
Practical SMT-Based Type Error Localization
Extended Version

Zvonimir Pavlinovic
New York University
zvonimir@cs.nyu.edu

Tim King
Verimag

tim.king@imag.fr

Thomas Wies
New York University
wies@cs.nyu.edu

Abstract
Compilers for statically typed functional programming languages
are notorious for generating confusing type error messages. When
the compiler detects a type error, it typically reports the program
location where the type checking failed as the source of the error.
Since other error sources are not even considered, the actual root
cause is often missed. A more adequate approach is to consider
all possible error sources and report the most useful one subject
to some usefulness criterion. In our previous work, we showed
that this approach can be formulated as an optimization problem
related to satisfiability modulo theories (SMT). This formulation
cleanly separates the heuristic nature of usefulness criteria from the
underlying search problem. Unfortunately, algorithms that search
for an optimal error source cannot directly use principal types
which are crucial for dealing with the exponential-time complexity
of the decision problem of polymorphic type checking. In this
paper, we present a new algorithm that efficiently finds an optimal
error source in a given ill-typed program. Our algorithm uses an
improved SMT encoding to cope with the high complexity of
polymorphic typing by iteratively expanding the typing constraints
from which principal types are derived. The algorithm preserves the
clean separation between the heuristics and the actual search. We
have implemented our algorithm for OCaml. In our experimental
evaluation, we found that the algorithm reduces the running times
for optimal type error localization from minutes to seconds and
scales better than previous localization algorithms.

1. Introduction
Hindley-Milner type systems support automatic type inference,
which is one of the features that make languages such as Haskell,
OCaml, and SML so attractive. While the type inference prob-
lem for these languages is well understood [1, 10, 16, 19, 23, 29],
the problem of diagnosing type errors still lacks satisfactory solu-
tions [8, 9, 12, 14, 17, 21, 24, 30, 31].

When type inference fails, a compiler usually reports the loca-
tion where the first type mismatch occurred as the source of the
error. However, often the actual location that is to blame for the er-
ror and needs to be fixed is somewhere else entirely. Consequently,
the quality of type error messages suffers, which increases the de-
bugging time for the programmer. A more adequate approach is to
consider all possible error sources and then choose the one that is
most likely to blame for the error. Here, an error source is a set of
program locations that, once corrected, yield a well-typed program.

The challenge for this approach is that it involves two sub-
problems that are difficult to untangle: (1) searching for type error
sources, and (2) ranking error sources according to some useful-
ness criterion (e.g., the number of required modifications to fix the
program). Existing solutions to type error localization make spe-
cific heuristic decisions for solving these subproblems. As a conse-

quence, the resulting algorithms often do not provide formal guar-
antees or use specific usefulness criteria that are difficult to jus-
tify or adapt. In our recent work [24], we have proposed a novel
approach that formalizes type error localization as an optimiza-
tion problem. The advantage of this approach is that it creates a
clean separation between (1) the algorithmic problem of finding er-
ror sources of minimum cost, and (2) the problem of finding good
usefulness criteria that define the cost function. This separation of
concerns allows us to study these two problems independently. In
this paper, we develop an efficient solution for problem (1).
Challenge. Type inference is often formalized in terms of con-
straint satisfaction [1, 23, 29]. In this formalization, each expres-
sion in the program is associated with a type variable. A typing con-
straint of a program encodes the relationship between the type of
each expression and the types of its subexpressions by constraining
the type variables appropriately. The program is then well-typed iff
there exists an assignment of types to the type variables that satis-
fies the constraint. In our previous paper, we used this formalization
to reduce the problem of finding minimum error sources to a known
optimization problem in satisfiability modulo theories (SMT), the
partial weighted MaxSMT problem. This reduction enables us to
use existing MaxSMT solvers for type error localization.

The reduction to constraint satisfaction also has its problems.
The number of typing constraints can grow exponentially in the
size of the program. This is because the constraints associated with
polymorphic functions are duplicated each time these functions
are used. This explosion in the constraint size does not seem to
be avoidable because the type inference problem is known to be
EXPTIME-complete [16, 19]. However, in practice, compilers suc-
cessfully avoid the explosion by computing the principal type [10]
of each polymorphic function and then instantiating a fresh copy of
this type for each usage. The resulting constraints are much smaller
in practice. Since the smaller constraints are equisatisfiable with the
original constraints, the resulting algorithm is a decision procedure
for the type checking problem [10]. Unfortunately, this technique
cannot be applied immediately to the optimization problem of type
error localization. If the minimum cost error source is located inside
of a polymorphic function, then abstracting the constraints of that
function by its principle type will hide this error source. Thus, this
approach can yield incorrect results. This dilemma is inherent to all
type error localization techniques and the main reason why existing
algorithms that are guaranteed to produce optimal solutions do not
yet scale to real-world programs.
Solution. Our new algorithm makes the optimistic assumption that
the relevant type error sources only involve few polymorphic func-
tions, even for large programs. Based on this assumption, we pro-
pose an improved reduction to the MaxSMT problem that abstracts
polymorphic functions by principal types. The abstraction is done
in such a way that all potential error sources involving the defi-
nition of an abstracted function are represented by a single error

source whose cost is smaller or equal to the cost of all these po-
tential error sources. The algorithm then iteratively computes min-
imum error sources for abstracted constraints. If an error source
involves a usage of a polymorphic function, the corresponding in-
stantiations of the principal type of that function are expanded to
the actual typing constraints. Usages of polymorphic functions that
are exposed by the new constraints are expanded if they are rel-
evant for the minimum error source in the next iteration. The al-
gorithm eventually terminates when the computed minimum error
source no longer involves any usages of abstracted polymorphic
functions. Such error sources are guaranteed to have minimum cost
for the fully expanded constraints, even if the final constraint is not
yet fully expanded.

We have implemented our algorithm targeting OCaml [22] and
evaluated it on benchmarks for type error localization [17] as well
as code taken from a larger OCaml application. We used Easy-
OCaml [13] for generating typing constraints and the MaxSMT
solver νZ [6, 7, 11] for computing minimum error sources. We
found that our implementation efficiently computes the minimum
error source in our experiments for a typical usefulness criterion
taken from [24]. In particular, our algorithm is able to compute min-
imum error sources for realistic programs in seconds, compared to
several minutes for the naive algorithm and other approaches. Also,
on our benchmarks, the new algorithm avoids the exponential ex-
plosion in the size of the generated constraints that we observe in
the naive algorithm.

Related Work. The formulation of type error localization as an
optimization problem follows our previous work [24]. There, we
presented the naive implementation of the search algorithm. Other
work on type error localization is not directly comparable to ours.
Most closely related is the work by Zhang and Myers [32, 33]
where type error localization is cast as a graph analysis problem.
Their approach, however, does not address the issue of constraint
explosion, which here manifests as an explosion in the size of the
generated graphs. In fact, our algorithm is faster than their imple-
mentation on the same benchmarks: while their tool runs over a
minute for some programs, our algorithm always finishes in a just
of a couple of seconds. Consequently, for larger problem instances
with a couple of thousands of lines of code their implementation
runs out of memory. Our algorithm, on the other hand, finishes in
less than 50 seconds. The majority of the remaining work on type
error localization is concerned with different definitions and no-
tions of usefulness criteria [8, 9, 12, 14, 21, 30, 31]. In our previ-
ous work, we gave experimental evidence that our approach yields
better error sources than the OCaml compiler even for a relatively
simple cost function. The work in this paper is orthogonal because
it focuses on practical algorithms for computing a minimum error
source subject to an arbitrary cost function.

Contributions. Our contributions can be summarized as follows:

• We present a new algorithm that uses SMT techniques to effi-
ciently find the minimum error source in a given ill-typed pro-
gram. The algorithm works for an arbitrary cost function which
encodes the usefulness criterion for ranking error sources.
• We have implemented the algorithm and showed that it scales

to programs of realistic size.
• To our knowledge, this is the first algorithm for type error

localization that gives formal optimality guarantees and has the
potential to be usable in practice.

2. Overview
In this section we provide an overview of our approach through an
illustrative example. We start by describing type error localization

as an optimization problem and then exemplify the workings of our
algorithm that efficiently solves the problem.

2.1 Example
Our running OCaml example is as follows:

1 let first (a, b, _) = a
2 let second (a, b, _) = b
3 let f x =
4 let first_x = first x in
5 let second_x = int_of_string (second x) in
6 first_x + second_x
7 f ("1", "2", f ("3", "4", 5))

This program is not well-typed. While polymorphic functions
first, second, and f do not have any type errors, the calls to
f on line 7 are ill-typed. The inner call to f is passed a triple having
the string "3" as its first member, whereas an integer is expected.
The standard OCaml compiler [22] reports this type error to the
programmer blaming expression "1" on line 7 as the source of the
error (OCaml version 4.01.0). However, perhaps the programmer
made a mistake by calling function first on line 4 or maybe she
incorrectly defined first on line 1. Maybe the programmer should
have wrapped this call with a call to int of string just as she has
done on line 5. The OCaml compiler disregards such error sources.

2.2 Finding Minimum Error Sources
In our previous work [24], we formulated type error localization
as an optimization problem of finding an error source that is con-
sidered most useful for the programmer. The criterion for useful-
ness is provided by the compiler. We define an error source to be
a set of program expressions that, once fixed, make the program
well-typed. A usefulness criterion is a function from program ex-
pressions to positive weights. A minimum error source is an er-
ror source with minimum cumulative weight. It corresponds to the
most useful error source. To make this more clear, consider a use-
fulness criterion where each expression is assigned a weight equal
to the size of the expression, represented as an abstract syntax tree
(AST). In the example, expression first on line 4 is a singleton
error source of weight 1 as replacing it by a function of a type that
is an instance of the polymorphic type

∀α.fun(string ∗ string ∗ α, int),

makes the program well-typed, say int of string ◦ first. Sim-
ilarly, replacing the expression a on line 1 with (int of string
a) also resolves the type error. Loosely speaking, the error sources
that are minimum subject to the AST size criterion require the
fewest corrections to fix the error. The two error sources described
above are minimum error sources since their cumulative weight is
1, which is minimum for this program and criterion. In contrast, we
could abstract the entire application first x on the same line to
get a well typed program. Thus first x is also an error source,
but it is not minimum as its weight is 3 according to its AST size
(first, x, and function application). Note that "1" on line 7 on
its own is not an error source according to our definition. If one
abstracts "1", this does not yield a well typed program since the
expression "3" on line 7 would still lead to a failure. Abstracting
both {"1", "3"} is an error source with cumulative weight 2. Ob-
serve that there is a clean separation between searching for a min-
imum error source and the definition of the usefulness criterion.
This allows easy prototyping of various criteria without modifying
the compiler infrastructure. A more detailed discussion of potential
usefulness criteria can be found in [24].

