. a form of observational equivalence):

Definition 4.1 (Left-mover [24], over logs). For all op1, op2

op1 ◂ op2 ≡ ∀`. ` ⋅ {op1, op2} ≼ ` ⋅ {op2, op1}.
Intuitively, operation op1 can move to the left of operation op2 provided that whenever we are allowed to do
op1 ⋅ op2, we are also allowed to do op2 ⋅ op1 and the resulting log is the same (precongruent). The proof of
serializability involves several fairly straight-forward lemmas pertaining to allowed and left/right moverness,
omitted for lack of space.

push criterion (i) specifies that the pushed operation op is able to move to the left of all unpushed
operations in the local log. This, intuitively, means that we can publish op as if it was the next thing to
happen after all the operations published thus far by the current transaction. Formally, we lift ◂ to lists and
define projections such as ⌊L1⌋npshd using:

⌊L1⌋l ≡ map fst (filter (λ(op, l′). l = l′) L1)
and similar for ⌊G⌋gUCmt.

Application example: To our knowledge, all existing implementations satisfy this trivially because
operations are pushed in the same order that they are applied.

push criterion (ii) is that all uncommitted operations in the shared log ⌊G⌋gUCmt—except those due to the
current transaction–can move to the right of the current operation op. This condition ensures that if the
transaction commits at any point, it can serialize before all concurrent uncommitted transactions. (Recall
that we have lifted ∖ to lists where equality is given by the operation IDs and the order is determined by
the first operand (in this case, G1).)

Application examples: A boosted transaction immediately performs a push at the linearization
point because it modifies the shared state in place. Optimistic STMs don’t perform push until
commit-time (unless there is some early conflict detection [13] which involves a form of push).
In boosted [11] and open nested [28] transactions, a commutativity requirement is sufficient to
ensure this condition.

push criterion (iii) is that op is allowed by the sequential specification of the global log. (Here we have lifted
allowed to global logs.)

The unpush rule. An operation op that has been pushed to the shared log can be unpushed. This
amounts to swapping the local flag from pshd to npshd and removing the corresponding global log entry for
op. push criterion (i) ensures that G2 does not depend on op and push criterion (ii) is that everything
pushed chronologically after op could still have been pushed if op hadn’t been pushed. Note that push
criterion (i) is not strictly necessary because we can prove that it must hold whenever an UNPUSH occurs.

Application: When a boosted transaction aborts (e.g. due to deadlock) it must undo its effects
on the shared state. This is modeled via the unpush rule and typically implemented via inverse
operations (such as remove on an element that had been added).
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The pull rule. Transactions can learn about the published effects of other transactions by PULLing
operations from the global log into their local logs. An operation op can be pulled from the global log
provided that is wasn’t pulled before (pull criterion (i)) and that the local log allows it (pull criterion
(ii)) according to the sequential specification. A transaction can only learn about the shared state through
pulling. In most applications, a transaction will pull operations in chronological order. However, there are
many examples for which this is not true. In a transaction that operates over two shared data-structures a
and b, it may pull in the effects on a even if they occurred after the effects on b because the transaction
is only interested in modifying a. When the pull rule occurs, the operation is appended to the local log L
and marked as pld.

Finally, pull criterion (iii) is that everything that the current transaction has currently done locally must
be able to move to the right of op. This ensures that the transaction can behave as if the pulled effect
preceded the transaction. We have marked this criterion in gray, indicating that it is not strictly necessary.
One could imagine allowing transactions to pull uncommitted, conflicting effects. However, we don’t believe
such behaviors to be particularly interesting or realistic.

Application: Many traditional STMs are opaque [10] (transactions cannot view the effects of other
uncommitted transactions). Such systems never execute pull operations marked as gUCmt and
can only view operations that have been marked gCmt.
Application: Some (non-opaque) transaction A may become dependent [30] on another transac-
tion B if the effects of B are released to A before B commits. This is captured by B performing
a push of some effects that are then pulled by A even though B has not committed.

The unpull rule. A pulled operation may be removed from the local log. unpull criterion (i) is that
the local log is allowed without operation op. Informally, this means that the transaction must not have done
anything that depended on op. Without this criterion the local log might become invalid with respect to the
sequential specification.

Applications: Breaking dependencies [30].

The cmt rule. If there is a path through tx c that reaches skip (cmt criterion (i)), then the transaction
can commit. There are three additional conditions: cmt criterion (ii) is that the local log L1 must be
contained within the global log G1, indicating that all of the transaction’s operations have been pushed. cmt
criterion (iii) says that all pulled operations correspond to transactions that have been committed. Finally,
cmt criterion (iv) is that the global log is updated to G2 in which all of the transaction’s operations are
marked as committed. This is achieved with the cmt(G1, L1,G2) predicate, defined at the bottom of Figure 5.
The cmt rule serves as the instantaneous moment when all of a transaction’s effects become permanent.
Note that a transaction does not have to pull all committed operations. Instead, transactions check whether
they conflict with other transactions’ operations each time they push an operation.

5 Serializability

In this section we present the proof of serializability of Push/Pull. The proof is achieved by a simulation
between a Push/Pull machine and the atomic semantics.

5.1 Mnemonics

There are a few helpful mnemonics to keep in mind for this proof. The first is a relationship between ◂ and
≼. When there is a relationship of the form op1 ◂ op2, and we have ` ⋅ op1 ⋅ op2 then, after swapping the ops,
we have the relationship ` ⋅ op1 ⋅ op2 ≼ ` ⋅ op2 ⋅ op1. That is, the order of the operations in the expression
op1 ◂ op2 is the order they will be in the log on the left-hand side of ≼. Generally speaking, we will refer to
logs on the right-hand side of ≼ as the hypothetical log (the log of the atomic machine we simulate).
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5.2 Lemmas

We develop lemmas that later help us establish the simulation relation between Push/Pull and the atomic
semantics.

Lemma 5.1. For all `1, `2, op, we have that `2 ◂ op ∧ allowed `1 ⋅ `2 ⋅ op ⇒ allowed `1 ⋅ op.

Proof. First we consider the case where `2 is a singleton operation op′. This holds easily from the definition
of op′ ◂ op and prefix closure of allowed. We then proceed by induction on `2.

Lemma 5.2 (Transitivity of precongruence). For all `a, `b, `c, we have that `a ≼ `b ∧ `b ≼ `c ⇒ `a ≼ `c

Proof. By coinduction, using the fact that allowed `a ⇒ allowed `c holds by transitivity of implication.

