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Abstract. Spectral element methods are considered for symmetric elliptic systems of second-order
partial differential equations, such as the linear elasticity and the Stokes systems in three dimensions.
The resulting discrete problems can be positive definite, as in the case of compressible elasticity in
pure displacement form, or saddle point problems, as in the case of almost incompressible elasticity
in mixed form and Stokes equations. Iterative substructuring algorithms are developed for both cases.
They are domain decomposition preconditioners constructed from local solvers for the interior of each
element and for each face of the elements and a coarse, global solver related to the wire basket of the
elements. In the positive definite case, the condition number of the resulting preconditioned operator
is independent of the number of spectral elements and grows at most in proportion to the square of
the logarithm of the spectral degree. For saddle point problems, there is an additional factor in the
estimate of the condition number, namely, the inverse of the discrete inf-sup constant of the problem.
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1. Introduction. The goal of this paper is to formulate and study iterative sub-
structuring methods for symmetric elliptic systems of second-order partial differential
equations in three dimensions. Important examples, which are considered in some
detail, are the equations of linear elasticity and Stokes. We consider conforming spec-
tral finite element discretizations based on a Galerkin formulation of the problem and
Gauss-Lobatto-Legendre quadrature. The resulting discrete systems are either positive
definite, as in the case of compressible elasticity in pure displacement form, or of saddle
point form, as in the case of almost incompressible elasticity in mixed form and Stokes
problems. For these three cases, we introduce iterative substructuring algorithms which
extends our earlier work [30, 33] on scalar second-order elliptic equations. We recall
that iterative substructuring methods are domain decomposition algorithms, in which
we, implicitly, solve a reduced Schur complement system that is obtained by eliminat-
ing the variables interior to all the subregions into which the given region has been
divided; cf., e.g., Smith, Bjgrstad, and Gropp [38] or Dryja, Smith, and Widlund [12].
We consider iterative substructuring methods of wire basket type, where a precondi-
tioner for the Schur complement is built from local solvers for each face (shared by two
elements) and a coarse solver related to the wire basket (the union of the edges and
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the vertices of the elements). The main result for positive definite problems is a bound
on the condition number of the preconditioned operator, which is independent of the
number of spectral elements and is bounded from above by the square of the logarithm
of the spectral degree. For saddle point problems, the reduced Schur complement is
itself a saddle point problem, involving the interface unknowns and piecewise constant
Lagrange multipliers. We then use a Krylov space method with a block-diagonal or
block-triangular preconditioner using our wire basket preconditioner for the interface
block. The main result for saddle point problems is a bound on the condition numbers
of the preconditioned operators, which in this case is the product of a polylogarithmic
factor and the inverse of inf-sup constant of the problem. Proofs of our results and
additional details will be presented in two articles; see [31, 32].

We note that other iterative substructuring methods have been proposed in recent
years. For positive definite systems, see, e.g., Mandel [27, 26], Le Tallec [22], and
Farhat and Roux [16] and for saddle point problems, see Bramble and Pasciak [5],
Quarteroni [34], Fischer and Rgnquist [17], Maday, Meiron, Patera, and Rgnquist [24],
Ronquist [35], Le Tallec and Patra [23], and Casarin [10]. We also note that alternative
iterative methods have been considered for saddle point problems, such as Uzawa’s
algorithm, multigrid methods, block—diagonal and block-triangular preconditioners; see,
e.g., Elman [13, 14], Brenner [6], Klawonn [20], and the references therein.

The rest of the paper is organized as follows. In Section 2, we introduce the three
elliptic systems which will serve as model problems throughout the paper: compressible
linear elasticity in pure displacement form, incompressible and almost incompressible
linear elasticity in mixed form, and the Stokes system. In Section 3, the spectral
element discretization of these systems and GLL quadrature are described briefly. In
Section 4, we introduce some extension operators from the interface that are needed
in the construction of our preconditioners: the discrete harmonic, elastic, Stokes and
mixed elastic extensions. An additional extension operator associated with the wire
basket is also introduced. In Section 5, we describe our wire basket preconditioner
for positive definite systems, both in matrix and variational form, and formulate the
main result on the condition number of the preconditioned operator. In Section 6, we
turn our attention to saddle point problems, starting with the description of the basic
substructuring technique the use of which leads to a saddle point Schur complement.
We then study the stability of this Schur complement problem and introduce block
preconditioners built on our wire basket preconditioner for the positive definite case.
Our main results for both the Stokes and and the incompressible elasticity problems are
also formulated. Section 7 concludes the paper with results of some of our numerical
experiments for problems in three dimensions.

2. Model elliptic systems. In this section, we will introduce three symmetric
elliptic systems: compressible linear elasticity in pure displacement form, incompress-
ible and almost incompressible linear elasticity in mixed form, and the Stokes system.
The first is coercive, while the other two provide examples of saddle point problems.
We will work with spectral element discretizations of these systems and introduce and
study iterative substructuring methods for these concrete cases. However, the same
techniques can be applied to other well-posed symmetric elliptic systems as well.

Throughout the paper, we will denote vector quantities by bold face characters.

2.1. Compressible linear elasticity in pure displacement form. Let 2 C
R? be a polyhedral domain, let 'y be a nonempty subset of its boundary, and let V be
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the Sobolev space V = {v € H'(Q)? : v|r, = 0}. The linear elasticity problem consists
in finding the displacement u € V of the domain €2, fixed along I'g, resulting from a
surface force of density g, along ['y = 02 — I'g, and a body force f:

(1) uv_2,u/ dx+/\/dlvudlvvd:6—<Fv> Vvev.

BuJ)

Here X and p are the Lamé constants, ¢;;(u) = %(8“1 + the linearized strain tensor,

and the inner products are defined as

3 3
= ZZQJ(U)G“(V)’ <F,v>= / Zfzvz d:v+/ Zgzvz ds.
=1 7=1

L
This pure displacement model is a good formulation for compressible materials, for
which the Poisson ratio v = Q(AA—-}-M) is strictly less than 1/2, e.g., v < 0.4; see, e.g.,
Ciarlet [11] for a detailed treatment of nonlinear and linear elasticity.

2.2. Almost incompressible linear elasticity in mixed form. When X ap-
proaches infinity, the pure displacement model describes materials that are almost in-

compressible. In terms of the Poisson ratior = such materials are characterized

by values of v close to 1/2. It is well-known that when low order, h-version finite ele-
ments are used in the discretization of (1), locking can cause a severe deterioration of
the convergence rate as h — 0; see, e.g., Babuska and Suri [1]. If the p-version is used
instead, locking in u is eliminated, but it could still occur in quantities of interest such
as Adivu. Moreover, the stiffness matrix obtained by discretizing the pure displacement
model (1) has a condition number that goes to infinity when v — 1/2. Therefore, the
convergence rate of any iterative method must also be expected to deteriorate rapidly
as the material becomes almost incompressible.

