
Unsupervised Learning Under Uncertainty

by

Michaël Mathieu

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

September 2017

Professor Yann LeCun

c© Michaël Mathieu

All Rights Reserved, 2017

Dedication

To my family.

iii

Acknowledgements

I would like to thank my advisor Yann LeCun for his long-timed support. Work-

ing with him has been a positive, fruitful and edifying experience. I enjoyed every

discussion with him, whether it was about technical computer hacks or metaphysics

- and physics - of machine learning.

I am grateful to many people over my PhD years. Koray Kavukcuoglu, Y-Lan

Boureau and Pierre Sermanet took the time to teach me deep learning when I

first interned at NYU, and Marco Scoffier and Clément Farabet when I returned

a year later. Mikael Henaff has been a great officemate and friend, and was at

the origin of many inspiring conversations. I want to thank Ross Goroshin, Pablo

Sprechmann and Joan Bruna for all the things I learned working with them. Many

thanks to Sixin Zhang, Arnaud Chauveur, Aditya Ramesh, Sainbayar Sukhbaatar,

Emily Denton, Kyunghyun Cho and Rob Fergus for all the interesting discussions

and ideas. I thank Camille Couprie for her continuous help and friendship, and

her perseverance at all times, and all the “Facebook crowd” in Paris, New York,

and Menlo Park. I thank Jake Zhao for being a great coder and researcher, whose

help has been invaluable many times. Thanks to Yacine Jernite who has been an

amazing friend, roommate, and officemate over the years.

I want to thank my preparatory classes teachers, in particular Jean-Marie Le

Gluher, the most talented teacher I had. Finally, I grateful to my family. My

parents, who made me pursue a research path, and Tian for all her loving support.

iv

Abstract

Deep learning, in particular neural networks, achieved remarkable success in

the recent years. However, most of it is based on supervised learning, and relies

on ever larger datasets, and immense computing power. One step towards general

artificial intelligence is to build a model of the world, with enough knowledge

to acquire a kind of “common sense”. Representations learned by such a model

could be reused in a number of other tasks. It would reduce the requirement for

labeled samples and possibly acquire a deeper understanding of the problem. The

vast quantities of knowledge required to build common sense preclude the use of

supervised learning, and suggest to rely on unsupervised learning instead.

The concept of uncertainty is central to unsupervised learning. The task is

usually to learn a complex, multimodal distribution. Density estimation and gen-

erative models aim at representing the whole distribution of the data, while pre-

dictive learning consists of predicting the state of the world given the context and,

more often than not, the prediction is not unique. That may be because the model

lacks the capacity or the computing power to make a certain prediction, or because

the future depends on parameters that are not part of the observation. Finally,

the world can be chaotic of truly stochastic. Representing complex, multimodal

continuous distributions with deep neural networks is still an open problem.

In this thesis, we first assess the difficulties of representing probabilities in high

dimensional spaces, and review the related work in this domain. We then introduce

two methods to address the problem of video prediction, first using a novel form

of linearizing auto-encoder and latent variables, and secondly using Generative

Adversarial Networks (GANs). We show how GANs can be seen as trainable loss

functions to represent uncertainty, then how they can be used to disentangle factors

of variation. Finally, we explore a new non-probabilistic framework for GANs.

v

Table of Contents

Dedication . iii

Acknowledgements . iv

Abstract . v

List of Figures . viii

List of Tables . xi

1 Introduction 1

1.1 Representing continuous probabilities 5

1.2 Learning manifold structure and factors of variation 8

1.3 Notations for deep neural networks 10

1.4 Thesis Outline and Summary of Contributions 11

2 Motivations and Related Work 14

2.1 Representing uncertainty . 14

2.2 Video prediction . 29

2.3 Disentangling factors of variation 31

3 Learning to Linearize Videos Under Uncertainty 34

3.1 Introduction . 34

3.2 Learning Linearized Representations 38

vi

3.3 Experiments . 45

3.4 Conclusion . 53

4 Deep multi-scale video prediction beyond mean square error 54

4.1 Introduction . 54

4.2 Models . 55

4.3 Experiments . 64

4.4 Discussion . 73

5 Disentangling factors of variation in deep representations using

adversarial training 77

5.1 Introduction . 77

5.2 Background . 79

5.3 Model . 81

5.4 Experiments . 85

5.5 Conclusions and discussion . 99

6 Energy-Based Generative Adversarial Networks 102

6.1 Introduction . 102

6.2 The EBGAN Model . 104

6.3 Experiments . 118

7 Conclusion 129

Bibliography 132

vii

List of Figures

1.1 White noise images. 9

1.2 Learning the data manifold. 10

3.1 A video generated by translating a Gaussian bump, and the corre-

sponding manifold in the 3D space. 40

3.2 The Linearizing Auto-Encoder architecture. 44

3.3 Decoder filters learned by shallow phase-pooling architectures. . . . 49

3.4 Test samples input to the Linearizing Auto-Encoder. 50

3.5 Baseline interpolation results (Siamese-encoder network). 50

3.6 Interpolation results with linear code prediction, with and without

phase pooling and curvature regularization. 52

3.7 Comparison of interpolation results in presence of uncertainty, with

and without latent variables. 52

4.1 A basic convolutional network for next frame prediction. 56

4.2 A basic block of the multi-scale video prediction structure. 58

4.3 The full multi-scale video prediction generator. 59

4.4 Optical flow based masks used for the quantitative evaluation of

frame prediction models. 68

viii

4.5 Frame predictions on the Sports1m dataset. 70

4.6 Frame predictions on the Sports1m dataset, failure case. 71

4.7 Frame prediction comparison with Ranzato et al. 72

4.8 Frame predictions on the UCF101 dataset. 74

4.9 Frame predictions on the NYUDepth dataset. 75

5.1 Disentangling architecture . 86

5.2 Disentangling factors of variation on MNIST. 92

5.3 Disentangling factors of variation on the Sprite dataset. 94

5.4 Disentangling factors of variation on the NORB dataset. 96

5.5 Disentangling factors of variation on the TaleB dataset. 97

5.6 Comparison of disentanglment with pretrained “specified” part ver-

sus joint training. 100

6.1 EBGAN architecture with an auto-encoder discriminator. 115

6.2 Histograms of the scores of generated MNIST digits, comparing

GANs and EBGANs. 120

6.3 More histograms of generated MNIST scores for GANs and EBGANs.121

6.4 Generation of MNIST digits using the best GAN, EBGAN and

EBGAN-PT models. 121

6.5 Sample generations from the LSUN bedroom dataset. 123

6.6 Sample generations from the CelebA face dataset. 124

6.7 Sample generations from the augmented LSUN bedroom dataset. . 125

6.8 Sample generations from the 128×128 pixels ImageNet dataset using

an EBGAN-PT. 126

ix

6.9 Sample generations from the 256 × 256 pixels ImageNet dataset

restricted to dog breeds, using an EBGAN-PT. 126

6.10 Comparison between EBGAN and EBGAN-PT on LSUN. 127

6.11 Comparison between EBGAN and EBGAN-PT on augmented LSUN.127

6.12 Comparison between EBGAN and EBGAN-PT on the CelebA dataset.128

x

List of Tables

1.1 Notations used to describe different layers of deep convolutional

networks. 12

3.1 Architectures used to test Linearizing Auto-Encoders. 48

4.1 Frame prediction Model 1 architectures. 64

4.2 Frame prediction Model 2 architectures 65

4.3 Baseline models for video prediction. 66

4.4 Quantitative evaluation of frame predictions on UCF101. 68

5.1 Disentangling network . 90

5.2 Error rates for classification using z and s. 98

6.1 MNIST grid search parameters . 120

6.2 Comparison between Ladder Networks and EBGAN-extended Lad-

der Networks. 122

xi

Chapter 1

Introduction

Deep learning has achieved remarkable success in the recent years, through deep

artificial neural networks. In particular, deep learning has revolutionized tasks

such as object recognition [LeCun et al., 1998, Krizhevsky et al., 2012, Sermanet

et al., 2013, He et al., 2015], object localization and image segmentation [Farabet

et al., 2013, Sermanet et al., 2013, Lin et al., 2014], speech recognition [Hannun

et al., 2014], machine translation [Sutskever et al., 2014], games AI [Silver et al.,

2016,Mnih et al., 2013], and a number of other tasks [LeCun et al., 2015]. Most of

these successes are based on supervised learning, which means the learning target

is typically a label, that has been manually annotated. Since the labels are chosen

so that most humans agree on them, the problem is well defined and there is little

uncertainty in what the model should produce.

Supervised learning, however, relies on ever larger datasets, and immense com-

puting power. Labeling millions of samples comes at great cost, and solving each

new task independently is very inefficient. On the other hand, an intelligent system

such as the human brain seems able to reuse the knowledge learned on previous

1

tasks very efficiently, so that humans can learn to recognize new objects, faces or

even concepts given very few labeled samples, often only one.

For years, unsupervised pretraining has been seen as the main solution to this

problem [Bengio et al., 2013], but it is still rarely deployed in large scale systems.

The idea behind pretraining is that, instead of learning a new model from scratch

for each new labeled dataset, we first train a model for another task, for which we

have abundant data, then fine-tune the existing model using the labels. We rely

on the manifold assumption to explain why this approach should work: although

natural data is composed of high dimensional inputs (millions of dimensions for

images), these dimensions are far from independent. In this space, the set of

points that correspond to natural inputs is much smaller than the whole space.

It is usually considered as a low-dimensional manifold, since there exist ways to

continuously morph each realistic point into a neighboring realistic point. If the

pretrained model is able to capture this manifold, the complexity of the problem

can be drastically reduced, requiring less labeled samples.

However, a related but slightly different approach has recently been more suc-

cessful than unsupervised pretraining: supervised transfer learning. It appears that

some supervised tasks, such as image classification, can also be used to pretrain

models that can then perform well in different contexts. Deep models trained on

the ImageNet dataset [Deng et al., 2009, Russakovsky et al., 2015] have trans-

ferred surprisingly well to other visual tasks, such as classification on other vision

datasets [Donahue et al., 2013, Razavian et al., 2014], detection [Girshick et al.,

2013,Sermanet et al., 2013], action recognition [Simonyan and Zisserman, 2014,Dai

et al., 2015], optical flow [Weinzaepfel et al., 2013], image captioning [Donahue

et al., 2014, Karpathy and Li, 2014] and others [LeCun et al., 2015]. This is far

2

from a solved problem, however, and although the model seems to transfer well

for perception tasks, the situation is different in other domains such as planning or

reasoning. It is difficult to argue that the deep representation learned by a model

trained on ImageNet has common sense. For instance, it is surprisingly easy to

trick an ImageNet model into mislabeling an image with very high confidence, by

using adversarial attacks [Szegedy et al., 2013]. One possible reason for this is that

the representation is limited by the size of the dataset, which in turn is limited by

the cost of labeling. It is also possible that the classification task is too easy to

learn anything more than basic perceptive features.

A first step towards general AI is building a system that can learn a model

of the world. Such a system can harness the knowledge it already possesses in

order to learn new tasks with little supervision. However, learning such a model

might require an immense amount of data. While there is no obvious limit to

the computing power of hardware (which reliably follows Moore’s law), the size of

any labeled dataset is limited by the number of human beings who can work on

labeling. Unsupervised learning, on the other hand, does not necessitate human

time to build the dataset and can therefore scale with the speed of computers.

Additionally, it would be difficult to create a labeled dataset of “the world”, or

a dataset of “common sense”: it is unclear how to define labels and which value

they should have. Unsupervised learning does not need manually annotated data

and therefore works around this problem.

A model of the world would be able to understand general principles, such as

gravity, collisions, human interactions, etc. We can evaluate the capacity of the

model by performing predictions. If the model is able to make a correct prediction,

such as the image formed on a camera sensor after 10 seconds, or the number of

3

people in a house given the schedule of the residents, it would prove its capacity

to understand the world. Incidentally, this is the core principle of the scientific

method: by observing the world, scientists build a theory, which in turn is used

to make predictions. Confronting the predictions to the reality can either refute

or reinforce the theory. In order to learn a model of the world, we can directly

train our system to make predictions, as an objective. It is key to notice that

predictions are by nature probabilistic, or at least uncertain. One can rarely be

absolutely certain of the future state of the world. There may exist intrinsically

probabilistic futures, due to quantum phenomena, for instance. Even if the world

were perfectly deterministic given its global state, it would still be impossible to

record this global state perfectly. Not only every sensor has noise, but it only

measures a small fraction of the world. It would then be very likely that the future

depends on unobserved quantities (such as the butterfly flapping its wings in the

butterfly effect). Finally, even with perfect observations, the dependencies may be

so complicated that the model simply does not have the “reasoning” capacity to

reach certainty. In this case, probabilistic predictions would be approximating the

deterministic outcome.

More generally, machine learning models represent uncertain, probabilistic out-

comes. In supervised machine learning, labels are manually annotated, so the tar-

get distribution is usually cleaner, often unimodal. A unimodal distribution may

be approximated by a normal distribution, which can be represented by its mean.

This is why deterministic predictions are most of the time valid in regression, for

instance. Complicated unsupervised tasks require the model to have the capacity

to represent a more general multimodal probability distribution.

The issue of representing probabilities is a core problem of deep learning. Train-

4

ing a neural network typically involves minimizing a loss function. The most suc-

cessful loss functions are usually built using a simple process: assuming the output

of the network parametrizes a distribution, and maximizing the likelihood of the

training data under this distribution. In the case of classification, the categories

are discrete. Therefore, the distribution can be exactly parametrized as a categor-

ical distribution (also known as multinoulli), using a finite number of dimensions.

In the case of regression, however, the space of possible distributions is of infinite

dimension and therefore the choice of the loss matters. The Mean Square Error

(MSE) is the most common loss in this case. It corresponds to parametrizing a

normal distribution of unit variance by its mean. Approximating a target density

with a single Gaussian is only reasonable for a unimodal distribution, and will

notably fail for a distribution with more than one mode.

1.1 Representing continuous probabilities

Machine learning is the process of discovering a probability distribution from

the data. In this section, we define general notations that will apply to a wide class

of problems, from supervised to unsupervised learning. Let Ω be a vector space

containing data points. We assume that the data are drawn from an underlying

probability distribution pdata over the space Ω. For simplicity, we identify the

probability law by its associated distribution (a generalized function). We split the

coordinates of the data points, so every single data point is composed of two sets

of coordinates x and y, such that (x, y) ∈ Ω. Let D be the training set, i.e. a finite

collection of points {(x1, y1), . . . , (xN , yN)} independently drawn from pdata. We

use capital letters for random variables and lowercase for actual points. We define

5

a learning task as estimating the parameters θ of a model, such that the model

learns to represent an approximation of the conditional distribution pdata(Y |X).

We denote p̂θ the distribution represented by the model, thus learning is about

finding the optimal θ∗ such that p̂θ∗(Y |X) ≈ pdata(Y |X). With this definition, we

group density estimation (where X is empty), predictive learning (where Y is the

part to predict from the context X) and supervised learning (where Y is the label).

The distinction between supervised and predictive learning is blurry and we call

the task of predicting a manually annotated label supervised learning.

If Y is not a discrete variable, using a neural network to learn the conditional

distribution pdata(Y |X) requires a fundamental choice. Indeed, the space of con-

tinuous distribution is of infinite dimension, so there is no finite parametrization

covering the whole space of continuous distributions. There are at least three dif-

ferent approaches to this problem, and some of their most common instantiations

will be described in Chapter 2:

1. Explicit parametrization A fixed set H of probability distributions is cho-

sen, parametrized by a vector of finite dimension. For instance, H can be the set of

normal distributions with unit variance. The model is trained to learn a function

fθ(x) that parametrizes H. The choice of H is very important, and will determine

the amount of bias added to the loss. This bias corresponds to the error made

by approximating pdata(Y |X) by the best candidate in H. One advantage of this

method is that single evaluation of the model returns a full conditional distribu-

tion. The spaceH is usually chosen so that the distributions are simple enough and

have analytical properties, to facilitate tasks such as maximum a posteriori (MAP)

estimation, or sampling from p̂θ(Y |X = x), for instance. The main disadvantage

6

is the introduced bias, that can be significant if a wrong class of distributions is

used.

2. Implicit function Energy-based models [Lecun et al., 2006] directly train a

neural network to learn a function fθ(x, y) that corresponds to pdata(Y = y|X = x)

(which is a single scalar). While it is usually intractable to learn the density

pdata(Y = y|X = x), because the normalization constant is unknown, energy func-

tions (unnormalized densities) can be learned. Assuming the network has infinite

capacity, this method can represent any probability distribution. However, train-

ing such a network can be difficult. Although it is difficult to access the actual

density pdata(Y |X) from an energy function, we can sample from it using Monte

Carlo methods, and particularly MCMC to draw samples from unnormalized dis-

tributions.

3. Generative models Generative models learn to directly produce samples

from pdata(Y |X = x) for a given x. They have a source of randomness from a

known distribution (usually an input of the model), which is mapped to an ap-

proximation of the data distribution. Again, if the network has enough capacity,

there is no intrinsic bias to the represented distribution. The difference with the

implicit function approach is that sampling is now trivial, but the ability to com-

pare the likelihood of events is lost. While the likelihood under an energy models

is difficult to evaluate, it is impossible with a purely generative model. Evaluation

and comparison of generative models are still open problems.

7

1.2 Learning manifold structure and factors of

variation

Regardless of which method we use to model pdata(Y |X), the task may, at first

glance, seem hopeless. Indeed, the dimensionality of X and/or Y is usually very

high. It is common to have images with millions of pixels, or audio sampled with

tens of thousand of points per second. The well-known curse of dimensionality

states that the number of states grows exponentially with the number of dimen-

sions. Even with large training datasets, the fraction of the space covered by the

datapoints is insignificant. Moreover, the “No Free Lunch” [Wolpert, 1996] theo-

rem states that, in the absence of assumptions on pdata, we cannot hope to achieve

any significant result.

Fortunately, the distribution pdata is not unconstrained: we can formulate prior,

which is incorporate into the model. A common belief is that the “natural” data,

encountered in the real world, lie on a very low dimensional manifold, compared

to the dimensionality of the space [Cayton, 2005, Narayanan and Mitter, 2010].

For example, images composed of white noise (uncorrelated pixels) almost never

correspond to natural images, as shown in Figure 1.1. This can be partly explained

by another belief about natural data: it is built using a hierarchical process. At

each level of the process, only a few degrees of freedom are allowed, resulting in

a final manifold that has at most as many dimensions as the sum of the degrees

of freedom. The mapping from these degrees of freedom to points of Ω is usually

complex and highly non-linear. However, if one manages to identify these factors of

variation, the dataset can then be represented in a space of much lower dimension,

and much lower complexity. Let M denote the manifold associated with pdata.

8

Figure 1.1: Images made of random white noise: uncorrelated pixels do not form
realistic images. Points on the manifold of realistic images present highly correlated
pixels.

The manifold assumption can be reformulated as stating that the vast majority

of Ω has a near-zero probability under pdata, and only M contains points with

significant probability.

In this perspective, machine learning can be understood as training a model to

disentangle factors of variation. For instance, in the case of supervised learning,

the only factor of variation we are interested in is the label. Classification is the

task of identifying a specific factor of variation, the class, from the rest. Factors of

variation may be considerably more diverse: in the case of video, for instance, the

camera position and lighting, but also the presence or absence of different objects,

are factors of variation. Disentangling factors of variations means two things. On

one hand, we need to identify, explicitly or implicitly, the low-dimensional manifold

M. On the other hand, we identify and characterize the “principal” directions on

M, corresponding to factors of variation. Although it is difficult to exactly define

this concept in general, ideally each “principal” direction should correspond to a

degree of freedom in the process of generating the data (if such a process exists).

Factors of variation can also be identified as being responsible for the continuity

9

Feature extractor

Generative model

Figure 1.2: Learning the data manifold. Left: data manifold M. Right: low-
dimensional space. Blue dotted arrows: mapping learned by the model. Mapping
from M to a low dimensional space Rn corresponds to extracting features of in-
terest, while mapping from Rn to M is a generative process.

or regularity in the data: if one moves along such a direction, a single property

of the data should change, preferably smoothly, while most aspects of the data

stay constant. Characterizing these directions often means reparameterizing the

manifold, such that we have a one-to-one mapping from the manifold to a low-

dimensional vector space, and the coordinates of this space correspond to factors

of variation on the manifold. This concept is illustrated in Figure 1.2.

1.3 Notations for deep neural networks

In this work, we present different neural networks, with different shapes and

sizes. In order to offer consistent, easy to read notations, we define a format to

describe neural networks.

10

A deep convolutional network is composed of successive layers. Typically, most

of the layers are made of convolutions interlaced with non-linearities, and the last

ones are fully connected layers. We describe a convolution with kernel k×k by the

arrow
conv−−→
k

and we describe similarly non-linearities and other layers, as explained

in Table 1.1. When describing a whole network, we interlace these arrows with the

number of feature planes for convolutional network (where it is relevant), and the

number of units for fully connected layers (which correspond to feature planes of

size 1×1). When it is relevant, we also display the spatial size of the feature planes

below the number of feature planes. For instance, with these notations, LeNet-5

from [LeCun et al., 1998] can be described as

1
32×32

conv−−→
5

6
28×28

MaxPool−−−−−→
2

Tanh−→ conv−−→
5

16
10×10

MaxPool−−−−−→
2

Tanh−→ conv−−→
5

120
1×1

Tanh−→ FC−→ 84
Tanh−→ FC−→ 10

and AlexNet [Krizhevsky et al., 2012] with Batch Normalization can be described

with the following notation (here we do not display the spatial size of the feature

planes):

3
convp−−−→
11/4

ReLU−−−→
BN

96
convp−−−→

5

MaxPool−−−−−→
2

ReLU−−−→
BN

256
convp−−−→

3

ReLU−−−→
BN

384
convp−−−→

3

ReLU−−−→
BN

384

convp−−−→
3

ReLU−−−→
BN

256
MaxPool−−−−−→

2

ReLU−−−→
BN

FC−→ 4096
ReLU−→ FC−→ 4096

ReLU−→ FC−→ 1000 .

1.4 Thesis Outline and Summary of Contribu-

tions

The thesis is organized as follows. In chapter 2, we develop the problem of

uncertainty in machine learning and review the prior work on this aspect, along

with related work on video prediction and disentanglement of factors of variation.

11

conv−−→
k

Valid convolution with a k × k kernel

convp−−−→
k

Padded (full) convolution with a k × k kernel

convp−−−→
k/s

Padded (full) convolution with a k × k kernel, and stride s

ReLU−→ Rectified Linear Unit layer

ReLU−−−→
BN

Rectified Linear Unit after Batch Normalization

LeakyReLU−−−−−→
BN

Leaky Rectified Linear Unit after Batch Normalization

Tanh−→ Hyperbolic tangent layer

σ−→ Sigmoid layer

MaxPool−−−−−→
p

Max-pooling layer with pooling windows of size p× p
UpSample−−−−−→

p
Upsampling layer of factor p× p

FC−→ Fully connected layer

LookUp−−−−→ Look-up table layer

concat−−−→ Concatenation of the feature planes

reshape−−−−→ Reshaping of the feature planes

PhasePool−−−−−→
k/s

Phase pooling layer (see Section 3.2.1) of size k and stride s

UnPool−−−−→ Unpooling layer (see Section 3.2.1)

Table 1.1: Notations used to describe different layers of deep convolutional net-
works.

12

Chapter 3 introduces the goal of video prediction as a special form of regularizer

for auto-encoders, along with a way to handle uncertainty as latent variables and a

“phase-pooling” operator. In Chapter 4 continues exploring video prediction, this

time using an adversarial loss. Chapters 5 and 6 focus more closely on Genera-

tive Adversarial Networks. In chapter 5, we use adversarial networks along with

variational auto-encoders to disentangle factors of variation without explicit data

alignment, and in chapter 6, we introduce a new energy-based framework for Gen-

erative Adversarial Networks. Finally, Chapter 7 concludes the thesis and points

future research directions.

13

Chapter 2

Motivations and Related Work

This chapter presents previous works related to this thesis. In section 2.1, we

detail different unsupervised learning methods in the context of representing multi-

modal distributions with a neural network. In section 2.2, we present related work

for predictive models and particularly for video prediction. Finally, section 2.3

describes works in the context of disentangling factors of variation.

2.1 Representing uncertainty

Supervised learning deals with learning a distribution of the label Y given an

input x. This label is determined manually, by a “supervisor”, and the labeling

process is fairly deterministic. Consequently, supervised tasks are typically easier

than unsupervised problems. They often exhibit a distribution pdata(Y |X = x)

that has a single mode. When the labels are continuous, their distribution can be

safely assumed as unimodal, so the MSE loss can be used. If the values that y

can take are discrete, their probabilities are often represented using a categorical

distribution.

14

Unsupervised learning, on the other hand, aims at discovering a hidden struc-

ture in the data. This means modeling complex and multimodal distributions.

Thus, unsupervised learning relies on the ability of the model to represent dis-

tributions, particularly multimodal distributions. This intuition can be factored

into the concept of uncertainty. In the context of predictive models, the differ-

ent possible outcomes correspond to uncertainty in the prediction. Representing

uncertainty is critical for the network to perform tasks correctly. The next step

would be to explain the cause of uncertainty, as a latent factor of variation in the

data. This requires an even deeper understanding of the world by the model.

In this section, we detail the different approaches to uncertainty that were

presented in section 1.1 and present several existing implementations of these ap-

proaches.

2.1.1 Direct distribution parametrization

Directly parametrizing a distribution means that the output of the network, a fi-

nite dimensional vector, is used to parametrize a distribution within a pre-specified

class of probability distributions. The majority of machine learning algorithms use

this technique, implicitly or explicitly. For instance, discrete cross-entropy or mean

square error losses fall into this framework. In most supervised cases, it is assumed

that the distribution is simple and unimodal, but this is not necessary and in some

cases, the approach can be extended to model complex distributions.