Lemma 5.3 (Precongruence over append). For all `a, `b, `c, we have that `a ≼ `b ⇒ `a ⋅ `c ≼ `b ⋅ `c.

Proof. By induction on `c, using the definition of ≼.

Lemma 5.4 (Precongruence and bsstep). For all c, σ, σ′, `1, `′1 and `2,

(c, σ), `1 ⇓ σ′, `′1 ∧ `2 ≼ `1 ⇒ ∃`′2.(c, σ), `2 ⇓ σ′, `′2 ∧ `′2 ≼ `′1

Proof. We proceed by rule induction on the derivation of (c, σ), `1 ⇓ σ′, `′1. In the base case, `′1 = `1.

5.3 Invariants

In order to prove simulation, numerous invariants were necessary. We say that a predicate P (T,G) is
invariant w.r.t. I1, ..., In provided that

∀T G T′ G′. T,G
rtÐ→ T′,G′ ⇒

(∀T ∈ T. P (T,G) ∧ I1(T,G) ∧ ... ∧ In(T,G)) ⇒
(∀T ′ ∈ T′. P (T ′,G′))

Lemma 5.5. For all T,G, if P (T,G) is invariant and T,GÐ→∗ T′,G′, then P (T ′,G′) for T′.

Proof. Induction on Ð→∗.

We use the following lemma to prove properties are invariant.

Lemma 5.6. If for all reductions T,GÐ→ T ′,G′,

1. if P (T,G) and ⋀i∈[1,n] Ii(T,G) implies P (T ′,G′); and

2. for all T̂ , if P (T,G) and ⋀i∈[1,n] Ii(T,G) and P (T̂ ,G) and ⋀i∈[1,n] Ii(T̂ ,G) implies P (T̂ ,G′)

then P is invariant wrt I1, . . . , In.

Part of proving that serializability holds, involves some log manipulations that arise from the commutativity
conditions imposed by the Push/Pull model. This includes a few invariants. First, we have an invariant
that ensures that the pshd/npshd flags in the local log are consistent with whether or not the op is in the
global log:

Lemma 5.7. The following is invariant:

ILG({c, σ,L},G) ≡ ∀[⟨m,σ,σ′, id⟩, l] ∈ L

{ l = pshd c ⇒ ⟨m,σ,σ′, id⟩ ∈ G
l = npshd c ⇒ ⟨m,σ,σ′, id⟩ ∉ G }

Proof. By Lemma 5.6 and case analysis on reduction relation.
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Next, we have two invariants that ensure your uncommitted operations can move to the right of other
transactions’ uncommitted operations:

Lemma 5.8. The following is invariant wrt ILG:

IslideR({c, σ,L},G) ≡ ∀[⟨m1, σ1, σ
′
1, id1⟩, pshd] ∈ L and [⟨m2, σ2, σ

′
2, id2⟩, pshd ∣ npshd] ∉ L.

G = G1 ⋅ [(⟨m1, σ1, σ
′
1, id1⟩,gUCmt)] ⋅G2 ⋅ [(⟨m2, σ2, σ

′
2, id2⟩, g)] ⋅G3

⇒ ⟨m1, σ1, σ
′
1, id1⟩ ◂ ⟨m2, σ2, σ

′
2, id2⟩

Here the notion pshd ∣ npshd means that the label can be either pshd or npshd, but not pld.

Proof. To prove that IslideR is invariant there are two cases to consider:

1. Let T ≡ {c, σ,L} ∈ T be the thread that took a step to T ′ ≡ {c′, σ′, L′} ∈ T′. Assume IslideR({c, σ,L},G).
Claim: IslideR({c′, σ′, L′},G′).

Pf. All cases (app, unapp, push, unpush, pull, unpull, cmt) are trivial.

2. Let {c, σ,L} ∈ T be the thread that took a step and let {ĉ, σ̂, L̂} ∈ T be another thread. Assume
IslideR({c, σ,L},G) and IslideR({ĉ, σ̂, L̂},G).
Claim: IslideR({ĉ, σ̂, L̂},G′).

Pf. Proof by case analysis on the step taken by {c, σ,L}, cases app, unapp, unpush, pull, unpull,
cmt are trivial. For case push we rely on push criterion (ii).

Lemma 5.9. The following is invariant wrt ILG and IslideR:

IslidePushed({c, σ,L},G) ≡ G ≼ (G ∖ ⌊L⌋pshd) ⋅ (G ∩ ⌊L⌋pshd)

Note that ∖ and ∩ preserves the order of their first arguments.

Proof. By induction on L, using Lemma 5.8.

The next invariants intuitively mean that if a transaction pushes operations out of order, the resulting log
bares some precongruence to a log in which the operations were pushed in the correct order.

Lemma 5.10. For all c, σ,L,G, the following is invariant:

IreorderPUSH({c, σ,L1 ⋅L2},G) ≡ ∀[⟨m1, σ1, σ
′
1, id1⟩, pshd ∣ npshd] ∈ L1 and [⟨m2, σ2, σ

′
2, id2⟩, pshd ∣ npshd] ∈ L2

G = G1 ⋅ [(⟨m2, σ2, σ
′
2, id2⟩,gUCmt)] ⋅G2 ⋅ [(⟨m1, σ1, σ

′
1, id1⟩,gUCmt)] ⋅Ge

⇒ ⟨m2, σ2, σ
′
2, id2⟩ ◂ ⟨m1, σ1, σ

′
1, id1⟩

Proof. To prove that IreorderPUSH is invariant there are two cases to consider:

1. Let t ≡ {c, σ,L} ∈ T be the thread that took a step to T ′ ≡ {c′, σ′, L′} ∈ T′. Assume
IreorderPUSH({c, σ,L},G).
Claim: IreorderPUSH({c′, σ′, L′},G′).

Pf. Cases app, unapp, pull, unpull, cmt are trivial. Case unpush uses unpush criterion (ii) and
case PUSH uses push criterion (i).

2. Let {c, σ,L} ∈ T be the thread that took a step and let {ĉ, σ̂, L̂} ∈ T be some other thread. Assume
IreorderPUSH({c, σ,L},G) and IreorderPUSH({ĉ, σ̂, L̂},G).
Claim: IreorderPUSH({ĉ, σ̂, L̂},G′).

Pf. Trivial because IreorderPUSH only pertains to a transaction’s own operations.
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The following Lemma indicates a log equivalence between one in which operations have been pushed in
non-chronological order, and a log in which they have been pushed chronologically.