Locking can be eliminated by introducing a space of Lagrange multipliers U =
L?(Q) and the new variable p = —Adivu € U and by replacing the pure displacement
problem with a mixed formulation:

Find (u,p) € V x U such that

2u/e(u):e(v)dm - /divvpdm = <F,v> VeV
Q Q
(2)
—/divuqda‘ - %/pqdm = 0 Vg e U;
Q Q

see Brezzi and Fortin [7]. Using the notations,

e(u,v) = 2;1/9 e(u) 1 e(v) dz, b(v,q) / divv ¢ dz, ¢(p,q) = /qu dz,

the problem takes the following form:
Find (u,p) € V x U such that

e(u,v) + b(v,p) = <F,v> VeV
(3)
bu,q) — teclp,g) = 0 Vg € U.

When A — oo (or, equivalently, v — 1/2), we obtain the limiting problem for incom-
pressible linear elasticity; we then simply drop the appropriate term in (3).
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2.3. The generalized Stokes system. In case of homogeneous Dirichlet bound-
ary conditions on the whole boundary 0S2, problem (2) is equivalent to the following
generalized Stokes problem (see Brezzi and Fortin [7]):

Find (u,p) € V x U such that

s(u,v) + b(v,p) = <F,v> ¥weV

(4)

b(u,q) — sppc(pa) = 0 Vg e U.

Here,
s(u,v) = u/QVu : Vv dz,
and U is now defined by
U= 13 ={a e L*@): | qdr =0},

since it can be shown that the pressure will have a zero mean value as a consequence
of u vanishing on the boundary of Q. The penalty term in (4) can also originate from
stabilization techniques or penalty formulations for Stokes problems. The classical
Stokes system, describing the velocity u and pressure p of a fluid of viscosity p, can
be obtained from (4) by letting A — oo; again we simply drop one of the terms in
formula (4). We refer to Girault and Raviart [18] for an introduction to the Stokes and
Navier-Stokes equations and their finite element discretization. See also Yang [40] for
an alternative formulation of saddle point problems.

3. Spectral element methods. Let Q. be the reference cube (—1,1)3, let
Qn(Qer) be the set of polynomials on Qr of degree n in each variable, and let P, (Qyef)
be the set of polynomials on Qs of total degree n. We assume that the domain €2 can
be decomposed into N nonoverlapping finite elements €2;, each of which is an affine
image of the reference cube. Thus, ; = ¢;(Qef), where ¢; is an affine mapping. The
displacement is discretized, component by component, by conforming spectral elements,
i.e. by continuous, piecewise polynomials of degree n:

Vi={veV:ulgod €Qu(ther), i=1,---,N, k=1,2,3}.
The pressure space can be discretized by piecewise polynomials of degree n — 2:
U" = {q € L(QJ(Q) : Q|Qi o¢; € Qn—Q(Qref)v i=1,-- 'HN}'

We note that the elements of U™ are discontinuous across the boundaries of the elements
Q;. This choice for U™ gives us the J,, — @J,_2 method, proposed by Maday, Patera,
and Rgnquist [25] for the Stokes system; see further Subsection 3.3 for a discussion of
the stability of this method.

Another choice of the discrete pressure space is given by piecewise polynomials of
total degree n — 1:

{¢geU:qlg,0F; € P_1(Qeg).t=1,---,N}.

This choice has been analyzed in Stenberg and Suri [39] and is known as the Q,, — P,
method. For P,_; a standard tensorial basis does not exist but other bases, common in
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the p-version finite element literature, can be used. We will not work extensively with
this space in this paper.

Other interesting choices for U™ have been studied in Canuto [8] and Canuto and
Van Kemenade [9] in connection with stabilization techniques for spectral elements using
bubble functions.

3.1. GLL quadrature. Denote by {£;,&;,&k}7; ¢ the set of GLL points of the
reference cube [—1,1]% and by o; the quadrature weight associated with &. Let /;(z)
be the Lagrange interpolating polynomial that vanishes at all the GLL nodes except &;
where it equals one. The basis functions on the reference cube are then defined by a
tensor product as

Li(2)(y)lk(2), 0<14,5,k<n.

This is a nodal basis, since any element of Q),,(€2.f) can be written as

u(z,y, 2 EZZ w(&is s Ex)Li(@) 1 (y) 1k (2)-

=0 j=0 k=0

The reference element can be decomposed into its interior, six faces, twelve edges, and
eight vertices. The union of its edges and vertices is called the wire basket of the
element and is denoted by Wi.t. Analogously, each basis function can be characterized
as being of interior, face, edge, or vertex type:

- interior: ¢, j, k # 0 and # n;

- face: exactly one index is 0 or n;

- edge: exactly two indices are 0 and/or n;

- vertex: all three indices are 0 and/or n.
Each component of the displacement model, and generally any element in V"™, can be
written as the sum of its interior, face, edge, and vertex components,

U =ur+upr+ug+uy,

where each term is expressed in terms of the corresponding set of basis functions.

For the space U™, we can similarly use the very convenient basis consisting of tensor-
product Lagrangian nodal basis functions associated with just the internal GLL nodes;
we note that the degree of the polynomials are now n — 2. Another basis associated with
Gauss-Legendre nodes has been considered in [17] and [24].

We now replace each integral of the continuous models (3) and (4) by using GLL
quadrature. On €,

u v nQref ZZZ 5275]7516 (€i7€j75k)gio-jo-ka

=0 j=0 k=0

and in general on €2

N n
:Z Z UO(bS 52,5],510(’00¢s)(€“5],5k)|]|UZU]U;C,

s=114,7,k=0

where |.Jg| is the determinant of the Jacobian of ¢5. The first inner product is uniformly

equivalent to the standard Ly—inner product on @, (). Thus, it is shown in Bernardi
and Maday [3, 4] that

(5) ullZ, (@) < (s W)nger < 270Nl 70, Vi € Qn(Qref)-
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These bounds imply an analogous uniform equivalence between the L3(€2)—norm (and
the H'(Q)—seminorm) and the corresponding discrete norm (and seminorm) based on
GLL quadrature.

3.2. The discrete problems. Applying GLL quadrature to the pure displace-
ment model (1), we obtain the discrete bilinear form

an,(u,v) =2pu(e(u) : €(v))n,o + A(diva, divv), o,

and the discrete elasticity system in pure displacement form:
Find u € V" such that

(6) ap(u,v)=<F,v>,q Vv e V",

An analysis of the spectral element discretization for the Laplacian and Stokes problems
can be found in Bernardi and Maday [3, 4] and in Maday, Patera, and Rgnquist [25].
The same techniques can be applied to provide an analysis and error estimates for the
linear elasticity problem. The stiffness matrix K associated to the discrete problem (6)
is symmetric and positive definite. It is less sparse than the stiffness matrices obtained
by low-order finite elements, but still well-structured, and the corresponding matrix-
vector multiplication is relatively inexpensive if advantage is taken of its tensor product
structure; see, e.g., Bernardi and Maday [3].