Probability distributions over discrete variable (with finite number of values)

can be fully – but not necessarily efficiently – represented with a categorical distri-

bution. We only need to specify the probability of each value to characterize the

whole distribution. Therefore, when Y is discrete, the network usually produces

15

a distribution through a softmax operation. Minimizing the cross-entropy loss is

equivalent to maximizing the likelihood of the data under the learned distribution.

On the other hand, the distribution pdata(Y |X = x) cannot be parametrized

exactly when Y is continuous. A natural idea is to approximate the true distribu-

tion pdata(Y |X = x) by a distribution in a class of simpler, tractable distributions,

parametrized by a finite vector φx ∈ Rp. We denote qφx(Y) this distribution, and

H the set of representable distributions, i.e. H = {qφ|φ ∈ Rp}. The task is to gen-

erate a vector φx for each conditioning variable x, by learning parameters θ so that

for all x, the vector φx = fθ(x) parametrizes an approximation of pdata(Y |X = x).

Since we only have access to individual samples of pdata(Y |X = x), it is natural

to use a maximum likelihood approach. The desired weight vector θ∗ is defined by

maximizing the log-likelihood:

θ∗ = arg max
θ

∑
(x,y)∈D

log(qfθ(x)(y)). (2.1)

In other words, the loss of the network, for a given input x is

Lθ(x) = Ey∼pdata(Y |X=x)

[
− log(qfθ(x)(y))

]
. (2.2)

For instance, if φ represents the mean of a Gaussian with an identity covariance

matrix, then

θ∗ = arg min
θ

∑
(x,y)∈D

||y − fθ(x)||22. (2.3)

This is the Mean-Square Error (MSE). Therefore, using the MSE loss corresponds

to approximating pdata(Y |X = x) with a normal distribution with unit variance.

If we assume that φ corresponds to the mean of a Laplace distribution with

16

variance 1, we get

θ∗ = arg min
θ

∑
(x,y)∈D

|y − fθ(x)|. (2.4)

which corresponds to a L1 loss (sometimes called Absolute Value Loss).

Parametrizing a Gaussian or a Laplace distribution is convenient: the form of

the loss is simple, and it is convex with respect to fθ(x). If pdata(Y |X = x) is not

unimodal, however, modeling it with a Gaussian or a Laplace distribution can only

perform poorly.

Mixtures of Gaussians are a natural candidate to model multimodal distribu-

tions. A mixture of k Gaussians with unit-variance, parametrized by φ = (α, µ),

is defined as

q(α,µ)(x) =
k∑
i=1

αiG(x− µi) (2.5)

where G is a zero-mean Gaussian with unit-variance, ∀i, αi ≥ 0, and
∑n

i=1 αi = 1.

Using such a distribution for q leads this loss:

θ∗ = arg min
θ

∑
(x,y)∈D

log

(
k∑
i=1

αi(x)G(y − µi(x))

)
(2.6)

(2.7)

Models with such a loss are often called Mixture Density Networks [Bishop, 1994]

and have been successfully applied to tasks such as speech synthesis [Zen and

Senior, 2014]. They can be extended to non-unit covariance Gaussians, but the

number of parameters increases quadratically with the size of the space. Diag-

onal covariance matrices are often seen as a good compromise as the number of

parameters only grows linearly.

Instead of directly parametrizing the distribution qφ, it is also possible to use

17

the chain rule for probabilities to decompose it, arbitrarily or not, into conditional

probabilities [Uria et al., 2016]. Assuming Y = (Y1, Y2, . . . , YN), we can write

qφ(Y) = q
(1)
φ1

(Y1)q
(2)
φ2

(Y2|Y1) . . . q
(N)
φN

(YN |Y1, . . . , YN−1) (2.8)

where q(1), q(2), ...q(N) are N different, or identical, distribution parameterizations.

The advantage of this method is to factor the representation. Often, the model

used to obtain φi is shared for all i, in the form of a Recurrent Neural Net-

work. This scheme is widely used when Y is a discrete temporal sequence, such

as text [Mikolov, 2010]. When Y takes continuous values, it is still possible to

discretize it in order to use the well-behaved categorical distribution. Discretiz-

ing the values yielded good results for image generation and video prediction, by

quantizing patches [Ranzato et al., 2014] or pixels, in the PixelRNN [van den Oord

et al., 2016a] and PixelCNN [van den Oord et al., 2016b] models. The main draw-

back of this approach is computational time: the model needs to be evaluated

many times in order to compute each conditional probabilities. Another issue is

that in order to obtain the factored posterior distribution, it is necessary to either

integrate over all the possible values of the conditioning variables, which does not

scale up to high dimension, or to iteratively sample the variables from y1 to yN ,

which is not differentiable and introduces an approximation of the evaluation.

2.1.2 Implicit function and energy models

Instead of parametrizing the whole distribution pdata(Y |X = x), we can imag-

ine learning a function p̂θ(y|x) to approximate the distribution pdata(Y = y|X =

x). However, normalization is difficult. It is often even impossible. Indeed,

18

pdata(Y |X = x) is a distribution (i.e. a generalized function), but may not be

a density. In particular, if the points of non-zero probability are concentrated on

a low-dimensional manifold, pdata(Y |X = x) is not a density (it is zero almost ev-

erywhere, and infinite on the manifold). As mentioned in section 1.2, it is believed

that this situation is frequent.

Energy-based models [Lecun et al., 2006] are an answer to the normalization

problem. An energy can be seen as an unnormalized parametrization of the dis-

tribution. Energy-based models associate an energy value fθ(x, y) to each pair

(x, y). It is a scalar value, usually unbounded, and large energies correspond to

low probabilities. Energies can be converted to probability densities by using the

Gibbs distribution:

pθ(y|x) =
e−fθ(x,y)∫

y′
e−f(x,y′)dy′

. (2.9)

The only constraint for energies to correspond to probabilities is that the denomi-

nator of Equation (2.9) is finite. Although this constraint also concerns all points

of the space, it is actually easier to (weakly) enforce than the normalization con-

straint of a probability density, and numerous methods have been developed to

that end. In case pdata(Y |X = x) is not a density (i.e. is only non-zero on a set

of measure zero), Equation (2.9) is not valid, but it can be adjusted by restricting

the domain of y to {y|f(x, y) 6= 0}.

There is no groundtruth target for fθ(x, y). The only available data are the

training points, which are samples from pdata(X, Y). The general idea to train

energy models is to decrease the output energy on sample points from the train-

ing set, and increase it elsewhere. In the vocabulary of energy models, an input

point for which the energy should be decreased is called a positive sample and a

point where the energy should be increased is called a negative sample. For in-

19

stance, maximizing the log-likelihood of the data under Equation (2.9) results in

the following loss:

θ∗ = arg min
θ

Ex∼pdata(X)

[
Ey∼pdata(Y |X=x)[fθ(x, y)]︸ ︷︷ ︸

positive samples

−Ey∼pθ(Y |X=x)[fθ(x, y)]︸ ︷︷ ︸
negative samples

]
. (2.10)

The positive samples are easy to obtain since they come from the training set.

However, in the absence of negative samples or other constraints, positive samples

are useless. Training the model from these points alone results into a collapsed

state where the model attributes low energy to every point. This collapse can be

avoided using different strategies, and the use of negative samples is not always

necessary. If the area of low energy can be constrained, no negative samples are

required: pushing the energy down on the data points automatically pushes the

energy up on every other point. Unfortunately, constraining this energy to a fixed

value is as hard as normalizing the probability density, and most of the models

managing this have a simple form (such as PCA [Pearson, 1901], k-means [Lloyd,

1982] and ICA [Hyvärinen et al., 2004]).

It is also possible to regularize the model to limit the area of low-energy

points, without explicitly knowing this area. This is, for instance, the case with

sparse coding [Olshausen and Field, 1997], sparse auto-encoders [Ranzato et al.,

2007b, Poultney et al., 2006, Ranzato et al., 2007c], Predictive Sparse Decompo-

sition (PSD) [Kavukcuoglu et al., 2010a] and more generally most regularized

auto-encoders [Zemel, 1994]. These models have a regularization term that makes

the model produce a high energy in the absence of other constraints. Positive sam-

ples are pushing against this regularizer, resulting on low-energy on the positive

samples and high energy everywhere else. We detail a few specific auto-encoder

20

architectures in section 2.1.2.1.

Using carefully selected negative samples to increase the energy is an alter-

native method. Equation (2.10) shows that in order to maximize the likelihood

of the data, the negative samples should be chosen as following the distribution

represented by the energy model pθ. However, the model can only be evaluated to

return the energy of a specific point, not sampling. Therefore, Monte Carlo meth-

ods, such as MCMC, can be used to produce negative samples. While MCMC

methods are efficient when the distribution is unimodal, they tend to become

slow and inaccurate when the modes are separated. However, this method has

remained popular to obtain negative samples and is the basis of contrastive di-

vergence [Carreira-Perpinan and Hinton, 2005]. Other approaches are possible to

obtain negative samples. Energy-based adversarial networks [Kim and Bengio,

2016, Zhao et al., 2016b] use another network to produce negative samples. De-

noising auto-encoders [Vincent et al., 2008] can be understood as using a noisy

version of the training samples as negative samples.

2.1.2.1 Auto-encoders

Most auto-encoders can be cast into the energy-based setting, by defining the

energy as the reconstruction loss. An auto-encoder is a model that is trained to

learn two functions, Encθ and Decθ, such that Decθ ◦ Encθ is near the identity

function on the training points. To stay coherent with the previous notations,

we define conditional auto-encoders, although the conditioning variable x is often

unused:

∀(x, y) ∈ D, Decθ(Encθ(x, y)) ≈ y. (2.11)

21

The energy is then defined by:

fθ(x, y) = ||Decθ(Encθ(x, y))− y||22. (2.12)

Auto-encoders must learn the identity function on the training set D, and

ideally on the data manifold M, but not over the whole space. If they did, the

learned representation would most likely be useless. Moreover, they would not

be an energy model, since the energy would be constantly zero. From the energy-

based model point of view, the mechanism that is used to prevent the auto-encoder

to learn the identity function corresponds to the mechanism that restricts the area

of low energy.

Sparse auto-encoder [Ranzato et al., 2007b,Poultney et al., 2006,Ranzato et al.,

2007c] and PSD [Kavukcuoglu et al., 2010a] use a sparse penalty to limit the area of

low energy. The models are trained so that the code, i.e. the output of the encoder,

is sparse. A code is said to be sparse if most of its coordinates are set to zero.

The sparsity is usually obtained through a L1 regularization over the code, but

other methods exist, for instance k-sparse auto-encoders [Makhzani and Frey, 2013]

threshold the top k components, and Winner-Takes-All auto-encoders [Makhzani

and Frey, 2014] is the extreme version of this where only one component is activated

at a time. Predictive Sparse Decomposition [Kavukcuoglu et al., 2010a] is similar

to a sparse auto-encoder, but the training procedure differs: the encoder is trained

to match an exact, slower, inference algorithm for the code.

Other penalties are possible in order to restrict the low-energy area. Denoising

auto-encoders [Vincent et al., 2008] are explicitly trained not to be the identity

function in the neighborhood ofM. Contractive auto-encoders [Rifai et al., 2011]

22

use a penalty on the Frobenius norm of the Jacobian of the code to achieve the

same effect. Slow auto-encoders [Goroshin et al., 2015a] use a slowness penalty

that forces parts of the code to stay constant on temporal neighborhoods.

The strength restricting penalty of auto-encoders is modulated through a hyper-

parameter, which is adjusted on a validation set. It may be difficult to adjust in a

general setting, and training deep auto-encoders requires some care. For instance,

deep sparse auto-encoders work best when training a single layer of encoder and

decoder at a time [Arnold and Ollivier, 2012].

2.1.3 Generative models

Learning the density pdata(Y |X = x) may be difficult for complex, high-dimensional

distributions. Moreover, it does not provide a direct mechanism to generate sam-

ples from the model (typically, sampling is done with MCMC methods, which

are either slow or biased with multimodal distributions). In some cases, it may

be easier, or more useful, to directly learn a sampling function. Instead of –

or in addition to – learning pdata(Y |X = x), we learn a function fθ(x, ε) such

that fθ(x, ε) ∼ pdata(Y |X = x) when ε ∼ pε(ε), where pε is a fixed distribution

(typically normal or uniform). Although there are numerous possible ways to do

this, two approaches are currently popular in the deep learning community: Vari-

ational Auto-Encoders [Kingma and Welling, 2013] and Generative Adversarial

Networks [Goodfellow et al., 2014]. In this section, we explain the fundamental

notions of these two approaches since they will be useful in the next chapters.

23

2.1.3.1 Variational Auto-Encoders

Variational Auto-Encoders [Kingma and Welling, 2013] are an extension of

auto-encoders. As with most auto-encoders, they can be seen as an energy model,

via the reconstruction error, but they also have the ability to generate samples.

The difference with regular auto-encoders is that the loss results from minimizing

the variational bound. The model is trained so that the code z, which corresponds

to the activations of a hidden layer, follows a predefined distribution (in practice,

a normal distribution, thanks to the reparametrization trick).

Let us define a decoder Decθ parametrized by θ. We wish to model the dis-

tribution pdata(Y |X = x) for a given x, but in order to simplify the notations,

we assume we are in the pure unsupervised setting, modeling pdata(Y), although

conditioning on X = x is not an issue. The end goal is that the marginal distribu-

tion p(Y) =
∫
z
pDecθ(Y |Z = z)pZ(Z = z)dz models the true distribution pdata(Y),

where pDecθ(Y |Z = z) is given by the decoder, and the code z follows a prior dis-

tribution pZ . So the decoder is explicitly parametrizing a distribution, which is

difficult if the distribution is multimodal. However, the distribution is conditioned

on Z, and while we may not be able to assume that pdata(Y) is unimodal, we

can safely assume that pDecθ(Y |Z) is. For instance, the decoder can generate the

mean and the diagonal variance of a Gaussian distribution, which corresponds to

a weighted MSE loss.

Jointly learning Decθ and inferring Z is intractable for general models. Besides,

even if Decθ was already trained, inferring Z given Y at test time may be difficult

and slow. To that end, an encoder Encθ is added to the system, in order to produce

the distribution of Z given a Y . Note that we parametrize it using θ to simplify

the notation but it does not need to share parameters with Decθ, they can each

24

use a different set of coordinates of θ. The encoder learns an approximation of

pDecθ(Z|Y). The main role of the encoder is to help training Decθ, and can be

discarded after the training is finished if all we need is a generative model.

As usual, we compute the log-likelihood,1 we drop the θ for clarity:

log(pDec(Y)) =

∫
Z

pEnc(Z|Y) log(pDec(Y))dZ (2.13)

=

∫
Z

pEnc(Z|Y) log

(
pDec(Y, Z)

pDec(Z|Y)

)
dZ (2.14)

=

∫
Z

pEnc(Z|Y)

(
log

(
pEnc(Z|Y)

pDec(Z|Y)

)
− log

(
pEnc(Z|Y)

pDec(Y, Z)

))
dZ (2.15)

= DKL(pEnc(Z|Y)||pDec(Z|Y)) + L(Enc,Dec, Y) (2.16)

where

L(Enc,Dec, Y) = EZ∼pEnc(Z|Y) [log(pDec(Y, Z))− log(pEnc(Z|Y))] . (2.17)

Unfortunately, estimating the Kullback-Leibler divergenceDKL(pEnc(Z|Y)||pDec(Z|Y))

is difficult, because pDec(Z|Y) cannot be evaluated. Fortunately, this quantity is

always non-negative, thus we obtain

log(pDec(Y)) ≥ L(Enc,Dec, Y). (2.18)

We see that the closer pEncθ(Z|Y) is to approximating pDecθ(Z|Y), the tighter this

bound is. It makes sense to use L(Encθ,Decθ, Y) as a loss, since it is a lower bound

1This derivation only works assuming that pDecθ (Y, Z) 6= 0 almost everywhere, which is true
if the decoder parametrizes a Gaussian.

25

on the log-likelihood, called the variational bound. We can re-write it as

L(Encθ,Decθ, Y) = EpEncθ
(Z|Y) [log(pDecθ(Y, Z))]︸ ︷︷ ︸

reconstruction

−DKL(pEncθ(Z|Y)||pZ(Z))︸ ︷︷ ︸
regularizer

(2.19)

The two term of Equation (2.19) have a natural interpretation. The first term is

a reconstruction loss, where the code Z is stochastic (hence the expected value).

The second term can be seen as a regularizer, where the distribution pEncθ(Z|Y) is

regularized towards pZ(Z). It seems that pZ is unknown, but the “reparametriza-

tion trick” is used to work around this problem. Under mild assumptions, it can

be assumed that Z ∼ N (0, I) [Kingma and Welling, 2013]. The intuition behind

this is that a regular distribution can be seen as a deterministic function of another

distribution (in this case, a Gaussian). This is called a push-forward distribution,

and the decoder can learn the push-forward function. Therefore, the second term

of Equation (2.19) simply states that the distribution of the code Z should be close

to a Gaussian distribution. The expected values in the loss are approximated using

Monte-Carlo estimator, i.e. by sampling Z, and the encoder Encθ produces two

vectors µ and σ, corresponding to the mean and the diagonal covariance matrix of

a normal distribution.

The strong theory behind Variational Auto-Encoders makes them easy to train

and relatively hyperparameter-free. They can be used as an energy model on

Y , and at the same time can be used to generate new samples, by sampling

Z ∼ N (0, I). However, recent experiments [Mescheder et al., 2017] show that

the reconstructions can be blurry, which means the modes of pDecθ are not as sepa-

rated as the modes of pdata, and that the reconstruction can be very different from

the input, which indicates that the encoder and the decoder are not reciprocal of

26

each other, therefore the variational bound is not tight.

2.1.3.2 Generative Adversarial Networks

Generative Adversarial Networks (GAN) [Goodfellow et al., 2014] are a different

approach to generative models. The GAN setup is composed of two models, the

generator G and the discriminator D (sometimes called the adversary). The two

models play a game (as in the game theory), where the generator is trained to

generate samples that the discriminator cannot separate from the real ones, and

the discriminator is trained to tell real samples from generated ones. Instead of

trying to reach a minimum, this system is said to be trained when it reaches a stable

point, where none of the two models can reduce its loss when the other is fixed.

Such a stable point is known in game theory as a Nash equilibrium, i.e. a point

where any change of D while keeping G fixed will result in a poorer performance of

D, and any change of G while keeping D fixed will result in a poorer performance

of G.

The discriminator D is a classifier model. Therefore, it is natural to use bi-

nary cross-entropy loss. Through a sigmoid, the discriminator produces a number

between 0 and 1, which can be interpreted as the estimated probability that the

sample comes from the real dataset.

Unfortunately, to this day, there is no efficient, systematic method to find a

Nash equilibrium, and only heuristics are used. The most widely used is Alternated

SGD, which consists in alternatively lowering the loss of D and the loss of G.

Let D ⊂ D be a minibatch. Given a fixed generator G, we train D to separate

real samples Y from generated samples G(ε) where ε ∼ N (0, I). Therefore, the

27

loss of D is given by

LD =
1

|D|
∑
Y ∈D

ε∼N (0,1)

LBCE(D(Y), 1) + LBCE(D(G(ε)), 0) (2.20)

where LBCE is the Binary Cross Entropy. The left term makes the discriminator

attribute high probability to real samples, while the second term makes it attribute

low probability to fake samples.

Given a fixed D, the loss for training G is

LG =
1

|D|
∑
X∈D

ε∼N (0,1)

LBCE(D(G(ε)), 1). (2.21)

The intuition behind this loss is that the generator should be trained to produce

samples on which the discriminator attributes high probability.

It can be proven [Goodfellow et al., 2014,Arjovsky and Bottou, 2017] that, given

infinite capacity, if the system composed of the generator and the discriminator

reaches a Nash equilibrium, then the distribution represented by G is undistin-

guishable from the distribution pdata.

Generative Adversarial Networks have been successful, among others, in gen-

erating sharp images [Goodfellow et al., 2014, Denton et al., 2015, Radford et al.,

2015,Salimans et al., 2016,Im et al., 2016], video prediction [Mathieu et al., 2015],

semi-supervised learning [Salimans et al., 2016], super-resolution [Ledig et al., 2016]

and image segmentation [Luc et al., 2016].

28

2.2 Video prediction

Unsupervised learning aims at discovering structure in the data. Although im-

age reconstruction has been one of the main way to pretrain networks for a long

time [Vincent et al., 2008, Le, 2013], advances in the ability to represent com-

plex probability distributions, in particular through Variational auto-encoders and

Generative Adversarial Networks, gives us the ability to address the problem of

prediction. While reconstruction aims at modeling the whole distribution pdata,

through reconstructing each input, the goal of prediction is to model pdata(Y |X)

where Y and X are two distinct parts of the data, typically Y is the future and X is

the past. The sole ability of a model to predict frames in the future requires build-

ing accurate, nontrivial internal representations. This is a significant departure

from the problem of image reconstruction, where the main task, reconstruction,

will not lead to non-trivial solutions in the absence of other constraints (such as

sparsity). Therefore, it can be postulated that the better the predictions of such

a system are, the better the feature representation should be. Indeed, the work

of [Srivastava et al., 2015] demonstrates that learning representations by predicting

the next sequence of image features improves classification results on two action

recognition datasets.

We formulate prediction as the general task of modeling pdata(Y |X), which

includes, among others, inpainting and super-resolution. From here on, however,

we focus on the task of video prediction. We consider a dataset made of videos,

where each video is composed of a sequence of frames (x1, x2, . . . , xn). The task of

video prediction consists of predicting the target y = (xm, xm+1, . . . , xn) from the

input x = (x1, x2, . . . , xm−1).

Top performing algorithms for action recognition exploit the temporal informa-

29

tion in a supervised way, such as 3D convolutional networks [Tran et al., 2015], or

spatio-temporal convolutional models [Simonyan and Zisserman, 2014], which can

require months of training, and heavily labeled datasets. This could be reduced

using unsupervised learning. The authors in [Wang and Gupta, 2015] compete

with supervised learning performance on ImageNet, by using a siamese architec-

ture [Bromley et al., 1993] to mine positive and negative examples from patch

triplets of videos in an unsupervised fashion. Unsupervised learning from video

is also exploited in the work of [Vondrick et al., 2016a], where a convolutional

model is trained to predict sets of future possible actions, and [Vondrick et al.,

2016b] where videos are generated through a model disentangling foreground and

background. [Jayaraman and Grauman, 2015] focuses on learning a feature space

equivariant to ego-motion. Beside unsupervised learning, a video predictive system

may find applications in robotics [Kosaka and Kak, 1992], video compression [As-

censo et al., 2005] and inpainting [Flynn et al., 2015] to name a few.

Recently, predicting future video sequences appeared in different settings: [Ran-

zato et al., 2014] defined a recurrent network architecture inspired from language

modeling, predicting the frames in a discrete space of patch clusters. [Srivastava

et al., 2015] adapted a LSTM model [Hochreiter and Schmidhuber, 1997] to fu-

ture frame prediction. [Oh et al., 2015] defined an action conditional auto-encoder

model to predict next frames of Atari-like games. In the two works dealing with

natural images, a blur effect is observed in the predictions, due to different causes.

In [Ranzato et al., 2014], the transformation back and forth between pixel and

clustered spaces involves the averaging of 64 predictions of overlapping tilings of

the image, in order to avoid a blockiness effect in the result. Short-term results

from [Srivastava et al., 2015] are less blurry, however the L2 loss function inher-

30

ently produces blurry results. [Villegas et al., 2017] use pose supervision in order

to reduce uncertainty and produce sharp long term predictions with a hierarchical

model based on LSTMs. By discretizing the values that each pixel can take, and

predicting one pixel at a time, models such as PixelRNN [van den Oord et al.,

2016a] and PixelCNN [van den Oord et al., 2016b] preserve the sharpness, at the

cost of running a model for each pixel prediction, which results in slower training

and testing.

2.3 Disentangling factors of variation

Learning the manifold of data and its factors of variation is another view on

most machine learning algorithms. For instance, video prediction can be under-

stood as disentangling one specific factor of variation, time, from the other ones.

Given a labeled dataset, on the other hand, classification extracts one specific fac-

tor, the class, and discards the rest. It is easier to discard the other factors, but

it may not be optimal in learning good representations. Indeed, the objective of

a classifier is to keep the information about the classes present in the train set. If

the same model is transferred on another task, however, some information that is

relevant for the other task may have been discarded. Instead, learning an equiv-

ariant representation, with the class on one side and the other dimensions on the

other side, would not discard the information but separate it instead. This idea is

at the root of the concept of capsules [Hinton et al., 2011] and has been explored

at length in the context of content and style disentanglement.

There is a vast literature on learning disentangled representations. Bilinear

models [Tenenbaum and Freeman, 2000] were an early approach to separate con-

31

tent and style for images of faces and text in various fonts. What-where au-

toencoders [Ranzato et al., 2007c, Zhao et al., 2016a] combine discrimination and

reconstruction criteria to recover the factors of variation not associated with the

labels. In [Hinton et al., 2011], an auto-encoder is trained to separate a translation

invariant representation from a code that is used to recover the translation informa-

tion. In [Cheung et al., 2014], the authors show that standard deep architectures

can discover and explicitly represent factors of variation aside those relevant for

classification, by combining auto-encoders with simple regularization terms during

the training. In the context of generative models, the work in [Reed et al., 2014]

extends the Restricted Boltzmann Machine by partitioning its hidden state into

distinct factors of variation. The work presented in [Kingma et al., 2014] uses a

VAE in a semi-supervised learning setting. Their approach is able to disentangle

the label information from the hidden code by providing an additional one-hot

vector as input to the generative model. Similarly, [Makhzani et al., 2015] shows

that auto-encoders trained in a semi-supervised manner can transfer handwritten

digit styles using a decoder conditioned on a categorical variable indicating the

desired digit class.

The work in [Dosovitskiy et al., 2014,Kulkarni et al., 2015] further explores the

application of content and style disentanglement to computer graphics. Whereas

computer graphics involve going from an abstract description of a scene to a ren-

dering, these methods learn to go backward from the rendering to recover the

abstract description. This description includes attributes such as orientation and

lighting information. While these methods are capable of producing impressive re-

sults, they benefit from being able to use synthetic data, making strong supervision

possible.

