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Three Finger Optimal Planar Grasp

Bud Mishra, Marek Teichmann

Abstract— In this paper, we study various algorithmic
questions regarding the computation of an optimal three fin-
ger planar grasp. We present a novel O(n?logn)-time al-
gorithm to compute such an optimal grasp for an arbitrary
simple n-gon. This algorithm can be used for finding “good”
immobilizing sets. We also discuss several variations on the
problem and many intriguing open questions in the area that
remain unsolved.
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I. INTRODUCTION

N robotics and manufacturing, the problem of grasping,

fixturing and workholding occupies a central position.
While the question of analyzing and synthesizing a closure
grasp or a fixture is fairly well-studied (see for instance [1],
(8], [9], [10], [12], [13], [15], [20], [22]), the question of for-
malizing a satisfactory notion of a grasp metric, and de-
vising efficient algorithm for synthesizing grasps of good
quality has received relatively less attention. A system-
atic exploration in this direction was initiated in the work
of Kirkpatrick, Mishra and Yap [5], where a deep inter-
connection between the problem of optimal grasp synthe-
sis and certain quantitative versions of Helly-type theorems
in combinatorial geometry (namely, quantitative Steinitz’s
theorem) plays a key role. However, the resulting algo-
rithmic questions in the most general setting appear to be
intractable. For a through discussion of these issues, con-

sult [11], [20].

In order to better understand the underlying structure as
well as to provide practical solutions in the simpler settings
(as more common in manufacturing), we have directed our
attention to the cases where we study lower-dimensional ob-
jects (2-D or 2%—D) and of simpler geometry (polygonal ob-
jects) or simpler robot hands. In this paper, we explore this
problem for two-dimensional polygonal objects with hands
of relatively few fingers. Other works in a similar spirit
include those of Ferrari and Canny [4], Li and Sastry [7],
Brost and Goldberg [1], Teichmann [20] and Trinkle [21].

In this paper, we study various algorithmic questions re-
garding the computation of an optimal three finger planar
grasp. We present a novel O(n?logn)-time algorithm to
compute such an optimal grasp for an arbitrary simple n-
gon. We also discuss several variations on the problem and
many intriguing open questions in the area that remain un-
solved.
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II. PRELIMINARY

We wish to obtain the best three-finger grasp of a planar
polygonal object assuming non-frictional contacts. Our al-
gorithm is based on an idealized robot hand model. Tt
consists of several independently movable force-sensing stiff
fingers and grasps a rigid (planar) object K. The fingers
are placed at points p of the boundary of K, which we
shall denote by K. Additionally, we make the following
assumptions: (1) K is a full-bodied (i.e. no internal holes)
compact subset of the Euclidean 2-space, and has a piece-
wise smooth boundary 0K . (2) For each finger-contact on
the body, we may associate a nominal point of contact,
p € K. We let K™ denote the set of points p € K such
that the direction n(p) normal to K at p is well-defined;
by convention, we pick n(p) to be the unit normal pointing
into the interior of K.

In the case, where the contacts are frictionless, we call
the corresponding grips ‘positive grips.” The wrench system
associated with each point is:

I'(p) = {(n(p),p x n(p)}},

where the first part n(p) corresponds to the force compo-
nent and the last part, the torque component. More general
wrench systems can be used to reflect more complicated
contact models (friction, soft contacts, etc.). Next we ex-
amine the concept of a closure grasp:

Definition 1: A set of gripping points on an object K
to which corresponds a system of wrenches wi, ..., w,
is said to constitute a force/torque closure grasp (or sim-
ply, a closure grasp) if and only if any arbitrary external
wrench can be generated by varying only the magnitudes of
the wrenches, subject to the constraint that the magnitudes
take nonnegative values.

A necessary and sufficient condition for a closure grasp
in case of positive grips is

0 €int conv (wy,...,wy).

Another equivalent formulation would be to require that the
wrenches wq, ..., w, positively span the wrench space. It
then follows that one requires four or more non-frictional
grip points to establish a closure grasp on a planar object.

A simple linear time algorithm for finding at least one
closure grasp for a polygonal object has been presented
in [12]. However, it remains unclear whether it is possible
to efficiently compute the “best” possible closure grasp for
a fixed number (say, four or more) of fingers. For some
related discussion of such questions, see Teichmann’s the-
sis [20].