Lemma 5.11. The following is invariant wrt IreorderPUSH

IchronPush({c, σ,L},G) ≡
(G ∖ ⌊L⌋pshd) ⋅ (G ∩ ⌊L⌋pshd) ≼ (G ∖ ⌊L⌋pshd) ⋅ ⌊L⌋pshd

Proof. We prove a slightly stronger property

(G ∖ ⌊L1 ⋅L2⌋pshd) ⋅ (G ∩ ⌊L1 ⋅L2⌋pshd) ≼
(G ∖ ⌊L1 ⋅L2⌋pshd) ⋅ (G ∩ ⌊L1⌋pshd) ⋅ ⌊L2⌋pshd

By induction on the size of L2.

The next invariants intuitively mean that any operation [⟨m1, σ1, σ
′
1, id1⟩, npshd c1] can move to the left of

some [⟨m2, σ2, σ
′
2, id2⟩, pshd c2] provided that the first operation is earlier than the second operation in the

local log.

Lemma 5.12. The following is invariant

IlocalOrder({c, σ,L},G) ≡ { L = L1 ⋅ [⟨m2, σ2, σ
′
2, id2⟩, npshd c2] ⋅L2 ⋅ [⟨m1, σ1, σ

′
1, id1⟩, pshd c1] ⋅L3

⇒ ⟨m1, σ1, σ
′
1, id1⟩ ◂ ⟨m2, σ2, σ

′
2, id2⟩

}

Proof. To prove that IlocalOrder is invariant there are two cases to consider:

1. Let t ≡ {c, σ,L} ∈ T be the thread that took a step to T ′ ≡ {c′, σ′, L′} ∈ T′. Assume IlocalOrder({c, σ,L},G).
Claim: IlocalOrder({c′, σ′, L′},G′).

Pf. Cases app, unapp, pull, unpull, cmt are trivial. Case push uses push criterion (i). Case
unpush uses unpush criterion (i).

2. Let {c, σ,L} ∈ T be the thread that took a step and let {ĉ, σ̂, L̂} ∈ T be some other thread. Assume
IlocalOrder({c, σ,L},G) and IlocalOrder({ĉ, σ̂, L̂},G).
Claim: IlocalOrder({ĉ, σ̂, L̂},G′).

Pf. Trivial because IlocalOrder only pertains to a transaction’s own operations.

The following lemma indicates that we can reorder a given thread’s operations to match the order they were
applied in the local log.

Lemma 5.13. The following is invariant wrt IlocalOrder:

IlocalReorder({c, σ,L},G) ≡
(G ∖ ⌊L⌋pshd) ⋅ ⌊L⌋pshd ⋅ ⌊L⌋npshd ≼ (G ∖ ⌊L⌋pshd) ⋅ ⌊L⌋npshdpshd

Proof. We prove the stronger property

(G ∖ ⌊L1 ⋅L2⌋pshd) ⋅ ⌊L1 ⋅L2⌋pshd ⋅ ⌊L1 ⋅L2⌋npshd ≼
(G ∖ ⌊L⌋pshd) ⋅ ⌊L1⌋npshd

pshd ⋅ ⌊L2⌋pshd ⋅ ⌊L2⌋npshd

by induction on L1.
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5.4 Commit preservation invariant

The heart of the simulation requires that we prove an invariant of the system that the shared log is equivalent
to what it would be if concurrently executing transactions removed their effects and applied them atomically.
More precisely, imagine that at a given moment there is a shared log G, and a given thread T = {c, σ,L}
atomically marks all of its pushed operations as committed, reaching a shared log of Gpost. Note that T
may still have unpushed operations ⌊L⌋npshd. The invariant states that, there is a precongruence between the
shared log reached by completing T from Gpost ⋅ ⌊L⌋npshd and the shared log that would have been reached if
T rewound itself and atomically ran the entire transaction from G (that is, G ∖ L, i.e. the previous shared
log, with all operations belonging to T filtered out).

As described so far, the commit preservation invariant would look like the following:

∀Gpost. cmt(G,L,Gpost) ⇒
∀σ′, `a. (c, σ),Gpost ⋅ ⌊L⌋npshd ⇓ σ′, `a ⇒
∃`b. otx({c, σ,L}),G ∖L ⇓ σ′, `b ∧ `a ≼ `b

where otx rewinds the transaction to its original state/code, recorded in L as follows:

otx({c, σ, []}) ≡ {c, σ, []}
otx({c, σ, [⟨m1, σ1, σ

′

1, id1⟩,npshd ‘c] ⋅L}) ≡ {‘c, σ1, []}
otx({c, σ, [⟨m1, σ1, σ

′

1, id1⟩,pshd ‘c] ⋅L}) ≡ {‘c, σ1, []}
otx({c, σ, [⟨m1, σ1, σ

′

1, id1⟩,pld] ⋅L}) ≡ otx({c, σ,L})

Partial rewind. This is not enough to give us the simulation result as the property is not an invariant.
As the system makes steps, which undo operations from the logs, the property must be closed with respect
to these backwards steps. Thus we need the above to hold after any partial rewinding of the local log and/or
partial removal of other transactions’ uncommitted operations in the shared log.

Definition 5.1 (Self-rewind). A transaction’s self-rewind denoted {c, σ,L},G ↺self {‘c, ‘σ, ‘L}, ‘G is defined
as:

{c, σ,L ⋅ ⟨m,σ1, σ2, id ,npshd ‘c⟩},G ↺self {‘c, σ1, L},G
PRU

{c, σ,L ⋅ ⟨m1, σ1, σ
′

1, id1,pshd ‘c⟩},G1 ⋅ [⟨m1, σ1, σ
′

1, id1⟩,gUCmt] ⋅G2 ↺self {‘c, σ1, L},G1 ⋅G2
PRP

{c, σ,L},G ↺self {c, σ,L′}, ‘G

{c, σ,L ⋅ ⋅⟨m1, σ1, σ
′

1, id1,pld⟩},G ↺self {c, σ,L′}, ‘G
PRM

{c, σ,L},G ↺self {c, σ,L},G
PRR

The self-rewind allows us to cope with the fact that a transaction may have pulled operations from another
uncommitted transaction. In particular, we preserve the fact that the transaction may be able to detangle
from the uncommitted transaction, and atomically commit. In the definition above of ↺self , the first two
cases describe a transaction rewinding its log to an operation that has been applied but may or may not
have been pushed. The transactional may pass beyond a pulled operation via the third rule. Finally, the
relation is reflexive.