For an interior element, a, (-, -) has a six-dimensional null space N, spanned by the
rigid body motions r; :

N =span{r;, j=1,---,6}.

On Qyef, the r; are given, component-wise, by three translations

1 0 0
(7) ry = 0 , To = 1 , T3 = 0 y
0 0 1
and three rotations
0 r3 T2
(8) ry = T3 , Is = 0 , Yg= —Z
—Z9 —Z1 0

It is easy to show that both the divergence and the linearized strain tensor of these six
functions vanish.

Applying GLL quadrature to the mixed models (3) and (4), we obtain the discrete
bilinear forms

en(u,v) =2pu(e(u) : €(v))nq, sp(u,v) = p(Vu: Vv), q,

bn(u7p) - _(diVU7P)n,Qa Cn(p7 q) - (p7 q)n,Q

We note that, since GLL quadrature in each variable is exact for polynomials of degree
up to and including 2n — 1 and we are using affine images of the reference cube, the
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last two bilinear forms are exact, i.e. b,(u,p) = b(u, p) and ¢, (p, q) = ¢(p,q), Yu €
Vo pge U

We can now obtain the discrete elasticity system in mized form:
Find (u,p) € V" x U" such that

en(u,v) + by(v,p) = <F,v>,q0 VveV?
(9)

bo(u,q) — Fen(pq) = 0 Vge U"

In the incompressible case, we remove the ¢, (-, -) term, since 1/A = 0.
The discrete generalized Stokes problem is an analogous saddle point problem, with
Sn(+,+) in place of e, (-, -) and the penalty parameter equal to 1/(\ + ).

These are all saddle point problems, and they include a penalty term in the elasticity
and generalized Stokes case. Using, for simplicity, the same notation for functions and
their coefficient vectors, we can write the saddle point problems in matrix form as

| u A BT u b

oo SR PEAIHE N
where A, B, and C' are the matrices associated with s, (-, -) or e, (-, ), and with b, (-, -),
and ¢, (-, ), respectively. The penalty parameter is t* = % for elasticity problems and
t? = Hl_ﬂ for generalized Stokes problems. The stiffness matrix K is now symmetric
and indefinite.

In the following, we will also use ¢ > 0 and C' < +00 to denote generic constants in
our inequalities; it will be clear from the context if we are referring to generic constants
or to the bilinear form ¢(+,-) and the associated matrix C'.

3.3. The inf-sup condition for spectral elements. The convergence of mixed
methods depends not only on the approximation properties of the discrete spaces V"
and U”, but also on a stability condition known as the inf-sup (or LBB) condition;
see, e.g., Brezzi and Fortin [7]. While many important h-version finite elements for
Stokes problems satisfy the inf-sup condition with a constant independent of h, several
important spectral elements proposed for Stokes problems, such as the @),, — ¢J,,_2 and
@, — P,,_1 methods, satisfy only the following inf-sup condition:

di _
(v, q) Cn~ T lgllp2 Vo e U™,

. B TV
where d = 2, 3 and the constant C'is independent of n and ¢. This result has been proven
for the @, — @,—2 method by Maday, Patera, and Rgnquist [25] and by Stenberg and
Suri [39] for more general discrete mixed spaces. For the Q),, —@Q,,—2 method, an example
is also given in [25] showing that the estimate is sharp, i.e. the inf-sup constant indeed
approaches zero as n~(4-1)/2 (d = 2,3). However, numerical experiments, reported
in Maday, Meiron, Patera, and Rgnquist, see [24] and [25], have also shown that for
practical values of n, e.g., n < 16, the inf-sup constant 3,, of the Q),, — @),,_o method
decays much slower than would be expected from the theoretical bound. Our own
numerical experiments, reported in [28, 29], indicate that the situation is even better for
the ), — P,—1 method; see further Section 7, in particular Table 2. For numerical studies
of the inf-sup constant of various h-version finite elements, see Bathe and Chapelle [2].



We can rewrite the inf-sup condition in matrix form as
(12) ¢'BAT'Blq > p%¢'Cq Vqe U™,

where (3, is the inf-sup constant of the method; see Brezzi and Fortin [7]. Therefore 32
scales as A\, (C'BATIBY) . Similarly, if 3 is the continuity constant of the bilinear
form b(-, -), we have

(13) viBlq < B(g'Co) P (viAV)'/2 Yy e VP Vg e U™
From (12) and (13), it follows that

tBA—lBt ~
Zﬁ%ﬁﬁz Vg e U™

We remark that the dependence on n of the inf-sup constant implies only a loss (of order
n_(d_l)/Z) in the order of convergence for the pressure p, but not for the velocity u;
see the classical error estimates as given in Bernardi and Maday [3, Theorems 2.5 and
7.7] and Stenberg and Suri [39, Theorem 5.2 and Remark 5.3]. Therefore, for problems
with regular solutions, for which spectral methods are most appropriate, we still have
spectral convergence for both components of the discrete solution.

4. Extensions from the interface. In the construction and analysis of our algo-
rithms, we will need to consider a number of subspaces of the space V*. Many of them
involve extensions into the interior of the elements of the interface values of elements of
the spectral finite element space V. The interface I of the decomposition {€2;} of Q is
defined by

I'= (UN,09:)\ 09.
The space of restrictions to the interface is defined by
Vi ={v|lr, veV"L

I' is composed of Np faces Fj (open sets) of the elements and the wire basket W,
defined as the union of the edges and vertices of the elements, i.e.

[=Ups FLUW.

We first define local subspaces consisting of elements of V" with support in the
interior of individual elements,

(14) VI =V"n Hy(2)?, i=1,---,N.

We will often also use related local subspaces of pressures, with support and zero mean
value in individual elements, defined by

(15) Ul =U" N L§(Y), i=1,--+,N.

We will now examine several useful ways of extending elements of V. These
extensions are all constructed locally, i.e. element by element.



4.1. The discrete harmonic extension. The discrete harmonic extension H" :
Vi — V" is defined as the operator that maps any element u € V7 into the unique
solution H"u € V" of

Sp(H"u,v) =0 Vv eV, H'u=u on 99; i=1,---,N.