In this paper, we examine the grasping strategies for
hands with three fingers. Note that in this case, since it
is not possible to guarantee that the resulting grasp will



have the force/torque closure properties, we are willing to
sacrifice the condition requiring torque-closure. In other
words, we wish only to achieve a three-finger grasp maxi-
mizing the smallest external force such a grasp can resist.
If we ignore the torque component, then the condition for
the force closure is given by

0 € rel int conv (T'(p1),T(p2), ['(ps)) -

More formally given a simple n-gon P, we wish to choose
three distinct points py, p2 and ps on the interior of the
edge segments of P such that the following properties hold:

1. The unit inner normals n(p1), n(p2) and n(ps) are

concurrent. Assume that the object K 1is described
with respect to a coordinate system whose origin is at
this point of concurrency. In this case, note that

I'(pi) = n(p:),

2. The unit inner normals n(p1), n(p2) and n(ps) posi-
tively span the two-dimensional force space, i.e.,

i=1,2,3.

3
(Yw eR?) (3f; 20,1 <i<3)w=>_ fin(p:).

i=1

This condition follows from our discussion of closure
grasps and the choice of the preceding coordinate sys-
tem.

3. The unit normals are “well-balanced” in the sense that

min{|w| tw € R?
(El.fl 2 0a1§ l S 3) X(.flaf?afS) =1

w = Zj: fin(Pi)}7

is as large as possible (among all choices of p1, p2
and p3). Here, x(f1, f2, f3) denotes a finger force con-
straint condition on the magnitude of the forces applied
at the points of contact. For instance,

Xeon : fi 2 0and Y fi <1,

or
Ymaz - Ji > 0 and max f; < 1.

Thus the first property denotes the trivial torque equi-
librium condition; the second property denotes the force
closure condition and the third property measures the good-
ness of the grasp. In English, the third property says: under
the condition Ycon, we wish to maximize the radius of a disk,
centered at origin and contained in the triangle formed by
(convex hull of) the points (on the unit circle) correspond-
ing to the vectors n(p1), n(p2) and n(psz). Similarly, under
the condition Ypqz, we wish to maximize the radius of a
disk, centered at origin and contained in the Minkowski
sum of the points (on the unit circle) corresponding to the
vectors n(p1), n(pz) and n(ps)—a convex hexagon.

Let the corresponding radii be denoted as peon (P1, P2,
p3) and pmas(P1, P2, P3), respectively. Note that, if the
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Residual circle
withrespect to  Xmax

Residual circle
with respect to Xcon

Fig. 1. Grasp metrics associated with xcon and Xmaz-.

angle a;’s (1 <7 < 3) denote the angles between the inner
normals then apq; = max(ay, as, az) > 27/3 completely
determines the radii

cos(@maz/2), and

SIN Qg -

Pecon =
Pmazr —

Thus both these metrics are monotonically decreasing func-
tions of 27/3 < @mar < m, and it suffices to minimize @4 -
However, for the sake of the ease of exposition, we will fre-
quently use p = peon, and refer to it as the “residual radius”
of n(p1), n(p2) and n(ps). The optimal value of residual
radius is denoted by p*.

I1I. IMMOBILITY AND CLOSURE (GRASPS

We wish to note at this point that the placements for
the three fingers as described in the earlier section also give
rise to immobilizing sets. The notion of immobility 1s much
more a geometric notion and is defined in terms of the lack
of any freedom for finite movement of the immobilized ob-
ject. (See Kuperberg [6]). An interesting survey of several
open problems pertaining to this subject can be found in
two recent computational geometry columns of O’Rourke
(see [16], [17]).

Let K be a connected compact closed region in the plane
RZ; we say that K is (finitely) immobilized by a set of points
I C R?if any rigid motion of K in the plane causes at least
one point of I to penetrate the interior of K. Since we could
assume that [ is a minimal set possessing such a property,
we shall only consider, without loss of generality, the case
where I belongs to the boundary of K (I C dK). A planar
object that can be immobilized by a set of no more than &
points will be referred to as k-tmmobilizable. Thus, we are
interested in computing the “best” immobilizing set for a
3-immobilizable simple polygon.