2.3 Abstraction by Principal Types
A potential obstacle to adopting this approach is that compilers
now need to solve an optimization problem instead of a decision
problem. This is particularly problematic since type checking for
polymorphic type systems is EXPTIME complete [16, 19]. This
high complexity manifests in an exponential number of generated
typing constraints. For instance, consider the typing constraints for
the function second:

αsecond = fun(αi, αo) [Def. of second] (1)
αi = triple(αa, αb, α) (a, b, _) (2)
αo = αb b (3)

The above constraints state that the type of second, represented by
the type variable αsecond, is a function type (1) that accepts some
triple (2) and returns a value whose type is equal to the type of the
second component of that triple (3). When a polymorphic function,
such as second, is called in the program, the associated set of typ-
ing constraints needs to be instantiated and the new copy has to be
added to the whole set of typing constraints. Instantiation of typ-
ing constraints involves copying the constraints and replacing free
type variables in the copy with fresh type variables. In our exam-
ple, each call to second in f is accounted for by a fresh instance of
αsecond and the whole set of associated typing constraints is copied
and instantiated by replacing the type variable αsecond with a fresh
type variable. If the constraints of polymorphic function were not
freshly instantiated for each usage of the function, the same type
variable would be constrained by the context of each usage, poten-
tially resulting in a spurious type error.

Instantiation of typing constraints as described above leads to an
explosion in the total number of generated constraints. For instance,
the typing constraints for each call to f are instantiated twice. Each
of these copies in turn includes a fresh copy of the constraints asso-
ciated with each call to second and first in f. Hence, the num-
ber of typing constraints can grow exponentially, to the point where
the whole approach becomes impractical. To alleviate this problem,
compilers first solve the typing constraints for each polymorphic
function to get their principal types. Intuitively, the principal type
is the most general type of an expression [10]. Then, each time the
function is used only its principal type is instantiated, instead of the
whole set of associated typing constraints.

In the example, when typing the line 7, the typing environment
contains principal types for first, second, and f (given as com-
ments below).

1 ; first : ∀αa, αb, αc. fun(αa ∗ αb ∗ αc, αa)
2 ; second : ∀αa, αb, αc. fun(αa ∗ αb ∗ αc, αb)
3 ; f : ∀αa. fun(int ∗ string ∗ αa, int)
4 f ("1", "2", f ("3", "4", 5))

The bodies of the three bound variables and the typing constraints
within the bodies are effectively abstracted at this point. Type
inference instantiates the principal type of f,

f : ∀α.fun(int ∗ string ∗ α, int),
but this will fail to unify with the argument to f which has type
string * string * int.

The principal type technique for avoiding the constraint explo-
sion works very well in practice for the decision problem of type
checking. However, we will need to adapt it in order to work with
the optimization problem of searching for a minimum error source.
When the search algorithm checks whether a set of expressions is
an error source, it checks satisfiability of the typing constraints that
have been generated for the whole program, where the constraints
for the expressions in the potential error source have been removed.

Pfirst 1
Psecond 1
Pf 1
αf1 = fun(αi1, αo1) 11
Pf ⇒ αf1 = fun(int ∗ string ∗ α′, int) 1
αi1 = α"1" ∗ α"2" ∗ αapp 9
α"1" = string 1
α"2" = string 1
αapp = αo2 6
αf2 = fun(αi2, αo2) 6
Pf ⇒ αf2 = fun(int ∗ string ∗ α′′, int) 1
αi2 = α"4" ∗ α"5" ∗ α6 4
α"4" = string 1
α"5" = string 1
α6 = int 1

Figure 1. Typing constraints and weights for the first iteration of
the localization algorithm.

If we directly use the principal type as an abstraction of the function
body, we potentially miss some error sources that involve expres-
sions in the abstracted function body. To illustrate this point, con-
sider the principal type abstraction of our example program above.
The application of the expression first at line 4 has in effect been
abstracted from the program and cannot be reported as an error
source, although it is in fact minimum. In general, fixing an error
source in a function definition can change the principal type of that
function. The search algorithm must take such changes into account
in order to identify the minimum error sources correctly. In our run-
ning example, a generic fix to the call to function first at line 4
results in the principal type of f being:

∀αa, αb.fun(αa ∗ string ∗ αb, int).

Additionally, principal types may not exist for some expressions
in an ill-typed program. The algorithm needs to handle such cases
gracefully.

2.4 Approach
Our solution to this problem is an algorithm that finds a minimum
error source by expanding the principal types of polymorphic func-
tions iteratively. We first compute principal types for each let-bound
variable whenever possible. We begin our search assuming that
none of the usages of the variables whose principal types could be
computed are involved in a minimum error source. Each principal
type is assigned the minimum weight of all constraints in the as-
sociated let definition, conservatively approximating the potential
minimum error sources that involve these constraints.

In our example, this results in exactly the same abstraction of
the program as before, and the weights of f, first and second
are all 1. We write the proposition that the principle type for foo
is correct as Pfoo . Typing for each call to f is represented with a
fresh instance of the corresponding principal type. Each usage of f
is marked as depending on the principal type for f, and is guarded
by Pf . Figure 1 gives the typing constraints and the weight of each
constraint.1

The above set of constraints is unsatisfiable. The minimum error
source for these constraints is to relax the constraint for Pf. This
indicates that we cannot rely on the principal type for f to find the
minimum error source for the program. We relax the assumption
that Pf is true, and include the body for f in our next iteration. This
next iteration is effectively analyzing the program:

1 This is slightly simplified from the actual encoding in §4.

1 ; first : ∀αa, αb, αc. fun(αa ∗ αb ∗ αc, αa)
2 ; second : ∀αa, αb, αc. fun(αa ∗ αb ∗ αc, αb)
3 let f x =
4 let first_x = first x in
5 let second_x = int_of_string (second x) in
6 first_x + second_x
7 f ("1", "2", f ("3", "4", 5))

Here, typing for each usage of first and second is represented
by fresh instances of the corresponding principal types. As in the
previous iteration, we again compute a minimum error source and
decide whether further expansions are necessary. In the next iter-
ation, the unique minimum error source of the new abstraction is
the application of first on line 4, which is also a minimum error
source of the whole program. Note that this new minimum error
source does not involve any expressions with unexpanded principal
types. Hence, we can conclude that we have found a true mini-
mum error source and our algorithm terminates. That is, the algo-
rithm stops before the principal types for second and first have
been expanded. The procedure only expands the usages of those
polymorphic functions that are involved in the error when neces-
sary, thus lazily avoiding the constraint explosion. This is sound
because of the conservative abstraction of potential error sources in
the unexpanded definitions. In our running example, we can con-
clude from the constraints of the final iteration that fixing second
does not resolve the error and fixing first is not cheaper than just
fixing the call to first (Pfirst is an error source of weight 1 but so
is the call to first). Hence, the algorithm yields a correct result.

The search for a minimum error source in each iteration is
performed by a weighted partial MaxSMT solver. In Section 3, we
provide the formal definitions of the problem of finding minimum
error sources and the weighted partial MaxSMT problem. Section 4
describes the iterative algorithm that reduces the former problem to
the later and argues its correctness. In Section 5, we present our
experimental evaluation.

3. Background
We recall in this section the minimum error source §3.3 problem
from [24] as well as our targeted language §3.1 and type sys-
tem §3.2. We also describe the satisfiability §3.4, MaxSAT §3.5,
and MaxSMT §3.6 problems used to solve the minimum error
source problem in §4.

3.1 Language
Our presentation is based on an idealized lambda calculus, called
λ⊥, with let polymorphism, conditional branching, and special
value ⊥ called hole. Holes allow us to create expressions that have
the most general type (§3.2).

Expressions e ::= x variable
| v value
| e e application
| if e then e else e conditional
| let x = e in e let binding

Values v ::= n integers
| b Booleans
| λx. e abstraction
| ⊥ hole

Values in the language include integer constants, n ∈ Z, Boolean
constants, b ∈ B, and lambda abstractions. The let bindings allow
for the definition of polymorphic functions. We assume an infinite
set of program variables, x, y, Programs are expressions in

which no variable is free. The reader may assume the expected
semantics (with ⊥ acting as an exception).

3.2 Types
Every type in λ⊥ is a monotype or a polytype.

Monotypes τ ::= bool | int | α | τ → τ

Polytypes σ ::= τ | ∀α.σ

A monotype τ is either a base type bool or int, a type variable α, or
a function type τ → τ . The ground types are monotypes in which
no type variable occurs.

A polytype is either a monotype or the quantification of a
type variable over a polytype. A polytype σ can always be writ-
ten ∀α1. · · · ∀αn.τ where τ is a monotype or in shorthand, ∀~α.τ .
The set of free type variables in σ is denoted fv(σ). We write
σ[τ1/α1, . . . , τn/αn] for capture-avoiding substitution in σ of
free occurrences of the type variable αi by the monotype τi. We
uniformly shorten this to σ[τi/αi] to denote n-ary substitution.
The polytype ∀~α.τ is considered to represent all types obtained
by instantiating the type variables ~α by ground monotypes, e.g.
τ [τi/αi]. Finally, the polytype σ = ∀~α.τ has a generic instance
σ′ = ∀~β.τ ′ if τ ′ = τ [τi/αi] for some monotypes τ1, . . . , τn and
~β 6∈ fv(σ).