32

Closely related to the problem of disentangling factors of variations in represen-

tation learning is that of learning fair representations [Louizos et al., 2016,Edwards

and Storkey, 2015]. In particular, the Fair Variational Auto-Encoder [Louizos et al.,

2016] aims to learn representations that are invariant to certain nuisance factors,

of variation, while retaining as much of the remaining information as possible. For

instance, this method has been applied to obtain a model that predicts credit rat-

ing while being agnostic to gender. The authors propose a variant of the VAE that

encourages independence between the different latent factors of variation.

The problem of disentangling factors of variation also plays an important role

in completing image analogies, the goal of the end-to-end model proposed in [Reed

et al., 2015]. Their method relies on having access to matching examples during

training.

The next chapter explores a way to train an auto-encoder on video frames to

produce codes that are aligned in the feature space. It can be seen as identifying

the time component in video sequences, and disentangling it from the other factors.

33

Chapter 3

Learning to Linearize Videos

Under Uncertainty

3.1 Introduction

In this chapter, we propose to use time as a weak form of supervision by

introducing a new architecture and loss for training deep feature hierarchies that

linearize the transformations observed in video sequences. We also address the

problem of inherent uncertainty in prediction by introducing latent variables that

are non-deterministic functions of the input into the network architecture.

Recently there has been a flurry of work on learning features from video using

varying degrees of supervision [Wang and Gupta, 2015,Ranzato et al., 2014,Von-

drick et al., 2016a, Srivastava et al., 2015]. If we assume that data occupies some

low dimensional manifold M in a high dimensional space, then videos can be

considered as one-dimensional trajectories on this manifold parametrized by time.

Successfully training an auto-encoder on individual frames will result in the char-

34

acterization of the manifold of the frames. However, this will not tell us anything

about the temporal structure of the frames in a given video. We can incorporate

the temporal constraint by including a linearity constraint. If we enforce that the

codes of successive frames are aligned, we can take the temporal dependencies into

account while having an individual code for each frame.

We introduce a loss and architecture that addresses the problem of learning

linearized frame representations, by solving a prediction objective which, unlike

reconstruction, requires the model to learn a non-trivial function. The problem

of uncertainty is addressed by introducing a set of latent variables that are non-

deterministic functions of the input, which are used to explain the unpredictable

aspects of natural videos. Finally, a new operator, called phase-pooling is intro-

duced to facilitate linearization by inducing a topology on the feature space.

This work is closely related to fully unsupervised approaches for learning rep-

resentations from video such as [Goroshin et al., 2015a,Kayser et al., 2001,Cadieu

and Olshausen, 2012, Wiskott and Sejnowski, 2002, Mobahi et al., 2009]. It is

most related to [Ranzato et al., 2014] which also trains a decoder to explicitly

predict video frames. Our proposed architecture was inspired by those presented

in [Ranzato et al., 2007c] and [Zeiler et al., 2010]. The phase-pooling architecture

is inspired by capsules [Hinton et al., 2011], and forms the foundation of Stacked

What-Where Auto-Encoders [Zhao et al., 2016a].

3.1.1 Linearizing using a prediction objective

Let Encθ be the encoder, a network that takes a frame x and produces a code

z, and Decθ be the decoder, taking a code z and producing a sample x̃. The vector

θ represent the full set of parameters of both the encoder and the decoder. Auto-

35

encoders are trained to satisfy the reconstruction constraint: Decθ(Encθ(x)) ≈ x

when x is a real frame.

We define the linearity constraining, the additional constraint that codes of

successive frames in a video are aligned. Let us consider sequences of three frames.

The reconstruction loss, for all three frames individually, is defined as

Lrec
θ (x) =

3∑
i=1

||Decθ(Encθ(x
i))− xi||22. (3.1)

We can naively enforce the linearity constraint by adding a second term to the

loss:

Llin
θ (x) = ||2Encθ(x

2)− Encθ(x
1)− Encθ(x

3)||22. (3.2)

We assumed that the video is composed of three frames for simplicity, but the

definitions can easily be extended to longer videos.

This would resemble Slow Feature Analysis [Goroshin et al., 2015a]. However,

this approach suffers from a standard problem with auto-encoders: the pair en-

coder/decoder can adjust to decrease Llin indefinitely, keeping Lrec constant and

without changing the function they compute in a meaningful manner. For instance,

if we replace Encθ by 1
γ
Encθ and Decθ by γDecθ (for γ > 1), the reconstruction

loss Lrec is unchanged, while the linearity loss Llin is decreased by 1
γ
. This problem

can be mitigated in the case of a shallow encoder, by controlling the norm of the

weights or the code, but it becomes more subtle with a general pair of encoder and

decoder.

We argue that this problem is a drawback of the reconstruction loss: when

training an auto-encoder, we expect the function Dec◦Enc to be the identity func-

tion on the data manifold, but we still expect this function to extract meaningful

36

information. This means the function cannot be the identity on the whole space

Ω. Thus, the reconstruction constraint, which leans towards learning the identity

function is in opposition to another constraining term, that impedes the ability of

the model to learn the identity function. Therefore, a careful balance of the terms

is required, to prevent one or the other to dominate.

On the other hand, prediction does not suffer from this problem, the identity

function is not a solution to prediction.

In our case, the prediction problem under the linearity constraint is formulated

using a single loss function:

Lpred
θ (x, y) = ||Decθ(2Encθ(x

2)− Encθ(x
1))− y||22 (3.3)

where x are the past two frames and y is the future frame to predict. We see that

in this case, the collapse of the system is not possible anymore.

3.1.2 Separation of what and where

Inspired by the philosophy revived by [Hinton et al., 2011], we introduce an

equivariant representation of the frames. In that work, the concept of “capsule”

units is introduced. An equivariant representation is learned by the capsules when

the true latent states are provided to the network as implicit targets. Our work

allows us to move to a more unsupervised setting in which the true latent states are

not only unknown, but represent completely arbitrary qualities. This was made

possible with two assumptions: (1) that temporally adjacent samples also corre-

spond to neighbors in the latent space, (2) predictions of future samples can be

formulated as linear operations in the latent space. In theory, the representation

37

learned by our method is very similar to the representation learned by the “cap-

sules”; this representation has a locally stable “what” component and a locally

linear, or equivariant “where” component. Theoretical properties of linearizing

features were studied in [Cohen and Welling, 2014]. In other words, the linearized

representation has the additional constraint that one part is constant during the

video. This additional structure allows us to interpret the constant part of the code

as the “what” (the global state of the world in the video), and the linear part as the

“where” (the temporally dependent elements, such as the camera position). This

property is achieved through a “phase-pooling” operator described in section 3.2.1.

Another approach to generalize capsules will be explained in chapter 5.

3.2 Learning Linearized Representations

Our goal is to obtain a representation of each input sequence that varies linearly

in time by transforming each frame individually. Furthermore, we assume that this

transformation can be learned by a deep, feed forward encoder network Encθ. We

assume that each video sequence in the dataset is parameterized by a temporal

index t, such that a video can be written x = {..., xt−1, xt, xt+1, ...}. In practice,

however, we only consider triplets of frames, so we will always denote (x1, x2) the

two input frames and y = x3 the target frame, which corresponds to splitting each

video samples into overlapping sequences of three frames. Correspondingly, we

denote the z1, z2 and z3 the codes for frames x1, x2 and y, such that zt = Encθ(x
t),

thus our goal is to train Encθ to produce a sequence z with minimal local curvature.

As discussed in the previous section, we minimize the prediction error in the input

space. The predicted frame is generated in two steps:

38

1. linearly extrapolation in code space to obtain a predicted code

z̃3 = a[z2 z1]T; (3.4)

2. decoding through Decθ, which generates the predicted frame

ỹ = Decθ(z̃
3). (3.5)

In practice, a constant speed linear extrapolation of z1 and z2 corresponds to

a = [2,−1]. The L2 prediction error is minimized by jointly training the encoder

and decoder networks, which assume unimodal target distribution. The case of

multimodal targets is addressed in section 3.2.2.

Minimizing prediction error alone will not necessarily lead to low curvature

trajectories in Z since the decoder is unconstrained; it may learn a many-to-one

mapping which maps different codes to the same output image without forcing the

codes to be equal. To prevent this, we add an explicit curvature penalty to the

loss, corresponding to the cosine distance between (z2 − z1) and (z3 − z2). The

complete loss to minimize is:

LlinAE =
1

2

∥∥∥Decθ

(
a
[
z2 z1

]T)− y∥∥∥2

2
− λ (z2 − z1)T(z3 − z2)

‖z2 − z1‖ ‖z3 − z2‖
(3.6)

where λ is a hyperparameter.

39

time

x y z

(a)

x−Intensity

Three−Pixel Video

y−Intensity
z−

In
te

ns
ity

(b)

Figure 3.1: A video generated by translating a Gaussian intensity bump (a) over
a three pixel array (x, y, z), and the corresponding manifold parametrized by time
in three dimensional space (b).

3.2.1 Phase Pooling

Thus far we have assumed a generic architecture for Encθ and Decθ. We now

consider custom architectures and operators that are particularly suitable for the

task of linearization. To motivate the definition of these operators, consider a

video generated by translating a Gaussian “intensity bump” over a three pixel

region at constant speed. The video corresponds to a one dimensional manifold in

three dimensional space, i.e. a curve parameterized by time (see Figure 3.1). Next,

assume that some convolutional feature detector fires only when centered on the

bump. Applying the max-pooling operator to the activations of the detector in this

three-pixel region signifies the presence of the feature somewhere in this region (i.e.

the “what”). Applying the argmax operator over the region returns the position

(i.e. the “where”) with respect to some local coordinate frame defined over the

40

pooling region. This position variable varies linearly as the bump translates, and

thus parameterizes the curve in Figure 3.1b. These two channels, namely the what

and the where, can also be regarded as generalized magnitude m and phase p,

corresponding to a factorized representation: the magnitude represents the active

set of parameters, while the phase represents the set of local coordinates in this

active set. We refer to the operator that outputs both the max and argmax

channels as the “phase-pooling” operator.

In this example, spatial pooling was used to linearize the translation of a fixed

feature. More generally, the phase-pooling operator can locally linearize arbitrary

transformations if pooling is performed not only spatially, but also across features

in some topology.

In order to be able to back-propagate through p, we define a soft version of the

max and argmax operators within each pool group. For simplicity, assume that

the encoder has a fully convolutional architecture which outputs a set of feature

maps, possibly of a different resolution than the input. Although we can define

an arbitrary topology in feature space, for now assume that we have the familiar

three-dimensional spatial feature map representation where each activation is a

function z(f, x, y), where x and y correspond to the spatial location, and f is the

feature map index. Assuming that the feature activations are positive, we define

our soft “max-pooling” operator for the kth neighborhood Nk as:

mk =
∑
Nk

z(f, x, y)
eβz(f,x,y)∑
Nk
eβz(f′,x′,y′)

≈ max
Nk

z(f, x, y), (3.7)

where β ≥ 0. Note that the fraction in the sum is a softmax operation (parametrized

by β), which is positive and sums to one in each pooling region. The larger the

41

β, the closer it is to a unimodal distribution and therefore the better mk approxi-

mates the max operation. On the other hand, if β = 0, Equation (3.7) reduces to

average-pooling. Finally, note that mk is simply the expected value of z (restricted

to Nk) under the softmax distribution.

Assuming that the activation pattern within each neighborhood is approxi-

mately unimodal, we can define a soft versions of the argmax operator. The

vector pk approximates the local coordinates in the feature topology at which the

max activation value occurred. Assuming that pooling is done volumetrically, that

is, spatially and across features, pk will have three components. In general, the

number of components in pk is equal to the dimension of the topology of our fea-

ture space induced by the pooling neighborhood. The dimensionality of pk can

also be interpreted as the maximal intrinsic dimension of the data. If we define a

local standard coordinate system in each pooling volume to be bounded between

-1 and +1, the soft “argmax-pooling” operator is defined by the vector-valued sum:

pk =
∑
Nk

fx
y

 eβz(f,x,y)∑
Nk
eβz(f′,x′,y′)

≈ arg max
Nk

z(f, x, y), (3.8)

where the indices f, x, y take values from -1 to 1 in equal increments over the pool-

ing region. Again, we observe that pk is simply the expected value of
[
f x y

]T
under the softmax distribution.

The phase-pooling operator acts on the output of the encoder, therefore it can

simply be considered as the last encoding step. Correspondingly we define an un-

pooling operation as the first step of the decoder, which produces reconstructed

activation maps by placing the magnitudes m at appropriate locations given by the

phases p, in a smooth manner (in our experiments, through linear interpolation).

42

Because the phase-pooling operator produces both magnitude and phase signals

for each of the two input frames, it remains to define the predicted magnitude and

phase of the third frame. In general, this linear extrapolation operator can be

learned, however defining it manually allows us to place implicit priors on the

magnitude and phase channels. We chose to keep the magnitude constant and

linearly extrapolate the phase, so that the predicted magnitude and phase are

defined as follows:

m3 = m2+m1

2
(3.9)

p3 = 2p2 − p1 (3.10)

Predicting the magnitude as the mean of the past imposes an implicit stability prior

on m, i.e. the temporal sequence corresponding to the m channel should be stable

between adjacent frames. The linear extrapolation of the phase variable imposes

an implicit linear prior on p. Thus such an architecture produces a factorized

representation composed of a locally stable m and locally linearly varying p. When

phase-pooling is used curvature regularization is only applied to the p variables.

The full prediction architecture is shown in Figure 3.2.

3.2.2 Addressing Uncertainty

Natural video can be inherently unpredictable; objects enter and leave the field

of view, and out of plane rotations can also introduce previously invisible con-

tent. In this case, one acceptable value for the prediction could be the most likely

outcome. However, if multiple outcomes are present in the training set then mini-

mizing the L2 distance to these multiple outcomes induces the network to predict

43

x1 Enc pool
m1

p1

x2 Enc pool
m2

p2

y Enc pool
m3

p3

Pr
ed

ic
tio

n

unpool Dec
m3

p3

~
~

cosine
distance

y~ L2

y

Figure 3.2: The basic linear prediction architecture with shared weight encoders.

the average outcome. In practice, this phenomena results in blurry predictions

and may lead the encoder to learn a less discriminative representation of the in-

put. To address this inherent unpredictability we introduce latent variables δ to

the prediction architecture that are not deterministic functions of the input. These

variables can be inferred using the target y in order to minimize the prediction L2

error. The interpretation of these variables is that they explain all aspects of the

predictions that are not captured by the encoder. For example, δ can be used to

switch between multiple, equally likely predictions. Another interpretation of the

latent variables is that although the distribution of the target given the input is

multimodal, the distribution of the target given the input and the latent variable

is unimodal, which allows us to use a MSE loss. In other words, pdata(Y |X = x)

is multimodal but we assume that pdata(Y |X = x, Z = z) is a normal distribution.

It is important to control the capacity of δ to prevent it from explaining the entire

prediction on its own. Therefore δ is restricted to act only as a correction term

in the code space output by the encoder. To further restrict the capacity of δ we

enforce that dim(δ) � dim(z). More specifically, the δ-corrected code is defined

44

as:

z̃3
δ = z2 + (Wδ)� a

[
z2 z1

]T
(3.11)

Where W is a trainable matrix of size dim(δ) × dim(z), and � denotes the

component-wise product. The entries of W are part of the trainable parameters

θ. We define the loss given delta by

LlinAE(δ) = ‖Decθ(z̃
3
δ)− y‖2

2 − λ
(z2 − z1)T(z3 − z2)

‖z2 − z1‖‖z3 − z2‖
. (3.12)

The final loss we wish to minimize is therefore

LlinAE∆ = min
δ
LlinAE(δ). (3.13)

During training, δ is inferred (using gradient descent) for each training sample by

minimizing LlinAE∆(δ) in Equation (3.13). The corresponding adjusted z̃3
δ is then

used during the update of θ via back-propagation. At test time δ can be sampled,

assuming its distribution on the training set has been previously estimated (which

may be a difficult problem in itself). Algorithm 3.1 details how the above loss is

minimized using stochastic gradient descent.

When phase pooling is used we allow δ to only affect the phase variables in

Equation (3.10), this further encourages the magnitude to be stable and places all

the uncertainty in the phase.

3.3 Experiments

The following experiments evaluate the proposed feature learning architecture

and loss. In the first set of experiments we train a shallow architecture on natural

45

Algorithm 3.1 Minibatch stochastic gradient descent training for video prediction
with uncertainty. The number of δ-gradient descent steps k is treated as a hyper-
parameter.

for number of training epochs do
Sample a mini-batch of temporal triplets {x1, x2, y}
Set δ0 = 0
Forward propagate x1, x2 through Encθ and obtain the codes z1, z2

Compute z̃3
δ0

and the prediction ỹ0 = Decθ(z̃
3
δ0

)
for i =1 to k do

Compute the L2 prediction error

Back propagate the error through Decθ to compute the gradient ∂LlinAE(δi−1)

∂δi−1

Update δi = δi−1 − α∂L
linAE(δi−1)

∂δi−1

Compute z̃3
δi

= z2 + (Wδi)� a [z2 z1]T

Compute ỹi = Decθ(z̃
3
δi

)
end for
Back propagate the final prediction error to compute ∂LlinAE(δk)

∂θ

Update θ = θ − λ∂LlinAE(δk)

∂θ

end for

data and visualize the learned features to gain a basic intuition. In the second

set of experiments we train a deep architecture on simulated movies generated

from the NORB dataset. By generating frames from interpolated and extrapo-

lated points in code space we show that a linearized representation of the input is

learned. Finally, we explore the role of uncertainty by training on only partially

predictable sequences, we show that our latent variable formulation can account

for this uncertainty enabling the encoder to learn a linearized representation even

in this setting.

3.3.1 Shallow Architecture Trained on Natural Data

To gain an intuition for the features learned by a phase-pooling architecture

let us consider an encoder architecture comprised of the following stages: convo-

46

lutional filter bank, rectifying point-wise nonlinearity, and phase-pooling. The de-

coder architecture is comprised of an un-pooling stage followed by a convolutional

filter bank. This architecture was trained on simulated 32×32 movie frames taken

from YouTube videos [Goroshin et al., 2015a]. Each frame triplet is generated by

transforming still frames with a sequence of three rigid transformations (transla-

tion, scale, rotation). More specifically let A be a random rigid transformation

parameterized by τ , and let x denote a still image reshaped into a column vector,

the generated triplet of frames is given by {x1 = Aτ= 1
3
x, x2 = Aτ= 2

3
x, y = Aτ=1x}.

Two variants of this architecture were trained, described as Shallow Architecture

1 and 2 in Table 3.1. In Shallow Architecture 1, phase pooling is performed spa-

tially in non-overlapping groups of 4× 4 and across features in a one-dimensional

topology consisting of non-overlapping groups of four. Each of the 16 pool-groups

produce a code consisting of a scalar m and a three-component p = [pf px py]
T

(corresponding to two spatial and one feature dimensions); thus the encoder archi-

tecture produces a code of size 16× 4× 8× 8 for each frame. The corresponding

filters whose activations were pooled together are laid out horizontally in groups of

four in Figure 3.3a. Note that each group learns to exhibit a strong ordering cor-

responding to the linearized variable pf . Because global rigid transformations can

be locally well approximated by translations, the features learn to parameterize

local translations. In effect the network learns to linearize the input by tracking

common features in the video sequence. Unlike the spatial phase variables, pf can

linearize sub-pixel translations. Next, Shallow Architecture 2 described in Table

3.1 was trained on natural movie patches with the natural motion present in the

real videos. The architecture differs in only in that pooling across features is done

with overlap (groups of 4, stride of 2). The resulting decoder filters are displayed

47

Shallow Architecture 1

Encoder 3
32×32

convp−−−→
9

ReLU−→ 64
32×32

PhasePool−−−−−→
4/4

16
8×8

Predictor Magnitude m: average; Phase p: linear extrapolation

Decoder 16
8×8

UnPool−−−−→ 64
32×32

convp−−−→
9

3
32×32

Shallow Architecture 2

Encoder 3
32×32

convp−−−→
9

ReLU−→ 64
32×32

PhasePool−−−−−→
4/2

32
16×16

Predictor Magnitude m: average; Phase p: linear extrapolation

Decoder 32
16×16

UnPool−−−−→ 64
32×32

convp−−−→
9

3
32×32

Deep Architecture 1

Encoder 1
32×32

conv−−→
9

ReLU−→ 16
24×24

conv−−→
9

ReLU−→ 32
16×16

FC−→ReLU−→ 4096

Predictor None

Decoder 2*4096
concat−−−→8192

FC−→ReLU−→ 8192
reshape−−−−→ 32

16×16

pad−−→
8

conv−−→
9

ReLU−→ 16
24×24

pad−−→
8

conv−−→
9

1
32×32

Deep Architecture 2

Encoder 1
32×32

conv−−→
9

ReLU−→ 16
24×24

conv−−→
9

ReLU−→ 32
16×16

FC−→ReLU−→ 4096

Predictor Linear extrapolation

Decoder 4096
FC−→ReLU−→ 8192

reshape−−−−→ 32
16×16

pad−−→
8

conv−−→
9

ReLU−→ 16
24×24

pad−−→
8

conv−−→
9

1
32×32

Deep Architecture 3

Encoder 1
32×32

conv−−→
9

ReLU−→ 16
24×24

conv−−→
9

ReLU−→ 32
16×16

FC−→ReLU−→ 4096
reshape−−−−→ 64

8×8

PhasePool−−−−−→
8/8

64
1×1

Predictor Magnitude m: average; Phase p: linear extrapolation

Decoder 64
1×1

UnPool−−−−→ 64
8×8

reshape−−−−→ 4096
FC−→ReLU−→ 8192

reshape−−−−→ 32
16×16

pad−−→
8

conv−−→
9

ReLU−→ 16
24×24

pad−−→
8

conv−−→
9

1
32×32

Table 3.1: Summary of architectures used for experiments.

in Figure 3.3b. Note that pooling with overlap introduces smoother transitions

between the pool groups. Although some groups still capture translations, more

complex transformations are learned from natural movies.

3.3.2 Deep Architecture trained on NORB

In the next set of experiments we trained deep feature hierarchies that have

the capacity to linearize a richer class of transformations. To evaluate the prop-

erties of the learned features in a controlled setting, the networks were trained on

48

(a) Shallow Architecture 1: non overlapping
groups of 4 trained on synthetic videos

(b) Shallow Architecture 2: groups of 4
overlapping by 2 trained on natural videos

Figure 3.3: Decoder filters learned by shallow phase-pooling architectures.

simulated videos generated using the NORB dataset rescaled to 32× 32 to reduce

training time. The simulated videos are generated by tracing constant speed tra-

jectories with random starting points in the two-dimensional latent space of pitch

and azimuth rotations. In other words, the models are trained on triplets of frames

ordered by their rotation angles. As before, the models are trained to predict the

third frame given two input frames. Recall that prediction is a proxy for learning

linearized feature representations. One way to evaluate the linearization proper-

ties of the learned features is to linearly interpolate (or extrapolate) new codes and

visualize the corresponding images via forward propagation through the decoder.

This simultaneously tests the encoder’s capability to linearize the input and the

decoder’s (generative) capability to synthesize images from the linearized codes.

In order to perform these tests we must have an explicit code representation, which

is not always available. For instance, consider a simple scheme in which a generic

49

Figure 3.4: Input samples
used for testing.

Figure 3.5: Linear interpolation in code
space using the baseline Siamese-encoder
network (Deep Architecture 1).

deep network is trained to predict the third frame from the concatenated input

of two previous frames. Such a network does not even provide an explicit feature

representation for evaluation. A simple baseline architecture that affords this type

of evaluation is a Siamese encoder followed by a decoder, this exactly corresponds

to our proposed architecture with the linear prediction layer removed. Such an

architecture is equivalent to learning the weights of the linear prediction layer of

the model shown in Figure 3.2. In the following experiment we evaluate the effects

of: (1) fixing v.s. learning the linear prediction operator, (2) including the phase

pooling operation, and (3) including explicit curvature regularization (second term

in Equation (3.6)).

Let us first consider Deep Architecture 1 summarized in Table 3.1. In this

architecture a Siamese encoder produces a code of size 4096 for each frame. The

codes corresponding to the two frames are concatenated together and propagated

to the decoder. In this architecture the first linear layer of the decoder can be

interpreted as a learned linear prediction layer. Figure 3.4 shows three frames

from the test set corresponding to temporal indices 1, 2 and 3 respectively. Figure

3.5 shows the generated frames corresponding to interpolated codes at temporal

50

indices: {0, 1
2
, 1, 3

2
, 2, 5

2
, 3}. The images were generated by propagating the corre-

sponding codes through the decoder. Codes corresponding to non-integer temporal

indices were obtained by linearly interpolating in code space.

Deep Architecture 2 differs from Deep Architecture 1 in that it generates the

predicted code via a fixed linear extrapolation in code space. The extrapolated

code is then fed to the decoder that generates the predicted image. Note that the

fully connected stage of the decoder has half as many free parameters compared

to the previous architecture. This architecture is further restricted by propagating

only the predicted code to the decoder. For instance, unlike in Deep Architecture

1, the decoder cannot copy any of the input frames to the output. The generated

images corresponding to this architecture are shown in Figure 3.6a. These images

more closely resemble images from the dataset. Furthermore, Deep Architecture 2

achieves a lower L2 prediction error than Deep Architecture 1.

Finally, Deep Architecture 3 uses phase-pooling in the encoder, and “un-pooling”

in the decoder. This architecture makes use of phase-pooling in a two-dimensional

feature space arranged on an 8×8 grid. The pooling is done in a single group over

all the fully-connected features producing a feature vector of dimension 192 (64×3)

compared to 4096 in previous architectures. Nevertheless this architecture achieves

the best overall L2 prediction error and generates the most visually realistic images

(Figure 3.6b).