First, we claim that with the positions of the finger as
described previously, we can immobilize the polygon. Our
claim is a consequence of the following theorem of Czyzow-
icz, Stojmenovic and Urrutia [2].

Theorem 1: Three points immobilize a triangle if and

only if the normals to the triangle at these points are con-
current.
The grasps as described satisfy the required concurrency
condition, and the extension of the edges at which grasp
points are placed form a triangle since their normals are
positively spanning, again by assumption.
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Furthermore, if any non zero coefficient of friction 1is
allowed, these grasps are also good three finger closure
grasps. This can be seen as follows. Let p be this coeffi-
cient of friction, and assume g is sufficiently small. Assume
also that the origin lies at the concurrency point of the three
forces. Let T' be the “wrench map” mapping a unit force
along the inward-directed normal at p; to the corresponding
force and torque in the 3-dimensional “wrench space.” (See
Mishra et al. [12].) Then T'(p;) lie on the zy plane in the
wrench space R3. For a unit vector n in the zy plane in R3,
let nt be the unit vector perpendicular to n and rotated by
7/2 counter-clockwise. Let also n; = n(p;). The two rays
bounding the friction cone at p; are y/1 — pu?n; + un;-, and
their image by T is

I
V1= p’n; iﬂnﬁilpﬂﬁ -

Letting « be the half angle of the friction cone, the last term
follows from the formula of the cross product which involves
the sine function and the fact that g = tan @ = sine/ cos a.

Hence the top facet of Conv{T',(p;) : ¢ =1,2,3} will be
farther from the zy plane (and from the origin) by a dis-
tance of at least mini{|pi|ﬁ}. Similarly for the bottom
facet. Thus when p is sufficiently small so that no other
point of Conv{Il',(p;):%=1,2,3} is closer to the origin,
this quantity will be a lower bound for the quality of the
grasp.

IV. A CuBic TIME ALGORITHM

Clearly, there is a trivial O(n?®) time algorithm to find
an optimal grasp of a simple n-gon, P, by exhaustively
enumerating all edge triples of P and by examining each
triple successively. Given an edge e = ab of the polygon
P, for every point p € ab, n(p) defines a unique point
q(e) on the unit circle in R% Thus we may simply refer
to this point on the unit circle by ¢(e). Henceforth, let the
edges of the n-gon be given as F = {ey, ea, ..., €,} and
the corresponding points on the unit circle be @ = {q1, g2,

- qn}, where ¢; = q(e;) (1 < i < n). In order for an
edge triple (e, e;, eg) to produce three necessary optimal
contact points, it must be the case that (g¢;, ¢;, ¢x) form a
triangle with a positive residual radius of p*—a condition
that can be checked easily in O(1) time. However, this
is not sufficient—since we must check that there are three
points p; € ¢;, p; € ¢; and pi € ey satisfying the torque
equilibrium condition; namely, that n(p1), n(p2) and n(ps)
are concurrent meeting at some point c.

This is not hard but requires some thought. We proceed
as follows: Consider an edge ab of P. Let HP(a,ab) be
the open half plane containing ab and delimited by a line
containing a and normal to ab and similarly, let H P (b, ab)
be the open half plane containing ab and delimited by a line
containing b and normal to ab. Let

slab(e) = HP(a,ab) N HP(b,ab),

where e = ab.

Active Set for the Shaded Cell

Line Arrangement

Fig. 2. The line arrangement associated with an object.

Then it is easy to see that for a triple of edges (e;, €5, ex)
to satisfy the torque equilibrium condition, it is necessary
and sufficient that

slab(e;) Nslab(e;) Nslab(ex) = C # 0.

The point of concurrency ¢ € S, and the contact points p;,
p; and pi are determined by the normals from ¢ onto the
edges €;, e; and ey.

Thus our previous arguments can be summarized to be
saying that an edge triple (e;, ej, ex) defines an optimal
grasp if slab(e;) Nslab(e;) Nslab(eg) is nonempty and that
the triangle formed by the corresponding points on the unit
circle has a positive residual radius of p*, maximal among
all choices of edge triples. These considerations yield an
O(n?)-time algorithm.

V. AN IMPROVED SUBCUBIC ALGORITHM

Next, we ask if it 1s possible to improve upon the trivial
O(n®)-time algorithm. Here, we present an O(n?logn)-
time algorithm for finding the optimal three fingered planar
grasp for an arbitrary simple polygon.