Like other Hindley-Milner type systems, type inference is de-
cidable for λ⊥. A typing environment Γ is a mapping of variables
to types. We denote by Γ ` e : τ the typing judgment that the
expression e has type τ under a typing environment Γ. The free
variables of Γ are denoted as fv(Γ). A program p is well typed iff
the empty typing environment ∅ can infer a type for p, ∅ ` p : σ.

Figure 2 gives the typing rules for λ⊥. The [HOLE] rule is non-
standard and states that the expression ⊥ has the polytype ∀α.α.
During type inference, the rule [HOLE] assigns to each usage of ⊥
a fresh unconstrained type variable. Hole values may always safely
be used without causing a type error. We may think of ⊥ in two
ways: as exceptions in OCaml [17], or as a place holder for another
expression. In §3.3, we abstract sub-expressions in a program p as
⊥ to obtain a new program p′ that is well typed.

3.3 Minimum Error Source
The objective of this paper is the problem of finding a minimum
error source for a given program p subject to a given cost func-
tion [24]. The problem formalizes the process of replacing ill typed
subexpressions in a program p by⊥ to get a well typed program p′

and associates a cost to each such transformation.
A location ` in a λ⊥ expression e is a path in the abstract

syntax tree of e starting at the root of e. The set of all locations
of an expression e in a program p is denoted Locp(e). We omit
the subscript p when the program is clear from the context. Each
location ` uniquely identifies a subexpression e(`) within e. When
an expression e′ is clear from the context (typically e′ is the whole
program p), we write e` to denote that e is at a location ` in e′.
Similarly, we write Loc(`) for Loc(e′(`)).

The mask function mask takes an expression e and a location
` ∈ Loc(e) and produces the expression where e(`) is replaced
by ⊥ in e. (Note that mask(e, `) also masks any subexpression of
e(`).) We extend mask to work over an expression e and a set of
locations L ⊆ Loc(e).

Definition 1 (Error source). Let p be a program. A set of locations
L ⊆ Loc(p) is an error source of p if mask(p, L) is well typed.

A cost function is a mapping R from a program p to a par-
tial function that assigns a positive weight to locations, R(p) :
Loc(p) ⇀ N+. A location ` that is not in the domain of R(p)
is considered to be a hard constraint, ` 6∈ dom(R(p)). Hard con-

x : ∀~α.τ ∈ Γ ~β new

Γ ` x : τ [~β/~α]
[VAR] Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2
[APP] b ∈ B

Γ ` b : bool
[BOOL]

Γ.x : τ1 ` e : τ2
Γ ` λx.e : τ1 → τ2

[ABS]
Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ

Γ ` if e1 then e2 else e3 : τ
[COND] n ∈ Z

Γ ` n : int
[INT]

Γ ` e1 : τ1 Γ.x : ∀~α.τ1 ` e2 : τ2 ~α = fv(τ1) \ fv(Γ)

Γ ` let x = e1 in e2 : τ2
[LET] α new

Γ ` ⊥ : α
[HOLE]

Figure 2. Typing rules for λ⊥

straints provide a way for R to specify that a location ` is not con-
sidered to be a source of an error. We require that a location cor-
responding to the root node of the program AST cannot be set as
hard. In other words, for all programs p and cost functions R it
must be that p(`) = p =⇒ ` ∈ dom(R(p)). This way, we make
sure that there is always at least one error source for an ill-typed
program: the one that masks the whole program.

Cost functions are extended to a set of locations L in the natural
way:

R(p)(L) =
∑

`∈L,`∈dom(R(p))

R(p)(`) . (4)

The minimum error sources are the sets of locations that are error
source and minimize a given cost function.

Definition 2 (Minimum error source). An error source L ⊆
Loc(p) for a program p is a minimum error source with re-
spect to a cost function R if for any other error source L′ of p
R(p)(L) ≤ R(p)(L′).

In our previous paper [24], we used a slightly more restrictive
definition of error source. Namely, we required that an error source
must be minimal, i.e., it does not have a proper subset that is also
an error source. The above definitions imply that a minimum error
source is also minimal since we require that the weights assigned
by cost functions are positive.

3.4 Satisfiability
The classic CNF-SAT problem takes as input a finite set of proposi-
tional clauses C. A clause is a finite set of literals, which are propo-
sitional variables or negations of propositional variables. A propo-
sitional model M assigns all propositions into {true, false}. An
assignment M is said to satisfy a propositional variable P , written
M |= P , ifM maps P to true. Similarly,M |= ¬P ifM maps P
to false. A clause C is satisfied by M if at least one literal in C is
satisfied. The CNF-SAT problem asks if there exists a propositional
model M that satisfies all clauses in C simultaneously M |= C.

3.5 MaxSAT and Variants
The MaxSAT problem takes as input a finite set of propositional
soft clauses CS and finds a propositional model M that maximizes
the number of clausesK that are simultaneously satisfied [18]. The
partial MaxSAT problem adds a set of hard clauses CH that must
be satisfied. The weighted partial MaxSAT (WPMaxSAT) problem
additionally takes a map w from soft clauses to positive integer
weights and produces assignments of maximum weight:

WPMaxSAT(CH , CS , w) =
maximize

∑
c∈C w(c) where M |= C ∪ CH and C ⊆ CS

(5)

3.6 SMT & MaxSMT
The weighted partial MaxSMT problem (WPMaxSMT) is formal-
ized by directly lifting the WPMaxSAT formulation to Satisfiabil-
ity Modulo Theories (SMT) [2]. The SMT problem takes as input
a finite set of assertions Φ where each assertion is a first-order for-
mula. The functions and predicates in the assertions are interpreted
according to a fixed first-order theory T . The theory T enforces
the semantics of the functions to behave in a certain fashion by re-
stricting the class of first-order models. A first-order model M , in
addition to assigning variables to values in a domain, assigns se-
mantics to the function symbols over the domain. As an example,
the theory of linear real arithmetic enforces the domain to be the
mathematical real numbers R and the built-in function symbol +
to behave as the mathematical plus function. The model M is said
to satisfy a formula φ, written again as M |= φ, if φ evaluates to
true in M . We consider a theory T to be a class of models. A for-
mula (or finite set of formulas) is satisfiable modulo T , written as
M |=T φ, if there is a model M such that M ∈ T and M |= φ.2

Most concepts directly generalize from MaxSAT to MaxSMT:
satisfiability is now modulo the models of T , and soft and hard
clauses are now over T -literals. Many SMT solvers are organized
around adding T -valid formulas, known as theory lemmas, into L
to refine the search. (Thus L still only contains formulas entailed
by Φ.) The optimization formulation of WPMaxSMT is nearly
identical to (5):

WPMaxSMT(ΦH ,ΦS , w) =
maximize

∑
c∈Φ w(c) where M |=T Φ ∪ ΦH and Φ ⊆ ΦS

(6)
We reduce computing minimum error sources to solving WP-

MaxSMT problems. We first generate typing constraints from the
given input program that are satisfiable iff the input program is well
typed. We then specify the weight function w by labeling a subset
of the assertions according to the cost function R.

3.7 Theory of Inductive Datatypes
The theory of inductive data types [3] allows us to compactly ex-
press the needed typing constraints. The theory allows for users to
define their own inductive data types and state equality constraints
over the terms of that data type. We define an inductive data type
Types that represents the ground monotypes of λ⊥:

t ∈ Types ::= int | bool | fun(t, t) (7)

Here, the term constructor fun is used to encode the ground func-
tion types. The models of the theory of inductive data types forces

2 This informal introduction ignores many aspects of SMT such as non-
standard models for the theory of reals.

the interpretation of the constructors in the expected fashion. For
instance:

1. Different constructors produce disequal terms.

int 6= bool, ∀α, β.bool 6= fun(α, β) ∧ int 6= fun(α, β)

2. Every term is constructed by some constructor.

t = bool ∨ t = int ∨ ∃α, β.t = fun(α, β)

3. The constructors are injective.

∀α, β, γ, δ ∈ Types. fun(α, β)= fun(γ, δ)⇒ α=γ ∧ β=δ

Thus, the theory enforces that the ground monotypes of λ⊥ are
faithfully interpreted by the terms of Type.

To support typing expressions such as (a, b,) and others found
in realistic languages, we extend Types in (7) with additional type
constructors, e.g., product(t, t), to encode product types τ1 ∗ τ2
and user-defined algebraic data types. This pre-processing pass is
straightforward but outside of the scope of this paper.

4. Algorithm
We now introduce a refinement of the typing relation used in [24]
to generate typing constraints. The novelty of this new typing
relation is the ability to specify a set of variable usage locations
whose typing constraints are abstracted as the principal type of the
variable. We then describe an algorithm that iteratively uses this
typing relation to find a minimum error source while expanding
only those principal type usages that are relevant for the minimum
source.

4.1 Notation and Setup
Standard type inference implementations handle expressions of the
form let x = e1 in e2 by computing the principal type of e1,
binding x to the principal type σp in the environment Γ.x : σp,
and proceeding to perform type inference on e1 [10]. Given an
environment Γ, the type σp is the principal type for e if Γ ` e : σp
and for any other σ such that Γ ` e : σ then σ is a generic instance
of σp. Note that a principal type is unique, subject to e and Γ, up to
the renaming of bound type variables in σp.

We now introduce several auxiliary functions and sets that we
use in our algorithm. We define ρ to be a partial function accepting
an expression e and a typing environment Γ where ρ(Γ, e) returns
a principal type of e subject to Γ. If e is not typeable in Γ, then
(Γ, e) 6∈ dom(ρ). Next, we define a mapping Uloc for the usage
locations of a variable. Formally, Uloc is a partial function such
that given a location ` of a let variable definition and a program p
returns the set Ulocp(`) of all locations where this variable is used
in p. Note that a location of a let variable definition is a location
corresponding to the root of the defining expression. We also make
use of a function for the definition location dloc. The function dloc
reverses the mapping of Uloc for a variable usage. More precisely,
dloc(p, `) returns the location where the variable appearing at `
was defined in p. Also, for a set of locations L we define Vloc(`)
to be the set of all locations in Loc(`) that correspond to usages of
let variables.

