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Abstract

We present an exhaustive analysis of the problem of computing the rel-

ative entropy of two probabilistic automata. We show that the problem

of computing the relative entropy of unambiguous probabilistic automata

can be formulated as a shortest-distance problem over an appropriate

semiring, give efficient exact and approximate algorithms for its compu-

tation in that case, and report the results of experiments demonstrating

the practicality of our algorithms for very large weighted automata. We

also prove that the computation of the relative entropy of arbitrary prob-

abilistic automata is PSPACE-complete.

The relative entropy is used in a variety of machine learning algorithms

and applications to measure the discrepancy of two distributions. We ex-

amine the use of the symmetrized relative entropy in machine learning

algorithms and show that, contrarily to what is suggested by a number

of publications, the symmetrized relative entropy is neither positive defi-

nite symmetric nor negative definite symmetric, which limits its use and

application in kernel methods. In particular, the convergence of training

for learning algorithms is not guaranteed when the symmetrized relative

entropy is used directly as a kernel, or as the operand of an exponential

as in the case of Gaussian Kernels.

Finally, we show that our algorithm for the computation of the en-

tropy of an unambiguous probabilistic automaton can be generalized to

the computation of the norm of an unambiguous probabilistic automaton

by using a monoid morphism. In particular, this yields efficient algorithms

for the computation of the Lp-norm of a probabilistic automaton.

1 Introduction

The problem of comparing two distributions arises in a variety of applications.
A specific instance of that problem is that of comparing distributions given by
probabilistic automata. Probabilistic automata are used extensively in text and
speech processing to model different aspects of language such as morphology,
phonology, or syntax [Mohri, 1997] or in other applications such as computa-
tional biology [Durbin et al., 1998] and image processing [Culik II and Kari,
1997].

The output of a large-vocabulary speech recognition system or that of a
complex information extraction system is often represented as a probabilistic
automaton compactly representing a large set of alternative sequences [Mohri
et al., 2002]. Natural language sequences such as documents or biological se-
quences can also be modeled by probabilistic automata [Krogh et al., 1994]. The
computation of the distance or discrepancy between probabilistic automata can
thus be used to cluster the outputs of speech recognition or information extrac-
tion systems, documents, biological sequences, or other objects modeled in a
similar way.

The problem of efficiently computing the distance between two distributions
represented by weighted automata arises in many other machine learning prob-
lems. When a weighted automaton is obtained as a result of training on a large
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data set, the quality of the learning algorithm can be measured by computing
the distance between the automaton inferred and that of the target automaton.
Similarly, in many on-line learning algorithms and grammar inference applica-
tions, the convergence of an iterative algorithm relies on the magnitude of the
distance between two consecutive weighted automata.

This motivates the design of efficient algorithms for the computation of the
distance or discrepancy between probabilistic automata.1 There are many stan-
dard distances or divergences commonly used to compare distributions. The
relative entropy or Kullback-Leibler divergence, the Lp distance, the Hellinger
distance, the Jensen-Shannon distance, the χ2-distance, and the Triangle dis-
tance between two distributions q1 and q2 defined over a discrete set X [Topsøe,
2000, Csiszar and Korner, 1997].

In a companion paper, we give an exhaustive study of the problem of com-
puting the Lp distance of two probabilistic automata and other similar distances
such as the Hellinger distance [Cortes et al., 2006a]. In particular, we give ef-
ficient exact and approximate algorithms for computing these distances for p
even and prove the problem to be NP-hard for all odd values of p, thereby
completing previously known hardness results. We also show the hardness of
approximating the Lp distance of two probabilistic automata for odd values of
p.

This paper deals with the problem of computing the relative entropy of two
probabilistic automata. The relative entropy, or Kullback-Leibler divergence,
is one of the most commonly measure of the discrepancy of two distributions
p and q [Cover and Thomas, 1991]. It is an asymmetric difference that admits
the following information-theoretical interpretation: it measures the number of
additional bits needed to encode distribution p when using an optimal code for
q in place of an optimal code for p.

One approximate solution for the computation of the relative entropy would
consist of sampling sequences from the distributions represented by each of the
automata and of using those to compute the KL-divergence by simply summing
their contributions. But, sample sizes guaranteeing a small approximation error
could be very large, which would significantly increase the computation, while
still providing only an approximate solution.