This is just an application, for each of the three components separately, of the well-
known scalar discrete harmonic extension. As in the scalar case, the discrete harmonic
extension satisfies the minimization property

Sp(H"u, H"u) = min  s,(v,V).
veEV™, v|r=u
4.2. The discrete elastic extension. We can also extend any element of V} to
the interior of each element by solving a linear elasticity problem in each element. The
discrete elastic extension £" : Vi — V", is the operator that maps any u € V¢ into
the unique solution of

(16)  a,(&"u,v)=0 Vv e VI, E"u=u on 09Q;, i=1,---,N.

In our applications to elasticity problems, we will choose the range of this extension
operator,

(17) Ve =&4(Vr),

as the subspace of interface displacements. The elements in this subspace are completely
determined by their values on I'.
The discrete elastic extension satisfies the minimization property

a,(E"u,E"u) = min  a,(v,v).
vEV™ vip=u
4.3. The discrete Stokes extension. We can also extend any element of V{ to
the interior of each element by solving a Stokes problem in each element. The discrete
Stokes extension (S”,S)) : V{ — V" x U", is the operator that maps any u € V¢
into the solution of the following Stokes problem on each element:
Find $"u € V" and SPu € (S, UP") such that on each Q;

5,(8"u,v) 4+ bu(v,Spu) = 0 VveV?

(18) b,(S™u,q)

0 VgeU}
S"u=u on 02,

In our applications to Stokes problems, we will choose the range of this extension
operator,

(19) Vg =8"(Vp),

as the subspace of interface velocities. As with the discrete harmonic extension, the
velocities in this subspace are completely determined by their values on I.



The discrete Stokes extension satisfies the minimization property

N
5, (8"u,8"u) = min s,(v,v) Vwe{veV" : b,(v,q)=0 VYqe ZUZ»”}.

V|F:u =1

The following comparison of the energy of the discrete Stokes and harmonic extensions
can be found in [18], [5], [23], and [10].
LEMMA 4.1.

cfnsn (8™, 8™u) < s, (H"u, H"u) < 5,(S5"u, S™u) Yu € VL.

4.4. The discrete mixed elastic extension. We can also extend any element
of V{ to the interior of each element by solving an incompressible linear mixed form
elasticity problem in each element. The discrete elastic extension (M™, M7) : Vi —
V7 x U", is the operator that maps any u € V7 into the solution of the following

incompressible elasticity problem:
Find M"™a € V* and MJju=p ¢ (S°N, UP) such that on each Q;

en(M™a,v) + by(v,p) = 0 VveV?
(20) b, (M"u, q) = 0 VYgqeUp

MPu=u on o€,

In our applications to elasticity problems, we will choose the range of this extension
operator,

(21) Vi = M"(Vp),

as our subspace of interface displacements. As with the other extensions, the displace-
ments in this subspace are completely determined by their values on I'.
The discrete elastic extension satisfies the minimization property

N
en(M"u, M™u) = min e,(v,v) Vve{veV" i b,(v,q)=0 Vge EU,}L}.

vr=u i=1

4.5. Extension from the wire basket. In the construction of our algorithm,
we will also need to extend the restriction of elements of V" to the wire basket to the
faces. As this is also a local operation, we can restrict our attention to the reference
element. A preliminary extension operator I"V from the wire basket is constructed for
any function u € V" by expanding its restriction to the wire basket, using the vertex
and edge basis functions described in Subsection 3.1,

fWu =uy + ug.

Given that we are using a nodal basis, 7" u will simply vanish at all the face GLL
points outside the wire basket. Therefore this extension operator does not preserve the
rigid body motionsr;,j =1,---,6. In order to construct a scalable algorithm, we must

define an extension operator that satisfies this condition on the interface; see Mandel
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[26] and or Smith, Bjgrstad, and Gropp, [38, p. 132] for a discussion of this null space
property.

We start by considering the difference between each of the r; and the function
obtained by using the preliminary extension. They can all be expressed in terms of
four scalar functions, defined on each face in terms of

fozl—iwl, flle—fwxl, .7:2::162—]~W:C2, f3:$3—I~W.r3.
We remark that in our previous study of the scalar case, see [30, 33], only F° was needed,
because the null space of the discrete bilinear form on an interior element consists only
of constants. Each of our four functions, just defined, vanishes on the wire basket and
each can be split into six face terms,

6 6 6 6
FO=3"7, Fl=>" 7, =3 7, FP=>"F.
k=1 k=1 k=1 k=1

Here, the ]—']z,j =0,1,2,3, vanish on all faces except F}. For each scalar component u(%)
of u, we define a new extension /" 4(?) from the wire basket to the interface as follows:
On a face F}j, for which the two relevant variables are z; and x5, the restriction of
JUEORTS F}, has the form

(22) I = W) 4 0, FO 4+ bLFL + b2

1

The weights ay, b}, b, and b7 are given by the following moments (the factors 3

come from the fact that we work on the reference element):

(u(i)v 1)”73Fk _ 1
(17 1)n,3Fk 8

3
and =

ap = (Um, 1)n.0F,,

) (5 ) 3 .
u £z oF) .
pi = Wi Dnor _ 3 ) o j=1,2,3.
£ (25 2)nom T T
We note that on each face only three correction terms are used; see (22). For a vector
valued displacement u, the extension operator is then defined as the discrete elastic

extension of the scalar face functions given by (22), i.e.
W= (IWu® W42 174G,

A simple computation shows that, on each face, the new extension operator reproduces
all P, polynomials and therefore also all the rigid body motions. If, e.g., v = ¢o +
c121 + ca9 + c3x3, we have on the face Iy, = {z3 =1},

ap = g(Co + 121 + g + €3, 1) 85, = o + C3,

1 3
b, = E(Co +e1z1 + oy + €3, T1)noF, = C1,

2
by = E(CO + c1x1 + coxg + C3, $2)n,aFk = Cg,

as required. Moreover, any rigid body motion r is also reproduced inside each element,
i.e. £"r = r. This follows from the minimization property of the elastic extension and
the fact that a,(r,r) = 0. Therefore, I"r =r Vr € N/. We note that the extension
operator I defines a change of basis in V¢{; the face basis functions are unchanged,
but the wire basket basis functions are transformed according to (22).

11



5. A wire basket preconditioner for the pure displacement model. In this
section, we describe our wire basket preconditioner for linear elasticity problemsin pure
displacement form. We first write it in matrix form and we then outline the main ideas
involved in its analysis, based on the standard Schwarz framework. We model the wire
basket preconditioner on our previous work on the scalar case; see [30, 33].