For the rest of this section, we assume a fixed program p for
which the above functions and sets are precomputed. We do not
provide detailed algorithms for computing these functions since
they are either straightforward or well-known from the literature.
For instance, the ρ function can be implemented using the classical
W algorithm [10].

4.2 Constraint Generation
The main idea behind our algorithm, described in Section 4.4, is to
iteratively discover which principal type usages must be expanded

to compute a minimum error source. The technical core of the
algorithm is a new typing relation that produces typing constraints
subject to a set of locations where principal type usages must be
expanded.

We use Φ to denote a set of logical assertions in the signature
of Types that represent typing constraints. Henceforth, when we
refer to types we mean terms over Types. Expanded locations are
a set of locations L such that L ⊆ Loc(p). Intuitively, this is a set
of locations corresponding to usages of let variables x where the
typing of x in the current iteration of the algorithm is expanded into
the corresponding typing constraints. Those locations of usages of
x that are not expanded will treat x using its principal type. We
also introduce a set of locations whose usages must be expanded
L0. We will always assume L0 ⊆ L. Formally, L0 is the set
of all program locations in p except the locations of well-typed
let variables and their usages. This definition enforces that usages
of variables that have no principal type are always expanded. In
summary, L0 ⊆ L ⊆ Loc(p).

We define a typing relation `L over (Π,Γ, e, α,Φ) which is
parameterized by L. The relation is given by judgments of the form:

Π,Γ `L e : α | Φ.

Intuitively, the relation holds iff expression e in p has type α under
typing environment Γ if we solve the constraints Φ for α. (We
make this statement formally precise later.) The relation depends
on L, which controls whether a usage of a let variable is typed
by the principal type of the let definition or the expanded typing
constraints of that definition.

For technical reasons, the principal types are computed in tan-
dem with the expanded typing constraints. This is because both the
expanded constraints and the principal types may refer to type vari-
ables that are bound in the environment, and we have to ensure that
both agree on these variables. We therefore keep track of two sepa-
rate typing environments:

• the environment Π binds let variables to the principal types
of their defining expressions if the principal type exists with
respect to Π, and
• the typing environment Γ binds let variables to their expanded

typing constraints (modulo L).

The typing relation ensures that the two environments are kept
synchronized. To properly handle polymorphism, the bindings in
Γ are represented by typing schemas:

x : ∀~α.(ΦV α)

The schema states that x has type α if we solve the typing con-
straints Φ for the variables ~α. To simplify the presentation, we also
represent bindings in Π as type schemas. Note that we can repre-
sent an arbitrary type t by the schema ∀α.({α = t} V α) where
α /∈ fv(t). The symbolV is used here to suggest, but keep syntacti-
cally separate, the notion of logical implication⇒ that is implicitly
present in the schema.

The typing relation Π,Γ `L e : α | Φ is defined in Figure 3. It
can be seen as a constraint generation procedure that goes over an
expression e at location ` and generates a set of typing constraints
Φ. For the purpose of computing error sources, we associate with
each location ` a propositional variable T`. The location ` is in the
computed error source iff the variable T` is assigned to false. This
is also reflected in the typing constraints. All typing constraints
added at location ` are guarded by the variable T`. That is, the
clauses ϕn in the constraint generated for an expression e`n with a
subexpression at location `1 have the rough form:

T`n ⇒ · · · ⇒ T`1 ⇒ α1 = t

Π.x : α,Γ.x : α `L e : β | Φ γ new

Π,Γ `L (λx.e)` : γ | {T` ⇒ ({γ = fun(α, β)} ∪ Φ)}
[A-ABS]

Π,Γ `L e1 : α | Φ1 Π,Γ `L e2 : β | Φ2 γ new

Π,Γ `L (e1 e2)` : γ | {T` ⇒ ({α = fun(β, γ)} ∪ Φ1 ∪ Φ2)}
[A-APP]

Π,Γ `L e1 : α1 | Φ1 Π,Γ `L e2 : α2 | Φ2 Π,Γ `L e3 : α3 | Φ3 γ new

Π,Γ `L (if e`11 then e`22 else e`33)` : γ | {T` ⇒ ({(T`1 ⇒ α1 = bool), (T`2 ⇒ α2 = γ), (T`3 ⇒ α3 = γ)} ∪ Φ1 ∪ Φ2 ∪ Φ3)}
[A-COND]

α new
Π,Γ `L ⊥ : α | ∅

[A-HOLE]
b ∈ B α new

Π,Γ `L b` : α | {T` ⇒ α = bool}
[A-BOOL]

n ∈ Z α new
Π,Γ `L n` : α | {T` ⇒ α = int}

[A-INT]

` ∈ L x : ∀~α.(ΦV α) ∈ Γ ~β, γ new

Π,Γ `L x` : γ | {T` ⇒ ({γ = α[~β/~α]} ∪ Φ[~β/~α])}
[A-VAR-EXP]

` 6∈ L x : ∀~α.(ΦV α) ∈ Π ~β, γ new

Π,Γ `L x` : γ | {T` ⇒ ({γ = α[~β/~α]} ∪ Φ[~β/~α])}
[A-VAR-PRIN]

`1 ∈ L

Π,Γ `L e1 : α1 | Φ1 ~α = fv(Φ1) \ fv(Γ) τexp = ∀~α.(Φ1 V α1)

Π,Γ.x : τexp `L e2 : α2 | Φ2
~β, γ new

Π,Γ `L (let x = e`11 in e2)` : γ | {T` ⇒ ({γ = α2} ∪ Φ1[~β/~α] ∪ Φ2)}
[A-LET-EXP]

`1 6∈ L

ρ(Π, e1) = ∀~δ.τp α new τprin = ∀α,~δ.({P`1 ⇒ α = τp}V α)

Π,Γ `L e1 : α1 | Φ1 ~α = fv(Φ1) \ fv(Γ) τexp = ∀~α.(Φ1 V α1)

Π.x : τprin, Γ.x : τexp `L e2 : α2 | Φ2
~β, γ new

Π,Γ `L (let x = e`11 in e2)` : γ | {T` ⇒ ({γ = α2} ∪ Φ1[~β/~α] ∪ Φ2)}
[A-LET-PRIN]

Figure 3. Rules defining the constraint typing relation for λ⊥

where α1 = t is the typing constraint on the subexpression `1. The
T`i are the propositional variables associated with the locations
on the path from `n to `1 in the abstract syntax tree. Only if
T`n , . . . , T`1 are all true, is the constraint α1 = t active. If any
of the variables T`i is false, ϕn is trivially satisfied. This captures
the fact that the typing constraint of the subexpression at `1 should
be disregarded if any of the expressions e`i in which it is contained
are part of the error source (i.e., e`i is replaced by a hole expression,
and with it e1).

The rules A-LET-PRIN and A-LET-EXP govern the computa-
tion and binding of typing constraints and principal types for let
definitions (let x = e`11 in e2)`. If e1 has no principal type un-
der the current environment Π, then `1 ∈ L by the assumption that
L0 ⊆ L. Thus, when rule A-LET-PRIN applies, ρ(Π, e1) is de-
fined. The rule then binds x in Π to the principal type and binds x
in Γ to the expanded typing constraints obtained from e1.

The [A-LET-PRIN] rule binds x in both Π and Γ as it is possible
that in the current iteration some usages of x need to be typed with
principal types and some with expanded constraints. For instance,
our algorithm can expand usages of a function, say f , in the first
iteration, and then expand all usages of, say g, in the next iteration.
If g’s defining expression in turn contains calls to f , those calls will
be typed with principal types. This is done because there may exist

a minimum error source that does not require that the calls to f in
g are expanded.

After extending the typing environments, the rule recurses to
compute the typing constraints for the body e2 with the extended
environments. Note that the rule introduces an auxiliary proposi-
tional variable P`1 that guards all the typing constraints of the prin-
cipal type before x is bound in Π. This step is crucial for the cor-
rectness of the algorithm. We refer to the variables as principal
type correctness variables. That is, if P`1 is true then this means
that the definition of the variable bound at `1 is not involved in the
minimum error source and the principal type safely abstracts the
associated unexpanded typing constraints.

The rule A-LET-EXP applies whenever `1 ∈ L. The rule is
almost identical to the A-LET-PRIN rule, except that it does not
bind x in Π to τprin (the principal type). This will have the effect
that for all usages of x in e2, the typing constraints for e1 to which x
is bound in Γ will always be instantiated. By the way the algorithm
extends the set L, `1 ∈ L implies that `1 ∈ L0, i.e., the defining
expression of x is ill-typed and does not have a principal type.

The A-VAR-PRIN rule instantiates the typing constraints of the
principal type of a let variable x if x is bound in Π and the
location of x is not marked to be expanded. Instantiation is done by
substituting the type variables ~α that are bound in the schema of the
principle type with fresh type variables ~β. The A-VAR-EXP rule is

again similar, except that it handles all usages of let variables that
are marked for expansion, as well as all usages of variables that are
bound in lambda abstractions.

The remaining rules are relatively straightforward. The rule
A-ABS is noteworthy as it simultaneously binds the abstracted
variable x to the same type variable α in both typing environments.
This ensures that the two environments consistently refer to the
same bound type variables when they are used in the subsequent
constraint generation and principal type computation within e.

4.3 Reduction to Weighted Partial MaxSMT
Given a cost function R for program p and a set of locations L
where L0 ⊆ L, we generate a WPMaxSMT instance I (p,R,L) =
(ΦH ,ΦS , w) as follows. Let Φp,L be a set of constraints such that
∅, ∅ `L p : α | Φp,L for some type variable α. Then define

ΦH = Φp,L ∪ {T` | ` /∈ dom(R(p)) } ∪ PDefs(p)

ΦS = {T` | ` ∈ dom(R(p)) }
w(T`) = R(p)(`), for all T` ∈ ΦS

The set of assertions PDefs(p) contains the definitions for the
principal type correctness variables P`. For a let variable x that
is defined at some location `, the variable P` is defined to be true
iff

• each location variable T`′ for a location `′ in the defining
expression of x is true, and
• each principal type correctness variable P`′ for a let variable

that is defined at `′ and used in the defining expression of x is
true.