We first describe the algorithm assuming that the poly-
gon P is nondegenerate (in the sense that will be made pre-
cise later) and then remark on how the nondegeneracy can
be eliminated by a simple modification to the algorithm.

The algorithm can be described as follows: First we cre-
ate the two-dimensional line arrangement formed by a col-
lection of lines consisting of three lines per edge, where the
triplet of lines associated with an edge ab are: (1) the line
containing the edge ab, (2) the line normal to ab, contain-
ing a and (3) the line normal to ab, containing b. Now
consider a nonempty cell C' of this arrangement: we say a
point ¢ = g(e) on the unit circle is active for this cell, if
slab(e) D C'. The subset of points on the unit circle (among
the points q1, qa, ..., ¢» of Q) that are active for this cell
C, is called its active set and denoted by active(C) C Q.
Now, if we find three points ¢;, ¢; and g5 € active(C), whose
residual radius p(C) is as large as possible (and positive),
then it is seen that p* is simply the maximum of all p(C)’s
taken over all cells of the arrangement.

Note that there are at most O(n?) cells altogether and
as we go from one cell C' to its adjacent cell C' then the
active(C”) can be computed from the active(C') by adding



or deleting a point on the unit circle, depending on the line
containing the C'N C’. Of course, here we have tacitly as-
sumed that the polygon is nondegenerate, in the sense that
all the lines on the arrangement are distinct, since otherwise
C N C" may belong to more than one line of the arrange-
ment and thus require addition and deletion of more than
one point of the set (). Clearly, the active sets for all the
cells can be computed in O(n?) time by visiting the cells of
the arrangement, starting from a cell with an empty active
set (such a cell exists sufficiently far away from the poly-
gon P). However, computing the p(C) for each cell may
still take O(n) time, thus forcing the entire procedure to
take O(n?) time.

We circumvent this problem by the following simple trick:
First of all we maintain the elements of each active(C) in a
clockwise order in a dynamic balanced binary search tree.
Since each update operation on this data structure takes
O(logn) time, this increases the complexity of computing
the active sets of all the cells to O(n?logn)-time.

At any instant, we only remember p—the maximal resid-
ual radius seen so far. That is, p is simply the maximum
of those p(C')’s corresponding to only those cells C' that
have been visited so far. We also remember the edge triple
associated with the radius value p. When we go from a
visited cell C' to an adjacent unvisited cell C’, we do one
of two things: If going to the next cell entails deletion of a
point, ¢;, on the unit circle, then we only have to update
the active(C”); the maximal residual radius of C’ cannot be
larger than that of C' and thus p remains unchanged. If go-
ing to the next cell, on the other hand, entails addition of a
point, ¢; on the unit circle, then we have to both update the
active(C”) and check if g can be improved. If the maximal
residual radius of C’, p(C") > g, then the associated triplet
from active(C") must involve the new point ¢; and two of
the old points. How can we do this operation quickly?

First note that residual radii cannot take all possible val-
ues but only one of (g) values, each value being determined
by a pair of distinct points ¢; and ¢,,;, and is equal to the
radius of the circle that is centered at the origin and has the
line containing ¢; and ¢,, as tangent. All these radii can be
sorted in O(n?logn) time and are denoted by

0<p<pp<-<p<o<1

Suppose before visiting the cell C’ the maximal residual
radius seen so far is § = p;. When we go to the cell ¢’
(which requires adding the point ¢;), we will successively
test if it has a residual radius no smaller than p;11, piya,
etc. until we fail for some value p; (j > i). Each such test
can be performed in O(logn) time as explained below.