We present an exhaustive analysis of the problem of computing the relative
entropy of two probabilistic automata. We show that the problem of computing
the relative entropy of unambiguous probabilistic automata can be formulated
as a shortest-distance problem over an appropriate semiring, give efficient exact
and approximate algorithms for its computation in that case, and report the
results of experiments demonstrating the practicality of our algorithms for very
large weighted automata. We also prove that the computation of the relative
entropy of arbitrary probabilistic automata is PSPACE-complete.

A procedure for the approximate computation of the relative entropy was
given by Carrasco [1997]. The procedure applies to deterministic weighted au-

1A related problem is that of testing the equivalence of two arbitrary probabilistic automata
A1 and A2. In [Cortes et al., 2006b,a], we give an efficient algorithm for this problem whose
time complexity is O(|Σ| (|A1| + |A2|)3).
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tomata and cannot be generalized to the case of unambiguous weighted au-
tomata because of the specific sum decomposition it is based on (the partition-
ing assumed in [Carrasco, 1997] [eq. 15, page 6] does not hold for unambiguous
automata). Our algorithms apply to the larger class of unambiguous weighted
automata. For some unambiguous weighted automata, the size of any equiva-
lent deterministic weighted automaton is exponentially larger. Since the size of
the machine directly affects the complexity of the computation, it is important
to be able to compute the entropy directly from the unambiguous automaton.
We give the first exact algorithms for the computation of the relative entropy.
We also describe approximate algorithms that are conceptually simpler than the
procedure of Carrasco [1997] and have a better time and space complexity.

The relative entropy is used in a variety of machine learning algorithms
and applications to measure the discrepancy of two distributions. We examine
the use of the symmetrized relative entropy in machine learning algorithms
and show that, contrarily to what is suggested by a number of publications
(e.g., [Mandel et al., 2006]), the symmetrized relative entropy is neither positive
definite symmetric nor negative definite symmetric, which limits its use and
application in kernel methods. In particular, the convergence of training for
learning algorithms is not guaranteed when the symmetrized relative entropy is
used directly as a kernel, or as the operand of an exponential as in the case of
Gaussian Kernels [Schölkopf and Smola, 2002].

Finally, we show that our algorithm for the computation of the entropy of
an unambiguous probabilistic automaton can be generalized to the computation
of the norm of an unambiguous probabilistic automaton by using a monoid
morphism [Cortes et al., 2006b]. In particular, this yields efficient algorithms
for the computation of the Lp-norm of a probabilistic automaton.

The paper is organized as follows. Section 2 introduces the preliminary
semiring and automata definitions used in the remaining of the paper. Sec-
tion 3 recalls the definition of the relative entropy of two probabilistic automata
and introduces a semiring, the entropy semiring, which helps formulate the
computation of the relative entropy of unambiguous probabilistic automata as
a shortest-distance problem. Section 4 describes both an exact and a fast ap-
proximate algorithm for the computation of the relative entropy of unambiguous
probabilistic automata. It also provides a detailed analysis of these algorithms
and reports the results of experiments with large weighted automata. The case
of arbitrary probabilistic automata is treated in Section 5 where the problem
is proven to be PSPACE-complete. Section 6 proves several negative results
for the use of the symmetrized relative entropy in kernel methods. It proves
that the symmetrized relative entropy is neither positive definite nor negative
definite. Finally, Section 7 extends our algorithm for the computation of the
entropy of a probabilistic automaton to the computation of other norms defined
via a monoid morphism.
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2 Preliminaries

2.1 Semirings and Weighted Automata

Weighted automata are automata in which each transition carries some weight
in addition to the usual alphabet symbol [Eilenberg, 1974–1976, Salomaa and
Soittola, 1978, Berstel and Reutenauer, 1988]. For various operations to be well-
defined, the weight set must have the algebraic structure of a semiring [Kuich
and Salomaa, 1986]. A semiring is a ring that may lack negation.

Definition 1. A semiring is a system (K,⊕,⊗, 0, 1) such that:

• (K,⊕, 0) is a commutative monoid with 0 as the identity element for ⊕,

• (K,⊗, 1) is a monoid with 1 as the identity element for ⊗,

• ⊗ distributes over ⊕: for all a, b, c in K,

(a⊕ b)⊗ c = (a⊗ c)⊕ (b ⊗ c) and c⊗ (a⊕ b) = (c⊗ a)⊕ (c⊗ b).

• 0 is an annihilator for ⊗: ∀a ∈ K, a⊗ 0 = 0⊗ a = 0.