Formally, PDefs(p) defines the set of formulas

PDefs(p) = {PDef ` | ` ∈ dom(Ulocp) }

PDef ` =

P` ⇔ ∧
`′∈Loc(`)

T`′ ∧
∧

`′∈Vloc(`)

Pdloc(`′)

Setting the P` to false thus captures all possible error sources
that involve some of the locations in the defining expression of x,
respectively, the defining expressions of other variables that x de-
pends on. Recall that the propositional variable P` is used to guard
all the instances of the principal types of x in Φp,L. Thus, setting
P` to false will make all usage locations of xwell-typed that have
not yet been expanded and are thus constrained by the principal
type. By the way P` is defined, the cost of setting P` to false
will be the minimum weight of all the location variables for the
locations of x’s definition and its dependencies. Thus, P` conser-
vatively approximates all the potential minimum error sources that
involve these locations.

We denote by SOLVE the procedure that given p, R, and L
returns some model M that is a solution of I (p,R,L).

Lemma 1. SOLVE is total.

Lemma 1 follows from our assumption that R is defined for the
root location `p of the program p. That is, I (p,R,L) always has
some solution since ΦH holds in any model M where M 6|= T`p .

Given a model M = SOLVE(p,R,L), we define LM to be the
set of locations excluded in M :

LM = { ` ∈ Loc(p) |M |= ¬T` } .

4.4 Iterative Algorithm
Next, we present our iterative algorithm for computing minimum
type error sources.

In order to formalize the termination condition of the algorithm,
we first need to define the set of usage locations of let variables

Algorithm 1 Iterative algorithm for computing a minimum error
source

1: procedure ITERMINERROR(p,R)
2: L← L0

3: loop
4: M ← SOLVE(p,R,L)
5: Lu ← Usages(p,L,M)
6: if Lu ⊆ L then
7: return LM
8: end if
9: L← L ∪ Lu

10: end loop
11: end procedure

in program p that are in the scope of the current expansion L. We
denote this set by Scope(p,L). Intuitively, Scope(p,L) consists of
all those usage locations of let variables that either occur in the
body of a top-level let declaration or in the defining expression of
some other let variable which has at least one expanded usage
location in L. Formally, Scope(p,L) is the largest set of usage
locations in p that satisfies the following condition: for all ` ∈
dom(Ulocp), if Ulocp(`)∩L = ∅ ∧Ulocp(`) 6= ∅, then Loc(`)∩
Scope(p,L) = ∅.

For M = SOLVE(p,R,L), we then define Usages(p,L,M) to
be the set of all usage locations of the let variables in p that are in
scope of the current expansions and that are marked for expansion.
That is, ` ∈ Usages(p,L,M) iff

1. ` ∈ Scope(p,L), and
2. M 6|= Pdloc(`)

Note that if the second condition holds, then a potentially cheaper
error source exists that involves locations in the definition of the
variable x used at `. Hence, that usage of x should not be typed by
x’s principal type but by the expanded typing constraints generated
from x’s defining expression.

We say that a solution LM , corresponding to the result of
SOLVE(p,R,L), is proper if Usages(p,L,M) ⊆ L, i.e., LM
does not contain any usage locations of let variables that are in
scope and still typed by unexpanded instances of principal types.

Algorithm 1 shows the iterative algorithm. It takes an ill-typed
program p and a cost function R as input and returns a minimum
error source. The set L of locations to be expanded is initialized
to L0. In each iteration, the algorithm first computes a minimum
error source for the current expansion using the procedure SOLVE
from the previous section. If the computed error source is proper,
the algorithm terminates and returns the current solution LM . Oth-
erwise, all usage locations of let variables involved in the current
minimum solution are marked for expansion and the algorithm con-
tinues.

4.5 Correctness
We devote this section to proving the correctness of our iterative
algorithm. In a nutshell, we show by induction that the solutions
computed by our algorithm are also solutions of the naive algorithm
that expands all usages of let variables immediately as in [24].

We start with the base case of the induction where we fully
expand all constraints, i.e., L = Loc(p).

Lemma 2. Let p be a program and R a cost function and let
M = SOLVE(p,R,Loc(p)). Then LM ⊆ Loc(p) is a minimum
error source of p subject to R.

Lemma 2 follows from [24, Theorem 1] because if L = Loc(p),
then we obtain exactly the same reduction to WPMaxSMT as in
our previous work. More precisely, in this case the A-VAR-PRIN

rule is never used. Hence, all usages of let variables are typed
by the expanded typing constraints according to rule A-VAR-EXP.
The actual proof requires a simple induction over the derivations of
the constraint typing relation defined in Figure 3, respectively, the
constraint typing relation defined in [24, Figure 4].

We next prove that in order to achieve full expansion it is not
necessary that L = Loc(p). To this end, define the set Lp, which
consists of L0 and all usage locations of let variables in p:

Lp = L0 ∪
⋃

l∈dom(Ulocp)

Ulocp(l).

Then `L generates the same constraints as `Loc(p) as stated by the
following lemma.

Lemma 3. For any p, Π, Γ, α, and Φ, we have Π,Γ `Lp p : α | Φ
iff Π,Γ `Loc(p) p : α | Φ.

Lemma 3 can be proved using a simple induction on the deriva-
tions of `Lp , respectively, `Loc(p). First, note that Loc(p)\Lp is the
set of locations of well-typed let variable definitions in p. Hence,
the derivations using `Lp will never use the A-LET-EXP rule, only
A-LET-PRIN. However, the A-LET-PRIN rule updates both Π and
Γ, so applications of A-VAR-EXP (A-VAR-PRIN is never used in
either case) will be the same as if `Loc(p) is used.

The following lemma states that if the iterative algorithm termi-
nates, then it computes a correct result.

Lemma 4. Let p be a program, R a cost function, and L such that
L0 ⊆ L ⊆ Lp. Further, let M = SOLVE(p,R,L) such that LM is
proper. Then, LM is a minimum error source of p subject to R.

The proof of Lemma 4 can be found in Appendix A. For brevity,
we provide here only the high-level argument. The basic idea is to
show that adding each of the remaining usage locations to L results
in typing constraints for which LM is again a proper minimum
error source. More precisely, we show that for each set D such
that L0 ⊆ L ⊆ L ∪ D ⊆ Lp, if M is the maximum model
of I (p,R,L) from which LM was computed, then M can be
extended to a maximum model M ′ of I (p,R,L ∪ D) such that
LM′ = LM . That is, LM is again a proper minimum error source
for I (p,R,L ∪D). The proof goes by induction on the cardinality
of the set D. Therefore, by the case L ∪ D = Lp, Lemma 2, and
Lemma 3 we have that LM is a true minimum error source for p
subject to R.

Finally, note that the iterative algorithm always terminates since
L is bounded from above by the finite set Lp and L grows in each
iteration. Together with Lemma 4, this proves the total correctness
of the algorithm.

Theorem 1. Let p be a program and R a cost function. Then,
ITERMINERROR(p,R) terminates and computes a minimum error
source for p subject to R.

5. Implementation and Evaluation
In this section we describe the implementation of our algorithm that
targets the Caml subset of the OCaml language. We also present
the results of evaluating our implementation on the OCaml student
benchmark suite from [17] and the GRASShopper [26] program
verification tool.

The prototype implementation of our algorithm was uniformly
faster than the naive approach in our experiments. Most impor-
tantly, the number of generated typing constraints produced by our
algorithm is almost an order of magnitude smaller than when using
the naive approach. Consequently, our algorithm also ran faster in
the experiments.

We note that the new algorithm and the algorithm in [24] pro-
vide the same formal guarantees. Since we made experiments on

the quality of type error sources in [24], we feel a new evaluation–
over largely the same set of benchmarks and the same ranking
criterion–would not be a significant contribution beyond the work
done in [24]. We refer the reader to that paper for more details.

5.1 Implementation
Our implementation bundles together the EasyOCaml [13] tool and
the MaxSMT solver νZ [6, 7]. The νZ solver is available as a
branch of the SMT solver Z3 [11]. We use EasyOCaml for gen-
erating typing constraints for OCaml programs. Once we convert
the constraints to the weighted MaxSMT instances, we use Z3’s
weighted MaxRes [20] algorithm to compute a minimum error
source.

Constraint Generation. EasyOCaml is a tool that helps program-
mers debug type errors by computing a slice of a program involved
in the type error [15]. The slicing algorithm that EasyOCaml imple-
ments relies on typing constraint generation. More precisely, Easy-
OCaml produces typing constraints for the Caml part of the OCaml
language, including algebraic data types, reference, etc. The imple-
mentation of our algorithm modifies EasyOCaml so that it stores
a map from locations to the corresponding generated typing con-
straints. This map is then used to compute the principal types for
let variables. Rather than using the algorithm W, we take typ-
ing constraints of locations within the let defining expression and
compute a most general solution to the constraints using a unifi-
cation algorithm [25, 27]. In other words, principal types for let
defining variables are computed in isolation, with no assumptions
on the bound variables, which are left intact. Then, we assign each
program location with a weight using a fixed cost function. The
implementation uses a modified version of the cost function in-
troduced in Section 2 where each expression is assigned a weight
equal to its AST size. The implemented function additionally anno-
tates locations that come from expressions in external libraries and
user-provided type annotations as hard constraints. This means that
they are not considered as a source of type errors.