Let ¢ < k < j, and we wish to test if active(C”) has three
points involving ¢; and of residual radius > pi. Consider a
circle C(pg) of radius pr and centered at the origin. Two
distinct points of active(C”) are said to be mutually visible
if the line segment connecting these two points do not in-
tersect the interior of C'(pg). Thus our test succeeds if we
can find a pair of mutually visible distinct points among the
active(C”), each of which is also mutually visible with ¢;.
Let the leftmost partner of g; be the last mutually visible
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Fig. 3. Test involving ¢; and a possible residual radius value of py.

point of ¢; encountered, visiting the points of active(C”) in
clockwise order starting from ¢;. We call this point LP(q;).
Similarly, we define the the rightmost partner of ¢; by visit-
ing the points of active(C") in anti-clockwise order, and call
it RP(q;). Since the active points of C’ are kept in their
sorted order in a balanced search structure, both LP(g;)
and RP(¢;) can be computed in O(logn) time. Then it
only remains to check that LP(q;) and RP(¢;) are mutu-
ally visible, a step that can be accomplished in O(1) time.

Thus, we can keep track of p by performing a sequence of
tests per each new cell, each of which takes O(logn) time.
Note that while there is no a priori bound on the number
of tests we may need to perform for a new cell, it should
be obvious that all but the last test succeeds and the last
test fails. Thus there are at most one test per cell that
fails, and the totality of all such failed tests incur a cost of
O(n?logn). On the other hand, if we have a successful test
involving a radius value pg, then we shall never perform
another successful test involving py, subsequently. Thus,
the total number of successful tests are bounded by the
number possible radii values ((g) of those) and altogether
they incur a cost of O(n?logn). Clearly, when we are done
visiting all the cells, we have the global maximal residual
radius p* together with the edge triple, which readily give
the three contact points, and we have spent O(n?logn)
time.

If the polygon P is degenerate then the resulting arrange-
ment may force us to add and delete many points of () while
going from a cell to its adjacent cell. If we enforce the disci-
pline that all the deletions are performed before all the ad-
ditions and each update is performed sequentially then the
correctness of the algorithm still holds and the performance
analysis goes through mutatis mutandis. In summary, we
have

Theorem 2: Given an arbitrary simple n-gon P, we can
compute a three finger optimal grasp of P in O(n?logn)
time.

Proof: The proof is a simple consequence of the pre-
ceding discussion. |
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VI. IMPROVEMENTS AND OPEN QUESTIONS

There are several open questions related to the problem
of finding optimal planar grasps. We briefly discuss these
problems.

A. Polygon with Forbidden Regions

Consider a variation on the above problem: Suppose we
are given a simple polygon P with certain subset of 9P
designated as “forbidden” and its complement, “feasible.”
Assume that the feasible parts of the polygon consists of at
most K segments (the edge segment ab being allowed to be
a point a (@ = b), in the degenerate case). We are asked to
find an optimal three-finger grasp of the polygon with none
of the fingers on a forbidden region. Using a small varia-
tion of the above algorithm, we can solve this problem in
O(k?1og k) time—only modify the line arrangement to con-
sist of the following triple of lines per feasible edge segment
ab C e, where e is an edge of P: (1) the line containing e,
(2) the line normal to e and containing a, and (3) the line
normal to e and containing b. If the edge segment is a point
a € e then the above situation degenerates to two lines, one
containing e and the other normal e at a.

B. Convex Polygon with Geometric Constraints

We do not know whether there is a better solution for the
above problem with improved complexity. For instance, it
is not even clear whether there are O(n) time algorithms
for objects with simpler geometry, e.g., convex objects. We
have an O(n)-time solution only for what we shall refer to
as circular convexr polygonal objects. A convex polygon P
will be called circular if there is a point ¢ in its interior (its
center) so that the line segment from ¢ to a line containing
an edge e and normal to e is entirely within P. For instance,
the convex hull of a set of points on a circle defines a circular
polygon (thus, the name). Note that in this case,

m slab(e) # 0,

eel

where F is the set of edges of P. Clearly, we can find a
small neighborhood U of the center ¢ such that active(U) is
all of (). In this case, the problem reduces to simply finding
three points ¢;, ¢; and ¢ € @) such that the residual radius
of the resulting triangle is as large as possible.

We need to extend the notion of residual radius as follows:
The residual radius of a triangle A is the signed radius of
the largest disk centered at the origin that is either fully
outside or fully inside A, the sign being positive or nega-
tive depending on whether the disk is inside or outside A
respectively.

Assume that the points of () are ordered in the anti-
clockwise order as

q1 > qa > - > (Qp.

for any point ¢ € @ its successor, succ(q), is the point
immediately following it in the clockwise order.