The shared log partial rewind permits uncommitted operations of other transactions to be dropped from
the shared log, and is defined as follows:

G1 ↺L ‘G1 ⟨m,σ,σ′, id⟩ ∉ L G2 ↺L ‘G2

G1 ⋅ [⟨m,σ,σ′, id⟩,gUCmt] ⋅G2 ↺L ‘G1 ⋅ ‘G2 G ↺L G

We can now state the commit preservation invariant as follows:
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Definition 5.2 (Commit preservation invariant). For all G,

cmtpres(c, σ,L,G) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∀‘‘G. G ↺L ‘‘G. ⇒ (0)
∀{‘c, ‘σ, ‘L}. {c, σ,L}, ‘‘G ↺self {‘c, ‘σ, ‘L}, ‘G ⇒ (1)
∀Gpost. cmt(‘G, ‘L,Gpost) ⇒ (2)
∀σ′, `a. (‘c, ‘σ),Gpost ⋅ ⌊‘L⌋npshd ⇓ σ′, `a ⇒ (3)
∃`b. otx({‘c, ‘σ, ‘L}),G ∖L ⇓ σ′, `b ∧ `a ≼ `b (4)

Intuitively, this invariant means that under any dropping of others’ uncommitted operations (Line 0) and
after partially rewinding ↺self your local transaction to some local log ‘L (Line 1), if you are now able to
atomically “commit” by swapping your commit flags (Line 2) and running the rest of your transaction (Line
3), then the shared log reached `a, is contained within a shared log `b that would have been reached if the
thread appended its entire transaction to G atomically.

Lemma 5.14. For all `, `′, ` ≼ `′ ⇒ (cmtpres({c, σ,L},G)⇒ cmtpres({c, σ,L′},G))

Proof. Trivial.

The following lemma indicates that partial rewind behaviors are included in the Push/Pull transition
system:

Lemma 5.15. Invariance of

I⊆({c, σ,L},G) ≡ {
({c, σ,L},G ↺self {‘c, ‘σ, ‘L}, ‘G) ⇒
({c, σ,L},G rtÐ→ {‘c, ‘σ, ‘L}, ‘G)

}

Proof. Case analysis.

Lemma 5.16. cmtpres is invariant w.r.t. IslidePushed, IchronPush, IlocalReorder, and I⊆.

Proof. We assume that cmtpres holds for some T,G, that T,G
rtÐ→ T′,G′ and then show that cmtpres holds

for T′,G′. We split the proof into two cases, proving each one by induction on
rtÐ→.

1. Let t ≡ {c, σ,L} ∈ T be the thread that took a step to T ′ ≡ {c′, σ′, L′} ∈ T′. (Generally speaking, we
reserve the primed notation for components of T′,G′, for example when we apply the invariant to T ′

obtaining variables such as `′a.) Assume cmtpres({c, σ,L},G).
Claim: cmtpres({c′, σ′, L′},G′).

Pf. By induction, with the inductive hypothesis

∀‘‘G. G ↺L ‘‘G. ⇒ (0)
∀{‘c, ‘σ, ‘L}. {c, σ,L}, ‘‘G ↺self {‘c, ‘σ, ‘L}, ‘G ⇒ (1)
∀Gpost. cmt(‘G, ‘L,Gpost) ⇒ (2)
∀σ′, `a. (‘c, ‘σ),Gpost ⋅ ⌊‘L⌋npshd ⇓ σ′, `a ⇒ (3)
∃`b. otx({‘c, ‘σ, ‘L}),G ∖L ⇓ σ′, `b ∧ `a ≼ `b (4)

Note in Line 4 that ∖ does not remove operations from G that have been pld into L.

Case app: L′ = L ⋅[⟨m,σ,σ′, id⟩, npshd c]. From
fwdÐÐ→, L allows ⟨m,σ,σ′, id⟩ and (m,c′) ∈ step(c). Also,

note that otx({‘c, ‘σ, ‘L}) = otx({‘c′, ‘σ′, ‘L′}). We must show that the invariant holds for T′,G′

where L′ has one more unpushed operation. That is, we must show that

∀‘G. G ↺L ‘‘G ⇒ (0)
∀{‘c, ‘σ, ‘L}. {c′, σ′, L′}, ‘‘G ↺self {‘c, ‘σ, ‘L}, ‘G ⇒ (1)
∀Gpost. cmt(‘G,L′,Gpost) ⇒ (2)
∀σ′, `a. (c′, σ′),Gpost ⋅ ⌊L′⌋npshd ⇓ σ′, `a ⇒ (3)
∃`b. otx({c′, σ′, L′}),G ∖L′ ⇓ σ′, `b ∧ `a ≼ `b (4)

16



Note that G′ = G. So we can chose the same ‘‘G from the inductive hypothesis. Consequently,
Lines 2,3,4 hold when we rewind to every strictly previous {‘c, ‘σ, ‘L}. However, we must show
that those lines hold without any rewind:

∀Gpost. cmt(‘G,L′,Gpost) ⇒ (2)
∀σ′, `a. (c′, σ′),Gpost ⋅ ⌊L′⌋npshd ⇓ σ′, `a ⇒ (3)
∃`b. otx({c′, σ′, L′}),G ∖L′ ⇓ σ′, `b ∧ `a ≼ `b (4)

Gpost is the same as in the inductive hypothesis because the new operation is yet unpushed. What
remains is to show that

∀σ′, `a. (c, σ),Gpost ⋅ ⌊L⌋npshd ⇓ σ′, `a ⇒ (i)
∃`b. otx({c, σ,L}),G ∖L ⇓ σ′, `b ∧ `a ≼ `b (ii)

implies

∀σ′, `a. (c′, σ′),Gpost ⋅ ⌊L⌋npshd ⋅ [⟨m,σ,σ′, id⟩] ⇓ σ′, `a ⇒ (iii)
∃`b. otx({c, σ,L}),G ∖ (L ⋅ [⟨m,σ,σ′, id⟩]) ⇓ σ′, `b ∧ `a ≼ `b (iv)

where cmt(‘G,L′,Gpost). Above Line (ii) is equivalent to (iv) because id is not inG. We instantiate
⇓ in Line (i) for the case where (m,c′) ∈ step(c), which gives us precisely Line (iii).