The generation of typing constraints for each iteration in our
algorithm directly follows the typing rules in Figure 3. In addition,
we perform a simple optimization that reduces the total number of
typing constraints. When typing an expression let x = e1 in e2,
the A-Let-Prin and A-Let-Exp rules always add a fresh instance
of the constraint Φ1 for e1 to the whole set of constraints. This
is to ensure that type errors in e1 are not missed if x is never
used in e2. We can avoid this duplication of Φ1 in certain cases.
If a principal type was successfully computed for the let variable
beforehand, the constraints Φ1 must be consistent. If the expression
e1 refers to variables in the environment that have been bound by
lambda abstraction, then not instantiating Φ1 at all could make
the types of these variables under-constrained. However, if Φ1 is
consistent and e1 does not contain variables that come from lambda
abstractions, then we do not need to include a fresh instance of Φ1

in A-Let-Prin. Similarly, if e1 has no principal type because of
a type error and the variable x is used somewhere in e2, then the
algorithm ensures that all such usages are expanded and included in
the whole set of typing constraints. Therefore, we can safely omit
the extra instance of Φ1 in this case as well.

Solving the Weighted MaxSMT Instances. Once our algorithm
generates typing constraints for an iteration, we encode the con-
straints in an extension of the SMT-LIB 2 language [4]. This exten-
sion allows us to handle the theory of inductive data types which we
use to encode types and type variables, whereas locations are en-
coded as propositional variables. We compute the weighted partial
MaxSMT solution for the encoded typing constraints by using Z3’s
weighted partial MaxSMT facilities. In particular, we configure the

solver to use the MaxRes [20] algorithm for solving the weighed
partial MaxSMT problem.

5.2 Evaluation
We evaluated our implementation on the student OCaml bench-
marks from [17] as well as ill-typed OCaml programs we took
from the GRASShopper program verification tool [26]. The stu-
dent benchmark suite consists of OCaml programs written by stu-
dents that were new to OCaml. We took the 356 programs from the
benchmark suite that are ill-typed. Most of these programs exhibit
type mismatch errors. Only few of programs have trivial type errors
such as calling a function with too many arguments or assigning a
non-mutable field of a record. The other programs in the benchmark
suite that we did not consider do not exhibit type errors, but errors
that are inherently localized, such as the use of an unbounded value
or constructor. The size of these programs is limited; the largest
example has 397 lines of code.

Since we lacked an appropriate corpus of larger ill-typed user
written programs, we generated ill-typed programs from the source
code of the GRASShopper tool [26]. We chose GRASShopper be-
cause it contains non-trivial code that mostly falls into the OCaml
fragment supported by EasyOCaml. For our experiments, we took
several modules from the GRASShopper source code and put them
together into four programs of 1000, 1500, 2000, and 2500 lines
of code, respectively. These modules include the core data struc-
tures for representing the abstract syntax trees of programs and
specification logics, as well as complex utility functions that oper-
ate on these data structures. We included comments when counting
the number of program lines. However, comments were generally
scars. The largest program with 2500 lines comprised 282 top-level
let definitions and 567 let definitions in total. We then introduced
separately five distinct type errors to each program, obtaining a new
benchmarks suite of 20 programs in total. We introduced common
type mismatch errors such as calling a function or passing an argu-
ment with an incompatible type.

All of our timing experiments were conducted on a 3.60GHz
Intel(R) Xeon(R) machine with 16GBs of RAM.

Student benchmarks. In our first experiment, we collected statis-
tics for finding a single minimum error source in the the student
benchmarks with our iterative algorithm and the naive algorithm
from [24]. We measured the number of typing constraints gener-
ated (Fig. 4), the execution times (Fig. 5), and the number of expan-
sions and iterations taken by our algorithm (Table 1). The bench-
mark suite of 356 programs is broken into 8 groups according to
the number of lines of code in the benchmark. The first group in-
cludes programs consisting of 0 and 50 lines of code, the second
group includes programs of size 50 to 100, and so on.

Figure 4 shows the statistics for the total number of gener-
ated typing assertions. By typing assertions we mean logical asser-
tions, encoding the typing constraints, that we pass to the weighted
MaxSMT solver. The number of typing assertions roughly corre-
sponds to the sum of the total number of locations, constraints at-
tached to each location due to copying, and the number of well
typed let definitions. All 8 groups of programs are shown on the x
axis in Figure 4. The numbers in parenthesis indicate the number of
programs in each group. For each group and each approach (naive
and iterative), we plot the maximum, minimum and average num-
ber of typing assertions. To show the general trend for how both
approaches are scaling, lines have been drawn between the aver-
ages for each group. (All of the figures in this section follow this
pattern.) As can be seen, our algorithm reduces the total number of
generated typing assertions. This number grows exponentially with
the size of the program for the naive approach. With our approach,
this number seems to grow at a much slower rate since it does not
expand every usage of a let variable unless necessary. These re-

iterations expansions
min avg max min avg max

0-50 0 0.49 2 0 1.7 11
50-100 0 0.29 3 0 0.88 13

100-150 0 0.49 4 0 1.37 32
150-200 0 0.44 3 0 1.82 19
200-250 0 0.49 2 0 3.11 30
250-300 0 0.36 2 0 6.04 45
300-350 0 0.67 2 0 3.33 10
350-400 0 0 0 0 0 0

Table 1. Statistics for the number of expansions and iterations
when computing a single minimum error source

sults make us cautiously optimistic that the number of assertions the
iterative approach expands will be polynomial in practice. Note that
the total number of typing assertions produced by our algorithm is
the one that is generated in the last iteration of the algorithm.

 0

 2

 4

 6

 8

 10

 12

 14

 16

0-50 50-100 100-150 150-200 200-250 250-300 300-350 350-400

N
o

.
o

f
a

s
s
e

rt
io

n
s
 (

in
 t

h
o

u
s
a

n
d

s
)

Code size

(47) (102) (65) (57) (53) (28) (3) (1)

naive (avg)
iterative (avg)

Figure 4. Maximum, average, and minimum number of typing
assertions for computing a minimum error source by naive and
iterative approach

The statistics for execution times are shown in Figure 5. The
iterative algorithm is consistently faster than the naive solution. We
believe this to be a direct consequence of the fact that our algorithm
generates a substantially smaller number of typing constraints. The
difference in execution times between our algorithm and the naive
approach increases with the size of the input program. Note that the
total times shown are collected across all iterations.

We also measured the statistics on the number of iterations
and expansions taken by our algorithm. The number of expansions
corresponds to the total number of usage locations of let variables
that have been expanded in the last iteration of our algorithm. The
results, shown in Table 1, indicate that the total number of iterations
required does not substantially change with the input size. We
hypothesize that this is due to the fact that type errors are usually
tied only to a small portion of the input program, whereas the rest
of the program is not relevant to the error.

It is worth noting that both the naive and iterative algorithm
compute single error sources. The algorithms may compute differ-
ent solutions for the same input since the fixed cost function does
not enforce unique solutions.3 The iterative algorithm does not at-

3 Both approaches are complete and would compute identical solutions for
the all error sources problem [24].

 0

 2

 4

 6

 8

 10

 12

0-50 50-100 100-150 150-200 200-250 250-300 300-350 350-400

T
im

e
 (

s
e

c
)

Code size

(47) (102) (65) (57) (53) (28) (3) (1)

naive (avg)
iterative (avg)

Figure 5. Maximum, average, and minimum execution times for
computing a minimum error source by naive and iterative approach

tempt to find a minimum error source in the least number of itera-
tions possible, but rather it expands let definitions on-demand as
they occur in the computed error sources. This means that the algo-
rithm sometimes continues expanding let definitions even though
there exists a proper minimum error source for the current expan-
sion. In our future work, we plan to consider how to enforce the
search algorithm so that it first finds those minimum error sources
that require less iterations and expansions.

GRASShopper benchmarks. We repeated the previous experi-
ments on the generated GRASShopper benchmarks. The bench-
marks are grouped by code size. There are four groups of five pro-
grams corresponding to programs with 1000, 1500, 2000, and 2500
lines.

Figure 6 shows the total number of generated typing assertions
subject to the code size. This figure follows the conventions of
Fig. 4 except that the number of constraints is given on a loga-
rithmic scale.4 The total number of assertions generated by our al-
gorithm is consistently an order of magnitude smaller than when
using the naive approach. The naive approach expands all let de-
fined variables where the iterative approach expands only those let
definitions that are needed to find the minimum error source. Con-
sequently, the times taken by our algorithm to compute a minimum
error source are smaller than when using the naive one, as shown
in Figure 7. Beside solving a larger weighed MaxSMT instance,
the naive approach also has to spend more time generating typing
assertions than our iterative algorithm. Finally, Table 2 shows the
statistics on the number of iterations and expansion our algorithm
made while computing the minimum error source. Again, the total
number of iterations appears to be independent of the size of the
input program.

Comparison to other tools. Our algorithm also outperforms the
approach by Myers and Zhang [32] in terms of speed on the same
student benchmarks. While our algorithm ran always under 5 sec-
onds, their algorithm took over 80 seconds for some programs. We
also ran their tool SHErrLoc [28] on one of our GRASSHopper
benchmark programs of 2000 lines of code. After approximately
3 minutes, their tool ran out of memory. We believe this is due to
the exponential explosion in the number of typing constraints due

4 The minimum, maximum, and average points are plotted in Figures 6
and 7 for each group and algorithm, but these are relatively close to each
other and hence visually mostly indistinguishable.

 1000

 10000

 100000

 1e+06

1000 1500 2000 2500

N
o

.
o

f
a

s
s
e

rt
io

n
s

Code size

naive (avg)
iterative (avg)

Figure 6. Maximum, average, and minimum number of typing
assertions for computing a minimum error source by naive and
iterative approach for larger programs

 0

 50

 100

 150

 200

 250

 300

 1000 1500 2000 2500

T
im

e
 (

s
e

c
)

Code size

naive (avg)
iterative (avg)

Figure 7. Maximum, average, and minimum execution times for
computing a minimum error source by naive and iterative approach
for larger programs

iterations expansions
min avg max min avg max

1000 0 0.2 1 0 0.2 1
1500 0 0.4 2 0 2.8 14
2000 0 0.6 2 0 53.8 210
2500 0 0.2 1 0 3 15

Table 2. Statistics for the number of expansions and iterations
when computing a single minimum error source for larger pro-
grams

to polymorphism. For that particular program, the total number of
typing constraints their tool generated was roughly 200, 000. On
the other hand, their tool shows high precision in correctly pin-
pointing the actual source of type errors. These results nicely ex-
emplify the nature of type error localization. In order to solve the
problem of producing high quality type error reports, one needs to
consider the whole typing data. However, the size of that data can
be impractically large, making the generation of type error reports
slow to the point of being not usable. One benefit of our approach is
that these two problems can be studied independently. In this work,
we focused on the second problem, i.e., how to make the search for
high-quality type error sources practically fast.