5.1. Matrix form of the preconditioner. The stiffness matrix K of the discrete
linear elasticity problem (6) is built by subassembly from the individual contributions
from each element €2,

N
u'Ku= Z u(i)TB'(i)u(i).
i=1
In each element, we order the interior variables first and then the interface variables
obtaining local stiffness matrices of the form

K9 gl ]

I((i) = T .
kW gl

The interior unknowns are eliminated by solving local linear elasticity problems, ob-
taining local Schur complement matrices

. . T N .
0= Kl - KA RE

The global Schur complement can also be built by subassembly from the local contri-
butions

N ST g
(23) ul Sur = Zu{f) S(Z)u{f).
=1

We solve the interface problem, with the coefficient matrix .S, using a preconditioned
Krylov space method, such as CG. We can then avoid forming S explicitly, since only
the matrix-vector product Sv is needed and this product can be evaluated by solving
N local linear elasticity problems.

We now introduce a wire basket preconditioner S for S, based on the solution of
local problems for each face and a coarse, global problem associated with the wire
basket. If the interface unknowns are ordered by placing the face variables first, and
then the wire basket variables, the local Schur complements can be written as

(%) (%)
) — [ SFFT Skw ]
a (%) Q) '
SFW SWW

We then perform a change of basis in the space spanned by the wire basket functions in
order to satisfy the null space property, i.e. in order to ensure that the null space of the
local contribution S to the preconditioner is the space of rigid body motions N'. This
can be done by using the extension operator IV defined by (22), since IV reproduces
the rigid body motions. In matrix form, this change of basis is represented locally by
the transformation matrix



where the 1) are identity matrices of appropriate order. Then S() is transformed into

l[l(;}; 0 ] [ S}% Sﬁf{v ] l[g%; R(i)T ] _ [ ng nonzero

R0 I%})W Sg%,VT SI(/%/)W 0 I‘(,QW | nonzero 51(42/)W

The local preconditioner S is constructed by
a) eliminating the coupling between faces and the wire basket;

b) eliminating the coupling between all pairs of faces, i.e. by replacing Sgy by its
block-diagonal part §1(;}7,
c) replacing the wire basket block gl(/;f)w by a simpler matrix g‘(,;)w: Let M@ be
the mass matrix of the local wire basket W (), defined by u? M)u = (u, u)n7w(i). We
g(@)

replace Sy, by a scaled rank-six perturbation of M. On the reference element,

6 7 7 T
i : (M@r)(MOr;)
(24) SW = (14 logn) (M) — > r]TJM(,) i

Py
71=1 r]

).

This corresponds to using a simpler, approximate solver for the wire basket variables;
see the next subsection for further details. We finally return to the original basis:

i ali i aT
(25) S0 _ If(?}? 0 Str 0 Ity R _
OO | RS | I

The action of RY) and R on a face shared by two elements 2; and €; is the same,
because the extension of any function defined on the wire basket to a face, using the
operator I", is determined solely by the values on the boundary of that face. Therefore
the preconditioner can be obtained by subassembly

g_ |1 0 Spr 0 Ipr —RT
| R Iww 0 Sww 0 Iww |’

and

S7'S = RoSywRES+ > Rp, Sp'p, RE,S,
k

with Rg = (R, Iww); see Dryja, Smith, and Widlund [12]. We have thus obtained an
additive preconditioner, with independent parts associated with each face and the wire
basket. Multiplicative and hybrid variants can also be defined and analyzed in a com-
pletely routine way once that the analysis of the additive method has been completed;
see, e.g., Smith, Bjgrstad, and Gropp [38].

5.2. Variational formulation and the main result. Working inside the stan-
dard Schwarz framework, see, e.g., Smith, Bjgrstad, and Gropp [38], we define an
iterative substructuring method by first decomposing the space V" into subspaces as-
sociated with the interiors and a space associated with the interface, which, in turn, is
further decomposed:

N
Vi =3 VIV
=1
13



Here VI = V7 N H}(Q;)? are the interior spaces and V2 = £"(V2) the interface space
defined in (17). It is easy to see that

a,(E™uar, EMur) = uIISup,

where S is the Schur complement defined in (23). Our wire basket method is defined
by the following decomposition of the interface space:

V? :VO+ZV%‘}€,
k

where
Vo = range(I"V)

is the wire basket space consisting of discrete elastic extensions of elements of the
restriction of V" to the wire basket. The extension to the faces is determined using the
interpolation operator IV given in (22). The others, the face spaces, are defined by

Vi ={veV':v=_%W, we Vi with w=0 on '\ F}}

and consist of elements of V™ which are elastic extensions of polynomials associated
with individual faces.

We now define a projection-like operator for Vg and a projection for each of the
face subspaces:

To: Vg — Vg by ao(Tou,v) = a,(u,v) Vv € Vy,

TR, : Ve = Vi by an(Tru,v) = ay(u,v) Vve V.

On the wire basket space Vg, we use the special bilinear form

ap(u,u) = (1+ logn) Elnf [[u— Z c”r]Hn -
j=1
which leads to a simplified solver for this space, constructed from the matrix §‘(/;/)W
defined in (24). This can be seen by a computation analogous to that in the scalar case.

In fact, the minimizing c;; are given by

(u7 rj)n Whet
(26) cij = —————>L
Y (rj7 I‘]‘)nvvvlref7

on the reference element. When deriving this formula, we use the fact that the r; are
L?—orthogonal on Wyes. Therefore,

6 (u,r;)2
(27) inf [[u — Ecurﬂ!n w = (W), Z
j=1 ]:1 ,r])n7w(z)
6 , ,
(7) M(z) NT ~(;
Z Ir r;) ju= uTS&,)Wu.
J

=1
14



We are now ready to define the additive Schwarz operator by

T=To+ > Tr,
Fy,

and to formulate the main result for the displacement model; a proof of this result is
given in [31].
THEOREM 5.1. The condition number of the iteration operator T is bounded by

cond(T) < C(1+ logn)?,

where C' is a constant independent of n and N.

By explicitly computing the matrix form of the operators Ty and TF,, we see that
the matrix form of the operator T is given by §-15. Therefore, Theorem 5.1 provides
a polylogarithmic bound on cond(S~1S5).

6. Iterative substructuring methods for saddle point problems. We now
turn our attention to the mixed formulation of the elasticity and Stokes problems, i.e.
to the discrete saddle point problems (9). We start by describing how to eliminate the
interior unknowns in our saddle point problems. The remaining interface unknowns
and constant pressures in each spectral element satisfy a reduced saddle point problem,
analogous to the Schur complement in the positive definite case. This process is the
starting point of several substructuring methods for Stokes problems; see Bramble and
Pasciak [5] for the case of the h-version finite elements, Le Tallec and Patra [23] for h—p-
version finite elements, and Casarin [10] for spectral elements. The following description
applies to both generalized Stokes and almost incompressible elasticity problems, but
for simplicity we consider only the incompressible Stokes case and adopt the Stokes
terminology (velocity and pressure).