Case push: In this case, we let L = L1 ⋅[⟨m,σ,σ′, id⟩, npshd cα] ⋅L2. The post-log L′ is identical, except
the npshd flag is replaced with pshd. To prove that the invariant still holds, we must again consider
all rewindings of the logs. We chose the same G ↺L ‘‘G as in the inductive hypothesis. If the
local log is rewound to L1 (or some prefix thereof), then we have passed the operation in question,
and Lines 2–4 of the invariant hold directly from the inductive hypothesis. What remains is to
prove that the invariant holds after rewinding to some L̂ ≡ L1 ⋅ [⟨m,σ,σ′, id⟩, npshd cα] ⋅ L̂2 where
L̂2 is a prefix of L2. We must now show that

∀G′post. cmt(‘G,L1 ⋅ [⟨m,σ,σ′, id⟩, pshd cα] ⋅ L̂2,G
′
post) ⇒ (2)

∀σpost, `a. (‘c, ‘σ),G′post ⋅ ⌊L̂⌋npshd ⇓ σpost, `a ⇒ (3)
∃`b. otx({‘c, ‘σ, ‘L}),G ∖ L̂ ⇓ σpost, `b ∧ `a ≼ `b (4)

Let Gpost be from the inductive hypothesis. Note that G′post = Gpost ⋅ [⟨m,σ,σ′, id⟩,gCmt]. Dis-
tributing the ⌊ ⌋npshd over append, we can drop the op in Line 3, as well as replacing G′post. What
remains is to show:

∀σpost, `a. (‘c, ‘σ),Gpost ⋅ [⟨m,σ,σ′, id⟩] ⋅ ⌊L1 ⋅ L̂2⌋npshd ⇓ σpost, `a ⇒ (3)
∃`b. otx({‘c, ‘σ, ‘L}),G ∖ L̂ ⇓ σpost, `b ∧ `a ≼ `b (4)

We now perform the following rewrites of the log in Line 3, with each successive log, having
precongruence with the previous:

Gpost ⋅ [⟨m,σ,σ′, id⟩] ⋅ ⌊L1 ⋅ L̂2⌋npshd

≼ (Gpost ∖ ⌊L1 ⋅ L̂2⌋pshd) ⋅ (Gpost ∩ ⌊L1 ⋅ L̂2⌋pshd) ⋅ [⟨m,σ,σ′, id⟩] ⋅ ⌊L1 ⋅ L̂2⌋npshd Lm 5.9

≼ (Gpost ∖ ⌊L1 ⋅ L̂2⌋pshd) ⋅ (Gpost ∩ ⌊L1 ⋅ L̂2⌋pshd) ⋅ ⌊L1⌋npshd ⋅ [⟨m,σ,σ′, id⟩] ⋅ ⌊L̂2⌋npshd push (i)

≼ (Gpost ∖ ⌊L1 ⋅ L̂2⌋pshd) ⋅ ⌊L1 ⋅L2⌋pshd ⋅ ⌊L1⌋npshd ⋅ [⟨m,σ,σ′, id⟩] ⋅ ⌊L̂2⌋npshd Lm 5.11

≼ (Gpost ∖ ⌊L1 ⋅ L̂2⌋pshd) ⋅ ⌊L1 ⋅ [⟨m,σ,σ′, id⟩, ] ⋅ L̂2⌋npshd
pshd Lm 5.13

Finally, we use Lemma 5.4 to substitute this rewritten log into place on the left side of ⇓ on Line
3, and we have proved that the invariant still holds.

Cases unpush: In this case, we let

L = L1 ⋅ [⟨m,σ,σ′, id⟩, pshd cα] ⋅L2

G = G1 ⋅ [⟨m,σ,σ′, id⟩,gUCmt] ⋅G2
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The post-log L′ is identical to L, except the pshd flag is replaced with npshd. G′ = G1 ⋅G2. To
prove that the invariant still holds, we must again consider all rewindings of the logs. From the
inductive hypothesis we have

G1 ⋅ [⟨m,σ,σ′, id⟩,gUCmt] ⋅G2 ↺L ‘‘G1 ⋅ [⟨m,σ,σ′, id⟩,gUCmt] ⋅ ‘‘G2.

If the local log is rewound to L1 (or some prefix thereof), then we have passed the operation
in question, and Lines 2–4 of the invariant hold directly from the inductive hypothesis. What
remains is to prove that the invariant holds after local rewinding to some

L̂ ≡ L1 ⋅ [⟨m,σ,σ′, id⟩, pshd cα] ⋅ L̂2 and ‘G1 ⋅ ‘G2

where L̂2 is a prefix of L2. We must now show that

∀G′post. cmt(‘G1 ⋅ ‘G2, L1 ⋅ [⟨m,σ,σ′, id⟩, npshd cα] ⋅ L̂2,G
′
post) ⇒ (2)

∀σpost, `a. (‘c, ‘σ),G′post ⋅ ⌊L1 ⋅ [⟨m,σ,σ′, id⟩, npshd cα] ⋅ L̂2⌋npshd ⇓ σpost, `a ⇒ (3)
∃`b. otx({‘c, ‘σ, ‘L}),G ∖ L̂ ⇓ σpost, `b ∧ `a ≼ `b (4)

Here, G′post is identical to Gpost, except that ⟨m,σ,σ′, id⟩ has been dropped. We now perform
the following rewrites of the log in Line 3, with each successive log having precongruence with its
previous:

G′post ⋅ ⌊L1 ⋅ [⟨m,σ,σ′, id⟩, npshd cα] ⋅ L̂2⌋npshd

≼ (G′post ∖ ⌊L1 ⋅ L̂2⌋pshd) ⋅ (G′post ∩ ⌊L1 ⋅ L̂2⌋pshd) ⋅ ⌊L1 ⋅ [⟨m,σ,σ′, id⟩, npshd cα] ⋅ L̂2⌋npshd Lm 5.9

≼ (G′post ∖ ⌊L1 ⋅ L̂2⌋pshd) ⋅ ⌊L1 ⋅L2⌋pshd ⋅ ⌊L1 ⋅ [⟨m,σ,σ′, id⟩, npshd cα] ⋅ L̂2⌋npshd Lm 5.11

≼ (G′post ∖ ⌊L1 ⋅ L̂2⌋pshd) ⋅ ⌊L1 ⋅ [⟨m,σ,σ′, id⟩, npshd cα] ⋅ L̂2⌋npshd
pshd Lm 5.13

Finally, we use Lemma 5.4 to substitute this rewritten log in to place on the left side of ⇓ on Line
3, and prove that the invariant still holds.

Case cmt: We again pick the same ‘‘G from the inductive hypothesis. Now, since the transaction has
performed a cmt, L′ = [] and ‘G = ‘‘G. So we need only show that

∀G′post. cmt(‘G, [],Gpost) ⇒ (2)
∀σpost, `a. (c′, σ′),G′post ⇓ σpost, `a ⇒ (3)
∃`b. otx({c′, σ′, []}),G ⇓ σpost, `b ∧ `a ≼ `b (4)

Now, G = Gpost and otx({c′, σ′, []}) = (c′, σ′). Thus, Lines 3 and 4 are identical, and we can use
`a as a witness for `b.