6. Conclusion
We have presented a new algorithm that efficiently finds optimal
type error sources subject to generic usefulness criteria. The al-
gorithm uses SMT techniques to deal with the large search space
of potential error sources, and principal types to abstract the typ-
ing constraints of polymorphic functions. The principal types are
lazily expanded to the actual typing constraints whenever a candi-
date error source involves a polymorphic function. This technique
avoids the exponential-time behavior that is inherent to type check-
ing in the presence of polymorphic functions and still guarantees
the optimality of the computed type error sources. We experimen-
tally showed that our algorithm scales to programs of realistic size.
To our knowledge, this is the first type error localization algorithm
that guarantees optimal solutions and is fast enough to be usable in
practice.

Acknowledgments This work was in part supported by the Na-
tional Science Foundation under grant CCF-1350574 and the Eu-
ropean Research Council under the European Union’s Seventh
Framework Programme (FP/2007-2013) / ERC Grant Agreement
nr. 306595 “STATOR”.

References
[1] A. Aiken and E. L. Wimmers. Type inclusion constraints and type

inference. In FPCA, pages 31–41. ACM, 1993.
[2] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability

Modulo Theories, chapter 26, pages 825–885. Volume 185 of Biere
et al. [5], February 2009.

[3] C. Barrett, I. Shikanian, and C. Tinelli. An abstract decision procedure
for a theory of inductive data types. Journal on Satisfiability, Boolean
Modeling and Computation, 3:21–46, 2007.

[4] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB standard – version
2.0. In SMT, 2010.

[5] A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, editors. Hand-
book of Satisfiability, volume 185 of Frontiers in Artificial Intelligence
and Applications. IOS Press, February 2009.

[6] N. Bjørner and A. Phan. νZ: Maximal Satisfaction with Z3. In SCSS,
2014.

[7] N. Bjørner, A. Phan, and L. Fleckenstein. νZ: An Optimizing SMT
Solver. In TACAS, 2015.

[8] S. Chen and M. Erwig. Counter-factual typing for debugging type
errors. In POPL, pages 583–594. ACM, 2014.

[9] O. Chitil. Compositional explanation of types and algorithmic debug-
ging of type errors. In ICFP, ICFP ’01, pages 193–204. ACM, 2001.

[10] L. Damas and R. Milner. Principal type-schemes for functional pro-
grams. In POPL, pages 207–212. ACM, 1982.

[11] L. De Moura and N. Bjørner. Z3: An Efficient SMT Solver. In TACAS,
pages 337–340. Springer-Verlag, 2008.

[12] D. Duggan and F. Bent. Explaining type inference. In Science of
Computer Programming, pages 37–83, 1995.

[13] EasyOCaml. http://easyocaml.forge.ocamlcore.org. [On-
line; accessed 16-April-2015].

[14] H. Gast. Explaining ML type errors by data flows. In Implementation
and Application of Functional Languages, pages 72–89. Springer,
2005.

[15] C. Haack and J. B. Wells. Type error slicing in implicitly typed higher-
order languages. Sci. Comput. Program., pages 189–224, 2004.

[16] A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. ML Typability is DEXTIME-
Complete. In CAAP, pages 206–220, 1990.

[17] B. Lerner, M. Flower, D. Grossman, and C. Chambers. Searching for
type-error messages. In PLDI. ACM Press, 2007.

[18] C. M. Li and F. Manyà. MaxSAT, Hard and Soft Constraints, chap-
ter 19, pages 613–631. Volume 185 of Biere et al. [5], February 2009.

[19] H. G. Mairson. Deciding ML Typability is Complete for Deterministic
Exponential Time. In POPL, pages 382–401, 1990.

[20] N. Narodytska and F. Bacchus. Maximum satisfiability using core-
guided maxsat resolution. In Twenty-Eighth AAAI Conference on
Artificial Intelligence, 2014.

[21] M. Neubauer and P. Thiemann. Discriminative sum types locate the
source of type errors. In ICFP, pages 15–26. ACM Press, 2003.

[22] OCaml. http://ocaml.org. [Online; accessed 15-April-2015].
[23] M. Odersky, M. Sulzmann, and M. Wehr. Type inference with con-

strained types. TAPOS, 5(1):35–55, 1999.
[24] Z. Pavlinovic, T. King, and T. Wies. Finding minimum type error

sources. In OOPSLA, pages 525–542, 2014.
[25] B. C. Pierce. Types and programming languages. MIT press, 2002.
[26] R. Piskac, T. Wies, and D. Zufferey. Grasshopper. In Tools and

Algorithms for the Construction and Analysis of Systems, pages 124–
139. Springer, 2014.

[27] J. A. Robinson. Computational logic: The unification computation.
Machine intelligence, 6(63-72):10–1, 1971.

[28] SHErrLoc. http://www.cs.cornell.edu/projects/
sherrloc/. [Online; accessed 22-April-2015].

[29] M. Sulzmann, M. Müller, and C. Zenger. Hindley/Milner style type
systems in constraint form. Res. Rep. ACRC-99-009, University of
South Australia, School of Computer and Information Science. July,
1999.

[30] F. Tip and T. B. Dinesh. A slicing-based approach for locating type
errors. ACM Trans. Softw. Eng. Methodol., pages 5–55, 2001.

[31] M. Wand. Finding the source of type errors. In POPL, pages 38–43.
ACM, 1986.

[32] D. Zhang and A. C. Myers. Toward general diagnosis of static errors.
In POPL, pages 569–581. ACM, 2014.

[33] D. Zhang, A. C. Myers, D. Vytiniotis, and S. L. P. Jones. Diagnosing
type errors with class. In PLDI, pages 12–21, 2015.

A. Appendix (Proof of Lemma 4.)
The main idea behind our proof is centered around how the set of
error sources for a particular program changes if we expand some
let usage. In particular, we show that by expanding a well-typed
let usage the number of error sources decreases. At the same time,
we show that the number of proper error sources actually increases
in the same scenario. In the case of a full expansion, when for
instance L = Lp, it follows that all error sources are in fact proper.
Using this, we show that a minimum error source that is proper for
some L will be a minimum error source when we extend L to Lp.

We first state and prove few lemmas that the main proofs rely
on. The next lemma states that typing derivations for the same ex-
pression using the same typing environments are equivalent modulo
type variables used.

Lemma 5. Let Γ,Π `L e` | Φ1 and Γ,Π `L e` | Φ2. Then, Φ1

and Φ2 are the same modulo consistent renaming of type variables
not bound in Γ and Π.

Proof. This follows from the fact that the only source of non-
determinism in our typing rules is the choice of names for type
variables.

The purpose of the next lemma is to show that every generated set
of constraints can be trivially satisfied.

Lemma 6. Let Γ,Π `L e` | Φ. Then, Φ is of the form {T` =⇒
Φ′}.

Proof. The proof goes by induction on typing derivations. By fo-
cusing on the last rule in the derivation, we can see that every rule
generates a constraint with the above form. By setting T` to false,
the generated set is then satisfied.

We now introduce notation and definitions used in our main
arguments. Given a program p, we say that typing environment Γ1

pointwise implies (for p) Γ2, written Γ1 �p Γ2, iff for all typing
bindings x : ∀ ~α1.(Φ1 V β1) ∈ Γ1 and x : ∀ ~α2.(Φ2 V β2) ∈ Γ2

for the same variable x we have that ∀β1, β2.β1 = β2 =⇒
(∃ ~α′

1.Φ1 ∧ ∃ ~α2.Φ2 ∧ PDefs(p) =⇒ ∃ ~α′
2.Φ2) is valid. Here,

~α′
1 is ~α1 without β1 (similarly for ~α′

2). When Γ1 �p Γ2 and
Γ2 �p Γ1, we simply write Γ1 ��p Γ2.

We now state two facts that are important in the proofs that
follow and which can be deduced from the proof of correctness
of W algorithm.

• If e is a subexpression of p and Γ1 ��p Γ2, then ρ(Γ1, e) =
ρ(Γ2, e).
• Let e be a subexpression of p and Γ,Π `L e : β1 | Φ1

where all T and P variables in Φ1 are assumed to be true.
Given ρ(Π, e) = ∀~δ.τprin and Φ2 = {β2 = τprin}, then
∀β1, β2.β1 = β2 =⇒ (∃~α′.Φ1∧∃~δ, β2.Φ2) ⇐⇒ (∃~δ.Φ2∧
∃~α.Φ1) holds. Here, ~α is a vector of all free variables in Φ1

except those bound in Γ and Π. Also, ~α′ is ~α without β1.

Given Γ,Π `L e` : β | Φ where e is a subexpression of
a program p, we define CΓ,Π,p,Φ,β to be the formula ∃~α.Φ ∧
PDefs(p). Here, ~α is a vector of the set fv(Φ)/(fv(Γ) ∪ fv(Π) ∪
{β}). When Γ, Π, p, and β are clear from the context, we simply
write CΦ. Also for convenience, let pwip(Γ1,Π2,Γ2,Π2) for a
program p hold iff Γ2 �p Γ1, Γ2 �p Π2, and Π1 ��p Π2.

We are now ready to prove the first main lemma. We show that
the number of error sources decreases for successive expansions of
well typed let usages.

Lemma 7. Let e be an expression in a program p, L and Lu set of
locations where L0 ⊆ L ⊆ Lu ⊆ Lp. Also, assume Lu = L∪{`u}
such that `u is a location of a well-typed let variable usage in e. If

Γ,Π `L e` : α | ψ and pwip(Γ,Π,Γu,Πu), then from the typing
derivation using L we can create a typing derivation using Lu such
that the following holds:

• Γu,Πu `Lu e
` : α | ψu

• M |= Cψu =⇒ M |= Cψ

Proof. We will refer to typing derivations using L and Lu with d
and du, respectively, using in general subscript u for parts of du.
We carry the proof by induction on d, focusing on the last rule
in the derivation. We start by observing that if M |= Cψu where
M 6|= T`, then by Lemma 6 M |= Cψ also holds. For simplicity,
we will skip this trivial analysis of such models below; we only
consider case where M |= T` and assume that Cψ and Cψu are
simplified accordingly.