We start with three arbitrarily chosen distinct points,
say ug = q1, u1 = q2 and us = qa, for instance. At any

instance, assume that, we have three points ug, u; and us,
at least two of which are distinct, and

Ug 2 U1 2> Uz > Ug

There are two cases to consider: (1) they are not all dis-
tinct, i.e., u; = u;y1 and (2) they are all distinct and the
residual disk touches the edge u;_ju;.

In the first case, we advance the “forward point” u; (i.e,
replace u; by succ(u;)) with the hope of making the points
distinct (this may not succeed and lead to further advance-
ments of this kind). In the second case, we advance the
“backward point” wu; (i.e, replace u; by succ(u;)) with the
hope of releasing the “limiting edge” u;_jiu; and thus pos-
sibly (but not always) increasing the residual radius.

The algorithm keeps advancing the forward or the back-
ward point (as the case may be) while recording the max-
1mmal residual radius seen so far until ug returns to its ini-
tial position, at which point it halts and outputs the edge
triple corresponding to the maximal residual radius. Since
the polygon is a circular convex polygon, one can easily
determine the contact points by taking the normals from
the center of the polygon to each edge of the edge triple.
The correctness and the complexity analysis of the algo-
rithm can be shown in a manner similar to the discussions
in section 5 of the paper by Kirkpatrick et. al. [5] and is
omitted here. Note, however, that the above technique fails
for arbitrary convex polygons if we relax the condition of
circularity.

Note also that the above technique can be easily adapted
to the following problem: Given a simple polygon P and a
center ¢ € R?, find a 3-finger optimal grasp of P such that
the inner normals at the contact points go through ¢. This
problem is solved by simply running the above algorithm
starting with an active set, active(U) of a small open neigh-
borhood of ¢. The resulting algorithm takes O(n) time.

C. All Optimal Three Finger Grasps

Sometimes, we wish to determine not just one optimal
three finger grasp but all of them. Then we may use any
one of this class of optimal grasps, depending on the task
at hand. Clearly, the brute force O(n®) time algorithm will
succeed to do so. Note that the algorithm of the previ-
ous section cannot be easily modified into a two pass al-
gorithm, since addition of a new point (in the process of
going from one cell to an adjacent cell) may create an O(n)
edge triplets of residual radius p*. Here, we describe an
O(n?logn) algorithm for the special case when the object
18 convex.

Let P be a convex n-gon and let the possible residual
radii (as in the preceding subsection) be given as

0<p <pp< - <p <<l

We shall find the optimal residual radius p* by performing a
binary search on the sequence of possible residual radii. For
a given value of p;, we can enumerate all the edge triples
that lead to a residual radius of p; in O(n?) as follows:
Corresponding to the possible radius value p;, there are at



most O(n) edge pairs (e;, €;)’s such that the corresponding
points ¢; and ¢; € () on the unit circle satisfy the property
that the line determined by ¢;¢; is tangent to a circle C'(p;)
centered at the origin and of radius p;. Now for each such
edge pair, we need to check in O(n) time if there is another
edge ej such that gx € Q\ {gi, ¢;} is mutually visible (with
respect to C(p;)) to both ¢; and ¢; and that

slab(e;) Nslab(e;) Nslab(ex) # 0.

We can thus enumerate all the e;’s that succeed this test.
The binary search only considers O(logn) different values
of p;’s and terminates with success with the largest possi-
ble value p* and enumerating all edge triples corresponding
to p*. It is then trivial to describe all possible three fin-
ger optimal planar grasps. Thus the algorithm has a time
complexity of O(n?logn).

However, the algorithm applied to a nonconvex poly-
gon leads to an O(n®)-time algorithm, as in a pathologi-
cal case, there may be O(n?) edge pairs to be considered
for a given value of p;. It is noteworthy that this algo-
rithm is rather simple to implement and may perform well
in practice. For instance, if one performs binary search
on the real interval [0, 1] (instead of the possible radii val-
ues), then for a random polygon this algorithm can compute
in O(nlognlog(1/e€)) all three finger grasps whose corre-
sponding residual radii lie in the range [p, p*] of size < ¢,
for sufficiently small positive e.