The velocity space V" is decomposed as

V' =V!+ V54 -+ Vi +VE

where the local spaces V¥ have been defined in (14) and the interface space V% has
been defined in (19). In the elasticity case the interface space is V’, and has been
defined in (21)). The pressure space U” is decomposed as

U =Ul+ U3 + -+ Ug + Up,
where the local spaces U have been defined in (15) and
Up={qeU™: q|Qi = constant, i=1,---, N}

consists of piecewise constant pressures in each element. The vector of unknowns is
now reordered placing first the interior unknowns, element by element, and then the
interface velocities and the piecewise constant pressures in each element:

(U7P)T = (ul pi,a2 p2, -+, UN PN, UT po)T

15



After this reordering, our saddle point problem (10) has the following matrix structure:

i All Bﬂ 0 0 AIF 0 7T u; 1 [ b1 1
B11 0 0 0 BIF 0 P1 0
(28) 0 0 - Awvn Bhy Anr 0 uy | = | by
0 0 -+ Byw 0 Byr O PN 0
Ari Bl -+ Ary B Arr B{ ur br
L 0 o - 0 0 By 0 I L po L 0 |

The leading block of this matrix is the direct sum of N local saddle point problems
for the interior velocities and pressures (u;,p;). In addition there is a diagonal block
representing a reduced saddle point problem for the interface velocities and piecewise
constant pressures (ur, pg). These subsystems are given by

Agu; + BIp, = b;— Ajrur .
(%) { Biu; = —Bjrur 1=12. N,
and
(30) { Arrur + Arjug + -+ Apyuy + Blppr 4+ -+ Blprpy + BIpe = br
BOUF = 0

The local saddle point problems (29) are uniquely solvable because the local pressures
are constrained to have zero mean value. The reduced saddle point problem (30) can be
written more clearly by introducing the linear operators R?, R} and P?, P! representing
the solutions of the —th local saddle point problem:

u; = R'b; + R ur, pi = P'b; + P ur, i=1,2,---,N.

Then (30) can be rewritten as

(31) Srur + BIps = br
Bour = 0,
where
N N ) N N
Sr = Arr + Y AriRi + Y BR Pl br=br — Y Ar;R/b; — Y B} P/b;.
=1 =1 =1 =1

As always, the matrices R?, R and P’ PI' need not be assembled explicitly; their
action on given vectors is computed by solving the corresponding local saddle point
problem. Analogously, Sr need not be assembled, since its action on a given vector
can be computed by solving the N local saddle point problems (29) with b; = 0. The
right-hand side br is formed from an additional set of solutions of the N local saddle
point problems (29) with ur = 0.

We solve the saddle point Schur complement system (31) by some preconditioned
Krylov space method such as PCR if we use a symmetric positive definite preconditioner
or GMRES if we use a more general preconditioner.
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6.1. Stability of the saddle point Schur complement. We now study the
inf-sup constant Gr of the saddle point Schur complement (31).

The Stokes problem. A proof that that problem (31) is uniformly stable, i.e. that it
satisfies an inf-sup condition with a constant fr bounded away from zero independently
of n and N, is given in [32]. We remark that Bramble and Pasciak [5] have established
the same type of result for (31) for h-version finite elements. However, their proof
bounds fr in terms of the inf-sup constant of the original system (in our case 3,,), which
would lead to a nonuniform bound in the spectral element case, since [, approaches
zero when n increases. In our proof, we first give a variational formulation of the saddle
point Schur complement (31).

LEMMA 6.1. The variational form of the saddle point Schur complement (31) is:
Find §™u € §™(VY}) and py € Uy such that

50 (8™, 8™V) + b,(S"v,po) = <F,v>,q VS"veSHVE)
(32)
bn(snu7q0) = 0 qu € UO

The following result is also proven in [32].
LEMMA 6.2.

(divS™v, qo)?
sup

A 7 s 2 2 v UO
SnVEVg Sn(SnV’Snv) — ﬁFHqOHL2 qo c ,

where fBr is independent of qo,n, and N.

Incompressible elasticity. The following lemma is the analog of Lemma 6.1 for
incompressible elasticity problems. It can be proved in the same way substituting
€n(+,-) for s, (-, -) and using the definition (20) of the discrete mixed elastic extension.

LEMMA 6.3. The variational form of the saddle point Schur complement (31) is:
Find M™a € M™(V") and py € Uy such that

en(MMu, M™) + b (M"v,p) = <F,v>,q YM'veEMH(V")
(33)
bn(Mnu7 QO) = 0 qu € UO

We can also prove a uniform bound on the inf-sup constant of this saddle point
Schur complement for incompressible elasticity, using the bound for the Stokes case
given in Lemma 6.2; see [32] for a proof.

LEMMA 6.4.

(divM™v, qo)?
sup

> fBf 7 Vgo € U°
Movevr, €n (M, M) > Brllgollz- % 7

where fBr is independent of qo,n, and N.

6.2. Block preconditioners for the saddle point Schur complement. Block
preconditioners for saddle point problems have been studied by Rusten and Winther
[36], Silvester and Wathen [37], Elman and Silvester [15], and Klawonn [21, 19, 20].
Here, we follow Klawonn’s approach.

Let S be the coefficient matrix of the reduced saddle point problem (31)

_| S0 BY
. =[x %]
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We will consider the following block-diagonal and lower block-triangular preconditioners
(an upper block-triangular preconditioner could be considered as well):

- St 0 - St 0
D= by T — )
Ky Fat

where §F and 5’0 are good preconditioners for St and the coarse pressure mass matrix
Co, respectively:
Assumption 1 : 3 constants ag, a; > 0 such that

a%vt§pv <viSprv < a%vt§pv Vv € Vi
Assumption 2 : 3 constants mg, mq > 0 such that
2t t 2t
myq Coq < ¢°Cog < miq'Coq Vg € Up.

We will denote by D and T the operators with exact blocks Sr = Sp and C' = €. With
the block-diagonal preconditioner lA), we can use the preconditioned conjugate residual
method (PCR). In the block-triangular case, T is no longer symmetric and we need to
use a Krylov space method for nonsymmetric systems, such as GMRES or QMR.

Under Assumptions 1 and 2, we obtain the following convergence bounds; cf. Kla-
wonn [21, 19, 20].

THEOREM 6.5. (Block-diagonal preconditioner)
maz{al, m?)

cond(D718) <

cond(D™1S)

min{a2, m2}

and

/32
cond(D™'S) < Rty ;
—1/24 /B +1/4

where Or is the inf-sup constant of the reduced saddle point problem (31) and py is
the continuity constant of By. Here cond(D™1S) is the ratio of the mazimum and the
minimum absolute value of the eigenvalues of D™1S.