Case pull: After pull, L′ = L ⋅ [⟨m,σ,σ′, id⟩, pld]. For all rewinds of L′ that produce prefixes of L,
the invariant holds due to the inductive hypothesis. So we need only show that it holds for the
unrewound L′. However, in that case this pulled operation is filtered out by the ⌊ ⌋npshd in Line 3
of the invariant, so it holds from the inductive hypothesis.

Case unpull: Let L = L1 ⋅[⟨m,σ,σ′, id⟩, pld]⋅L2. Due to the unpull rule, L = L1 ⋅L2 ⋅[⟨m,σ,σ′, id⟩, pld]
is allowed. This case then follows from the fact that our inductive hypothesis is closed under
rewind, Lemma 5.14, and that Lines 2,3,4 of the inductive hypothesis don’t depend on pulled
operations.

Case unapp: This case follows from the fact that our inductive hypothesis is closed under rewind.

Cases nondetL, nondetR, loop, semi, semiskip: Details omitted because they are uninteresting.

2. Let {c, σ,L} ∈ T be the thread that took a step and let {ĉ, σ̂, L̂} ∈ T be some other thread. Assume
cmtpres({c, σ,L},G) and cmtpres({ĉ, σ̂, L̂},G).
Claim: cmtpres({ĉ, σ̂, L̂},G′).
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Pf. We use the notations T,T ′, and T̂ . Proof by induction on the step taken by {c, σ,L}, with inductive
hypothesis

∀‘‘G. G ↺L ‘‘G ⇒ (0)
∀{‘c, ‘σ, ‘L} ‘G. {c, σ,L}, ‘‘G ↺self {‘c, ‘σ, ‘L}, ‘G ⇒ (1)
∀Gpost. cmt(G, ‘L,Gpost) ⇒ (2)
∀σpost, `a. (‘c, ‘σ),Gpost ⋅ ⌊‘L⌋npshd ⇓ σpost, `a ⇒ (3)
∃`b. otx({‘c, ‘σ, ‘L}),G ∖ ‘L ⇓ σpost, `b ∧ `a ≼ `b (4)

and

∀‘‘G. G ↺̂L ‘‘G ⇒ (5)
∀{‘c, ‘σ, ‘L} ‘G. {ĉ, σ̂, L̂}, ‘‘G ↺self {‘c, ‘σ, ‘L}, ‘G ⇒ (6)
∀Gpost. cmt(‘G, ‘L,Gpost) ⇒ (7)
∀σpost, `a. (‘c, ‘σ),Gpost ⋅ ⌊‘L⌋npshd ⇓ σpost, `a ⇒ (8)
∃`b. otx({‘c, ‘σ, ‘L}),G ∖ ‘L ⇓ σpost, `b ∧ `a ≼ `b (9)

Cases app, unapp, pull, unpull: In all of these cases, G′ = G, so cmtpres({ĉ, σ̂, L̂},G′) is trivial.

Case push: G′ = G⋅[⟨m,σ,σ′, id⟩,gUCmt]. We must show that Lines 5–9 still hold for G′. In this case,
G′post is similar to what it was in the inductive hypothesis, but with the additional uncommitted
operation ⟨m,σ,σ′, id⟩ that was appended by T . So we must show that:

∀‘‘G. G′ ↺̂L ‘‘G ⇒ (5)
∀{‘c, ‘σ, ‘L} ‘G. {ĉ, σ̂, L̂}, ‘‘G ↺self {‘c, ‘σ, ‘L}, ‘G ⇒ (6)
∀G′post. cmt(G ⋅ [⟨m,σ,σ′, id⟩,gUCmt], ‘L,G′post) ⇒ (7)
∀σpost, `a. (‘c, ‘σ),G′post ⋅ ⌊‘L⌋npshd ⇓ σpost, `a ⇒ (8)
∃`b. otx({‘c, ‘σ, ‘L}), (G ⋅ [⟨m,σ,σ′, id⟩,gUCmt]) ∖ ‘L ⇓ σpost, `b ∧ `a ≼ `b (9)

In the case where ↺̂L removes the pushed op, Lines 5–9 follow directly from the inductive hypoth-

esis. Otherwise, there is now a new operation ⟨m,σ,σ′, id⟩ that is not in the local log L̂. We now
perform the following rewrites of the log in Line 8, with each successive log, having precongruence
with the previous:

G′post ⋅ [⟨m,σ,σ′, id⟩] ⋅ ⌊‘L⌋npshd

≼ (G′post ∖ ⌊‘L⌋pshd) ⋅ (G′post ∩ ⌊‘L⌋pshd) ⋅ [⟨m,σ,σ′, id⟩] ⋅ ⌊‘L⌋npshd Lm 5.9
≼ (G′post ∖ ⌊‘L⌋pshd) ⋅ [⟨m,σ,σ′, id⟩] ⋅ (G′post ∩ ⌊‘L⌋pshd) ⋅ ⌊‘L⌋npshd push (ii)
≼ ((G′post ⋅ [⟨m,σ,σ′, id⟩]) ∖ ⌊‘L⌋pshd) ⋅ (G′post ∩ ⌊‘L⌋pshd) ⋅ ⌊‘L⌋npshd via disjointness
≼ ((G′post ⋅ [⟨m,σ,σ′, id⟩]) ∖ ⌊‘L⌋pshd) ⋅ ⌊‘L⌋pshd ⋅ ⌊‘L⌋npshd Lm 5.11
≼ ((G′post ⋅ [⟨m,σ,σ′, id⟩]) ∖ ⌊‘L⌋pshd) ⋅ ‘L Lm 5.13

Finally, we use Lemma 5.4 to substitute this rewritten log into place on the left side of ⇓ on Line
8, and we have proved that the invariant still holds.