D. Optimal Grasps with Four or More Fingers

We still do not know how to find optimal m-finger planar
grasp (m > 4) in time better than what can be obtained by
the brute force algorithm taking time O(n™). For instance,
it 1s not even clear if there is an algorithm to compute
such an optimal grasp in time O(n™ !polylog n). The
complication arises by virtue of the torque components that
one has to consider in the case when m > 4.

Some progress has been made, by modifying the prob-
lem to that of choosing an optimal set of m-finger contact
points out of a preselected O(n) points on the boundary of
the polygon, dP. For instance, we have an O(n®logn) time
algorithm to find such an optimal four finger grasp in this
case. The technique employed for this case is a generaliza-
tion of the preceding algorithm involving binary search. We
suspect that the algorithm generalizes to m fingers (m > 4)
and has a time complexity of O(n™~!logn).

E. Parallel Jaw and Three-Jaw Grippers

In case of parallel jaw grippers and three-jaw grippers
grasping an n-gon, one can compute optimal grasps in time
O(n). The algorithms in these cases involve simply going
around the object and trying all possible grasps [4]. Tt is
not clear, if these grippers are comparable to multi-fingered
hands in terms of how well they optimize various grasp
metrics.

F. Firturing

Another problem of interest is to study the similar opti-
mality problem in the case of “fixturing,” where a polygonal
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object has to be fixtured by a set of toe-clamps that can be
placed only at places designated by a set of toe-slots (which
are usually arranged on a regular square grid) [1], [9], [10],
[22]. The added difficulty arises because of the geometric
constraints imposed by the toe-slots. It is easily seen that
for a rectilinear object the optimal fixel (fixture element)
placement can be determined in O(nr) time. However, the
problem seems quite difficult even when we consider a con-
vex polygonal object.

G. Reactive Robotics

Recently, we have been able to design “reactive hands”
for grasping. These algorithms operate by determining a
sensor-dependent binary vector and then actuating a small
set of actuators by a simple table-lookup procedure [18],
[19]. Tt remains an intriguing open question whether it is
possible to design general multi-fingered reactive hands that
always find an optimal grasp.

REFERENCES

[1] R.C. Brost and K.Y. Goldberg, “A Complete Algorithm for Syn-
thesizing Modular Fixtures for Polygonal Parts,” Proceedings of
the 1994 IEEE International Conference on Robotics and Au-
tomation, 1994.

[2] J. Czyzowicz, 1. Stojmenovic, and J. Urrutia, Immobilizing a
Shape, Technical report TR-90-37, University of Ottawa, Canada,
1990.

[3] J. Czyzowicz, I. Stojmenovic, and T. Szymacha, On a Problem of
Immobilizing Polygons, Technical report RR-92-05-6, Université
du Québec a Hull, Québec, Canada, 1992.

[4] C. Ferrari and J. Canny, “Planning Optimal Grasps,” Proceed-
ings of the 1992 IEEE International Conference on Robotics and
Automation, Nice (France), pp. 2290-2295, 1992.

[5] D. Kirkpatrick, B. Mishra and C.-K. Yap, “Quantitative Steinitz’s
Theorem with Applications to Multifingered Grasping,” Dis-
crete & Computational Geometry, Springer-Verlag, New York,
7(3):295-318, 1992.

[6] W.Kuperberg, DIMACS workshop on Polytopes, DIMAC Center,
Rutgers University, NJ, 1990.

[7] Z-X.Li and S. Sastry, “Task Oriented Optimal Grasping by Mul-
tifingered Robot Hands,” Proceedings of the 1987 IEEE Inter-
national Conference on Robotics and Automation, pp. 389-394,
1987.

[8] X. Markenscoff, L. Ni and C.H. Papadimitriou, “The Geometry of
Grasping,” International Journal of Robotics Research, 9(1):61—
74, 1990.

[9] B. Mishra, “Workholding—Analysis and Planning,” Proceedings:
IEEE/RSJ International Workshop on Intelligent Robots and
Systems: TROS’91, 1:53-57, Osaka, Japan, 1991.

[10] B. Mishra, “An Algorithmic Approach to Fixturing,” 1994 NSF
Design and Manufacturing Grantees Conference, M.I.T., Cam-
bridge, MA, 1994.

[11] B. Mishra, “Grasp Metrics: Optimality and Complexity,” Al-
gorithmic Foundations of Robotics, (Edited by K. Goldberg,
D. Halperin, J.-C. Latombe and R. Wilson), pp. 137-166, A.K. Pe-
ters, Wellesley, Massachusetts, 1995.