3.3.3 Uncertainty

In this subsection, we compare the representation learned by minimizing the

loss in Equation (3.6), i.e. without latent variables, to Equation (3.13), with latent

variables. Uncertainty is simulated by generating triplet sequences where the third

51

(a) Deep Architecture 2 (b) Deep Architecture 3

Figure 3.6: Linear interpolation in code space learned by our models: Comparison
between Deep Architecture 2 (no phase-pooling, no curvature regularization) and
Deep Architecture 3 (with phase pooling and curvature regularization).

(a) Minimizing Equation (3.6): no latent vari-
ables

(b) Minimizing Equation (3.13): using latent
variables

Figure 3.7: Interpolation results on data with uncertainty, with and without latent
variables. Both figures are using Deep Architecture 3.

52

frame is skipped randomly with equal probability, determined by Bernoulli vari-

able s. For example, the sequences corresponding to models with rotation angles

0◦, 20◦, 40◦ and 0◦, 20◦, 60◦ are equally likely. Using the loss without latent vari-

ables (Equation (3.6)) with Deep Architecture 3 results in the images displayed in

Figure 3.7a. The interpolations are blurred due to the averaging effect discussed

in Subsection 3.2.2. On the other hand, Figure 3.7 shows the results when min-

imizing Equation (3.13). It partially recovers the sharpness of Figure 3.6b. For

this experiment, we used a three-dimensional, real-valued δ. Moreover training a

linear predictor to infer binary variable s from δ (after training) results in a 94%

test set accuracy. This suggests that δ does indeed capture the uncertainty in the

data.

3.4 Conclusion

The prediction objective works around several problems of auto-encoders. We

presented a linearizing regularizer that is able to identify the time component of

videos and disentangle it from the other factors. We introduced a phase pooling

and unpooling that is able to further separate the “what” and the “where” through

a specific architecture. Finally, the latent variables δ are able to capture some of

the unpredictability of the data. However, the predictions obtained with this ar-

chitecture are still blurry and do not scale well to larger datasets. One possible

explanation is the failure of δ is correctly capture the uncertainty without explain-

ing the entire prediction. The next chapter brings new solutions to cope with the

problem of uncertainty in the context of video prediction.

53

Chapter 4

Deep multi-scale video prediction

beyond mean square error

4.1 Introduction

This chapter focuses on alternatives to the L2 distance as a training criterion for

prediction. Using latent variables in order to explain uncertainty away is a general

technique that has the theoretical ability to address the problem of multimodal

target distributions. However, there exist different techniques in order to train a

model to use latent variables, and gradient descent, as presented in Chapter 3, is

not without problems. Inferring the variables requires k forward and backward

passes in the model, which makes the training k + 1 times slower. Moreover,

gradient descent on the latent variables δ will infer the variables that minimize

the loss, regardless of whether or not the information contained in δ is already

contained in the input or not. Therefore, it is important to carefully restrict the

capacity of δ, which may be difficult in general, non-synthetic setups.

54

In this chapter, we will see how Generative Adversarial Networks (GANs)

[Goodfellow et al., 2014] can handle the same problem in a different way. This

chapter also addresses the problem of lack of sharpness in the predictions, by

assessing different loss functions, including generative adversarial training, and a

new auxiliary loss based on the image gradients, designed to preserve the sharpness

of the frames. Combining these two losses produces the most visually satisfying

results.

This chapter is organized as follows: section 4.2 describes the different model

architectures: simple, multi-scale, adversarial, and presents the Gradient Differ-

ence Loss (GDL) function. The experimental section 4.3 compares the proposed

architectures and losses on video sequences from the Sports1m dataset [Karpathy

et al., 2014], UCF101 [Soomro et al., 2012] and NYUDepth [Nathan Silberman

and Fergus, 2012]. We evaluate the quality of image generation by computing

similarity and sharpness measures, and showing instances of future frame predic-

tion. Finally, section 4.4 discusses the remaining issues and possible applications

of video prediction.

4.2 Models

Let y = {y1, ..., yn} be a sequence of frames to predict from input frames

x = {x1, ..., xm} in a video sequence. Our approach is based on a convolutional

network [LeCun et al., 1998], alternating convolutions and Rectified Linear Units

(ReLU) [Nair and Hinton, 2010].

Such a network G, displayed in Figure 4.1, can be trained to predict one or

several concatenated frames y from the concatenated frames x by minimizing a

55

Input
frame
s

Input
frame
s
Input
frame
s

Input
frame
s
Input
frame
s

Input
frame
s

Input
frame
s

Input
frame
s
Input
frame
s

Input
frame
s
Input
frame
s

Input
frame
s
Input
frame
s

Input
frame
s
Input
frame
s

Input
frame
s
Input
frame
s

Input
frame
s

Input
frame
s

Input
frame
s
Input
frame
s

Input
frame
s
Input
frame
s

Input
frame
s

Input
frame
s

Input
frame
s

conv
ReLU

conv
ReLU

conv
ReLU

conv
Tanh

Predicted
frame

Input
frames

Figure 4.1: A basic convolutional network for next frame prediction. Note that
this is just an illustration of the structure and the actual number of layers and
feature maps differs from experiment to experiment.

distance, for instance Lp with p = 1 or p = 2, between the predicted frame and

the true frame:

Lp(x, y) = Lp(G(x), y) = ‖G(x)− y‖pp. (4.1)

However, such a network has at least two major flaws:

Aperture problem: convolutions only account for short-range dependencies,

limited by the size of their kernels. Using pooling would only be part of the solution

since the output has to be of the same resolution as the input. There exist a number

of ways to avoid the loss of resolution brought about by pooling or subsampling

while preserving long-range dependencies. The simplest and most obvious one is

to have no pooling or subsampling but many convolution layers [Jain et al., 2007].

Another method is to use connections that “skip” the pooling/unpooling pairs,

to preserve the high-frequency information [Long et al., 2015, Dosovitskiy et al.,

2014,Ronneberger et al., 2015]. Finally, we can combine multiple scales linearly as

in the reconstruction process of a Laplacian pyramid [Denton et al., 2015]. This is

the approach we use here.

56

Blurry predictions: using an L2 loss, and to a lesser extent L1, corresponds to

parametrizing unimodal distributions as the output of the network (see Chapter

2). It necessarily produces blurry predictions with natural videos, increasingly

worse when predicting further in the future. If the probability distribution for an

output pixel has two equally likely modes v1 and v2, the value vavg = (v1 + v2)/2

minimizes the L2 loss over the data, even if vavg has very low probability. In the

case of an L1 norm, this effect diminishes, but does not disappear, as the output

value would be the median of the set of equally likely values.

4.2.1 Multi-scale network

We tackle the aperture problem by making the model multi-scale. A multi-scale

version of the model is composed of Nscales models, each of them with a structure

close to the model depicted in Figure 4.1. Let s1, . . . , sNscales
be the sizes of the

inputs of our networks. Typically, in our experiments, we set s1 = 4×4, s2 = 8×8,

s3 = 16 × 16, s4 = 32 × 32 and, when applicable, s5 = 64 × 64. Let uk be the

upscaling operator toward size sk. Let xik, y
i
k denote the downscaled versions of

xi and yi of size sk. We define the model Gk that takes xk and ŷk−1 as inputs

and learns to predict yk. This model is illustrated in Figure 4.2, and has a special

structure: the input ŷk−1 is first upsampled (using a fixed bilinear upsampling) and

then concatenated to xk. Additionally, the output of the convolutional network

is not trained to be yk, but instead yk − uk(yk−1). This “residual” form to the

network is inspired from Laplacian pyramids, and makes the training procedure

easier.

Consequently, the network makes a series of predictions, starting from the

lowest resolution, and uses the prediction of size sk as a starting point to make

57

Lower
resolution
prediction

upsample
co
nc
at
en
at
e

Input
frame
s

Input
frame
s
Input
frame
s

Input
frame
s
Input
frame
s

Input
frame
s

Input
frame
s

Input
frame
s
Input
frame
s

Input
frame
s
Input
frame
s

Input
frame
s
Input
frame
s

Input
frame
s
Input
frame
s

Input
frame
s
Input
frame
s

Input
frame
s

Input
frame
s

Input
frame
s
Input
frame
s

Input
frame
s
Input
frame
s

Input
frame
s

Input
frame
s

Input
frame
s

Input
frame
s

Input
frame
s
Input
frames

conv
ReLU

conv
ReLU

conv
ReLU conv

+

tanh

Predicted
frame

Figure 4.2: A basic block Gk of the multi-scale video prediction structure. Note
that this is just an illustration of the structure and the actual number of layers
and feature maps differs from experiment to experiment.

the prediction of size sk+1. At the lowest scale s1, the network takes only x1 as an

input, since there is no lower scale. This architecture is illustrated in Figure 4.3,

and the specific details are given in Section 4.3. We denote θG the set of trainable

parameters of the generator G.

Despite the multi-scale architecture, the problem of blurry predictions remains.

We address this problem in the next two sections, through an adversarial strategy

and the image Gradient Difference Loss (GDL).

4.2.2 Adversarial training

Generative Adversarial Networks were introduced by [Goodfellow et al., 2014],

and are used to generate image patches from random noise using two networks

trained simultaneously. In that work, the authors propose to use a discriminative

networkD to estimate the probability that a sample comes from the dataset instead

of being produced by a generative model G. The two models are simultaneously

trained so that G learns to generate frames that are hard to classify by D, while

58

Downsample /4

Downsample /2

Predictor
G1

(scale ¼)

Input
frames

Input
frames

Input
frames

Predictor
G2

(scale ½)

Predictor
G3

(scale 1)

Loss
(scale ¼)

Loss
(scale ½)

Loss
(scale 1)

Figure 4.3: The full multi-scale video prediction generator G. In this illustration,
we set Nscales = 3 for clarity, but in the experiments we typically have Nscales equal
to 4 or 5.

D learns to discriminate the frames generated by G. Ideally, when G is trained,

it should not be possible for D to perform better than chance. For more details

about Generative Adversarial Networks, refer to section 2.1.3.2.

We adapted this approach for the purpose of frame prediction, which constitutes

to our knowledge the first application of adversarial training to video prediction.

The generative model G is typically the one described in the previous section. The

discriminative model D takes a sequence of frames, and is trained to predict the

probability that the last frames of the sequence are generated by G. Note that

only the last frames are either real of generated by G, the rest of the sequence

is always from the dataset. This allows the discriminative model to make use of

temporal information, so that G learns to produce sequences that are temporally

coherent with its input.

Conditional adversarial training can be seen as another method to train a

predictive network in the presence of latent variables (as presented in Chapter 3),

59

if we consider the input noise ε as latent variables. Indeed, the theory of GANs

[Goodfellow et al., 2014] states that after convergence, a generatorG(x, ε) generates

samples from p(Y |X = x) when ε is sampled from its fixed distribution. In other

words, while the inference method presented in Chapter 3 takes a pair (x, y) and

finds the optimal z that explains y from x, conditional GANs take a pair (x, z),

where z = ε, and make the generator produce a realistic y. There is no explicit

target for y anymore, but the discriminator network is able to produce gradients

nonetheless. Moreover, the discriminator has the theoretical ability to make the

distribution of G(x, ε) follow p(Y |X = x) even when it is multimodal. In practice,

this property is harder to obtain and the Mode Collapse problem can arise when

the generator chooses one mode of p(Y |X = x) and only generates samples in this

mode. This issue is further discussed in section 4.4.

In this work, the discriminative model D is matching the multi-scale generator

G. Every prediction ŷk goes to a different discriminator Dk, so the whole discrim-

inator D is composed of Nscales discriminators Dk, each of them produces a single

scalar output. The training of the pair (G, D) consists of two alternated steps,

described below. For the sake of clarity, we assume that we use pure stochastic

steps (minibatches of size 1), but there is no difficulty to generalize the algorithm

to minibatches of size M by summing the losses over the samples. The trainable

parameters of D are denoted θD.

Training D: Let (x, y) be a sample from the dataset, and ε a noise vector, for

instance ε ∼ N (0, 1). Note that x (respectively y) is a sequence of m (respectively

n) frames. We train D to classify the input (x, y) into class 1 and the input

(x,G(x, ε)) into class 0. More precisely, for each scale k, we perform one SGD

60

(or Adam [Kingma and Ba, 2014]) iteration of Dk while keeping the weights of G

fixed. It is trained with the target 1 for the datapoint (xk, yk), and the target 0 for

(xk, Gk(x, ε)). Note that in this section in order to keep the notations simple, we

denote Gk(x, ε) the output of the generator Gk (instead of Gk(xk, ŷk−1, ε)). The

loss function we use to train D is

Ladv
D (x, y, ε) =

Nscales∑
k=1

Lbce(Dk(xk, yk), 1) + Lbce(Dk(xk, Gk(x, ε)), 0). (4.2)

Lbce is the binary cross-entropy loss, defined as

Lbce(y, ŷ) = −
∑
i

ŷi log (yi) + (1− ŷi) log (1− yi) (4.3)

where yi takes its values in {0, 1} and ŷi in [0, 1].

Training G: Let (x, y) be a data sample and ε a noise vector (they can be the

same that were used to train D). While keeping the weights of D fixed, we perform

one SGD (or Adam) step on G to minimize the adversarial loss:

Ladv
G (x, y, ε) =

Nscales∑
k=1

Lbce(Dk(xk, Gk(x, ε)), 1). (4.4)

Note that although only Gk appears in this equation, the gradients are actually

back-propagated through all Gk′ for k′ ≤ k. Minimizing this loss means that

the generative model G is making the discriminative model D as “confused” as

possible, in the sense that D will not classify the prediction correctly. However, in

practice, minimizing this loss alone can lead to instability, in particular early in the

training when the generator produces bad predictions, the gradients to train D are

61

not informative and the whole system may never get close to a Nash equilibrium.

To address this problem, in addition to the adversarial loss, in some experiments

we use an auxiliary loss in pixel space, for instance Lp. Although this loss will

likely make the predictions blurrier, it helps stabilize the training (and can be

tuned down during training). The generator G is therefore trained to minimize

λadvLadv
G + λpLp. There is therefore a tradeoff to adjust, by the mean of the

hyper-parameters λadv and λp, between sharp predictions due to the adversarial

principle, and stability brought by the second term. It may help to use a schedule

for λp, reducing it over time. This process is summarized in Algorithm 4.1, with

minibatches of size M .

Algorithm 4.1 Training via a conditional generative adversarial network for next
frame generation (with SGD and no scheduling).

Set the learning rates ρD and ρG, and relative weights λadv, λp.
while not converged do

Get M data samples (x, y) = (x(1), y(1)), . . . , (x(M), y(M))
Update the discriminator D:
Sample ε ∼ N (0, 1)

θD = θD − ρD
∑M

i=1
∂LadvD (x(i),y(i),ε)

∂θD
Update the generator G:

θG = θG − ρG
∑M

i=1

(
λadv

∂LadvG (x(i),y(i)),ε

∂θG
+ λp

∂Lp(G(x(i),ε),y(i))
∂θG

)
end while

4.2.3 Image Gradient Difference Loss (GDL)

Another strategy to sharpen the image prediction is to directly penalize the

differences of image gradient predictions in the generative loss function. We define

a new loss function, the Gradient Difference Loss (GDL), that can be combined

with the Lp and/or adversarial loss function. The GDL function between the

62

ground truth image y, and the prediction G(x, ε) = ŷ is given by

Lgdl(x, y) = Lgdl(ŷ, y) =∑
i,j

∣∣|yi,j − yi−1,j| − |ŷi,j − ŷi−1,j|
∣∣α +

∣∣|yi,j−1 − yi,j| − |ŷi,j−1 − ŷi,j|
∣∣α, (4.5)

where α is an integer greater or equal to 1, and |.| denotes the absolute value

function. To the best of our knowledge, the closest related work to this idea is

the work of [Mahendran and Vedaldi, 2015], using a total variation regularization

to generate images from learned features. Our GDL is fundamentally different:

in [Mahendran and Vedaldi, 2015], the total variation takes only the reconstructed

frame in input, whereas our loss penalizes gradient differences between the predic-

tion and the true output. Second, we chose the simplest possible image gradient by

considering the neighbor pixel intensities differences, rather than adopting a more

sophisticated norm on a larger neighborhood, for the sake of keeping the training

time low. This loss can be used as an auxiliary pixel loss as defined in section

4.2.2, instead of (or in addition to) Lp.

4.2.4 Combining losses

In our experiments, we combine the losses previously defined with different

weights. The final loss is:

L(x, y) = λadvLadv
G (x, y) + λpLp(x, y) + λgdlLgdl(x, y). (4.6)

The hyperparameters λadv, λp and λgdl can also follow a schedule, and tuning down

λp and λgdl over time tends to produce sharper predictions, while preserving the

63

Generators

G1 12
convp−−−→

3

ReLU−→ 128
convp−−−→

3

ReLU−→ 256
convp−−−→

3

ReLU−→ 128
convp−−−→

3

Tanh−→ 3

G2 12
convp−−−→

5

ReLU−→ 128
convp−−−→

3

ReLU−→ 256
convp−−−→

3

ReLU−→ 128
convp−−−→

5

Tanh−→ 3

G3 12
convp−−−→

5

ReLU−→ 128
convp−−−→

3

ReLU−→ 256
convp−−−→

3

ReLU−→ 512
convp−−−→

3

ReLU−→ 256
convp−−−→

3

ReLU−→ 128
convp−−−→

5

Tanh−→ 3

G4 12
convp−−−→

7

ReLU−→ 128
convp−−−→

5

ReLU−→ 256
convp−−−→

5

ReLU−→ 512
convp−−−→

5

ReLU−→ 256
convp−−−→

5

ReLU−→ 128
convp−−−→

7

Tanh−→ 3

Discriminators

D1 15
conv−−→

3

ReLU−→ 64
FC−→ReLU−→ 512

FC−→ReLU−→ 256
FC−→ σ−→ 1

D2 15
conv−−→

3

ReLU−→ 64
conv−−→

3

ReLU−→ 128
conv−−→

3

ReLU−→ 128
FC−→ReLU−→ 1024

FC−→ReLU−→ 512
FC−→ σ−→ 1

D3 15
conv−−→

5

ReLU−→ 128
conv−−→

5

ReLU−→ 256
conv−−→

5

ReLU−→ 256
FC−→ReLU−→ 1024

FC−→ReLU−→ 512
FC−→ σ−→ 1

D4 15
conv−−→

7

ReLU−→ 128
conv−−→

7

ReLU−→ 256
conv−−→

5

ReLU−→ 512
conv−−→

5

MaxPool−−−−−→
2

ReLU−→ 512
FC−→ReLU−→ 1024

FC−→ReLU−→ 512
FC−→ σ−→ 1

Table 4.1: Frame prediction Model 1 architectures.

stability benefits in early training.

4.3 Experiments

We now provide a quantitative evaluation of the quality of our video predic-

tions on the UCF101 [Soomro et al., 2012], Sports1m [Karpathy et al., 2014] and

NYUDepth (version 2) [Nathan Silberman and Fergus, 2012] datasets. We train

the models to predict a single frame, but we test the stability of the predictions

by applying the model recursively to predict more than one frame.

This experimental section presents two different models, called Model 1 and

Model 2. Model 1 was trained on 32×32 video patches from the Sports1m dataset,

after making sure they show enough movement, quantified by the L2 distance

between successive frames. We test this model on Sports1m and UCF101 (after

fine tuning it on 64× 64 patches from UCF101). Model 2 is trained and tested on

64× 64 patches from NYUDepth.

64

Generators

G1 9
convp−−−→

3

ReLU−−−→
BN

32
convp−−−→

3

ReLU−−−→
BN

128
convp−−−→

3

ReLU−−−→
BN

128
convp−−−→

3

ReLU−−−→
BN

128
convp−−−→

3

ReLU−−−→
BN

32
convp−−−→

3

Tanh−→ 3

G2 9
convp−−−→

5

ReLU−−−→
BN

32
convp−−−→

5

ReLU−−−→
BN

128
convp−−−→

5

ReLU−−−→
BN

256
convp−−−→

5

ReLU−−−→
BN

128
convp−−−→

5

ReLU−−−→
BN

32
convp−−−→

5

Tanh−→ 3

G3 9
convp−−−→

5

ReLU−−−→
BN

32
convp−−−→

5

ReLU−−−→
BN

128
convp−−−→

5

ReLU−−−→
BN

256
convp−−−→

5

ReLU−−−→
BN

256
convp−−−→

5

ReLU−−−→
BN

128
convp−−−→

5

ReLU−−−→
BN

32
convp−−−→

5

Tanh−→ 3

G4 9
convp−−−→

5

ReLU−−−→
BN

32
convp−−−→

5

ReLU−−−→
BN

128
convp−−−→

5

ReLU−−−→
BN

256
convp−−−→

5

ReLU−−−→
BN

512
convp−−−→

5

ReLU−−−→
BN

256
convp−−−→

5

ReLU−−−→
BN

128
convp−−−→

5

ReLU−−−→
BN

32
convp−−−→

5

Tanh−→ 3

G4 9
convp−−−→

5

ReLU−−−→
BN

32
convp−−−→

5

ReLU−−−→
BN

128
convp−−−→

5

ReLU−−−→
BN

256
convp−−−→

5

ReLU−−−→
BN

512
convp−−−→

5

ReLU−−−→
BN

512
convp−−−→

5

ReLU−−−→
BN

256
convp−−−→

5

ReLU−−−→
BN

128
convp−−−→

5

ReLU−−−→
BN

32
convp−−−→

5

Tanh−→ 3

Discriminators

D1 3*4
conv−−→

3

ReLU−→ 32*4
concat−−−→ conv−−→

3

ReLU−−−→
BN

128
conv−−→

3

ReLU−−−→
BN

128
FC−→ σ−→ 1

D2 3*4
conv−−→
5/2

ReLU−→ 32*4
concat−−−→ conv−−→

5

ReLU−−−→
BN

128
conv−−→

5

ReLU−−−→
BN

128
conv−−→

5

ReLU−−−→
BN

256
FC−→ σ−→ 1

D3 3*4
conv−−→
5/2

ReLU−→ 32*4
concat−−−→ conv−−→

5/2

ReLU−−−→
BN

128
conv−−→

5

ReLU−−−→
BN

128
conv−−→

5

ReLU−−−→
BN

256
conv−−→

5

ReLU−−−→
BN

256
FC−→ σ−→ 1

D4 3*4
conv−−→
5/2

ReLU−→ 32*4
concat−−−→ conv−−→

5/2

ReLU−−−→
BN

128
conv−−→
5/2

ReLU−−−→
BN

256
conv−−→

5

ReLU−−−→
BN

256
conv−−→

5

ReLU−−−→
BN

512
FC−→ σ−→ 1

D5 3*4
conv−−→
5/2

ReLU−→ 32*4
concat−−−→ conv−−→

5/2

ReLU−−−→
BN

128
conv−−→
5/2

ReLU−−−→
BN

256
conv−−→
5/2

ReLU−−−→
BN

512
conv−−→

5

ReLU−−−→
BN

512
FC−→ σ−→ 1

Table 4.2: Frame prediction Model 2 architectures. The discriminators process
each frame independently in the first layer, before concatenating the features planes

(represented by the layer
concat−−−→).

4.3.1 Network architectures

The parameters of both models are shown in Table 4.1 and Table 4.1. A signif-

icant difference between the two models is that Model 2 is using Batch Normaliza-

tion [Ioffe and Szegedy, 2015] after each convolution (except the last convolution of

the generators and the first convolution of the discriminators), while Model 1 does

not. As observed in other works (such as [Radford et al., 2015]), we observed that

Batch Normalization works better when the minibatches are separated between

real and fake samples, which may not be intuitive. Model 1 is trained with SGD

using p = 1, λp = 1, λadv = 0.05, α = 1, and minibatches on size 4 or 8. In order

to evaluate the quality of the predictions, we compare different baseline models

to Model 1 using standard evaluation methods. The parameters of the baseline

models are displayed in Table 4.3. On the other hand, Model 2 is trained with

Adam, minibatches of size 16, λp = 0 and λgdl = 0 (pure adversarial setup). Model

1 does not use noise ε (see section 4.4) while Model 2 has additive noise in the

middle features of each generator G.

65

Nscales λLp p λadv λgdl α
single sc. L2 1 1 2 0 0

L2 4 1 2 0 0
L1 4 1 1 0 0

GDL L1 4 1 1 0 1 1
Adv 4 1 1 0.05 0

Table 4.3: Parameters of the baseline models compared to Model 1.

Generative model training: The generative model G architecture is presented

in Table 4.1 for Model 1, and Table 4.2 for Model 2. It contains padded convolu-

tions interlaced with ReLU nonlinearities. A hyperbolic tangent (Tanh) is added

at the end of the model to ensure that the output values are between -1 and 1.

For Model 1, the learning rate ρG starts at 0.04 and is reduced over time to 0.005.

We train the network on small patches, and since it is fully convolutional, we can

seamlessly apply it on larger images at test time. For Model 2, the learning rate

ρG is set to 0.0002 (the scale is different since it is trained with Adam).

Adversarial training: The discriminative model D, also presented in Table 4.1

and Table 4.2, uses standard non-padded convolutions followed by fully connected

layers and ReLU nonlinearities. The network is trained by setting the learning

rate ρD to 0.02. For Model 2, we set the learning rate to 0.0002.

4.3.2 Quantitative evaluations

To evaluate the quality of the image predictions resulting from the different

tested systems, we compute the Peak Signal to Noise Ratio (PSNR) between the

true frame y and the prediction ŷ:

PSNR(y, ŷ) = 10 log10

max2
ŷ

1
N

∑N
i=0(yi − ŷi)2

, (4.7)

66

where maxŷ is the maximum possible value of the image intensities. We also

provide the Structural Similarity Index Measure (SSIM) of [Wang et al., 2004]. It

ranges between -1 and 1, a larger score meaning a greater similarity between the

two images.

To measure the loss of sharpness between the true frame and the prediction, we

define the following sharpness measure based on the difference of gradients between

two images y and ŷ:

Sharp. diff.(y, ŷ) = 10 log10

max2
ŷ

1
N

(∑
i

∑
j |(∇iy +∇jy)− (∇iŷ +∇j ŷ)|

) (4.8)

where ∇iy = |yi,j − yi−1,j| and ∇jy = |yi,j − yi,j−1|.