THEOREM 6.6. (Block-triangular preconditioner, exact blocks)

spectrum(T~1S) C [BE, B + 1] U {1}.

The case of a block-triangular preconditioner with inexact blocks is studied in
Klawonn [19, 20], under the previous Assumptions 1 and 2, assuming additionally that
1 < ag < ay. The estimate provided is analogous to the case with exact blocks, but is
more complicated; we refer to [19] for details. In this case, we can define an additional
energy norm based on the inexact blocks and a GMRES convergence bound, in this
norm, has been established.

In order to obtain convergence bounds from Theorems 6.5 and 6.6, we need only
to verify Assumptions 1 and 2 for a choice of the preconditioner blocks Sr and Cp. We
will outline how this can be done in the next few subsections, illustrating our results
mainly in the block-diagonal case. We note that the construction of these iterative
substructuring algorithms is a very modular process.
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6.3. A wire basket preconditioner for Stokes problems. We first consider
a Laplacian-based wire basket preconditioner §F given, for each component u® of u,
by the scalar wire basket preconditioner Sy introduced in Pavarino and Widlund [30]
and extended to GLL quadrature based approximations in [33],

Sw 0 0
(35) Sc=1 0 Sy 0
0 0 Sy

In our earlier work, we considered the scalar Laplace equation with piecewise constant
coeflicients and constructed a preconditioner Sy for the Schur complement Sy of the
discrete harmonic interface variables, obtained by eliminating the interior degrees of
freedom:

Spt = RoSpw R + >~ Ry, S5y, Y, -
k

Here Ry = (R, I) is a matrix representing a change of basis in the wire basket space,
RlTpk is the restriction matrix returning the degrees of freedom associated with the face
Fy, and Sww is an approximation of the original wire basket block. This is an additive
preconditioner with independent parts associated with each face and the wire basket.

The condition number of this scalar wire basket preconditioner satisfies a polylog-
arithmic bound

(36)  c(1+log n)_ZU(Fi)TgWu(Fi) < u(ri)TSyu(Fi) < Cul(j)Tgwup Vu(ri) e Vi

see [30, Theorem 3.1] and [33, Theorems 1 and 2]. We can obtain an analogous bound
by applying this bound to each component:

Sy 0 0
(37) ¢c(1 +logn) ?ulSrur <ul | 0 Sy 0 |ur <CulSrur Vur e VL&
0 0 Sy

This result allows us to prove a convergence bound for the reduced saddle point problem
(31) with the block-diagonal preconditioner.

THEOREM 6.7. Let the blocks of the block-diagonal preconditioner Dw be the wire
basket preconditioner St defined in (35) and the coarse mass matriz Cy. Then the
Stokes saddle point Schur complement S preconditioned by Dw satisfies

(1+ logn)?

cond(DytS) < C 3 ,

where C' is independent of n and N.

An analogous bound for the block-triangular preconditioner follows from the esti-
mates of the constants in the Assumptions 1 and 2 required in the proof of Theorem
6.7.

6.4. A wire basket preconditioner for incompressible elasticity problems.
The block-diagonal preconditioners (35) introduced in the previous subsections do not
take any coupling among the three components of u into account. This works for
Stokes problems, but for elasticity problems such an approach would lead to non-
scalable algorithms. In fact, the saddle point Schur complement for linear elasticity
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on one interior element £2; has a six dimensional null space, spanned by the rigid body
motions (three translations and three rotations). In order to obtain a scalable algorithm,
the local contribution from €2; to the wire basket preconditioner must have the same
six dimensional null space. This condition is of course violated by the component-wise
preconditioner of the previous section, that has only a three dimensional null space
of component-wise translations. In this section, we introduce a scalable wire basket
preconditioner for mixed elasticity problems, using the techniques and the analysis of
[31]. The basic changes consist in:
a) using the bilinear form

en(u,v) =2u(e(u) 1 €(v))n g
instead of the bilinear form
2p(e(u) : €(v))n,0 + A(diva,divv), o

of compressible elasticity;
b) using the mixed elastic extension M" instead of the elastic extension £.
This means that the extension from the wire basket is now defined by

W= MrUYuD Wy@) WG,

where the single scalar components are given by (22), and the subspace of interface
displacements is now V%, = M"(V{). We note that the null space of both e,(,-)
and the bilinear form a,(-, ) of compressible elasticity, on an interior element, is the
same space A of rigid body motions and we recall that I" reproduces this space.
Therefore, the same construction as in [31, Section 6] can be used to obtain a wire
basket preconditioner

(38) S' = RoSwhw RS + Y R Si'p RE, -
k

We now use a different scaling of the wire basket inexact solver §V_V1W3 on an interior
element €2;, which we, for simplicity, suppose to be the reference element, we define

o) _ (+logn) o O~ (MOr)) (MOry)T
Sww = B (M Z rfM(i)rj )

J=1
The following bound, analogous to the main result of [31], can be established.
THEOREM 6.8. The wire basket preconditioner 51?1 satisfies the bounds

cfn(1+ log n)_zu%§pur < ulepur < Cu%§pur Yur € V.

A proof of this result can be found in [32].
Using Theorem 6.8 to bound the constants of Assumption 1, we can then prove the
following result. R
THEOREM 6.9. Let the blocks of the block-diagonal preconditioner Dy be the wire
basket preconditioner Sr defined in (38) and the coarse mass matriz Cy. Then the
incompressible mized elasticity saddle point Schur complement S, preconditioned by
Dy, satisfies
-~ 1+ logn)?
cond(Dy' S) < Cﬂ%gn),
where C' is independent of n and N.
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TABLE 1
Compressible elasticity in pure displacement form (v = 0.3): local condition numbers for the wire

(¢)

basket method with original and approrimate wire basket block Sy,

original wire basket block approximate wire basket block
n | cond(SWT S Ay A | cond(SOT 8y Xy Am
2 12.2708 2.3493 0.1915 16.6074 3.6828 0.2218
3 17.4251 2.3915 0.1372 30.3822 3.5840 0.1180
4 24.9668 2.5550 0.1023 40.2729 3.3967 0.0843
5 34.0775 2.6995 0.0792 51.7355 3.4773 0.0672
6 42.5610 2.8032 0.0659 63.2516 3.5712 0.0565
7 52.6813 2.8805 0.0547 76.3325 3.6988 0.0485
8 61.3649 2.9369 0.0479 89.9607 3.8827 0.0432
9 70.3584 2.9810 0.0424 105.0605 4.0638 0.0387
10 78.2626 3.0163 0.0385 119.4171 4.2311 0.0354

7. Numerical results. In this section, we report on results of some numerical
experiments concerning local condition numbers and inf-sup constants for our model
problems in three dimensions; the computations have been carried out in Matlab 5.1 on
Sun workstations.