[12] B. Mishra, J.T. Schwartz and M. Sharir, “On the Existence and
Synthesis of Multifinger Positive Grips,” Special Issue: Robotics,
Algorithmica, 2(4):541-558, 1987.

[13] B. Mishra and N. Silver, “Some Discussion of Static Gripping
and Its Stability,” IEEE Transactions on Systems, Man and Cy-
bernetics, 19(4):783-796, 1989.

[14] B. Mishra and M. Teichmann, “On Immobility,” Special Issue:
Robot Kinematics, Laboratory Robotics and Automation, 4:145—
153, 1992.

[15] V. Nguyen, “Constructing Force-Closure Grasps,” Proceedings
of the 1986 IEEFE International Conference on Robotics and Au-
tomation, pp. 1368-1373, San Francisco, CA, 1986.

[16] J. O’'Rourke, “Computational Geometry Column 9,” SIGACT
News,21(1):18-20, 1990.



MISHRA AND TEICHMANN: THREE FINGER OPTIMAL PLANAR GRASP

[17] J. O’Rourke, “Computational Geometry Column 11,” Inter-
national Journal of Computational Geometry & Applications,
1(1):93-98, 1991.

[18] M. Teichmann and B. Mishra, “Reactive Algorithms for Grasp-
ing Using a Modified Parallel Jaw Gripper,” Proceedings of the
1994 IEEFE International Conference on Robotics and Automa-
tion: ICRA’94, San Diego, CA, 1994.

[19] M. Teichmann and B. Mishra, “Reactive Algorithms for 2 and
3 Finger Grasping,” Proceedings of the 1994 IEEE/RSJ Inter-
national Workshop on Intelligent Robots and Systems: TRS’94,
Grenoble, France, 1994.

[20] M. Teichmann, Grasping and Fizturing: a Geometric Study and
an Implementation, Ph.D. Thesis, Courant Institute, New York
University, NY, 1995.

[21] J.C. Trinkle, “A Quantitative Test for Form Closure Grasps,”
Department of Computer Science, Texas A&M University, College
Station, TX, 1992.

[22] Y. Zhuang, K.Y. Goldberg and Y-C. Wong, “On the Existence of
Modular Fixtures,” Proceedings of the 1994 IEEFE International
Conference on Robotics and Automation, 1994.

Bud Mishra is a Professor of Computer Sci-
ence at the Courant Institute of New York
University. He received his B.Tech. (1980)
from the Indian Institute of Technology in
Communication Engineering and M.S. (1982)
and Ph.D. (1985) degrees in Computer Science
from Carnegie Mellon University. Professor
Mishra is interested in mathematical and algo-
rithmic methods of computer science with ap-
plications to various real-life problems. His re-
search interests span many areas of computer
science (e.g. VLSI tools, compiler design, real-time, asynchronous and
self-timed systems, design of discrete controllers, algorithms and data
structures, complexity, computational algebra and geometry, compu-
tational biology, computational finance), mathematics (logic, combina-
torics, algebra) and robotics. In robotics area, his primary interest has
been in the area of dexterous manipulation, where he studies manipu-
lation schemes with polydactyl robot hands. His most recent projects
include reactive robotics, a new control paradigm for robotics, Digi-
Land, an object-oriented distributed virtual economy and a collabo-
ration on the human Genome project. Professor Mishra has acted as
a technical consultant for various computer and financial industries.

Marek Teichmann is a Post Doctoral Fel-
low in the Computer Science Department at
the Courant Institute of New York Univer-
sity. He received his B.S. (1987) in Mathe-
matics and Computer Science and M.S. (1989)
in Computer Science from McGill University,
Montréal. He received his Ph.D. (1995) de-
gree from the Courant Institute, New York Uni-
versity. His research focuses on applications
of discrete and computational geometric tech-
niques to robotics, manufacturing and com-
puter graphics. His thesis contains an in-depth geometric analysis
of various issues of grasping, randomized approximation algorithms
for optimal grasp and fixture synthesis as well as a formulation of
reactive robotics schemes, resulting in an implementation of a robust
and fast reactive gripper.