As for the other measures, a larger score is better. These quantitative mea-

sures on 378 test videos from UCF1011 are given in Table 4.4. As it is trivial to

predict pixel values in static areas, especially on the UCF101 dataset where most

of the images are still, we also show evaluation in the moving areas as displayed in

Figure 4.4. To this end, we use the EpicFlow method of [Revaud et al., 2015], and

compute the different quality measures only in the areas where the optical flow is

higher than a fixed threshold2.

The numbers clearly indicate that all strategies perform better than the L2

predictions in terms of PSNR, SSIM and sharpness. The multi-scale model brings

some improvement, but used with an L2 norm, it does not outperform simple frame

1We extracted from the test set list video files every 10 videos, starting at 1, 11, 21 etc.
2We use default parameters for the Epic Flow computation, and transformed the .flo file to

.png using the Matlab code http://vision.middlebury.edu/flow/code/flow-code-matlab.

zip. If at least one color channel is lower than 0.2 (image color range between 0 and 1), we replace
the corresponding pixel intensity of the output and ground truth to 0, and compute similarity
measures in the resulting masked images.

67

1st frame prediction scores 2nd frame prediction scores
Similarity Sharpness Similarity Sharpness

PSNR SSIM PSNR SSIM
single sc. L2 19.0 0.59 17.8 14.2 0.48 17.5

L2 20.1 0.64 17.8 14.1 0.50 17.4
L1 22.3 0.74 18.5 16.0 0.56 17.6

GDL L1 23.9 0.80 18.7 18.6 0.64 17.7
Adv∗ 24.4 0.77 18.7 18.9 0.59 17.3

Model 1∗ (Adv+GDL) 27.2 0.83 19.6 22.6 0.72 18.5
Model 1 fine-tuned∗ 29.6 0.90 20.3 26.0 0.83 19.4

Last input 30.0 0.90 22.1 25.8 0.84 20.3

(a) Evaluation on the full patch

1st frame prediction scores 2nd frame prediction scores
Similarity Sharpness Similarity Sharpness

PSNR SSIM PSNR SSIM
single sc. L2 26.5 0.84 24.7 22.4 0.82 24.2

L2 27.6 0.86 24.7 22.5 0.81 24.2
L1 28.7 0.88 24.8 23.8 0.83 24.3

GDL L1 29.4 0.90 25.0 24.9 0.84 24.4
GDL L1∗ 29.9 0.90 25.0 26.4 0.87 24.5

Adv∗ 30.6 0.89 25.2 26.1 0.85 24.2
Model 1∗ (Adv+GDL) 31.5 0.91 25.4 28.0 0.87 25.1

Model 1 fine-tuned∗ 32.0 0.92 25.4 28.9 0.89 25.0
Last input 28.6 0.89 24.6 26.3 0.87 24.2

Optical flow 31.6 0.93 25.3 28.2 0.90 24.7

(b) Evaluation only in the areas of movement

Table 4.4: Quantitative evaluation of frame predictions on 10% of the UCF101
test images. The different models have been trained given 4 frames to predict the
next one. Our best model has been fine-tuned on UCF101 after the training on
Sports1m. Models with a ∗ are fine-tuned on patches of size 64× 64.

Target Target Model 1 Model 1 Masked Masked Masked Masked
image 1 image 2 Pred. 1 Pred. 2 Target 1 Target 2 Pred. 1 Pred. 2

Figure 4.4: We report quantitate results computed on the whole image (Table 4.4a)
and only on the areas of motion (Table 4.4b). The masks are based on optical flow
intensity.

68

copy in the moving areas. The L1 model improves the results, since it replaces the

mean by the median value of individual pixel predictions. The GDL and adversarial

predictions are leading to further gains, and finally the combination of the multi-

scale, L1 norm, GDL and adversarial training achieves the best PSNR, SSIM and

Sharpness difference measure.

It is interesting to note that while we showed that the L2 norm was a poor

metric for training predictive models, the PSNR at test time is the worst for

models trained optimizing the L2 norm, although the PSNR is based on the L2

metric. We postulate that the more robust loss is able to reach better minima,

instead of stopping in a bad local minimum. We also include the baseline presented

in [Ranzato et al., 2014] – courtesy of Piotr Dollar – that extrapolates the pixels

of the next frame by propagating the optical flow from the previous ones.

4.3.3 Frame prediction qualitative results

Figures 4.5 and 4.6 show results on test sequences from the Sport1m dataset.

We predict two frames by using the model to predict the first frame, and we reuse

this frame as an input, to predict a second frame. Although the model has not

been trained in order to perform in this mode, if the first prediction is on the

manifold of data, the second prediction should also be on the manifold. Figure 4.5

shows good generations, while Figure 4.6 shows a failure case. The failure is likely

due to the large motion present in the input frames.

In order to evaluate our model on the UCF101 dataset, we first compare our

results to Ranzato et al. [Ranzato et al., 2014]. To obtain grayscale images, we

make RGB predictions and extract the Y channel of our Model 1. Images from

[Ranzato et al., 2014] are generated by averaging 64 results obtained using different

69

(a) Input frames (b) Groundtruth

(c) L2 predictions (d) L1 predictions (e) GDL L1 predictions

(f) Adversarial predictions (g) Adversarial+GDL
predictions

(h) Input frames (i) Groundtruth

(j) L2 predictions (k) L1 predictions (l) GDL L1 predictions

(m) Adversarial predictions (n) Adversarial+GDL
predictions

Figure 4.5: Results on 2 video clips from Sport1m, using Model 1. The second
prediction is obtained by applying the network recursively.

70

(a) Input frames (b) Groundtruth

(c) L2 predictions (d) L1 predictions (e) GDL L1 predictions

(f) Adversarial predictions (g) Adversarial+GDL
predictions

Figure 4.6: Predictions on a video clip from Sport1m, using Model 1. These
predictions are a failure, which seems to be due to the aperture problem: despite
the multi-scale approach, there is too much motion in the input.

tiling to avoid a blockiness effect, however creating instead a blurriness effect. The

results can be seen in Figure 4.7.

We note that the results of Ranzato et al. appear slightly lighter than our results

because of a normalization that does not take place in the original images, therefore

the errors given here are not reflecting the full capacity of their approach. We

tried to apply the blind deconvolution method of [Krishnan et al., 2011] to improve

Ranzato et al. and our different results. As expected, the obtained sharpness scores

are higher, but the image similarity measures are deteriorated because often the

contours of the predictions do not match exactly the targets. More importantly,

Ranzato et al. results appear to be more static in moving areas. Visually, the

optical flow result appears similar to the target, but a closer look at thin details

reveals that lines, heads of people are bent or squeezed.

71

(a) Target (b) Prediction using a constant optical flow
PSNR=25.4 (18.9), SSIM = 0.88 (0.56)

(c) Ranzato et al.
PSNR = 16.3 (15.1), SSIM = 0.70 (0.55)

(d) Model 1 (Adv+GDL L1)
PSNR = 26.7 (19.0), SSIM = 0.89 (0.59)

(e) Target (f) Prediction using a constant optical flow
PSNR = 24.7 (20.6), SSIM = 0.84 (0.72)

(g) Ranzato et al.
PSNR = 20.1 (17.8), SSIM = 0.72 (0.65)

(h) Model 1 (Adv+GDL L1) result
PSNR = 24.6 (20.5), SSIM = 0.81 (0.69)

Figure 4.7: Comparison of results on the Basketball Dunk and Ice Dancing clips
from UCF101 appearing in [Ranzato et al., 2014]. We display 2 frame predictions
for each method along with 2 zooms of each image. The PSNR and SSIM values
are computed in the moving areas of the images (More than the 2/3 of the pixels
in these examples). The values in parenthesis correspond to the second frame
predictions measures.

72

We also show some video predictions on the original RGB version of UCF101

dataset. There predictions and are shown in Figure 4.8, and animations are avail-

able at http://cs.nyu.edu/~mathieu/iclr2016.html,

Finally, we show results on the NYUDepth dataset. These predictions are used

using Model 2, which is trained in pure adversarial setup. These predictions stay

sharper over time, which allows making longer term predictions by applying the

model recursively. Figure 4.9 shows some predictions on 64× 64 patches.

4.4 Discussion

We provided a benchmark of several strategies for next frame prediction, by

evaluating the quality of the prediction in terms of Peak Signal to Noise Ratio,

Structural Similarity Index Measure and image sharpness. These measure of qual-

ity, however, do not fully evaluate the capacity of the model to represent complex

distributions. If the generator make a realistic prediction, but this prediction is

different from the groundtruth, the PSNR and SSIM will not attribute a good

score. Evaluation of generative models, and particularity GANs, which do not

provide the possibility to evaluate the likelihood of the data under the model, is

still an open research topic.

As mentioned in the previous sections, Model 1 does not use noise in the gen-

erator. This may seem like an odd choice, since the purpose of using GANs was

to model multimodal distribution. However, although GANs should in theory

generate points from multimodal distributions, in practice they often suffer from

the Mode Collapse problem [Metz et al., 2016, Donahue et al., 2016]. Often, the

generator generates samples from a single mode, and attributes very low proba-

73

(a) (b) (c)

Figure 4.8: Frame predictions on the UCF101 dataset, using Model 1. The images
with a red border are predictions. Animated versions of the predictions (easier to
interpret) can be found at http://cs.nyu.edu/~mathieu/iclr2016.html.

74

Figure 4.9: Frame predictions on the NYUDepth dataset, using Model 2, on 64×64
patches. The three first lines are the input while the rest are the predictions. We
apply the model recursively to produce 5 images.

75

bilities to the other modes. This behavior can still be argued to be better than

predicting the average, as would a pixel loss do, since there it carries more signal.

It can be interpreted as performing a MAP inference of y rather than sampling.

Therefore, rather than trying to address this problem, Model 1 is trained to focus

on predicting the most likely output (MAP inference), by not using noise. Model

2 has additive noise in each scale, but varying the noise does not produce much

variability in the predictions.

The presented architectures and losses may be used as building blocks for more

sophisticated prediction models, involving memory and recurrence. Unlike most

optical flow algorithms, the model is fully differentiable, so it can be fine-tuned

for another task if necessary. Future work could deal with the evaluation of the

classification performances of the learned representations in a weakly supervised

context, for instance on the UCF101 dataset. Another extension of this work could

be the combination of the current system with optical flow predictions. Alterna-

tively, some applications, which currently use optical flow to perform another task,

could benefit from directly predicting the next frame. A simple example is causal

(where the next frame is unknown) segmentation of video streams.

76

Chapter 5

Disentangling factors of variation

in deep representations using

adversarial training

5.1 Introduction

A fundamental challenge in understanding sensory data is learning to disentan-

gle the underlying factors of variation that give rise to the observations [Bengio,

2009]. For instance, the factors of variation involved in generating a speech record-

ing include the speaker’s attributes, such as gender, age, or accent, as well as the

intonation and words being spoken. Similarly, the factors of variation underlying

the image of an object include the object’s physical representation and the view-

ing conditions. The difficulty of disentangling these hidden factors is that, in most

real-world situations, each can influence the observation in a different and unpre-

dictable way. It is seldom the case that one has access to rich forms of labeled

77

data in which the nature of these influences is given explicitly.

Often, the purpose for which a dataset is collected is to further progress in solv-

ing a certain supervised learning task. This type of learning is driven completely

by the labels. The goal is for the learned representation to be invariant to factors

of variation that are uninformative to the task at hand. While recent approaches

for supervised learning have enjoyed tremendous success, their performance comes

at the cost of discarding sources of variation that may be important for solving

other, closely-related tasks. Ideally, we would like to be able to learn represen-

tations in which the uninformative factors of variation are separated from the

informative ones, instead of being discarded. In particular, one factor of variation

is time. Video prediction, as exposed in the previous chapters, can be understood

as moving along one particular axis of variation, the temporal dimension.

Many other exciting applications require the use of generative models that are

capable of synthesizing novel instances where certain key factors of variation are

held fixed. Unlike classification, generative modeling requires preserving all factors

of variation. But merely preserving these factors is not sufficient for many tasks

of interest, making the disentanglement process necessary. For example, in speech

synthesis, one may wish to transfer one person’s dialog to another person’s voice.

Inverse problems in image processing, such as denoising and super-resolution, re-

quire generating images that are perceptually consistent with corrupted or incom-

plete observations.

In this chapter, we introduce a deep conditional generative model that learns to

separate the factors of variation associated with the labels from the other sources

of variability. We only make the weak assumption that we are able to distinguish

between observations assigned to the same label during training. To make dis-

78

entanglement possible in this more general setting, we leverage both Variational

Auto-Encoders (VAEs) [Kingma and Welling, 2013,Rezende et al., 2014] and Gen-

erative Adversarial Networks (GANs) [Goodfellow et al., 2014].

Our approach requires neither matching observations nor labels aside from the

class identities. These properties allow the model to be trained on data with a large

number of labels, enabling generalizing over the classes present in the training data.

5.2 Background

5.2.1 Variational autoencoder

The VAE framework is an approach for modeling a data distribution using a

collection of independent latent variables. Let Y be a random variable (real or

binary) representing the observed data and Z a collection of real-valued latent

variables. The generative model over the pair (Y, Z) is given by pDec(Y, Z) =

pDec(Y |Z)pZ(Z), where pZ(Z) is the prior distribution over the latent variables

and pDec(Y |Z) is the conditional likelihood function. Generally, we assume that

the components of Z are independent Bernoulli or Gaussian random variables. The

likelihood function is parameterized by a deep neural network referred to as the

decoder.

A key aspect of VAEs is the use of a learned approximate inference procedure

that is trained purely using gradient-based methods [Kingma and Welling, 2013,

Rezende et al., 2014]. This is achieved by using a learned approximate posterior

pEnc(Z|Y) = N(µ, σI) whose parameters (µ, σ) are given by another deep neural

network referred to as the encoder. Thus, we have z ∼ pEnc(Z|Y = y) and ỹ ∼

pDec(Y |Z = z). The parameters of these networks are optimized by minimizing

79

the upper-bound on the expected negative log-likelihood of Y , which is given by

EpEncθ
(Z|Y=y)[− log pDecθ(Y |Z = z)] +DKL(pEncθ(Z|Y = y)||pZ(Z)). (5.1)

The first term in Equation (5.1) corresponds to the reconstruction error, and the

second term is a regularizer that ensures that the approximate posterior stays close

to the prior. See section 2.1.3.1 for more details about Variational auto-encoders.

5.2.2 Generative adversarial networks

Generative Adversarial Networks (GANs) [Goodfellow et al., 2014] have enjoyed

great success at producing realistic natural images [Radford et al., 2015]. See

sections 2.1.3.2 and 4.2.2 for more details about GANs. The generator network,

which task is to produce realistic samples, is denoted Gθ, while the discriminator,

which is trained to differentiate between real and generated samples, is denoted Dφ.

The entire trainable parameters of Gθ are stored in θ while the trainable parameters

of Dφ are stored in φ. The goal is for the generator to produce increasingly more

realistic images as the discriminator learns to pick up on increasingly more subtle

inaccuracies that allow it to tell apart real images from fake ones, as the training

procedure establishes a min-max game between the two networks.

Both Dφ and Gθ can be conditioned on the label of the input that we wish

to classify or generate [Mirza and Osindero, 2014]. This approach has been suc-

cessfully used to produce samples that belong to a specific class or possess some

desirable property [Denton et al., 2015,Mathieu et al., 2015,Radford et al., 2015],

as explained in the previous chapter for instance. As before, we define the objec-

tive of GANs as a stable point (or Nash equilibrium) in a two-player game, where

80

the generator Gθ aims at minimizing the loss Ladv
G and the discriminator Dφ the

loss Ladv
D :

Ladv
D (φ, x, y, ε) = Lbce(Dφ(x, y), 1) + Lbce(Dφ(x,Gθ(x, ε)), 0) (5.2)

Ladv
G (θ, x, ε) = Lbce(Dφ(x,Gθ(x, ε)), 1) (5.3)

where x is a conditioning variable (in this chapter, it will be a class label), ε is a

noise vector drawn from a prior distribution (e.g. N (0, I)), and Lbce is the binary

cross entropy loss, defined in section 4.2.2.

5.3 Model

5.3.1 Conditional generative model

We introduce a conditional probabilistic model admitting two independent

sources of variation: an observed variable S that characterizes the specified factors

of variation, and a continuous latent variable Z that characterizes the remaining

variability. The variable S is a vector of real numbers, rather than a class ordinal

or a one-hot vector, as we intend for the model to generalize to unseen identities.

Given an observed specified component s, we can sample

z ∼ pZ(Z) = N (0, I) and y ∼ pDecθ(Y |Z = z, S = s), (5.4)

in order to generate a new instance y compatible with s.

The variables S and Z are marginally independent, which promotes disentan-

glement between the specified and unspecified factors of variation. Again here,

81

pDecθ(Y |Z = z, S = s) is a likelihood function described by a decoder network,

Dec, and the approximate posterior p(Z|Y) is modeled using a Gaussian distri-

bution, pEncθ(Z|Y = y) = N (µ, σI), whose parameters (µ, σ) are specified via an

encoder network, Enc. In this new setting, the variational upper-bound is be given

by

EpEncθ
(Z|Y=y) [− log pDecθ(Y = y|Z = z, S = s)] +DKL (pEncθ(Z|Y = y)||pZ(Z)) .

(5.5)

The specified component s can be obtained from one or more images belonging

to the same class. In this work, we consider the simplest case in which s is obtained

from a single image. To this end, we define a deterministic encoder fs that maps

images to their corresponding specified components. All sources of stochasticity in

S come from the data distribution. The conditional likelihood given by (5.4) can

now be written as ỹ ∼ pDecθ(Y |Z = z, S = fs(y)) where y and ỹ share the same

label. In addition to fs, the model has an additional encoder fz that parameterizes

the approximate posterior pEnc(Z|Y = y). It is natural to consider an architecture

in which parameters of both encoders are shared.

We now define a single encoder Enc by

Enc(y) = (fs(y), fz(y)) =
(
s, (µ, σ)

)
= (s, z), (5.6)

where s is the specified component, and z = (µ, σ) the parameters of the approx-

imate posterior that constitute the unspecified component. To generate a new

instance, we synthesize s and z using Dec to obtain ỹ = Dec(s, z).

The model described above cannot be trained by minimizing the log-likelihood

alone. In particular, there is nothing that prevents all of the information about

82

the observation from flowing through the unspecified component, Z, which would

result in training a conditional VAE [Sohn et al., 2015]. The decoder could learn

to ignore S, and the approximate posterior could map images belonging to the

same class to different regions of the latent space. This degenerate solution can

be easily prevented when we have access to labels for the unspecified factors of

variation, as in [Reed et al., 2015]. In this case, we could enforce that S is in-

formative by requiring Dec to be able to reconstruct two observations having the

same unspecified label after their unspecified components are swapped. But for

many real-world scenarios, it is either impractical or impossible to obtain labels

for the unspecified factors of variation. In the following section, we explain a way

of eliminating the need for such labels.

5.3.2 Discriminative regularization

An alternative approach to preventing the degenerate solution described in

the previous section, without the need for labels for the unspecified components,

makes use of GANs. As before, we employ a procedure in which the unspecified

components of a pair of observations are swapped. But since the observations need

not be aligned along the unspecified factors of variation, it no longer makes sense

to enforce reconstruction. After swapping, the class identities of both observations

will remain the same, but the sources of variability within their corresponding

classes will change. Hence, rather than enforcing reconstruction, we ensure that

both observations are assigned high probabilities of belonging to their original

classes by an external discriminator. Formally, we introduce the discriminative

83

term given by Equation (5.3) into the loss given by Equation (5.5), yielding

EpEncθ
(Z|Y=y)

[
− log pDecθ(Y = y|Z = z, S = s) + λEpDecθ

(Y |Z=z,S=s) [− logDφ(s, y)]
]

+DKL(pEncθ(Z|Y = y)||pZ(Z))

(5.7)

where λ is a non-negative weight. The difference with Equation (5.5) is the second

term in the expected value. It corresponds to the expected value of the generator

loss Ladv
G of the adversarial setting in Equation (5.3). In practice, this expected

value is approximated using the MAP, which corresponds to approximate the Gaus-

sian by its mean.

Recent works have explored combining VAE with GAN [Larsen et al., 2015,

Dumoulin et al., 2016]. These approaches aim at including a recognition network

(allowing solving inference problems) to the GAN framework. In the setting used

in this work, GANs are used to compensate the lack of aligned training data. The

work in [Larsen et al., 2015] investigates the use of GANs for obtaining perceptually

better loss functions (beyond pixels). While this is not the goal of our work, our

framework is able to generate sharper images, which comes as a side effect. We

evaluated including a GAN loss also for samples, however, the system became

unstable without leading to perceptually better generations. An interesting variant

could be to use separate discriminator for images generated with and without

supervision.

5.3.3 Training procedure

Let y1 and y′1 be samples sharing the same label, namely id1, and y2 a sample

belonging to a different class, id2. On one hand, we want to minimize the upper

84

bound of negative log likelihood of y1 when feeding to the decoder inputs of the

form (z1, fs(y1)) and (z1, fs(y
′
1)), where z1 are samples from the approximate pos-

terior pEncθ(Z|Y = y1). On the other hand, we want to minimize the adversarial

loss of samples generated by feeding to the decoder inputs given by (z1, fs(y2)),

where z1 is sampled from the approximate posterior pEncθ(Z|Y = y1). This corre-

sponds to swapping specified and unspecified factors of y1 and y2. We could only

use upper bound if we had access to aligned data. Additionally, in order to enforce

reconstructions to be realistic when z is sampled from N (0, I), we also generate

y·2 = Dec(z, fs(y2)) where z ∼ N (0, I) and use the discriminator as a loss. As in

the GAN setting described in section 5.2.2, we alternate this procedure with up-

dates of the adversary network. The diagram of the network is shown in figure 5.1,

and the described training procedure is summarized in Algorithm 5.1.

5.4 Experiments

Datasets. We evaluate our model on both synthetic and real datasets: Sprites

dataset [Reed et al., 2015], MNIST [LeCun et al., 1998], NORB [LeCun et al.,

2004] and the Extended-YaleB dataset [Georghiades et al., 2001]. We used Torch7

[Collobert et al., 2011] to conduct all experiments. The network architectures

follow that of DCGAN [Radford et al., 2015] and are described in Table 5.1.

Evaluation. We propose two forms of evaluation to illustrate the behavior of

the proposed framework, one qualitative and one quantitative.

Qualitative evaluation is obtained by visually examining the perceptual quality

of single-image analogies and conditional images generation. In all the experiments

images were randomly chosen from the test set, see specific details for each dataset.

85

Enc

Enc

Enc

y1’

y1

y2

s1’
z1’

s1
z1

s2
z2

Dec

Dec

Dec

Dec
N(0,I)

y11
~

y11’
~

y12
~

y●2
~

L2 y1

L2 y1

Did2

Did2

Figure 5.1: Training architecture. The inputs y1 and y′1 are two different samples
with the same label (here “cat”), whereas y2 can have any label (for instance
“dog”). The reconstructions ỹ11 and ỹ11′ are trained to match y1, but y12 and y·2
do not have an explicit target. We use the discriminator D to make them belong
to class id2 (“dog”).

86

Algorithm 5.1 Full model training. The notations are defined in sections 5.2
and 5.3.

for number of training iterations do
Train the generative model
Sample datapoints y1, y

′
1, y2, where y1 and y′1 have the same class label id1

Compute

{
(s1, µ1, σ1) = Encθ(y1)
(s′1, µ

′
1, σ

′
1) = Encθ(y

′
1)

(s2, µ2, σ2) = Encθ(y2)
and sample

{
z1 ∼ N (µ1, σ1)
z′1 ∼ N (µ′1, σ

′
1)

z2 ∼ N (µ2, σ2)
Compute the reconstructions ỹ11 = Decθ(z1, s1), ỹ11′ = Decθ(z1, s

′
1)

Back propagate the losses between ỹ11 and y1, and between ỹ11′ and y1

Compute ỹ12 = Decθ(z1, s2)
Backpropagate the adversarial loss − log(Dφ(id2, ỹ12)), freezing the weights φ
Sample z ∼ N (0, I), generate ỹ·2 = Decθ(z, s2)
Backpropagate the adversarial loss − log(Dφ(ỹ·2, id2)), freezing the weights φ
Train the discriminator
Sample datapoints y1, y2

Compute

{
(s1, µ1, σ1) = Encθ(y1)
(s2, µ2, σ2) = Encθ(y2) and sample

{
z1 ∼ N (µ1, σ1)
z2 ∼ N (µ2, σ2)

Compute the reconstructions ỹ11 = Decθ(z1, s1), ỹ21 = Decθ(z2, s1)
Backpropagate the adversarial loss − log(1−Dφ(ỹ21, id1))− log(Dφ(y1, id1))

while keeping the weights θ frozen
end for

87

For all datasets, we evaluated the models in four different settings:

• swapping: given a pair of images, we generate samples by conditioning on the

specified component extracted from one of the images, and sampling from

the approximate posterior obtained from the other image. This procedure is

analogous to the sampling technique employed during training, described in

section 5.3.3, and corresponds to solving single-image analogies;

• retrieval: in order to assess the correlation between the specified and un-

specified components, we performed nearest neighbor retrieval in the learned

embedding spaces. We computed the corresponding representations for all

samples (for the unspecified component we used the mean of the approximate

posterior distribution) and then retrieved the nearest neighbors for a given

query image;

• interpolation: to evaluate the coverage of the data manifold, we generated

a sequence of images by linearly interpolating the codes of two given test

images (for both specified and unspecified representations);

• conditional generation: given a test image, we generate samples conditioning

on its specified component, sampling directly from the prior distribution,

pZ(Z).