Some familiar semirings are the Boolean semiring ({0, 1},∨,∧, 0, 1) or the trop-
ical semiring (R+ ∪ {∞}, min, +,∞, 0) related to classical shortest-paths prob-
lems and algorithms. A semiring is idempotent if for all a ∈ K, a⊕ a = a. It is
commutative when ⊗ is commutative.

Definition 2. A weighted automaton A = (Σ, Q, I, F, E, λ, ρ) over a semiring
(K,⊕,⊗, 0, 1) is a 7-tuple where:

• Σ is the finite alphabet of the automaton,

• Q is a finite set of states,

• I ⊆ Q the set of initial states,

• F ⊆ Q the set of final states,

• E ⊆ Q× Σ ∪ {ǫ} ×K×Q a finite set of transitions,

• λ : I → K the initial weight function mapping I to K, and

• ρ : F → K the final weight function mapping F to K.

The weighted automata considered in this paper are assumed not to contain
ǫ-transitions. A pre-processing ǫ-removal algorithm can be used to remove such
transitions for the automata considered here [Mohri, 2002a]. Furthermore, it is
assumed that the automata are trim, i.e. all states in the automata are both
accessible and co-accessible.

We denote by |A| = |E|+|Q| the size of an automaton A = (Σ, Q, I, F, E, λ, ρ),
that is the sum of the number of states and transitions of A. Given a transition
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Figure 1: An unambiguous weighted finite automaton that cannot be deter-
minized. 0 is the initial state and 1 the final state. The automaton accepts the
set of strings (a∗b∗)∗ab∗.

e ∈ E, we denote by i[e] its input label, p[e] its origin or previous state and n[e]
its destination state or next state, w[e] its weight (weighted automata case).
Given a state q ∈ Q, we denote by E[q] the set of transitions leaving q.

A path π = e1 · · · ek in A is an element of E∗ with consecutive transitions:
n[ei−1] = p[ei], i = 2, . . . , k. We extend n and p to paths by setting: n[π] = n[ek]
and p[π] = p[e1]. We denote by P (q, q′) the set of paths from q to q′ and
by P (q, x, q′) the set of paths from q to q′ with input label x ∈ Σ∗. The
labeling functions i and the weight function w can also be extended to paths by
defining the label of a path as the concatenation of the labels of its constituent
transitions, and the weight of a path as the ⊗-product of the weights of its
constituent transitions: i[π] = i[e1] · · · i[ek], w[π] = w[e1]⊗ · · · ⊗ w[ek].

The output weight associated by an automaton A to an input string x ∈ Σ∗

is defined by:

[[A]](x) =
⊕

π∈P (I,x,F )

λ[p[π]]⊗ w[π] ⊗ ρ[n[π]]. (1)

2.2 Deterministic and Unambiguous Weighted automata

A weighted automaton A is said to be deterministic or subsequential if it has a
deterministic input, that is if it has a unique initial state and if no two transitions
leaving the same state share the same input label. A weighted automaton is
said to be unambiguous if for any x ∈ Σ∗ it admits at most one accepting path
labeled with x. Thus, the class of unambiguous weighted automata includes
deterministic weighted automata.

Fig. 1 shows an unambiguous weighted automaton that does not admit an
equivalent deterministic weighted automaton. Previous work on the computa-
tion of the relative entropy [Carrasco, 1997] was limited to deterministic finite
automata. We present the first algorithms for the computation of the relative
entropy of unambiguous weighted automata.

2.3 Shortest-Distances

Let s[A] denote the ⊕-sum of the weights of all successful paths of A when it is
defined and in K. s[A] can be viewed as the shortest-distance from the initial
states to the final states. When the sum of the weights of all paths from any
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state p to any state q is well-defined and in K, we can define the shortest distance
from p ∈ Q to q ∈ Q as:

d[p, q] =
⊕

π∈P (p,q)

w[π], (2)

where the summation is defined to be 0 when P (p, q) = ∅.

2.4 Probabilistic Automata

Definition 3. A weighted automaton A defined over the probability semiring
(R+, +,×, 0, 1) is said to be probabilistic if for any state q ∈ Q,

⊕

π∈P (q,q) w[π],
the sum of the weights of all cycles at q, is well-defined and in R+ and

∑

x∈Σ∗

[[A]](x) = 1. (3)

A probabilistic automaton A is said to be stochastic if at each state the weights
of the outgoing transitions and the final weight sum to one.