[A-ABS]. Suppose pwip(Γ,Π,Γu,Πu). Since x : α binding
is trivial (x : α is the same as x : ∀α.(∅ V α)), we have
pwip(Γ.x : α,Π.x : α,Γu.x : α,Πu.x;α). We then create du
by induction hypothesis, applying the same rule, and choosing
the same name for α and γ as in d by appropriate type variable
renaming (Lemma 5). Now, suppose M is a model of Cψu .
Although α and β are quantified out in Cψu , by semantics of
existential quantification there exist a valuation to α and β that
satisfies the constraint when those variables are free; let those
values be α′ and β′, respectively. Let M ′ then be M [α →
α′, β → β′]. Then, M ′ is a model of CΦu too. By induction
hypothesis, it is also a model of CΦ, thus also being a model of
Cψ when α and β are made free. Then, M ′ is also a model of Cψ
and so must be M .

Similar argument can be given for the rules [A-HOLE], [A-
INT], and [A-BOOL].

[A-APP]. Suppose pwip(Γ,Π,Γu,Πu). Since the environments
are the same for the rule assumptions, we can use the induction
hypothesis. We create du similarly as in the previous rule. Sup-
pose now M is a model of Cψu . As in the previous rule, we can
easily modify M into M ′ such that M ′ |= CΦ1u

, CΦ2u
; then

by induction hypothesis it also must be that M ′ |= CΦ1 , CΦ2 .
The result then follows from induction hypothesis on α and β as
earlier.

Similar argument can be given for the rule [A-COND].

[A-LET-PRIN]. Suppose pwip(Γ,Π,Γu,Πu). We first apply in-
duction hypothesis for derivation for e1 using L. We create deriva-
tion using Lu as before using induction hypothesis and renaming
type variables where necessary. By induction hypothesis we then
have CΦ1u

=⇒ CΦ1 . By this and semantics of existential quan-
tification we also have that Γu.x : τexpu �p Γ.x : τexp.

By the above first property of W algorithm, we have Π.x :
τprin ��p Πu.x : τprinu . Finally, we show that Γu.x :
τexpu �p Πu.x : τprinu . If we assume that all T and P variables
of Φ1 are set to true, then by the PDefs definition P`1 holds, and
the argument follows from the second property of W algorithm we
mention above. Otherwise, P`1 is set to false and the argument
is trivial.

The proof then continues by applying the induction hypothesis
on typing derivation for e2. The final argument is made as in the
previous rules using induction hypothesis on Φ2u and FOL sub-
stitution lemma together with induction hypothesis on Φ1u [~β/~α].

Similar argument can be given for the rule [A-LET-EXP].

[A-VAR-PRIN]. We only consider the case when ` 6= `u. The ar-
gument is similar for the other case. Suppose pwip(Γ,Π,Γu,Πu).
We then create du in the usual way also making sure it ends in rule
[A-VAR-EXP], since ` ∈ Lu. Now, let M be a model of Cψu .
The result then directly follows from the fact that Γu �p Πu and

Πu �p Π: by definition of pointwise implication it is also the
case that Γu �p Π.

Similar argument can be given for the rule [A-VAR-EXP].

To avoid clutter, we now change a bit the definition of point-
wise implication, needed for the remainder of the proof, instead of
redefining it from scratch. The definition again states the same, ex-
cept the case where Φ1 is of the form {P` =⇒ β1 = τ}. Then
we require that ∀β1, β2.β1 = β2 =⇒ (∃ ~α′

1.Φ1 ∧ ∃ ~α2.Φ2 ∧
PDefs(p) =⇒ (P` =⇒ ∃ ~α′

2.Φ2)). Also, we redefine
pwip(Γ1,Π1,Γ2,Π2) to hold for a program p iff Γ2 �p Γ1,
Π1 �p Γ1, and Π1 ��p Π2.

Let M be an FOL model and Γ a typing environment. We write
M |= Γ if M |= ∃~α.Φ for every x : ∀~α.(Φ V β) ∈ Γ. We
say ms(M,Γ,Π,Γ′,Π′) iff M |= Γ, M |= Π, M |= Γ′, and
M |= Π′.

We now show that every proper error source is still an error
source after we perform an expansion of a well-typed let variable.
Argued later, such an error source is also proper after the expansion.

Lemma 8. Let e be an expression in a program p and L and Lu set
of locations where L0 ⊆ L ⊆ Lu ⊆ Lp. Also, let Lu = L ∪ {`u}
where `u is a location of a well-typed let variable usage. If
Γ,Π `L e : α | ψ, M is an FOL model such that M |= Pdloc(`u),
ms(M,Γ,Π,Γ′,Π′), and pwip(Γ′,Π′,Γ,Π), then from the typing
derivation using L we can create a typing derivation using Lu such
that:

• Γu,Πu `Lu e : α | ψu
• M |= Cψ =⇒ M |= Cψu

Proof. We borrow the notation from the proof of the previous
lemma. We also carry the proof using the same technique. Like-
wise, we skip the trivial analysis when M 6|= T`.

[A-ABS]. Supposems(M,Γ,Π,Γu,Πu) and pwip(Γu,Πu,Γ,Π).
Assume M |= Cψ and M |= Pdloc(`u). Since x : α binding is
trivial, we have ms(M,Γ.x : α,Π.x : α,Γu.x : α,Πu.x : α)
and pwip(Γu.x : α,Πu.x : α,Γ.x : α,Π.x : α). The argument
is then same as for the same rule in Lemma 7.

Similar argument can be given for the rules [A-HOLE], [A-
INT], and [A-BOOL].

[A-APP]. Supposems(M,Γ,Π,Γu,Πu) and pwip(Γu,Πu,Γ,Π).
Assume M |= Cψ and M |= Pdloc(`u). Since the environments
are the same for the rule assumptions, we can use the induction
hypothesis. We proceed by using the same argument as for the
same rule in Lemma 7.

Similar argument can be given for the rule [A-COND].

[A-LET-PRIN]. Supposems(M,Γ,Π,Γu,Πu), pwip(Γu,Πu,Γ,Π),
and M is a model of Cψ where M |= Pdloc(`u). We first apply
induction hypothesis for derivation for e1 using L. We create
derivation using Lu as before using induction hypothesis renam-
ing type variables when necessary. By induction hypothesis we
then have CΦ1 =⇒ CΦ1u

. By this and semantics of existential
quantification we also have that Γ.x : τexp �p Γu.x : τexpu .

By the above first property of W algorithm, we have Π.x :
τprin ��p Πu.x : τprinu . Finally, we show that Π.x :
τprin �p Γ.x : τexp. We first note that if P`1 is set to false,
the statement trivially follows. Otherwise, the statement follows
from the properites of correctness of W algorithm.

The fact that ms(M,Γ.x : τexp,Π.x : τprin,Γu.x :

τexpu ,Πu.x : τprinu) follows from the fact that M |= Φ1[~β/~α]

(Φ1u [~β/~α]), CΦ1 =⇒ CΦ1u
, and FOL substitution lemma.

Again, the argument then similarly proceeds as in Lemma 7.
Similar proof can be given for the rule [A-LET-EXP].

[A-VAR-PRIN]. We only consider the case when ` 6= `u. The
argument is similar for the other case. We create du in the usual
way also making sure it ends in rule [A-VAR-EXP], since ` ∈ Lu.
Supposems(M,Γ,Π,Γu,Πu), pwip(Γu,Πu,Γ,Π), andM is a
model ofCψ whereM |= Pdloc(`u). First, P`1 in ψ, coming from
Φ[~β/~α], is in fact Pdloc(`u) which is set to true by assumption.
Using this, the argument follows from Π �p Γu, which tran-
sitevely holds from Π�p Γ and Γ�p Γu.

Lemma 9. Let p be a program, R a cost function, L and Lu set of
locations where L0 ⊆ L ⊆ Lu ⊆ Lp such that Lu = L ∪ {`u}
and `u ∈ Scope(p,L), where `u is a location of a well-typed let
variable usage. If M = SOLVE(p,R,L) where LM is minimum
and proper, then M = SOLVE(p,R,Lu) and LM is minimum and
proper again.

Proof. We first note that SOLVE returns solutions for Φ where
∅, ∅ `L e : α | Φ. Then, by Lemma 7, Lemma 5, and seman-
tics of existential quantification, we have that the number of er-
ror sources reduces or stays the same when instead of using L
we use Lu. Therefore, since M is minimum among all models
before expansion, it will also be a minimum model after the ex-
pansion as R is fixed. Now, since `u 6∈ L and M is proper for L,
we have that `u 6∈ Usages(p,L,M). Given our assumption that
`u ∈ Scope(p,L), it must be the that M |= Pdloc(`u). Then we
have by Lemma 8 that proper error sources are still error sources
when instead of L we use Lu. Also by the definition of PDefs and
Scope , we have that Usages(p,L,M) = Usages(p,Lu,M). We
hence have that LM is also proper.

We can finally prove Lemma 4.

Proof. From Lemma 3, we know it suffices to use Lp in order
for the generated constraints to have the minimum error source
as the correct solution. We also know D = Lp \ L consists of
locations corresponding to usages of well-typed let definitions.
By the definition of Scope and PDefs , this set can be ordered in
a list so that each consecutive usage location is in the scope if we
expand one by one from the beginning all usage locations appearing
earlier in the list. For each such consecutive expansion inductively,
Lemma 9 guarantess that the proper minimum error source before
the expansion is still a proper minimum error source after the
expansion. After expanding all usages, our expansion location set
L is exactly Lp, guaranteeing the correct solution since in that case
all error sources are in fact proper.