The objective evaluation of generative models is a difficult task and itself sub-

ject of current research [Theis et al., 2015]. Frequent evaluation metrics, such as

measuring the log-likelihood of a set of validation samples, are often not very mean-

ingful as they do not correlate to the perceptual quality of the images [Theis et al.,

2015]. Furthermore, the loss function used by our model does not correspond a

88

bound on the likelihood of a generative model, which would render this evaluation

less meaningful. As a quantitative measure, we evaluate the degree of disentangle-

ment via a classification task. Namely, we measure how much information about

the identity is contained in the specified and unspecified components. We also

evaluate, on the Sprite dataset, the L2 reconstruction loss for the swapping task.

This is only possible since the Sprite dataset is a synthetic dataset with aligned

data.

5.4.1 Network architectures

Model architectures are detailed in Table 5.1. The encoder consists of a shared

sub-network that splits into two separate branches. In our experiments with

MNIST and the Sprites datasets, the shared sub-network is composed by three

5x5 convolutional layers with stride 2, using spatial batch normalization (BN) [Ioffe

and Szegedy, 2015] and ReLU non-linearities. For the NORB and YaleB datasets,

we use six 3x3 convolutional layers, with stride 2 every other layer.

The output from the top convolution layer is split into two sub-networks. One

parametrizes the approximate posterior of the unspecified component and consists

of a fully-connected (FC) layer, producing two outputs corresponding to mean

and variance of the approximate posterior (modeling the unspecified component).

The other sub-network is also a fully connected used to produce the s vector

modeling the specified component. The decoder network takes a sample z and

a vector s as inputs. Both codes go through a fully connected network. These

representations are merged together by directly adding them and fed into a feed-

forward network composed by a network mirroring encoder structure (replacing

the strides by fractional strides).

89

Encθ 1
32×32

convp−−−→
5

ReLU−−−→
BN

16
32×32

convp−−−→
5/2

ReLU−−−→
BN

32
16×16

convp−−−→
5/2

ReLU−−−→
BN

64
8×8

convp−−−→
5/2

ReLU−−−→
BN

128
8×8

{ FC−→ 64(s)
FC−→ 2*512(z)

Decθ
64(s)

FC−→ 2048}⊕ reshape−−−−→128
4×4

convp−−−→
5/ 1

2

ReLU−−−→
BN

64
8×8

convp−−−→
5/ 1

2

ReLU−−−→
BN

32
16×16

convp−−−→
5/ 1

2

ReLU−−−→
BN

16
32×32

convp−−−→
5

1
32×32512(z)

FC−→ 2048

Dφ 1
32×32

convp−−−→
5/2

LeakyReLU−−−−−→
BN

→
⊕

16
16×16

convp−−−→
5/2

LeakyReLU−−−−−→
BN

→
⊕

32
8×8

convp−−−→
5/2

LeakyReLU−−−−−→
BN

→
⊕

64
4×4

FC−→ σ−→ 1

1
LookUp−−−−→ UpSample−−−−−→

4

↗
1

LookUp−−−−→ UpSample−−−−−→
2

↗
1

LookUp−−−−→
↗

(a) MNIST Network

Encθ 3
32×32

convp−−−→
5

ReLU−−−→
BN

14
32×32

convp−−−→
5/2

ReLU−−−→
BN

28
16×16

convp−−−→
5/2

ReLU−−−→
BN

56
8×8

convp−−−→
5/2

ReLU−−−→
BN

112
8×8

{ FC−→ 16(s)
FC−→ 2*16(z)

Decθ
16(s)

FC−→ 2048}⊕ reshape−−−−→112
4×4

convp−−−→
5/ 1

2

ReLU−−−→
BN

56
8×8

convp−−−→
5/ 1

2

ReLU−−−→
BN

28
16×16

convp−−−→
5/ 1

2

ReLU−−−→
BN

14
32×32

convp−−−→
5

3
32×3216(z)

FC−→ 2048

Dφ 3
32×32

convp−−−→
5/2

LeakyReLU−−−−−→
BN

→
⊕

14
16×16

convp−−−→
5/2

LeakyReLU−−−−−→
BN

→
⊕

28
8×8

convp−−−→
5/2

LeakyReLU−−−−−→
BN

→
⊕

56
4×4

FC−→ σ−→ 1

7
LookUp−−−−→7*32

UpSample−−−−−→
4

↗
7

LookUp−−−−→7*64
UpSample−−−−−→

2

↗
7

LookUp−−−−→7*128
↗

(b) Sprites Network

Encθ 3
32×32

convp−−−→
3

ReLU−−−→
BN

16
32×32

convp−−−→
3

ReLU−−−→
BN

16
32×32

convp−−−→
2/2

ReLU−−−→
BN

32
16×16

convp−−−→
3

ReLU−−−→
BN

32
16×16

convp−−−→
2/2

ReLU−−−→
BN

64
8×8

convp−−−→
3

ReLU−−−→
BN

64
8×8

convp−−−→
2/2

ReLU−−−→
BN

128
8×8

convp−−−→
3

ReLU−−−→
BN

128
8×8

{ FC−→ 64(s)
FC−→ 2*512(z)

Decθ
64(s)

FC−→ 2048}⊕ reshape−−−−→ 128
4×4

convp−−−→
3

ReLU−−−→
BN

128
4×4

convp−−−→
2/ 1

2

ReLU−−−→
BN

64
8×8

convp−−−→
3

ReLU−−−→
BN

64
8×8

convp−−−→
2/ 1

2

ReLU−−−→
BN

32
16×16

convp−−−→
3

ReLU−−−→
BN

32
16×16

convp−−−→
2/ 1

2

ReLU−−−→
BN

16
32×32

convp−−−→
3

16
32×32

convp−−−→
3

3
32×32512(z)

FC−→ 2048

Dφ 3
32×32

convp−−−→
3

LeakyReLU−−−−−→
BN

16
32×32

convp−−−→
2/2

LeakyReLU−−−−−→
BN

→
⊕

16
16×16

convp−−−→
3

LeakyReLU−−−−−→
BN

16
16×16

convp−−−→
2/2

LeakyReLU−−−−−→
BN

→
⊕

32
8×8

convp−−−→
3

LeakyReLU−−−−−→
BN

32
8×8

convp−−−→
2/2

LeakyReLU−−−−−→
BN

→
⊕

64
4×4

FC−→ σ−→ 1

1
LookUp−−−−→ UpSample−−−−−→

4

↗
1

LookUp−−−−→ UpSample−−−−−→
2

↗
1

LookUp−−−−→
↗

(c) NORB and YaleB networks

Table 5.1: Networks used for disentanglement. The decoders are conditioned on
the identity S, which is going through three lookup tables. For sprites, the code S
has 7 coordinates, which goes into 7 independent lookup tables. This is why the
number of feature planes is a multiple of 7.

90

The discriminator is conditioned on the label, id, and configured following that

used in (conditional) DCGAN. It contains three convolutional layers with stride

2, using batch normalization and Leaky-ReLU with slope 0.2. The label goes

through three independent lookup tables and is added at the three first layers of

representation.

The dimensionality of each representation varies from dataset to dataset. They

were obtained by monitoring the results on a validation set. For MNIST, we

used 16 coefficients for each component. For sprites, NORB and Extended-YaleB,

we set their dimensions as 64 and 512 for specified and unspecified components

respectively. We found that using Stochastic Gradient Descent (SGD) gives good

results.

5.4.2 MNIST

In this setup, the specified part is simply the class of the digit. The goal is to

show that the model is able to learn to disentangle the style from the identity of

the digit and to produce satisfactory analogies.

We cannot test the ability of the model to generalize to unseen identities. In this

case, one could directly condition on a class label [Kingma et al., 2014,Makhzani

et al., 2015]. It is still interesting that the proposed model is able to transfer

handwriting style without having access to matched examples while still be able to

learn a smooth representation of the digits as shown in the interpolation results.

Results for all four qualitative experiments are shown in Figure 5.2. We can

see that both swapping and interpolation give very good results, showing that the

model clearly learns to transfer handwritten styles from one digit to another.

91

(a) (b)

(c) (d)

(e)

Figure 5.2: (a): A visualization grid of 2D MNIST image swapping generation.
The top row and leftmost column come from the test set. The other digits are
generated using z from the leftmost digit, and s from the digit at the top of the
column. The diagonal digits show reconstructions. (b): Interpolation visualization.
Digits located at the top-left and bottom-right corners come from the dataset. The
other digits are generated by interpolating s and z. Like (a), each row has constant
a z each column a constant s. (c): Nearest neighbor retrieval querying on specified
component s. Digits on the left are used as the query. (d): Nearest neighbor
retrieval querying on unspecified component z. (e): Digit generation by sampling
z and extracting s from the digit on the left.

92

5.4.3 Sprites dataset

The Sprite dataset is composed of 672 unique manga-like characters (we refer

to them as sprites), each of which is associated with 20 animations [Reed et al.,

2015]. The automatic generation of sprites is motivated to reduce human effort

in generating new drawings for animated movies and/or video games. Any sprite

can present 7 sources of variation: body type, gender, hair type, armor type, arm

type, greaves type, and weapon type, in addition to its pose.

Unlike the work in [Reed et al., 2015], we do not use any supervision regarding

the positions of the sprites. It is important to point out that although the 2D

sprites dataset was constructed in an aligned way, our setting doesn’t make use

the alignment. In this setting, the specified part of the sprites in the test set have

not been seen during training, which shows the ability of our model to generalize

on the s part as well as z. As in the previous section, the results obtained for all

four qualitative experiments are shown in Figure 5.3.

The interpolation results show that one can smoothly transition between iden-

tities or positions. It is worth noting that this dataset has a fixed number of

discrete positions. Thus, Figure 5.3b shows a reasonable coverage of the manifold

with some abrupt changes. For instance, the hands are not moving up from the

pixel space, but appearing gradually from the faint background.

5.4.4 NORB

For the NORB dataset we used instance identity (rather than object category)

for defining the labels. This results in 25 different object identities in the training

set and another 25 distinct objects identities in the testing set. As in the Sprite

93

(a) (b)

(c) (d)

(e)

Figure 5.3: (a): A visualization grid of 2D Sprites swapping generation. The top
row and leftmost column come from the test set. The other sprites are generated
using z from leftmost sprites, and s from the image at the top of the column. The
diagonal images show reconstructions. (b): Interpolation visualization. Sprites
located at the top-left and bottom-right corners come from the dataset. The other
images are generated by interpolating s and z. Like (a), each row has constant a
z each column a constant s. (c): Nearest neighbor retrieval querying on specified
component s. Sprites on the left are used as the query. (d): Nearest neighbor
retrieval querying on unspecified component z. (e): Sprites generation by sampling
z and extracting s from the sprite on the left.

94

dataset, the identities used at testing have never been presented to the network at

training time.

In this case, however, the small number of identities seen at training time makes

the generalization more difficult. In Figures 5.4a and 5.4b, we present results for

interpolation and swapping. We observe that the model is able to resolve analogies

well. However, the quality of the results is degraded. In particular, classes having

high variability (such as planes) are not reconstructed well. Also, some of the

models are highly symmetric, thus creating a lot of uncertainty. We conjecture

that these problems could be eliminated in the presence of more training data.

Queries in the case of NORB are not as expressive as with the sprites, but we

can still observe good behavior. They are shown in Figure 5.4c and 5.4d. Finally,

Figure 5.4e shows generation with sampled z.

5.4.5 Extended-YaleB

The YaleB [Georghiades et al., 2001] dataset consists of facial images of 28 indi-

viduals taken under different positions and illuminations. The training and testing

sets contains roughly 600 and 180 images per individual respectively. Figure 5.5

shows results for swapping, interpolation and sampling on a set of testing images.

Due to the small number of identities, we cannot test in this case the generalization

to unseen identities. We observe that the model is able to resolve the analogies in

a satisfactory manner, position and illumination are transferred correctly although

these positions have not been seen at train time for these individuals.

95

(a) (b)

(c) (d)

(e) (f)

Figure 5.4: (a): A visualization grid of 2D NORB swapping generation. Top row
and leftmost column come from the test set. Other images are generated using
z from leftmost image, and s from top image. (b): Interpolation visualization.
Images located at the top-left and bottom-right corners come from the dataset.
The other images are generated by interpolating s and z. Like (a), each row has
constant a z each column a constant s. (c): Nearest neighbor retrieval querying
on specified component s. Images on the left are used as the query. (d): Near-
est neighbor retrieval querying on unspecified component z. (e) and (f): Images
generation by sampling z and extracting s from the image on the left.

96

(a) (b)

(c) (d)

(e) (f)

Figure 5.5: YaleB-Extended dataset. (a): swapping grid generation. Faces are
generated using using z from leftmost image and s from top image. (b), (c) and
(d): Interpolation visualization. Top-left and bottom-right corners from the test
set, other faces generated by interpolating s on rows and z on columns. (e) and
(f): Images generation by sampling z and extracting s from the image on the left.

97

5.4.6 Quantitative evaluation

Independence of s and z. We analyze the disentanglement of the specified

and unspecified representations, by using them as input features for a prediction

task. We trained a two-layer neural network with 256 hidden units to predict

structured labels for the sprite dataset, toy category for the NORB dataset (four-

legged animals, human figures, airplanes, trucks, and cars) and the subject identity

for Extended-YaleB dataset. We used early-stopping on a validation set to prevent

overfitting. We report both training and testing errors in Table 5.2. We also show

the “chance” baseline, which corresponds to training a classifier with no input, i.e.

learning the mean of the signal.

In all cases the unspecified component is agnostic to the identity information,

almost as bad as the “chance” baseline. On the other hand, the specified com-

ponents are highly informative, producing almost the same results as a classifier

directly trained in a discriminative manner. In particular, we observe some overfit-

ting in the NORB dataset. This might also be due to the difficulty of generalizing

to unseen identities using a small dataset.

Table 5.2: Error rates for classification using z and s.

Data Set Sprites NORB Extended-YaleB
z s z s z s

train 58.6% 5.5% 79.8% 2.6% 96.4% 0.05%
test 59.8% 5.2% 79.9% 13.5% 96.4% 0.08%

no input (chance) 60% 80% 96.4%

Influence of components of the framework. In order to access the advantage

of jointly training the system to learn the specified and unspecified parts, we tried

another training scheme, summarized in the following two-step approach:

• Add a two-layer neural network on top of the specified part of the encoder,

98

followed by a classification loss. Train this system in a plain supervised

fashion to learn the class of the samples. When the system is converged,

freeze the weights.

• Add another encoder to produce the unspecified part of the code, and train

the system as before (keeping the weights of the “specified” encoder frozen).

We then evaluate the L2 reconstruction loss on the Sprites dataset for the swap-

ping experiment. Since we have perfect data alignment, we have access to the

groundtruth and therefore we can compute the loss, even if the two inputs do not

come from the same class. Note that this is not possible in most non-synthetic

datasets. While the jointly trained approach reaches a L2 loss of 0.014, a model

that pretrains fs for classification reaches an error of 0.024 (with almost twice as

many parameters for the encoder, since the parameters are not shared anymore).

A comparison of the generations with and without pretraining, on the MNIST

dataset, is shown in Figure 5.6.

Finally, we assess the contribution of the conditional adversarial discriminator.

In the model with a pretrained encoder for s, we disable the adversarial loss and

train it normally (keeping the weights of the “specified” encoder frozen). This

corresponds to training a Variational Auto-Encoder, conditioned on the pretrained

s. In this case, the error goes up to 0.030, which shows that the discriminator is

indeed useful.

5.5 Conclusions and discussion

This chapter presents a conditional generative model that learns to disentangle

the factors of variations of the data specified and unspecified through a given cate-

99

(a) (b)

Figure 5.6: (a): A visualization grid MNIST swapping generation, where the en-
coder for the specified part of the code (s) has been pretrained for classification.
(b): A visualization grid MNIST swapping generation, where the encoder is trained
to jointly generate s and z. The generated digits are visually more satisfying.

gorization. The proposed model does not rely on strong supervision regarding the

sources of variations. This is achieved by combining two very successful generative

models: VAE and GAN. The model is able to resolve the analogies in a consistent

way on several datasets with minimal parameter/architecture tuning.

Although these initial results are promising there is a lot to be tested and

understood. The model is motivated on a general setting that is expected to be

encountered in more realistic scenarios. However, in this initial study, we only

tested the model on rather constrained examples. As was observed in the results

shown using the NORB dataset, given the weaker supervision assumed in our

setting, the proposed approach seems to have a high sample complexity relying

on training samples covering the full range of variations for both specified and

unspecified variations.

100

The proposed model does not attempt to disentangle variations within the

specified and unspecified components. There are many possible ways of mapping

a unit Gaussian to corresponding images, in the current setting, there is nothing

preventing the obtained mapping to present highly entangled factors of variations.

101

Chapter 6

Energy-Based Generative

Adversarial Networks

6.1 Introduction

In this chapter, we propose a novel approach to Generative Adversarial Net-

works (GANs). We view the discriminator D as an energy model, which aims at

attributing an energy to each sample without explicit probabilistic interpretation.

We refer to section 2.1.3.2 for details about GANs and section 2.1.2 for back-

ground on energy models. The energy function computed by the discriminator

can be viewed as a trainable cost function for the generator. The discriminator is

trained to assign low energy values to the regions of high data density, and higher

energy values to the regions of low data density. Conversely, the generator can

be viewed as a trainable parameterized function that produces samples in regions

of the space to which the generator assigns low energy. While it is often possible

to convert energies into probabilities through a Gibbs distribution [Lecun et al.,

102

2006], the absence of normalization in this energy-based form of GAN provides

greater flexibility in the choice of architecture for the discriminator and in the

training procedure.

The probabilistic binary discriminator from the original formulation of GANs

can be seen as one way among many ways to define the contrast function and

loss functional, as described in [Lecun et al., 2006] for the supervised and weakly

supervised settings, and [Ranzato et al., 2007a] for the unsupervised setting. We

experimentally demonstrate this concept, in the setting where the discriminator is

an auto-encoder architecture, and the energy is the reconstruction error.

This chapter primarily casts GANs into an energy-based model scope. Conse-

quently, the discriminator is seen as an energy model and can, in theory, be any

of the previously developed energy models. Although this chapter presents imple-

mentation for a single approach, auto-encoders, and in this context can be viewed

as a regularized auto-encoder (see section 6.2.3.1), other architectures for the dis-

criminator could be used. Moreover, the task of generator is simply to produce

contrastive samples, and could be replaced or extended by any approach producing

contrastive samples, such as the use of noisy samples [Vincent et al., 2010] and noisy

gradient descent methods including contrastive divergence [Carreira-Perpinan and

Hinton, 2005].

The works of [Kim and Bengio, 2016] and [Nowozin et al., 2016] are closely

related to this chapter, but differ on several points. In [Kim and Bengio, 2016],

the authors propose a probabilistic GAN and cast it into an energy-based density

estimator by using the Gibbs distribution. Unlike EBGAN, the proposed frame-

work keeps working with probabilities, which results in a loss function that is very

similar to the original GAN, and requires an ad hoc approximation of the entropy.

103

In [Nowozin et al., 2016], as in this chapter, the family of loss functions is extended.

However, the class of functions covered is entirely different.

6.2 The EBGAN Model

Let pdata be the underlying probability density of the distribution that produces

the dataset. The generator G is trained to produce a sample G(ε), for instance an

image, from a random vector ε, which is sampled from a known distribution pε, for

instance N (0, I). The discriminator D takes either real or generated inputs, and

estimates the energy value E ∈ R accordingly, as explained later. For simplicity,

we assume that D produces non-negative values, but the analysis would hold as

long as the values are bounded below.

6.2.1 Objective functional

The output of the discriminator goes through an objective functional in order

to shape the energy function to attribute low energy to the real data samples, and

higher energy to the generated (“fake”) ones. In this work, we use a margin loss,

but many other choices are possible as detailed in [Lecun et al., 2006]. Similarly to

what has been done with the classical probabilistic GAN [Goodfellow et al., 2014],

in order to get better quality gradients when the generator is far from convergence,

we use two different losses, one to train D and the other to train G.

For the sake of simplicity, this chapter considers unconditioned GANs, but this is

not a restriction. Let m be a positive margin and f be a differentiable, strictly

increasing, convex function such that f(0) = 0. Given a data sample x and a

generated sample G(ε), the discriminator loss LD and the generator loss LG are

104

formally defined:

LD(x, ε) = f (D(x)) + f
(
[m−D (G(ε))]+

)
(6.1)

LG(ε) = f (D (G(ε))) (6.2)

where [·]+ = max(0, ·). Minimizing LG with respect to the parameters of G is

similar to maximizing the second term of LD: it has the same minimum but non-

zero gradients when D (G(ε)) ≥ m.

6.2.2 Optimality of the solution

In this section, we present a theoretical analysis of the system presented in

section 6.2.1. We show that if the system reaches a Nash equilibrium, then the

generator G produces samples that are indistinguishable from the distribution of

the dataset. However, it should be noted that this section is done in a non-

parametric setting, i.e. we assume that D and G have infinite capacity. We also

assume that pdata and pG (defined later) have a density, which can always be made

possible by adding a small amount of noise.

Given a generator G, let pG be the density distribution of G(ε) where ε ∼ pε.

In other words, pG is the density distribution of the samples generated by G.

We define

V (G,D) =

∫
x,ε

LD(x, ε)pdata(x)pε(ε)dxdε (6.3)

U(G,D) =

∫
ε

LG(ε)pε(ε)dε (6.4)

We train the discriminator D to minimize the quantity V and the generator G to

105

minimize the quantity U .

A Nash equilibrium of the system is a pair (G∗, D∗) that satisfies:

V (G∗, D∗) ≤ V (G∗, D) ∀D (6.5)

U(G∗, D∗) ≤ U(G,D∗) ∀G (6.6)

We observe that

V (G,D) =

∫
x

(
pdata(x)f(D(x)) + pG(x)f([m−D(x)]+)

)
dx (6.7)

U(G,D) =

∫
x

f(D(x))pG(x)dx (6.8)

Definition 6.1. For any discriminator D, we define its clamped version, denoted

D̂, defined by D̂(x) = min(m,D(x)).

Lemma 6.1. For any generator G and any disriminator D, V (G, D̂) ≤ V (G,D).

Proof.

V (G, D̂) =

∫
x

pdata(x)f
(
D̂(x)

)
+ pG(x)f

([
m− D̂(x)

]+
)

dx (6.9)

=

∫
x

pdata(x)f
(
D̂(x)

)
+ pG(x)f

(
[m−D(x)]+

)
dx (6.10)

≤
∫
x

pdata(x)f (D(x)) + pG(x)f
(
[m−D(x)]+

)
dx (6.11)

since D̂(x) ≤ D(x) for all x and f is increasing.

Besides, since D is continuous (it is represented by a neural network), Equa-

tion (6.11) is a strict inequality if there exists a non-zero measure set A such that

for all x is A, D(x) > m and pdata(x) 6= 0. Therefore any D∗ that is part of a Nash

106

equilibrium satisfies D∗(x) ∈ [0,m] for almost all x such that pdata(x) 6= 0.

Theorem 6.1. If (D∗, G∗) is a Nash equilibrium of the system, then pG∗ = pdata

(almost everywhere), and V (D∗, G∗) = 2f(m/2).

Proof.

We show that V (G∗, D∗) ≤ 2f(m/2).

Let Dm/2 be the discriminator that produces the constant value m/2 (i.e.

∀x,Dm/2(x) = m/2). Using Equation (6.5), we obtain:

V (G∗, D∗) ≤ V (G∗, Dm/2) (6.12)

=

∫
x

f(m/2)pdata(x)dx+

∫
x

f(m/2)pG∗(x)dx (6.13)

= 2f(m/2). (6.14)

We show that V (G∗, D∗) ≥ 2f(m/2).

Using equation (6.6), by using the ideal generator that produces pdata in place of

G, we obtain:

∫
x

f(D∗(x))pG∗(x)dx ≤
∫
x

f(D∗(x))pdata(x)dx (6.15)

so, adding the same quantity on both sides,

∫
x

f(D∗(x))pG∗(x)dx+

∫
x

f([m−D∗(x)]+)pG∗(x)dx ≤ V (G∗, D∗) (6.16)∫
x

(f(D∗(x)) + f([m−D∗(x)]+))pG∗(x)dx ≤ V (G∗, D∗) (6.17)

and using the convexity of f , we get that ∀x, f
(
D∗(x)+[m−D∗(x)]+

2

)
≤ f(D∗(x))+f([m−D∗(x)]+)

2
.

107

We observe that m ≤ D∗(x) + [m − D∗(x)]+ and f is increasing, so with Equa-

tion (6.17), 2f(m/2) ≤ V (G∗, D∗).

We show that pG∗ = pdata (almost everywhere).

We showed that 2f(m/2) ≤ V (G∗, D∗) ≤ 2f(m/2), so V (G∗, D∗) = 2f(m/2).