Note that our definition of probabilistic automata differs from that of Rabin
[1963] and Paz [1971]. Probabilistic automata as defined by these authors are
weighted automata over (R+, +,×, 0, 1) such that at any state q and for any
label a ∈ Σ, the weights of the outgoing transitions of q labeled with a sum to
one. More generally, with that definition, the weights of the paths leaving state
q and labeled with x ∈ Σ∗ sums to one. Such automata define a conditional
probability distribution Pr[q′ | q, x] over all states q′ that can be reached from
q by reading x.

Instead, with our definition, probabilistic automata represent distributions
over Σ∗, Pr[x], x ∈ Σ∗. These are the natural distributions that arise in many
applications. They are inferred from large data sets using statistical learning
techniques. We are interested in computing the relative entropy of two such
distributions over strings.

2.5 Intersection of Weighted Automata

Let A1 and A2 be two weighted automata with Ai = (Σ, Qi, Ii, Fi, Ei, λi, ρi)
for i = 1, 2. The intersection A of A1 and A2 is denoted by A = A1 ∩ A2.
It is a weighted automaton accepting the language L(A1) ∩ L(A2) and defined
by the tuple A = (Σ, Q1 ×Q2, I1 × I2, F1 × F2, E, (λ1, λ2), (ρ1, ρ2)), where the
transitions E are defined according to the following rule:

(q1, a, w1, q2) ∈ E1 and (q′1, a, w′
1, q

′
2) ∈ E2 ⇒ ((q1, q

′
1), a, (w1⊗w′

1), (q2, q
′
2)) ∈ E.

There exists a general algorithm for the computation of the intersection over
an arbitrary semiring, even in the presence of ǫ-transitions [Mohri et al., 1996].
The time complexity of the algorithm is quadratic O(|A1||A2|) since in the worst
case the outgoing transitions of each state of A1 match all those of each state
of A2.
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3 Relative Entropy

The problem that we are interested in is that of computing D(A‖B), the relative
entropy of two unambiguous probabilistic automata A and B.

3.1 Definition

The entropy H(p) of a probability distribution p defined over a discrete set X
is defined as [Cover and Thomas, 1991]:

H(p) = −
∑

x∈X

p(x) log p(x), (4)

where by convention 0 log 0 = 0. The relative entropy, or Kullback-Leibler di-
vergence of two probability distributions defined over a discrete set X is defined
as:

D(p‖q) =
∑

x∈X

p(x) log
p(x)

q(x)
= Ep[log

p(X)

q(X)
], (5)

where we use the standard conventions: 0 log 0
q = 0 and p log p

0 = ∞. It is
straightforward to show, using Jensen’s inequality, that the relative entropy is
non-negative and that D(p‖q) = 0 if and only if p = q. Note that the relative
entropy does not define a metric since it is not symmetric and does not satisfy
the triangle inequality.

These definitions naturally apply to probabilistic automata since they define
distributions over strings. The relative entropy of A and B can be written as
the sum of two terms:2

D(A‖B) =
∑

x

[[A]](x) log[[A]](x) −
∑

x

[[A]](x) log[[B]](x). (6)

3.2 Entropy Semiring

This section introduces a semiring that will be later used to formulate the prob-
lem of computing the relative entropy of two unambiguous automata as a single-
source shortest-distance problem.

Let K denote (R ∪ {+∞,−∞})× (R ∪ {+∞,−∞}). For pairs (x1, y1) and
(x2, y2) in K, define the following :

(x1, y1)⊕ (x2, y2) = (x1 + x2, y1 + y2) (7)

(x1, y1)⊗ (x2, y2) = (x1x2, x1y2 + x2y1) (8)

Lemma 1. The system (K,⊕,⊗, (0, 0), (1, 0)) defines a commutative semiring.