Case unpush: Let G = G1 ⋅ [⟨m,σ,σ′, id⟩,gUCmt] ⋅G2 and G′ = G1 ⋅G2. We must show that:

∀‘‘G. G′ ↺̂L ‘‘G ⇒ (5)
∀{‘c, ‘σ, ‘L} ‘G. {ĉ, σ̂, L̂}, ‘‘G ↺self {‘c, ‘σ, ‘L}, ‘G ⇒ (6)
∀Gpost. cmt(G1 ⋅G2, ‘L,Gpost) ⇒ (7)
∀σpost, `a. (‘c, ‘σ),Gpost ⋅ ⌊‘L⌋npshd ⇓ σpost, `a ⇒ (8)
∃`b. otx({‘c, ‘σ, ‘L}),G1 ⋅G2) ∖ ‘L ⇓ σpost, `b ∧ `a ≼ `b (9)

This holds based on the fact that for all {c, σ,L}, op,G1,G2 that

op ∉ L ∧ cmtpres({c, σ,L},G1 ⋅ [op,gUCmt] ⋅G2) ⇒ cmtpres({c, σ,L},G1 ⋅G2)

which we prove by induction.
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Case cmt: In this case, cmt(G,L,G′), so all of the operations in G belonging to T are now marked
as gCmt. We must show that:

∀‘‘G. G′ ↺̂L ‘‘G ⇒ (5)
∀{‘c, ‘σ, ‘L} ‘G. {ĉ, σ̂, L̂} ↺self {‘c, ‘σ, ‘L} ⇒ (6)
∀G′post. cmt(G′, ‘L,Gpost) ⇒ (7)
∀σpost, `a. (‘c, ‘σ),G′post ⋅ ⌊‘L⌋npshd ⇓ σpost, `a ⇒ (8)
∃`b. otx({‘c, ‘σ, ‘L}),G′ ∖ ‘L ⇓ σpost, `b ∧ `a ≼ `b (9)

This follows easily from the fact that ⌊G⌋gCmt ⊆ ⌊G′⌋gCmt

Cases nondetL, nondetR, loop, semi, semiskip: Details omitted because they are uninteresting.

5.5 Main Theorem

We now prove the main theorem via simulation between the Push/Pull machine and an atomic machine.
The theorem depends strongly on the cmtpres invariant.

Theorem 5.17 (Serializability). Push/Pull is serializable.

Proof. Via a simulation relation between Ð→∗ and
aÐ→
∗
. The simulation relation is defined as follows:

T,G ∼ A, ` ≡ (map rewind T) = A ∧ ⌊G⌋gCmt ≼ `

where rewind T rolls a transaction back to its original code (details pertaining to semi-colon treatment in
rewind omitted for simplicity). We define T ∼ A and G ∼ ` with the appropriate conjunct from above.

To prove simulation, we show that for every T,GÐ→∗ T′,G′ such that T,G ∼ A, `, there exists some A′, `′

such that A, `
aÐ→
∗

A′, `′ and that T′,G′ ∼ A′, `′. The reflexive, transitive and thread-end rules are straight-
forward. What remains is aligning amach one and mach one. In this case, we prove a helper lemma that
shows that the simulation relation holds after each single step Ð→ . That is, for every T,G Ð→ T′,G′ such

that T,G ∼ A, `, there exists some A′, `′ such that A, `
aÐ→
∗

A′, `′ and that T′,G′ ∼ A′, `′.
So we must consider each Ð→ step from Figures 5 and 6 and show that an appropriate A′, `′ can be

found. In each case, the inductive hypothesis gives us that the simulation relation rewinds all uncommitted
transactions in T to obtain A and drops all uncommitted operations from G to obtain `. Moreover, we rely
on all of the invariants holding for T,G as well as T′,G′ (most significantly, the cmtpres invariant).

Case app: This step is straight-forward. We let A′ = A and `′ = `. The inductive hypothesis tells us
that T,G ∼ A, ` and, after an app step, T′ is very similar to T, except with one more operation
⟨m,σ1, σ2, id, npshd c⟩ in the local log of a single thread.

Case unapp: Similar to app.

Case push: In this case a new operation has been pushed into the shared log. Since the new operation has
not been committed, it will be filtered out by rewind so, again, we can let A′ = A and `′ = `.

Case unpush: In this case, we first use a simple invariant that the operation that is unpushed was not yet
committed. Then, we like the push case, since the new operation has not been committed, it will be
filtered out by rewind so, again, we can let A′ = A and `′ = `.

Cases pull, unpull: Let A′ = A and `′ = `. In both pull and unpull, the shared log is unchanged, so
dropping leads to the same `. Moreover, ∼ is independent of the operations pulled into the local
logs in T.
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Cases nondetL, nondetR, loop: Let A′ = A and `′ = `. These cases are straight-forward, and simply
involve rewinding (with an additional lemma that threads not executing transactions have empty local
logs).

Cases semi, semiskip: (Details omitted because they are uninteresting.)

Case cmt: This is the only case in which we map T′,G′ to new A′ and `′. We must show that such an
A′, `′ exists such that T′,G′ ∼ A′, `′. Let A′ be constructed from each of the transactions in A, except
the committing one. The committing one is defined by rewinding the transaction T entirely, and then
atomically running the transaction via am runtx. (map rewind T′) = A′ holds by construction.

Consider the committing transaction T ≡ {tx c1, σ1, L1}. The cmt rule gives us that cmt(G,L1,G
′),

where G′ is the same as G except that the flag gUCmt has been swapped to gCmt for all operations
that have been pushed in L1. T′ is defined by the cmt rule, where the committing transaction has
been replaced with {skip, σ1, []}.

What remains is to show the existence an `′ such that ⌊G′⌋gCmt ≼ `′, as follows:

• We start by applying the cmtpres invariant to the configuration T,G.

• We pick the ‘‘G that has dropped all uncommitted operations due to other transactions (excluding
T ):

‘‘G ≡ filter (λ[⟨m,σ,σ′, id⟩, g].g = gCmt) G′

• Now, we do a 0-step local log rollback, keeping L1 untouched and ‘G = ‘‘G.

• The remainder of the cmtpres invariant tells us that

∀Gpost. cmt(‘G,L1,Gpost) ⇒
∀σ′,H. (c, σ),Gpost ⋅ ⌊L1⌋npshd ⇓ σ′,H ⇒
∃ˆ̀′. otx({c, σ,L1}), ‘G ∖L1 ⇓ σ′, ˆ̀′ ∧ H ≼ ˆ̀′

• Note that Gpost = ⌊G′⌋gCmt due to a commutativity: Gpost is obtained from G by dropping all
operations due to other uncommitted transactions and then marking T operations as commit-
ted. Meanwhile, ⌊G′⌋gCmt is obtained from G by committing T and then dropping uncommitted
operations.