The equality occurs only if Equation (6.17) is an equality, and this happens only if

f(m/2) = f(D∗(x))+f([m−D∗(x)]+)
2

for almost all x (and actually for all x since f and

D∗ are continuous). Let a = minxD
∗(x). Because of Lemma 6.1, we know that

a ∈ [0,m]. Without loss of generality (the other case is symmetrical), we assume

that a ≤ m− a. Since f is convex, the necessary equality constraint is true only if

f is affine on the interval [a,m− a] (this is necessary but not sufficient). So there

exists α > 0 and β ∈ R such that ∀x ∈ [a,m − a], f(x) = αx + β. Let hη be the

hat function of width 2η, i.e. hη(x) =
[

1
η
− |x|

η2

]+

0. We define

r(x) =

{
pG∗ (x)

pG∗ (x)+pdata(x)
if pdata(x) + pG∗(x) 6= 0

1 otherwise
(6.18)

Let η > 0, and rη(x) = (r ∗ h)(x) where ∗ is the convolution operator. We note

that rη is continuous. We now define

D̃η(x) = (m− 2a)rη(x) + a (6.19)

We notice that ∀x, D̃η(x) ∈ [a,m− a], so f is affine on the image of D̃η. Putting

108

D̃η into equation (6.5), we obtain:

V (G∗, D∗) ≤V (G∗, D̃η) (6.20)

2f(m/2) ≤
∫
x

pdata(x)f
(
D̃η(x)

)
dx+

∫
x

pG∗(x)f

([
m− D̃η(x)

]+
)

dx (6.21)

αm+ 2β ≤α
∫
x

pdata(x)D̃η(x)dx+ β + α

∫
x

pG∗(x)

(
m− D̃η(x)

)
dx+ β (6.22)

m ≤
∫
x

(pdata(x)− pG∗(x))D̃η(x)dx (6.23)

0 ≤α(m− 2a)

∫
x

(pdata(x)− pG∗(x))rη(x)dx+ 0 (6.24)

0 ≤
∫
x

(pdata(x)− pG∗(x))rη(x)dx. (6.25)

We notice that for all x, rη(x) < 1, and for almost all x such that pG∗(x) < pdata(x)

there exists η such that rη(x) < 1
2
. We split the integral:

0 ≤1

2

∫
x

1pG∗ (x)<pdata(x)(pdata(x)− pG∗(x))dx

+

∫
x

(1− 1pG∗ (x)<pdata(x))(pdata(x)− pG∗(x))dx (6.26)

0 ≤− 1

2

∫
x

1pG∗ (x)<pdata(x)(pdata(x)− pG∗(x))dx+ 0 (6.27)

0 ≥
∫
x

1pG∗ (x)<pdata(x)(pdata(x)− pG∗(x))dx (6.28)

so
∫
x
1pG∗ (x)<pdata(x)(pdata(x) − pG∗(x))dx = 0 since the term in the integral is

nonnegative. Thus, pG∗(x) ≥ pdata(x) for almost all x. Since pG∗ and pdata are

probability densities, this means that pG∗ = pdata almost everywhere (this is proven

in detail in Technical Lemma 6.1.

Technical lemma 6.1 (used in proof of Theorem 6.1). If p and q are probability

densities, then
∫
x
1p(x)<q(x)dx = 0 if and only if

∫
x
1p(x)6=q(x)dx = 0.

109

Proof. Let’s assume that
∫
x
1p(x)<q(x)dx = 0, i.e. for almost all x, 1p(x)<q(x) = 0.

Then

∫
x

1p(x)>q(x)(p(x)− q(x))dx (6.29)

=

∫
x

(1− 1p(x)≤q(x))(p(x)− q(x))dx (6.30)

=

∫
x

p(x)dx−
∫
x

q(x)dx+

∫
x

1p(x)≤q(x)(p(x)− q(x))dx (6.31)

= 1− 1 +

∫
x

(
1p(x)<q(x) + 1p(x)=q(x)

)
(p(x)− q(x))dx (6.32)

=

∫
x

1p(x)<q(x)︸ ︷︷ ︸
=0

almost everywhere

(p(x)− q(x))dx+

∫
x

1p(x)=q(x) (p(x)− q(x))︸ ︷︷ ︸
=0

dx (6.33)

So
∫
x
1p(x)>q(x)(p(x)−q(x))dx = 0 and since the term in the integral is always non-

negative, 1p(x)>q(x)(p(x)− q(x)) = 0 for almost all x. And p(x)− q(x) = 0 implies

1p(x)>q(x) = 0, so 1p(x)>q(x) = 0 almost everywhere. Therefore
∫
x
1p(x)>q(x)dx = 0

which completes the proof, given the hypothesis.

We gave necessary conditions on the Nash equilibriums. We can actually give

necessary and sufficient conditions, so that we can fully characterize the Nash

equilibriums. We also prove the existence of such a Nash equilibrium.

Theorem 6.2. Let v ∈ [0,m/2] be the largest number such that f is affine on

[m/2− v,m/2 + v]. Nash equilibriums are characterized by

(a) pG∗ = pdata (almost everywhere);

(b) there exists a constant γ ∈ [m/2 − v,m/2 + v] that satisfies D∗(x) = γ for

all x such that pdata(x) 6= 0, and D∗(x) ≥ γ for all x such that pdata(x) = 0.

Proof.

110

We show the sufficient conditions.

Let (G∗, D∗) a pair that satisfies the two conditions of Theorem 6.2.

First we show that Equation (6.5) is satisfied. Let D be any discriminator.

V (G∗, D) ≥V (G∗, D̂) (6.34)

=

∫
x

pdata(x)f
(
D̂(x)

)
dx+

∫
x

pG∗(x)f

([
m− D̂(x)

]+
)

dx (6.35)

=

∫
x

pdata(x)

(
f
(
D̂(x)

)
+ f

([
m− D̂(x)

]+
))

dx (6.36)

≥2f(m/2) (6.37)

where Equation (6.34) comes from Lemma 6.1 and Equation (6.37) comes from

the convexity of f . We now compute

V (G∗, D∗) =

∫
x

pdata(x)
(
f (D∗(x)) + f

(
[m−D∗(x)]+

))
dx (6.38)

=

∫
x

pdata(x) (f (γ) + f (m− γ)) dx (6.39)

which is true since either pdata(x) = 0 or D∗(x) = γ (almost everywhere). Since

f is affine on [γ,m − γ], we obtain that V (G∗, D∗) = 2f(m/2). So V (G∗, D) ≥

V (G∗, D∗), which is Equation (6.5).

111

It is easy to show that Equation (6.6) is satisfied, for any generator G:

U(G,D∗) =

∫
x

pG(x)f (D∗(x)) dx (6.40)

=

∫
x

1pdata(x)=0pG(x)f (D∗(x)) dx+

∫
x

1pdata(x) 6=0pG(x)f(γ)dx (6.41)

≥
∫
x

1pdata(x)=0pG(x)f(γ)dx+

∫
x

1pdata(x)6=0pG(x)f(γ)dx (6.42)

= f(γ) (6.43)

and U(G∗, D∗) =
∫
x
pdata(x)f (D∗(x)) dx = f(γ). So U(G,D∗) ≥ U(G∗, D∗).

We now show the necessary conditions.

Let (G∗, D∗) be a Nash equilibrium. We know from Theorem 6.1 that the first

condition of Theorem 6.2 is true. We now show condition (b). We negate the

condition (b) and find a contradiction. Let us first assume that D∗ is not constant

where pdata is non-zero. Since D∗ is nontinuous, there exists x0 and x1 such that

D∗(x0) 6= D∗(x1) and pdata is non-zero on a neighborhood of x0 and x1. Without

loss of generality, we can assume that D∗(x0) < D∗(x1). Let C = D∗(x0)+D∗(x1)
2

.

We define S− and S+ by:

S− = {x|D∗(x) < C and pdata(x) 6= 0} (6.44)

S+ = {x|D∗(x) ≥ C and pdata(x) 6= 0}. (6.45)

By assumption, both sets are non empty and have non-zero measure. We define

the generator G0, defined by

G0(x) =

{
Kpdata(x) if x ∈ S−
0 otherwise

(6.46)

112

Where K = 1∫
S− pdata(x)dx

. The denominator is non-zero and smaller than 1, so K

is well defined and greater than 1. We compute

U(G∗, D∗)− U(G0, D
∗) (6.47)

=

∫
x

(pdata − pG0)f (D∗(x)) dx (6.48)

=

∫
x

(pdata − pG0)(D
∗(x)− C)dx (6.49)

=

∫
S−

(pdata(x)− pG0(x))(D∗(x)− C)dx+

∫
S+

(pdata(x)− pG0(x))(D∗(x)− C)dx

(6.50)

=

∫
S−

(pdata(x)−Kpdata(x))︸ ︷︷ ︸
<0

(D∗(x)− C)︸ ︷︷ ︸
<0

dx+

∫
S+
pdata(x)︸ ︷︷ ︸
≥0

(D∗(x)− C)︸ ︷︷ ︸
≥0

dx

(6.51)

The left term is strictly positive (since S− has non-zero measure) and the right term

is nonnegative. So U(G∗, D∗) > U(G0, D
∗), which which violates Equation (6.6).

We now assume that D∗ is constant where pdata is non-zero. Let γ be this

constant. We first show that this constant is in [m/2− v,m/2 + v]. Let us assume

it is not in this interval. We know that γ ∈ [0,m]. We know that pG∗ = pdata, so

we can compute:

V (G∗, D∗) =

∫
x

(
pdata(x)f(D∗(x)) + pG∗(x)f([m−D∗(x)]+)

)
dx (6.52)

=

∫
x

(
pdata(x)f(D∗(x)) + pdata(x)f(m−D∗(x))

)
dx (6.53)

=

∫
x

1pdata(x)6=0 pdata(x)
(
f(γ) + f(m− γ)

)
dx+ 0 (6.54)

= f(γ) + f(m− γ) (6.55)

113

and by definition of v, f is strictly convex on at least a part of [γ,m − γ], so we

f(γ) + f(m − γ) > 2f(m/2). However V (G∗, Dm/2) = 2f(m/2), (where Dm/2 is

the discriminator that produces the constant value m/2). This is in contradiction

with the optimality of D∗.

Finally, we show that D∗(x) ≥ γ for all x such that pdata(x) = 0. Let us

assume that there exists x0 such that pdata(x0) = 0 and D∗(x0) < γ. Since D∗

is continuous, there exists a neighborhood A of x0 such that D∗(x) < γ for all

x ∈ A. Moreover, since D∗(x) = γ for all x such that pdata(x) 6= 0, we must have

pdata(x) = 0 for all x ∈ A. We now define GA the generator that has density 1x∈A
|A|

(where |A| =
∫
x
1x∈Adx). We already know that G∗ is the generator that generates

pdata, so we can compute

U(GA, D
∗) =

∫
x

1x∈A

|A|
f(D∗(x))dx (6.56)

<

∫
x

1x∈A

|A|
f(γ)dx (6.57)

= f(γ) (6.58)

= U(G∗, D∗) (6.59)

This is in contradiction with Equation (6.6).

The previous theorems are difficult to interpret at first glance. However, under

mild assumptions (f strictly convex and pdata non-zero almost everywhere), they

simplify into something intuitive.

Corollary 6.1. If f is strictly convex and pdata 6= 0 almost everywhere, then

(D∗, G∗) is a Nash equilibrium if and only if pG∗ = pdata and D∗(x) = m/2 for all

x ∈ Ω.

114

The assumption of Corollary 6.1 that pdata 6= 0 almost everywhere is generally

not true, in particular under the manifold assumption (section 1.2). However,

we can add Gaussian noise, even with very small variance, to the input of the

discriminator in order to achieve this property [Arjovsky and Bottou, 2017]. We

can also formulate another corollary if we do not make this assumption.

Corollary 6.2. If f is strictly convex, then (D∗, G∗) is a Nash equilibrium if and

only if pG∗ = pdata and D∗(x) = m/2 for all x ∈ Ω such that pdata(x) 6= 0 and

D∗(x) ≥ m/2 elsewhere.

6.2.3 Auto-encoders as discriminator

In the experiments, the discriminator D is structured as an auto-encoder:

D(x) = ||Dec(Enc(x))− x||22. (6.60)

z G

x

"D"

EEnc Dec MSE

Figure 6.1: EBGAN architecture with an auto-encoder discriminator.

The diagram of the EBGAN model with an auto-encoder discriminator is de-

picted in Figure 6.1. The choice of the auto-encoders for D may seem arbitrary

at the first glance, yet we postulate that it is conceptually more attractive than a

binary logistic network:

115

• Rather than using a single bit of target information to train the model, the

reconstruction-based output offers a diverse targets for the discriminator.

With the binary logistic loss, only two targets are possible, so within a mini-

batch, the gradients corresponding to different samples are most likely far

from orthogonal. This leads to inefficient training, and reducing the mini-

batch sizes is often not an option on current hardware. On the other hand,

the reconstruction loss will likely produce very different gradient directions

within the minibatch, allowing for larger minibatch size without loss of effi-

ciency.

• Auto-encoders have traditionally been used to represent energy-based model

and arise naturally. When trained with some regularization terms (see sec-

tion 6.2.3.1), auto-encoders have the ability to learn an energy manifold

without supervision or negative examples. This mean that even when an

EBGAN auto-encoding model is trained to reconstruct a real sample, the

discriminator contributes to discovering the data manifold by itself. To the

contrary, without the presence of negative examples from the generator, a

discriminator trained with binary logistic loss becomes pointless.

6.2.3.1 Connection to the regularized auto-encoders

One common issue in training auto-encoders is that the model may learn little

more than an identity function. From an energy-based perspective, this means

attributing zero energy to the whole space. In order to avoid this problem, the

model must be pushed to give higher energy to points outside the data manifold.

Theoretical and experimental results have addressed this issue by regularizing the

latent representations [Vincent et al., 2010,Rifai et al., 2011,Poultney et al., 2006,

116

Kavukcuoglu et al., 2010b]. Such regularizers aim at restricting the reconstructing

power of the auto-encoder so that it can only attribute low energy to a smaller

portion of the input points.

We argue that the energy function (the discriminator) in the EBGAN frame-

work can also be seen as being regularized by having a generator producing the

contrastive samples, to which the discriminator ought to give high reconstruction

energies. We further argue that the EBGAN framework allows more flexibility

from this perspective, because: (i)-the regularizer (generator) is fully trainable in-

stead of being handcrafted; (ii)-the adversarial training paradigm enables a direct

interaction between the processes of producing contrastive sample and learning the

energy function.

Furthermore, recent work such as [Larsen et al., 2015] addresses the insuffi-

cient capacity of the `2 loss function; the authors show that training a variational

auto-encoder with the element-wise `2 loss failed to capture the fine details in

its reconstruction. However, we argue that the EBGAN framework is established

from an orthogonal angle where the `2 loss function (or any other loss in the

energy-based scope) merely serves to produce an energy. It is not a problem if

the discriminator of an EBGAN does not reconstruct perfectly. The bottom line

is that the discriminator is able to distinguish real and fake images by predicting

energies.

6.2.4 Repelling regularizer

We propose a “repelling regularizer” which fits well into the EBGAN auto-

encoder model, to keep the model from producing samples that are clustered in

one or only few modes of pdata. Another technique “minibatch discrimination” was

117

developed by [Salimans et al., 2016] from the same philosophy.

We implement repelling regularizer, or Pulling-away Term (PT), at a represen-

tation level. Formally, let S ∈ Rs×N denotes a batch of sample representations

taken from the encoder output layer. The PT term is defines as:

fPT (S) =
1

N(N − 1)

∑
i

∑
j 6=i

(ST
i Sj

‖Si‖‖Sj‖

)2

. (6.61)

The PT term attempts to decrease the magnitude of cosine similarity between

pairwise sample representations, and thus making them as orthogonal as possible.

Prior work showed that the output layer of encoder carries representational pow-

erful information for various tasks [Rasmus et al., 2015, Zhao et al., 2016a]. The

rationale for choosing the cosine similarity instead of Euclidean distance is to make

the term bounded below and invariant to scale. We use the notation “EBGAN-

PT” to refer to the EBGAN auto-encoder model trained with this PT term. Note

the PT term is used in the generator loss but not in the discriminator loss.

6.3 Experiments

This section presents experimental results and empirical validation of the EBGAN

framework. For implementation details, we refer to [Zhao et al., 2016b].

6.3.1 Exhaustive grid search on MNIST

In this section we demonstrate the better training stability of EBGANs over

GANs on a simple task of MNIST digit generation with fully-connected networks.

We run an exhaustive grid search over a set of architectural choices and hyper-

118

parameters for both frameworks. The convolutional architectures applied on larger

scale and more complex datasets are exhibited in later sections. Formally, we

specify the search grid in Table 6.1. nLayerD represents the total number of layers

of Enc and Dec put together.

To analyze the results, we use a variant of the inception score [Salimans et al.,

2016] as a numerical means for assessing generation quality. In order to evaluate the

quality of MNIST generations, we pretrain a classifier on the full labeled MNIST

dataset. Let pc(C = c|X = x) the estimated probability (by the trained classifier)

that the sample x has the label c. We defined the tweaked inception score of a

generator G is given by

I ′ = Ex∼pG
[
DKL

(∫
x′∈Ω

pc(C = c|X = x′)pG(X = x′)dx′
∥∥∥pc(C = c|X = x)

)]
.

(6.62)

It differs from the original inception score by two aspects: the two terms in the KL-

divergence have been swapped and the exponential has been dropped. The reason

to both these changes are to produce more compact, easily readable histograms.

Consequently, higher I ′ score implies better quality of the generation.

It is also worth noting that although we inherit the name “inception score”

from [Salimans et al., 2016], the evaluation isn’t related to the “inception” model

trained on ImageNet dataset. The classifier is a regular 3 layer convolutional

network trained on MNIST.

We plot the histogram of I ′ scores in Figure 6.2. We further separated out the

optimization related setting from GAN’s grid (optimD, optimG and lr) and plot

the histogram of each sub-grid individually, together with the EBGAN scores as a

reference, in Figure 6.3. The number of experiments for GANs and EBGANs are

119

Settings Description EBGANs GANs

nLayerG number of layers in G [2, 3, 4, 5] [2, 3, 4, 5]
nLayerD number of layers in D [2, 3, 4, 5] [2, 3, 4, 5]
sizeG size of layers in G [400, 800, 1600, 3200] [400, 800, 1600, 3200]
sizeD size of layers in D [128, 256, 512, 1024] [128, 256, 512, 1024]
dropoutD dropout in D? [true, false] [true, false]
optimD optimizer for D adam [adam, sgd]
optimG optimizer for G adam [adam, sgd]
lr learning rate 0.001 [0.01, 0.001, 0.0001]

Table 6.1: MNIST grid search parameters

Figure 6.2: Histogram of the tweaked inception scores from the grid search. The x-
axis corresponds to the inception score I ′. Higher score means better generations.
Left (a): general comparison of EBGANs (green) versus GANs (blue); Middle (b):
EBGANs and GANs both constrained by nLayer[GD]<=4; Right (c): EBGANs
and GANs both constrained by nLayer[GD]<=3.

both 512 in every subplot. The histograms are intended to show that EBGANs are

generally more reliably trained than GANs. We can see that GANs require much

more careful tuning: only a very small set of parameters produces large inception

scores. On the other hand, EBGANs have a higher success rate, which means more

flexibility in the converging parameters.

Finally, digits generated from the configurations presenting the best inception

score are shown in Figure 6.4.

120

Figure 6.3: Histogram of the tweaked inception scores grouped by different opti-
mization combinations, drawn from optimD, optimG and lr.

Figure 6.4: Generation from the grid search on MNIST.
In all cases, nLayerG = 5, nLayerD = 2, sizeD = 2014, dropoutD = false.
Left(a): Best GAN: sizeG = 1600, optimD = optimG = SGD, lr = 0.01.
Middle(b): Best EBGAN: sizeG = 800, optimD = optimG = ADAM,
lr = 0.001, margin = 10.
Right(c): Best EBGAN-PT: sizeG = 800, optimD = optimG = ADAM,
lr = 0.001, margin = 10, λPT = 0.1.

121

model 100 200 1000

Ladder Network [Pezeshki et al., 2015] 1.69±0.18 - 1.05±0.02
Ladder Network [Rasmus et al., 2015] 1.09±0.32 - 0.90±0.05
Ladder Network (custom implementation) 1.36±0.21 1.24±0.09 1.04±0.06
Ladder Network (custom) + EBGAN 1.04±0.12 0.99±0.12 0.89±0.04

Table 6.2: The comparison of Ladder Network model and its EBGAN extension
on PI-MNIST semi-supervised task. The results are error rate (in %) and are
averaged over 15 different random seeds.

6.3.2 Semi-supervised learning on MNIST

We explore the potential of using the EBGAN framework for semi-supervised

learning on permutation-invariant MNIST, collectively on using 100, 200 and 1000

labels. We utilized a bottom-layer-cost Ladder Network (LN) [Rasmus et al., 2015]

with the EGBAN framework, which we call EBGAN-LN. Ladder Network can be

categorized as an energy-based model that is built with both feedforward and

feedback hierarchies with powerful lateral connections coupling two pathways.

Table 6.2 shows the semi-supervised results on the PI-MNIST. We observe that

positioning a bottom-layer-cost Ladder Network into an EBGAN framework prof-

itably improves the performance of the Ladder Network itself. We postulate that

the contrastive samples produced by the generator acts as an effective regular-

izer. Ladder Networks are still difficult to train, as the discrepancy between the

reported results between [Rasmus et al., 2015] and [Pezeshki et al., 2015] show. In

order to add the EBGAN framework to Ladder Networks, we had to reimplement

it and the results we obtained are between those of [Rasmus et al., 2015] and those

of [Pezeshki et al., 2015].

122

Figure 6.5: Generation from LSUN bedroom dataset. Left(a): DCGAN generation.
Right(b): EBGAN-PT generation.

6.3.3 LSUN & CelebA

We apply the EBGAN framework with deep convolutional architecture to gener-

ate 64×64 RGB images, a more realistic task, using the LSUN bedroom dataset [Yu

et al., 2015] and the large-scale face dataset CelebA under alignment [Liu et al.,

2015]. To compare EBGANs with DCGANs [Radford et al., 2015], we train a

DCGAN model under the same configuration and show its generation side-by-side

with the EBGAN model, in Figures 6.5 and 6.6.

While both frameworks have produced high quality generations using LSUN

bedroom pictures, EBGAN-PTs seem to cover richer modes and successfully ex-

clude some recurring off-manifold parts, such as the blue bed-ish shape appearing

frequently at the bottom of the generations in Figure 6.5(a). The repelling regu-

larizer term (PT) of EBGAN-PT therefore seems to effectively help with the mode

collapse issue.

We also provide generations on an augmented version of the LSUN bedroom

123

Figure 6.6: Generation from CelebA face dataset. Left(a): DCGAN generation.
Right(b): EBGAN-PT generation.

dataset. Instead of rescaling the original 96× 96 images into 64× 64 patches, this

dataset is composed of randomly selected 64×64 patches (without rescaling). The

generations are showed on Figure 6.7.

6.3.4 ImageNet

Finally, we trained EBGANs to generate high-resolution images on ImageNet

[Russakovsky et al., 2015]. Compared with the datasets we have experimented

so far, ImageNet presents an extensively larger and wilder space, so modeling the

data distribution by a generative model becomes very challenging. We generate

128×128 images, trained on the full ImageNet-1k dataset, which contains roughly

1.3 million images from 1000 different categories. We also trained a network to

generate images of size 256× 256, on a dog-breed subset of ImageNet. The results

are shown in Figures 6.8 and 6.9. Despite the difficulty of generating images on a

high-resolution level, we observe that EBGANs are able to learn about the fact that

124

Figure 6.7: Generation from the augmented LSUN bedroom dataset. Left(a):
DCGAN generation. Right(b): EBGAN-PT generation.

objects appear in the foreground, together with various background components

resembling grass texture, sea under the horizon, mirrored mountain in the water,

buildings, etc. In addition, our 256×256 dog-breed generations, although far from

realistic, do reflect some knowledge about the appearances of dogs such as their

body, furs and eye.

6.3.5 Comparison of EBGANs and EBGAN-PTs

To further demonstrate how the pull-away term may influence EBGAN auto-

encoder training, we chose LSUN bedrooms, both whole-image and augmented-

patch version, and CelebA to make further demonstration. The comparison of

EBGAN and EBGAN-PT generation are showed in Figure 6.10, Figure 6.11 and

Figure 6.12. Note that all comparison pairs adopt identical architectural and

hyper-parameter setting as used in section 6.3.3. The generations with the pulling-

away term (PT) do not show obvious repeated patterns.

125

Figure 6.8: Sample generations from the 128× 128 pixels ImageNet dataset using
an EBGAN-PT.

Figure 6.9: Sample generations from the 256 × 256 pixels ImageNet dataset re-
stricted to dog breeds, using an EBGAN-PT.

126

(a) EBGAN (b) EBGAN-PT

Figure 6.10: Comparison between EBGAN and EBGAN-PT on LSUN (resized to
64× 64).

(a) EBGAN (b) EBGAN-PT

Figure 6.11: Comparison between EBGAN and EBGAN-PT on augmented LSUN
(random 64× 64 crops).

127

(a) EBGAN (b) EBGAN-PT

Figure 6.12: Comparison between EBGAN and EBGAN-PT on the CelebA
dataset.

128

Chapter 7

Conclusion

We explored different methods to address uncertainty in video prediction.

Chapter 3, published as [Goroshin et al., 2015b], uses a linearizing penalty, and la-

tent variables, with a prediction task. Chapter 4 was published as [Mathieu et al.,

2015], and introduced Conditional Generative Adversarial Networks as a train-

able loss, with the ability to represent multimodal distributions. In Chapter 5,

we combined Generative Adversarial Networks with Variational Auto-Encoders to

disentangle factors of variation without data alignment [Mathieu et al., 2016]. Fi-

nally, Chapter 6, published as [Zhao et al., 2016b], introduced a new energy-based

loss for Generative Adversarial Networks, and opened the way to another approach

of GANs.

However, unsupervised learning remains rarely used in large-scale systems. It

is still an ill-defined problem and supervised learning is often seen as a much lower

hanging fruit. However, the ever-increasing computing power poses the question

of the limitation of the size of labeled datasets. The progress of machine learning,

in particular in the domain of natural language processing and robotics, opens

129

to way to algorithms with a sort of “common sense”, which is not easily labeled.

Therefore, unsupervised learning is viewed as a central topic of artificial intelligence

research on the long term. It may interact with other types of learning, such as

supervised learning, in the context of semi-supervised learning, and reinforcement

learning. Predictive learning is seen as a relevant problem, both theoretically for

the complexity of the task, and practically. Model-based reinforcement learning

uses a model of the world as a way to predict what would happen if a certain action

is taken, which helps the algorithm to reduce its variance and converge faster.

However, pure predictive learning alone may be over-simplifying the problem, and

the whole process would probably benefit from other forms of supervision in a joint

learning setup.

Another critical issue is evaluation. Generative models are difficult to evaluate

and rank. Unsupervised learning trains a model for a task that is not the end goal,

but merely a proxy to it, and a ranking of the models on the proxy may not reflect

correctly to the end goal. Besides, generative models such as GANs do not have an

intrinsic performance measure, the loss of the discriminator or the generator do not

reflect the quality of the generations. Future work is clearly needed in this domain,

in particular identifying subtle versions of the Mode Collapse problem. Although

novel research has improved the quality of unsupervised learning, it is likely that

a future breakthrough will at least partly come from larger data. Looking back

at the story of supervised learning, the major breakthrough did not come from a

single better algorithm, although incremental progress had been made, but from

the sheer size of the data and model. Unsupervised learning is considerably harder

than supervised learning, mainly due to the complexity of the distributions to

be modeled. Therefore, it is likely that even though unsupervised learning is

130

not so successful yet, research in this area should not be disregarded in favor of

purely supervised learning, as it is probable that the computing power is not quite

sufficient yet to unlock its full potential.