We consider first the system of compressible elasticity in pure displacement form.
We recall that S is the Schur complement of the stiffness matrix K for the discrete
compressible elasticity problem (6) and that S denotes the wire basket preconditioner
for S. The local contributions from an element §; are denoted by S() and §(i), re-
spectively. As we have pointed out before, our wire basket algorithm satisfies the null
space property and therefore the local condition number Cond(g(i)_ls(i)) for an interior
element is an upper bound for the condition number cond(§_15). We note that for an
interior element, S() and S have the common six-dimensional null space N spanned
by the rigid body motions. The local condition numbers are computed as the ratio of
the extreme eigenvalues Apr and A, of S50 in the space orthogonal to N. Table 1
reports on the local condition numbers for v = 0.3 when the wire basket preconditioner
contains the original wire basket block SI(/;I)W (left panel) and the approximate rank-six

wire basket block §£€/)Wv defined in (24) (right panel). As in the scalar case, the sim-
plified wire basket block is less expensive but yields higher condition numbers than the
original block. In both cases, it is difficult to discern a difference between a linear and
a polylogarithmic growth of the condition numbers.

We now consider the system of almost incompressible elasticity in mixed form and
the Stokes system. We first computed the discrete inf-sup constant fr of the saddle
point Schur complement (34) for both the mixed elasticity and Stokes systems. fr is
computed as the square root of the minimum nonzero eigenvalue of C'O_IBOTSF_IBO on
the reference cube, where St and By are the blocks of the saddle point Schur complement
(34) and Cj is the coarse pressure mass matrix. The results are plotted in Figure 1,
first varying the spectral degree n while keeping fixed a small number of elements,
N = 2 x 2 x 1 (upper plot) and then varying N while keeping n = 2 fixed (lower
plot). Br appears to be bounded by a constant independent of N and n in both cases.
We note that it is well known that the 3, of the original saddle point problem (10) is
inversely proportional to n; see section 3.3. In Table 2, we report on the values of 3, for
n =3,---,10, for both the @, —Q,_2 and the Q),, — P,_; method. Here, 3,, is computed
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F1G. 1. Inf-sup constant Br for the saddle point Schur complement

STOKES |

0.4F R
ELASTICITY
0.3F B
0.2 i
0.1+ B
0 | | | | | | |
2 25 3 35 4 4.5 5 55 6
n
O-G*I\Q\M STOKES ]
5
o.s»f\e\e\ -
04k ELASTICITY |
0.3F B
0.2+ B
0.1 B
0 1 1 1 1
0 50 100 150 200
N
TABLE 2
Inf-sup constant 3, = )\ir{fn(C_lBTA_lB)
Qn - Qn—Q Qn —1In-1
n ﬁn Amzn Amaz i\\zﬁ ﬁn Amzn Amaz i\\:z—(:z
3 10.3291 0.1083 0.2284  2.1084 | 0.4095 0.1677 0.3611 2.1527
4 1 0.2944 0.0867 0.6334  7.3040 | 0.4132 0.1707 0.4570 2.6771
5 | 0.2636 0.0695 0.6447  9.2670 | 0.4175 0.1743 0.5973 3.4258
6 | 0.2400 0.0576 0.6500 11.2829 | 0.4044 0.1635 0.6097 3.7291
7 10.2198 0.0483 0.6500 13.4537 | 0.4073 0.1659 0.6499 3.9161
8 |1 0.2027 0.0411 0.6500 15.8016 | 0.3995 0.1596 0.6499 4.0713
9 | 0.1881 0.0354 0.6500 18.3445 | 0.4009 0.1607 0.6500 4.0446
10 - - - - 0.3950 0.1560 0.6500 4.1653

as the square root of the minimum nonzero eigenvalue of C~' BT A~ B on the reference
cube, where A, B, and C' are the blocks of the original saddle point problem (10). The
inf-sup parameter of the ),, — P,_1 method is much better than that of the @), — Q.2
method. We refer to [28] and [29] for a comparison of block preconditioners for the two
methods.

We next report on the local condition numbers of §F_ISF for one interior element.
Here St is the velocity block in the saddle point Schur complement (34) and S is the
wire basket preconditioner described in Section 6.4 for the mixed elasticity case and in
Section 6.3 for the Stokes case. In both cases, we report only on results obtained with
the original wire basket block of the preconditioner. Table 3 presents the results for the
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TABLE 3
Linear elasticity in mized form: local condition number of the local saddle point Schur complement
with wire basket preconditioner (with original wire basket block) S'F_lsp on one interior element

n v
0.3 0.4 0.49 0.499 0.4999 0.49999 0.499999 0.5
2 9.06 9.06 9.06 9.06 9.06 9.06 9.06 9.06
31 1754 20.19 44.92 58.26 60.12 60.31 60.33 60.33
41 24.45 29.69 6230 85.35 8R.77 89.13 89.17 89.17
5| 3444 3868 76.69 106.72 111.49 111.99 112.05  112.05
6| 4097 46.84 90.97 129.73 136.38 137.09 137.16  137.17
7| 51.23  55.65 107.19 153.29 161.97 162.90 162.99  162.99
81 59.70 64.60 122.13 176.32 187.45 188.66 188.66  188.66

TABLE 4
Generalized Stokes problem: local condition number of the local saddle point Schur complement
with wire basket preconditioner (with original wire basket block) SF_lSp on one interior element

n v
0.3 0.4 0.49 0.499 0.4999 0.49999 0.499999 0.5
2 4.89 4.89 4.89 4.89 4.89 4.89 4.89 4.89
3] 14.13 1731 36.55  44.79  45.88 45.99 46.00 46.00
41 19.18 24.24 5433 73.08 75.76 76.04 76.07 76.07
5] 24.18 30.56 66.25 86.85  89.92 90.24 90.27 90.28
6| 2871 36.29 87.52 121.36 126.52 127.07 127.12  127.13
71 3344 4215  95.50 130.82 136.25 136.82 136.88  136.89
8 | 3836 4871 114.89 163.55 171.49 172.34 172.42  172.43

mixed elasticity problem, while Table 4 gives results for the generalized Stokes problem.
In both cases, the incompressible limit is clearly the hardest yielding condition numbers
three or four times as large as those of the corresponding compressible case. For a given
value of v, the condition number seems to grow linearly with n, which is consistent with
our theoretical result. It is interesting to note that the results for v = 0.3 for the linear
elasticity system in mixed form are better than the corresponding results for the linear
elasticity system in pure displacement form. However, the results for the mixed case
only concern the velocity block of the preconditioner and we actually need to solve a
saddle point problem involving both velocities and constant pressures in each element
to be able to make a more complete comparison.
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