• Note also that ⌊L1⌋npshd = ∅ because of cmt criterion (ii) and that and fin(c) due to cmt criterion
(i). By the bsfin rule, H = Gpost. This leaves us with

∃ˆ̀′. otx({c, σ,L1}), ⌊G⌋gCmt ⇓ σ′, ˆ̀′ ∧ H ≼ ˆ̀′

• By bsstep, we know that ˆ̀′ = ⌊G⌋gCmt ⋅ `new. We use this as our successor atomic log in the
simulation relation and the right conjunct gives us that H ≼ ⌊G⌋gCmt ⋅ `new.

• Note that H contains only committed operations, so H = ⌊H⌋gCmt. Thus, we can conclude that

⌊H⌋gCmt ≼ ⌊G⌋gCmt ⋅ `new (i.e. ⌊H⌋gCmt ≼ ˆ̀′),

• The inductive hypothesis gives us that ⌊G⌋gCmt ≼ `, so ⌊H⌋gCmt ≼ ` ⋅ `new and thus we have the
witness to the step of the atomic machine so the simulation relation still holds.

6 Evaluation

We applied our model to reason about a wide variety of transactional memory implementations in the
literature. In each case, we recast the implementation strategy in terms of the Push/Pull model and then
show that the implementations satisfy the conditions of each rule in Push/Pull.
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6.1 Opacity

For general Push/Pull transactions, opacity [10] does not necessarily hold: transactions may view the
uncommitted effects of other concurrent transactions. However, there are several ways that we can charac-
terize opacity as a fragment of Push/Pull transactions. For example, if transactions do not perform pull
operations during execution then they are opaque.

However, we can take things a step further. An active transaction T may pull an operation m′ that
is due to an uncommitted transaction T ′ provided that T will never execute a method m that does not
commute with m. This suggests an interesting way of ensuring opacity while pulling uncommitted effects
by examining (statically or dynamically) the set of all reachable operations that a transaction may perform.

6.2 Optimistic Models

STMs such as TL2 [6], TinySTM [8], Intel STM [31] are optimistic (or mostly-optimistic) and do not share
their effects until they commit. Transactions begin by pulling all operations (there are never uncommitted
operations) by simply viewing the shared state. As they continue to execute, they app locally and do not
push until an uninterleaved moment when they check the second push condition on all of their effects (which
is approximated via read/write sets) and, if it holds, push everything and cmt. Effects are pushed in order
so the first push condition is trivial. If a transaction discovers a conflict, it can simply perform unapp
repeatedly and needn’t unpush.

Transactions that use checkpoints [19] and (closed) nested transactions [27] do not share their effects
until commit time. They are similar to the above optimistic models, except that placemarkers are set so
that, if an abort is detected, unapp only needs to be performed for some operations.

6.3 Pessimistic Models

Matveev and Shavit [25] describe how pessimistic transactions can be implemented by delaying write opera-
tions until the commit phase. In this way, write transactions appear to occur instantaneously at the commit
point: all write operations are pushed just before cmt, with no interleaved transactions. Consequently, read
operations perform pull only on committed effects.

Transactional boosting [11] is also a pessimistic model. It’s Push/Pull representation is straight-
forward.

6.4 Mixed Models

For the irrevocable transactions of Welc et al. [34], there is at most one pessimistic (“irrevocable”) transac-
tion and many optimistic transactions. The pessimistic transaction pushes its effects instantaneously after
app.

6.5 Reading Uncommitted Effects

As discussed in Section 4, the early release mechanism [14] and dependent transactions [30] can be modeled
with Push/Pull. In early release, an executing transaction T communicates with T ′ to determine whether
the transactions conflict. This is modeled as T ′ performing a push(op) and T checking whether it is able to
pull(op). A dependent transaction T will pull the effects of another transaction T ′. This comes with the
stipulation that T does not commit until T ′ has committed. If T ′ aborts, then T must abort. However, note

that T must only move backwards (via
backÐÐ→) insofar as to detangle from T ′.

7 Boosting/HTM interaction

The Push/Pull model is expressive, permitting transactions to announce their effects in orders different
from the way they are done locally (see the push rule). Moreover, transactions can undo their effects in

22



different orders from the order they were announced in (see the unpush rule). This may seem a fairly obscure
behavior which, to our knowledge, has not been realized in any transactional implementations. Nonetheless,
in this section we demonstrate a simple example where these complex behaviors seem natural.

Consider the following example transaction that accesses a boosted [11] version of a ConcurrentSkipList

and a boosted version of a ConcurrentHashTable, as well as integer variables size, x, and y that are
controlled via a hardware transactional memory [17]:

1 BoostedConcurrentSkipList skiplist;

2 BoostedConcurrentHashTable hashT;

3 HTM int size;

4 HTM int x, y;

5

6 atomic {
7 skiplist.insert(foo);

8 size++;

9

10 hashT.map(foo => bar);

11 if (*)

12 x ++;

13 else

14 y ++;

15 }

Let us say that execution proceeds, modifying the skiplist, incrementing size, updating the hashT, and
the following the if branch. At this underlined point when x is about to be incremented, let us say that the
hardware transactional memory detects a conflict with a concurrent access to x.

The Push/Pull model shows that the implementation can rewind (unpush) the effects of the HTM,
but leave the effects of the boosted objects (which are expensive to replay) in the shared view. So the HTM
can discard the effects to x and size with unpushP, perform a partial rewind via unapp, then execute:

if (*)

x ++;

else

y ++;

}

In terms of the Push/Pull model, the transaction has performed the rules given in Figure 7. This figure
decomposes the elaborate behavior into the simple Push/Pull rules. We can then construct a correctness
argument for the example from the criteria of each rule, and the hard work of the simulation proof is done
for us.

8 Conclusions and Future Work

We have described an expressive model of transactions and shown that it is capable of serving as proof of
serializability for a wide variety of transactional memory algorithms. We work with pure logs and develop a
model in which transactions pass around their effects by pushing to or pulling from a shared log. The model
gives rise to simple proof rules that allow us to more easily construct proofs for a wide range of transactional
behaviors—optimism, pessimism, opacity, dependency, etc.—all within a unified treatment.

One potential avenue for future work is to consider weaker notions than serializability [9, 3].
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Transaction begins. pull(all skiplist operations)
app(skiplist.insert(foo)),
push(skiplist.insert(foo)),
app(size++),
pull(all hashT operations)
app(hashT.map(foo=>bar)),
push(hashT.map(foo=>bar)),
app(x++),

Push HTM ops: push(size++),
push(x++),

HTM signals abort. unpush(x++),
unpush(size++),

Rewind some code: unapp(x++),

March forward again: app(y++),

Uninterleaved commit: push(size++),
push(y++),
cmt

Figure 7: Decomposing behavior in terms of Push/Pull rules.
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