131

Bibliography

[Arjovsky and Bottou, 2017] Arjovsky, M. and Bottou, L. (2017). Towards prin-

cipled methods for training generative adversarial networks.

[Arnold and Ollivier, 2012] Arnold, L. and Ollivier, Y. (2012). Layer-wise learning

of deep generative models. CoRR, abs/1212.1524.

[Ascenso et al., 2005] Ascenso, J., Brites, C., and Pereira, F. (2005). Improving

frame interpolation with spatial motion smoothing for pixel domain distributed

video coding. In 5th EURASIP Conference on Speech and Image Processing,

Multimedia Communications and Services, pages 1–6.

[Bengio, 2009] Bengio, Y. (2009). Learning deep architectures for AI. Foundations

and trends in Machine Learning, 2(1):1–127.

[Bengio et al., 2013] Bengio, Y., Courville, A., and Vincent, P. (2013). Represen-

tation learning: A review and new perspectives. IEEE transactions on pattern

analysis and machine intelligence, 35(8):1798–1828.

[Bishop, 1994] Bishop, C. M. (1994). Mixture density networks.

[Bromley et al., 1993] Bromley, J., Bentz, J. W., Bottou, L., Guyon, I., LeCun,

Y., Moore, C., Säckinger, E., and Shah, R. (1993). Signature verification using

132

a siamese time delay neural network. Int. Journal of Pattern Recognition and

Artificial Intelligence, 7(04):669–688.

[Cadieu and Olshausen, 2012] Cadieu, C. F. and Olshausen, B. A. (2012). Learn-

ing intermediate-level representations of form and motion from natural movies.

Neural Computation.

[Carreira-Perpinan and Hinton, 2005] Carreira-Perpinan, M. A. and Hinton, G. E.

(2005). On contrastive divergence learning. In AISTATS, volume 10, pages 33–

40.

[Cayton, 2005] Cayton, L. (2005). Algorithms for manifold learning.

[Cheung et al., 2014] Cheung, B., Livezey, J. A., Bansal, A. K., and Olshausen,

B. A. (2014). Discovering hidden factors of variation in deep networks. CoRR,

abs/1412.6583.

[Cohen and Welling, 2014] Cohen, T. S. and Welling, M. (2014). Transformation

properties of learned visual representations. arXiv preprint arXiv:1412.7659.

[Collobert et al., 2011] Collobert, R., Kavukcuoglu, K., and Farabet, C. (2011).

Torch7: A Matlab-like environment for machine learning. In BigLearn, NIPS

Workshop.

[Dai et al., 2015] Dai, J., He, K., and Sun, J. (2015). Instance-aware semantic

segmentation via multi-task network cascades. CoRR, abs/1512.04412.

[Deng et al., 2009] Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., and Fei-Fei,

L. (2009). Imagenet: A large-scale hierarchical image database. In 2009 IEEE

Conference on Computer Vision and Pattern Recognition, pages 248–255.

133

[Denton et al., 2015] Denton, E. L., Chintala, S., Szlam, A., and Fergus, R. (2015).

Deep generative image models using a laplacian pyramid of adversarial networks.

CoRR, abs/1506.05751.

[Donahue et al., 2014] Donahue, J., Hendricks, L. A., Guadarrama, S., Rohrbach,

M., Venugopalan, S., Saenko, K., and Darrell, T. (2014). Long-term recur-

rent convolutional networks for visual recognition and description. CoRR,

abs/1411.4389.

[Donahue et al., 2013] Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N.,

Tzeng, E., and Darrell, T. (2013). Decaf: A deep convolutional activation feature

for generic visual recognition. CoRR, abs/1310.1531.

[Donahue et al., 2016] Donahue, J., Krähenbühl, P., and Darrell, T. (2016). Ad-

versarial feature learning. CoRR, abs/1605.09782.

[Dosovitskiy et al., 2014] Dosovitskiy, A., Springenberg, J. T., and Brox, T.

(2014). Learning to generate chairs with convolutional neural networks. CoRR,

abs/1411.5928.

[Dumoulin et al., 2016] Dumoulin, V., Belghazi, I., Poole, B., Lamb, A., Arjovsky,

M., Mastropietro, O., and Courville, A. (2016). Adversarially learned inference.

arXiv preprint arXiv:1606.00704.

[Edwards and Storkey, 2015] Edwards, H. and Storkey, A. (2015). Censoring rep-

resentations with an adversary. arXiv preprint arXiv:1511.05897.

[Farabet et al., 2013] Farabet, C., Couprie, C., Najman, L., and LeCun, Y. (2013).

Learning hierarchical features for scene labeling. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 35(8):1915–1929.

134

[Flynn et al., 2015] Flynn, J., Neulander, I., Philbin, J., and Snavely, N. (2015).

Deepstereo: Learning to predict new views from the world’s imagery. CoRR,

abs/1506.06825.

[Georghiades et al., 2001] Georghiades, A. S., Belhumeur, P. N., and Kriegman,

D. J. (2001). From few to many: Illumination cone models for face recognition

under variable lighting and pose. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 23(6):643–660.

[Girshick et al., 2013] Girshick, R. B., Donahue, J., Darrell, T., and Malik, J.

(2013). Rich feature hierarchies for accurate object detection and semantic

segmentation. CoRR, abs/1311.2524.

[Goodfellow et al., 2014] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,

Warde-Farley, D., Ozair, S., Courville, A. C., and Bengio, Y. (2014). Generative

adversarial networks. NIPS.

[Goroshin et al., 2015a] Goroshin, R., Bruna, J., Tompson, J., Eigen, D., and Le-

Cun, Y. (2015a). Unsupervised learning of spatiotemporally coherent metrics.

International Conference on Conputer Vision (ICCV).

[Goroshin et al., 2015b] Goroshin, R., Mathieu, M., and LeCun, Y. (2015b).

Learning to linearize under uncertainty. NIPS.

[Hannun et al., 2014] Hannun, A. Y., Case, C., Casper, J., Catanzaro, B., Diamos,

G., Elsen, E., Prenger, R., Satheesh, S., Sengupta, S., Coates, A., and Ng,

A. Y. (2014). Deep speech: Scaling up end-to-end speech recognition. CoRR,

abs/1412.5567.

135

[He et al., 2015] He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual

learning for image recognition. CoRR, abs/1512.03385.

[Hinton et al., 2011] Hinton, G. E., Krizhevsky, A., and Wang, S. D. (2011). Trans-

forming auto-encoders. In Proceedings of the 21st International Conference on

Artificial Neural Networks - Volume Part I, ICANN’11, pages 44–51, Berlin,

Heidelberg. Springer-Verlag.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997).

Long short-term memory. Neural Comput., 9(8):1735–1780.

[Hyvärinen et al., 2004] Hyvärinen, Aapo, Karhunen, Juha, Oja, and Erkki

(2004). Independent component analysis, volume 46. John Wiley & Sons.

[Im et al., 2016] Im, D. J., Kim, C. D., Jiang, H., and Memisevic, R. (2016).

Generating images with recurrent adversarial networks. arXiv preprint

arXiv:1602.05110.

[Ioffe and Szegedy, 2015] Ioffe, S. and Szegedy, C. (2015). Batch normalization:

Accelerating deep network training by reducing internal covariate shift. arXiv

preprint arXiv:1502.03167.

[Jain et al., 2007] Jain, V., Murray, J. F., Roth, F., Turaga, S., Zhigulin, V., Brig-

gman, K. L., N, H. M., Denk, W., and Seung, S. H. (2007). Supervised learning

of image restoration with convolutional networks.

[Jayaraman and Grauman, 2015] Jayaraman, D. and Grauman, K. (2015). Learn-

ing image representations equivariant to ego-motion. In ICCV.

136

[Karpathy and Li, 2014] Karpathy, A. and Li, F. (2014). Deep visual-semantic

alignments for generating image descriptions. CoRR, abs/1412.2306.

[Karpathy et al., 2014] Karpathy, A., Toderici, G., Shetty, S., Leung, T., Suk-

thankar, R., and Fei-Fei, L. (2014). Large-scale video classification with convo-

lutional neural networks. In CVPR.

[Kavukcuoglu et al., 2010a] Kavukcuoglu, K., Ranzato, M., and LeCun, Y.

(2010a). Fast inference in sparse coding algorithms with applications to ob-

ject recognition. CoRR, abs/1010.3467.

[Kavukcuoglu et al., 2010b] Kavukcuoglu, K., Sermanet, P., Boureau, Y.-L., Gre-

gor, K., Mathieu, M., and LeCun, Y. (2010b). Learning convolutional feature

hierarchies for visual recognition. In NIPS.

[Kayser et al., 2001] Kayser, C., Einhauser, W., Dummer, O., Konig, P., and Kd-

ing, K. (2001). Extracting slow subspaces from natural videos leads to complex

cells. In ICANN’2001.

[Kim and Bengio, 2016] Kim, T. and Bengio, Y. (2016). Deep directed generative

models with energy-based probability estimation. CoRR, abs/1606.03439.

[Kingma and Ba, 2014] Kingma, D. and Ba, J. (2014). Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980.

[Kingma et al., 2014] Kingma, D. P., Mohamed, S., Rezende, D. J., and Welling,

M. (2014). Semi-supervised learning with deep generative models. In Advances

in Neural Information Processing Systems, pages 3581–3589.

137

[Kingma and Welling, 2013] Kingma, D. P. and Welling, M. (2013). Auto-

encoding variational bayes. arXiv preprint arXiv:1312.6114.

[Kosaka and Kak, 1992] Kosaka, A. and Kak, A. C. (1992). Fast vision-guided

mobile robot navigation using model-based reasoning and prediction of uncer-

tainties. CVGIP: Image understanding, 56(3):271–329.

[Krishnan et al., 2011] Krishnan, D., Tay, T., and Fergus, R. (2011). Blind decon-

volution using a normalized sparsity measure. In CVPR, pages 233–240.

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).

Imagenet classification with deep convolutional neural networks. In NIPS, vol-

ume 1, page 4.

[Kulkarni et al., 2015] Kulkarni, T. D., Whitney, W. F., Kohli, P., and Tenen-

baum, J. (2015). Deep convolutional inverse graphics network. In Advances in

Neural Information Processing Systems, pages 2530–2538.

[Larsen et al., 2015] Larsen, A. B. L., Sønderby, S. K., and Winther, O. (2015).

Autoencoding beyond pixels using a learned similarity metric. arXiv preprint

arXiv:1512.09300.

[Le, 2013] Le, Q. V. (2013). Building high-level features using large scale unsu-

pervised learning. In ICASSP, pages 8595–8598.

[LeCun et al., 2015] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning.

Nature, 521(7553):436–444. Insight.

138

[LeCun et al., 1998] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).

Gradient-based learning applied to document recognition. Proc. IEEE,

86(11):2278–2324.

[Lecun et al., 2006] Lecun, Y., Chopra, S., Hadsell, R., Huang, F. J., and Ranzato,

M. A. (2006). A Tutorial on Energy-Based Learning. MIT Press.

[LeCun et al., 2004] LeCun, Y., Huang, F. J., and Bottou, L. (2004). Learning

methods for generic object recognition with invariance to pose and lighting. In

CVPR.

[Ledig et al., 2016] Ledig, C., Theis, L., Huszar, F., Caballero, J., Aitken, A. P.,

Tejani, A., Totz, J., Wang, Z., and Shi, W. (2016). Photo-realistic single image

super-resolution using a generative adversarial network. CoRR, abs/1609.04802.

[Lin et al., 2014] Lin, T., Maire, M., Belongie, S. J., Bourdev, L. D., Girshick,

R. B., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick, C. L. (2014).

Microsoft COCO: common objects in context. CoRR, abs/1405.0312.

[Liu et al., 2015] Liu, Z., Luo, P., Wang, X., and Tang, X. (2015). Deep learning

face attributes in the wild. In Proceedings of the IEEE International Conference

on Computer Vision, pages 3730–3738.

[Lloyd, 1982] Lloyd, S. (1982). Least squares quantization in pcm. IEEE Trans-

actions on Information Theory, 28(2):129–137.

[Long et al., 2015] Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolu-

tional networks for semantic segmentation. In CVPR.

139

[Louizos et al., 2016] Louizos, C., Swersky, K., Li, Y., Welling, M., and Zemel, R.

(2016). The variational fair autoencoder. ICLR.

[Luc et al., 2016] Luc, P., Couprie, C., Chintala, S., and Verbeek, J. (2016). Se-

mantic segmentation using adversarial networks. CoRR, abs/1611.08408.

[Mahendran and Vedaldi, 2015] Mahendran, A. and Vedaldi, A. (2015). Under-

standing deep image representations by inverting them. In CVPR.

[Makhzani and Frey, 2013] Makhzani, A. and Frey, B. J. (2013). k-sparse autoen-

coders. CoRR, abs/1312.5663.

[Makhzani and Frey, 2014] Makhzani, A. and Frey, B. J. (2014). A winner-take-all

method for training sparse convolutional autoencoders. CoRR, abs/1409.2752.

[Makhzani et al., 2015] Makhzani, A., Shlens, J., Jaitly, N., and Goodfellow, I. J.

(2015). Adversarial autoencoders. CoRR, abs/1511.05644.

[Mathieu et al., 2015] Mathieu, M., Couprie, C., and LeCun, Y. (2015). Deep

multi-scale video prediction beyond mean square error. ICLR, abs/1511.05440.

[Mathieu et al., 2016] Mathieu, M., Zhao, J. J., Sprechmann, P., Ramesh, A., and

LeCun, Y. (2016). Disentangling factors of variation in deep representations

using adversarial training. CoRR, abs/1611.03383.

[Mescheder et al., 2017] Mescheder, L. M., Nowozin, S., and Geiger, A. (2017).

Adversarial variational bayes: Unifying variational autoencoders and generative

adversarial networks. CoRR, abs/1701.04722.

[Metz et al., 2016] Metz, L., Poole, B., Pfau, D., and Sohl-Dickstein, J. (2016).

Unrolled generative adversarial networks. CoRR, abs/1611.02163.

140

[Mikolov, 2010] Mikolov, T. (2010). Recurrent neural network based language

model.

[Mirza and Osindero, 2014] Mirza, M. and Osindero, S. (2014). Conditional gen-

erative adversarial nets. arXiv preprint arXiv:1411.1784.

[Mnih et al., 2013] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou,

I., Wierstra, D., and Riedmiller, M. A. (2013). Playing atari with deep rein-

forcement learning. CoRR, abs/1312.5602.

[Mobahi et al., 2009] Mobahi, H., Collobert, R., and Weston, J. (2009). Deep

learning from temporal coherence in video. In ICML.

[Nair and Hinton, 2010] Nair, V. and Hinton, G. E. (2010). Rectified linear units

improve restricted boltzmann machines. In ICML, pages 807–814.

[Narayanan and Mitter, 2010] Narayanan, H. and Mitter, S. (2010). Sample com-

plexity of testing the manifold hypothesis. In Advances in Neural Information

Processing Systems, pages 1786–1794.

[Nathan Silberman and Fergus, 2012] Nathan Silberman, Derek Hoiem, P. K. and

Fergus, R. (2012). Indoor segmentation and support inference from RGBD

images. In ECCV.

[Nowozin et al., 2016] Nowozin, S., Cseke, B., and Tomioka, R. (2016). f-gan:

Training generative neural samplers using variational divergence minimization.

CoRR.

[Oh et al., 2015] Oh, J., Guo, X., Lee, H., Lewis, R. L., and Singh, S. P. (2015).

Action-conditional video prediction using deep networks in atari games. NIPS.

141

[Olshausen and Field, 1997] Olshausen, B. A. and Field, D. J. (1997). Sparse

coding with an overcomplete basis set: A strategy employed by v1? Vision

research, 37(23):3311–3325.

[Pearson, 1901] Pearson, K. (1901). On lines and planes of closest fit to system of

points in space. philosophical magazine, 2, 559-572.

[Pezeshki et al., 2015] Pezeshki, M., Fan, L., Brakel, P., Courville, A., and Ben-

gio, Y. (2015). Deconstructing the ladder network architecture. arXiv preprint

arXiv:1511.06430.

[Poultney et al., 2006] Poultney, C., Chopra, S., Cun, Y. L., et al. (2006). Efficient

learning of sparse representations with an energy-based model. In Advances in

neural information processing systems, pages 1137–1144.

[Radford et al., 2015] Radford, A., Metz, L., and Chintala, S. (2015). Unsuper-

vised representation learning with deep convolutional generative adversarial net-

works. CoRR, abs/1511.06434.

[Ranzato et al., 2007a] Ranzato, M., Boureau, Y., Chopra, S., and LeCun, Y.

(2007a). A unified energy-based framework for unsupervised learning. In Proc.

Conference on AI and Statistics (AI-Stats).

[Ranzato et al., 2007b] Ranzato, M., Boureau, Y.-L., and LeCun, Y. (2007b).

Sparse feature learning for deep belief networks. Advances in neural information

processing systems, 20:1185–1192.

[Ranzato et al., 2014] Ranzato, M., Szlam, A., Bruna, J., Mathieu, M., Collobert,

R., and Chopra, S. (2014). Video (language) modeling: a baseline for generative

models of natural videos. CoRR, abs/1412.6604.

142

[Ranzato et al., 2007c] Ranzato, M. A., Huang, F. J., Boureau, Y.-L., and LeCun,

Y. (2007c). Unsupervised learning of invariant feature hierarchies with applica-

tions to object recognition. In Computer Vision and Pattern Recognition, 2007.

CVPR’07. IEEE Conference on, pages 1–8. IEEE.

[Rasmus et al., 2015] Rasmus, A., Berglund, M., Honkala, M., Valpola, H., and

Raiko, T. (2015). Semi-supervised learning with ladder networks. In Advances

in Neural Information Processing Systems, pages 3546–3554.

[Razavian et al., 2014] Razavian, A. S., Azizpour, H., Sullivan, J., and Carlsson,

S. (2014). CNN features off-the-shelf: an astounding baseline for recognition.

CoRR, abs/1403.6382.

[Reed et al., 2014] Reed, S., Sohn, K., Zhang, Y., and Lee, H. (2014). Learning

to disentangle factors of variation with manifold interaction. In Proceedings

of the 31st International Conference on Machine Learning (ICML-14), pages

1431–1439.

[Reed et al., 2015] Reed, S. E., Zhang, Y., Zhang, Y., and Lee, H. (2015). Deep

visual analogy-making. In Advances in Neural Information Processing Systems

28, pages 1252–1260. Curran Associates, Inc.

[Revaud et al., 2015] Revaud, J., Weinzaepfel, P., Harchaoui, Z., and Schmid, C.

(2015). EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical

Flow. In Computer Vision and Pattern Recognition.

[Rezende et al., 2014] Rezende, D. J., Mohamed, S., and Wierstra, D. (2014).

Stochastic backpropagation and approximate inference in deep generative mod-

els. arXiv preprint arXiv:1401.4082.

143

[Rifai et al., 2011] Rifai, S., Vincent, P., Muller, X., Glorot, X., and Bengio, Y.

(2011). Contractive auto-encoders: Explicit invariance during feature extrac-

tion. In Proceedings of the 28th International Conference on Machine Learning

(ICML-11), pages 833–840.

[Ronneberger et al., 2015] Ronneberger, O., Fischer, P., and Brox, T. (2015). U-

net: Convolutional networks for biomedical image segmentation. In MICCAI,

volume 9351, pages 234–241.

[Russakovsky et al., 2015] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh,

S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C.,

and Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge.

International Journal of Computer Vision (IJCV), 115(3):211–252.

[Salimans et al., 2016] Salimans, T., Goodfellow, I. J., Zaremba, W., Cheung, V.,

Radford, A., and Chen, X. (2016). Improved techniques for training gans. CoRR,

abs/1606.03498.

[Sermanet et al., 2013] Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus,

R., and LeCun, Y. (2013). Overfeat: Integrated recognition, localization and

detection using convolutional networks. CoRR, abs/1312.6229.

[Silver et al., 2016] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,

van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V.,

Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever,

I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., and Hassabis, D.

(2016). Mastering the game of go with deep neural networks and tree search.

Nature, 529(7587):484–489.

144

[Simonyan and Zisserman, 2014] Simonyan, K. and Zisserman, A. (2014). Two-

stream convolutional networks for action recognition in videos. CoRR,

abs/1406.2199.

[Sohn et al., 2015] Sohn, K., Lee, H., and Yan, X. (2015). Learning structured

output representation using deep conditional generative models. In Cortes, C.,

Lawrence, N. D., Lee, D. D., Sugiyama, M., and Garnett, R., editors, Advances

in Neural Information Processing Systems 28, pages 3483–3491. Curran Asso-

ciates, Inc.

[Soomro et al., 2012] Soomro, K., Zamir, A. R., and Shah, M. (2012). UCF101:

A dataset of 101 human actions classes from videos in the wild. CoRR,

abs/1212.0402.

[Srivastava et al., 2015] Srivastava, N., Mansimov, E., and Salakhutdinov, R.

(2015). Unsupervised learning of video representations using LSTMs. In ICML.

[Sutskever et al., 2014] Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence

to sequence learning with neural networks. CoRR, abs/1409.3215.

[Szegedy et al., 2013] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,

D., Goodfellow, I. J., and Fergus, R. (2013). Intriguing properties of neural

networks. CoRR, abs/1312.6199.

[Tenenbaum and Freeman, 2000] Tenenbaum, J. B. and Freeman, W. T. (2000).

Separating style and content with bilinear models. Neural Comput., 12(6):1247–

1283.

[Theis et al., 2015] Theis, L., Oord, A. v. d., and Bethge, M. (2015). A note on

the evaluation of generative models. arXiv preprint arXiv:1511.01844.

145

[Tran et al., 2015] Tran, D., Bourdev, L. D., Fergus, R., Torresani, L., and Paluri,

M. (2015). C3D: generic features for video analysis. In ICCV.

[Uria et al., 2016] Uria, B., Côté, M., Gregor, K., Murray, I., and Larochelle, H.

(2016). Neural autoregressive distribution estimation. CoRR, abs/1605.02226.

[van den Oord et al., 2016a] van den Oord, A., Kalchbrenner, N., and

Kavukcuoglu, K. (2016a). Pixel recurrent neural networks. CoRR,

abs/1601.06759.

[van den Oord et al., 2016b] van den Oord, A., Kalchbrenner, N., Vinyals, O., Es-

peholt, L., Graves, A., and Kavukcuoglu, K. (2016b). Conditional image gener-

ation with pixelcnn decoders. CoRR, abs/1606.05328.

[Villegas et al., 2017] Villegas, R., Yang, J., Zou, Y., Sohn, S., Lin, X., and Lee,

H. (2017). Learning to generate long-term future via hierarchical prediction.

arXiv:1704.05831.

[Vincent et al., 2008] Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A.

(2008). Extracting and composing robust features with denoising autoencoders.

In Proceedings of the 25th international conference on Machine learning, pages

1096–1103. ACM.

[Vincent et al., 2010] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Man-

zagol, P.-A. (2010). Stacked denoising autoencoders: Learning useful represen-

tations in a deep network with a local denoising criterion. Journal of Machine

Learning Research, 11(Dec):3371–3408.

146

[Vondrick et al., 2016a] Vondrick, C., Pirsiavash, H., and Torralba, A. (2016a).

Anticipating visual representations from unlabeled video. In The IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR).

[Vondrick et al., 2016b] Vondrick, C., Pirsiavash, H., and Torralba, A. (2016b).

Generating videos with scene dynamics. In Advances In Neural Information

Processing Systems, pages 613–621.

[Wang and Gupta, 2015] Wang, X. and Gupta, A. (2015). Unsupervised learning

of visual representations using videos. In ICCV.

[Wang et al., 2004] Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P.

(2004). Image quality assessment: From error visibility to structural similarity.

IEEE Trans. on Im. Proc., 13(4):600–612.

[Weinzaepfel et al., 2013] Weinzaepfel, P., Revaud, J., Harchaoui, Z., and Schmid,

C. (2013). Deepflow: Large displacement optical flow with deep matching. In

2013 IEEE International Conference on Computer Vision, pages 1385–1392.

[Wiskott and Sejnowski, 2002] Wiskott, L. and Sejnowski, T. J. (2002). Slow fea-

ture analysis: Unsupervised learning of invariances. Neural Computation.

[Wolpert, 1996] Wolpert, D. H. (1996). The lack of a priori distinctions between

learning algorithms. Neural Computation, 8(7):1341–1390.

[Yu et al., 2015] Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., and Xiao,

J. (2015). Lsun: Construction of a large-scale image dataset using deep learning

with humans in the loop. arXiv preprint arXiv:1506.03365.

147

[Zeiler et al., 2010] Zeiler, M. D., Krishnan, D., Taylor, G. W., and Fergus, R.

(2010). Deconvolutional networks. In Computer Vision and Pattern Recognition

(CVPR), pages 2528–2535.

[Zemel, 1994] Zemel, R. S. (1994). Autoencoders, minimum description length and

Helmholtz free energy.

[Zen and Senior, 2014] Zen, H. and Senior, A. (2014). Deep mixture density

networks for acoustic modeling in statistical parametric speech synthesis. In

2014 IEEE International Conference on Acoustics, Speech and Signal Process-

ing (ICASSP), pages 3844–3848.

[Zhao et al., 2016a] Zhao, J., Mathieu, M., Goroshin, R., and LeCun, Y. (2016a).

Stacked what-where auto-encoders. In ICLR workshop submission.

[Zhao et al., 2016b] Zhao, J. J., Mathieu, M., and LeCun, Y. (2016b). Energy-

based generative adversarial network. CoRR, abs/1609.03126.

148