Proof. It is known that (K,⊕, (0, 0)) is a commutative monoid with (0, 0) as
the identity element for ⊕. Furthermore, it is clear that (K,⊗, (1, 0)) is a com-
mutative monoid with (1, 0) as the identity element for ⊗. Also, (0, 0) is an

2The first term is simply −H(A), where H(A) is the entropy of A.
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q q’b/w

q0

a/0 a/0
b/0

Figure 2: Illustration of the completion operation.

annihilator for ⊗. Thus, all that remains to be shown is that ⊗ distributes
over ⊕. Since both operations are commutative, we need to verify that for all
z1, z2, z3 ∈ K,

(z1 ⊕ z2)⊗ z3 = (z1 ⊗ z3)⊕ (z2 ⊗ z3) (9)

Let zi = (xi, yi) for i = 1, 2, 3. We verify each of these properties one-by-one.
First consider (z1 ⊕ z2)⊗ z3. We have

(z1 ⊕ z2)⊗ z3 = ((x1, y1)⊕ (x2, y2))⊗ (x3, y3)

= (x1 + x2, y1 + y2)⊗ (x3, y3)

= ((x1 + x2)x3, (x1 + x2)y3 + x3(y1 + y2))

= (x1x3, x1y3 + x3y1)⊕ (x2x3, x2y3 + x3y2)

= ((x1, y1)⊗ (x3, y3))⊕ ((x2, y2)⊗ (x3, y3))

= (z1 ⊗ z3)⊕ (z2 ⊗ z3),

which ends the proof of the lemma.

We call the semiring just defined the entropy semiring due to its relevance
in the computation of the entropy and the relative entropy. This semiring arises
in other contexts and can be defined in terms of an S-module [Bloom and Ésik,
1991, Eisner, 2001].

4 Relative Entropy of Unambiguous Probabilis-

tic Automata

This section describes two algorithms for computing the relative entropy of
two unambiguous probabilistic automata using a single-source shortest distance
over the entropy semiring: an exact algorithm, and a more efficient and practical
approximate algorithm. Clearly, these algorithms can also be used to compute
the entropy of a single unambiguous probabilistic automaton.

4.1 Semiring Formulation

The unambiguous weighted automata A and B are not necessarily complete: at
some states, there may be no outgoing transition labeled with a given element
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of the alphabet a ∈ Σ. We can however make them complete in a way similar
to the standard construction in the unweighted case. We introduce a new state
q0 with final weight 0, add self-loops with weight 0 at that state labeled with all
elements of the alphabet, and for any a ∈ Σ and q ∈ Q, add a transition from
state q to q0 labeled with a with weight 0 when q does not have an outgoing
transition labeled with a (see Figure 2). This construction leads to a complete
and unambiguous weighted automaton equivalent to the original one since the
transitions added have all weight 0. The completion operation is only applied to
handle the boundary case when there exists a string x ∈ Σ∗ such that [[B]](x) = 0
and [[A]](x) 6= 0. In this case, the completion operation ensures that the future
computation of the relative entropy would correctly lead to ∞. Note that the
completion operation can be done on-demand. States and transitions can be
created only when necessary for the application of other operations. We can
thus assume that A and B are unambiguous and complete. At the cost of
introducing a super-initial and a super-final state, we can also assume in the
following, without loss of generality, that the initial weight λ and the final
weights ρ(q) are all equal to 1 in A and B.

Let log A denote the weighted automaton derived from A by replacing each
weight w ∈ R+ by log w and let Φ1(A) (Φ2(A)) denote the weighted automaton
over the entropy semiring derived from A by replacing each weight w by the
pair (w, 0) (resp. (1, w)). The construction of log A, Φ1(A), or Φ2(A) from A is
straightforward and can be done in linear time.

Proposition 2. The relative entropy of A and B satisfies the following identity
in the entropy semiring:

(0, D(A‖B)) = s[Φ1(A) ∩ Φ2(log A)]− s[Φ1(A) ∩ Φ2(log B)]. (10)

Thus, the relative entropy is expressed in terms of single-source shortest-
distance computations over the entropy semiring.

Proof. Since A is unambiguous and complete, both Φ1(A) and Φ2(log A) are
also unambiguous and complete. Thus, for a given string x, there is at most
one accepting path in Φ1(A) or Φ2(log A) labeled with x. Then, by definition
of intersection, the weight associated by Φ1(A) ∩ Φ2(log A) to a string x is

([[A]](x), 0) ⊗ (1, log[[A]](x)) = ([[A]](x), [[A]](x) log[[A]](x)). (11)

Thus, the shortest-distance from the initial states to the final states in Φ1(A)∩
Φ2(log A) is

s[Φ1(A) ∩ Φ2(log A)] =
⊕

x

([[A]](x), [[A]](x) log[[A]](x)) (12)

= (
∑

x

[[A]](x),
∑

x

[[A]](x) log[[A]](x)) (13)

= (1,
∑

x

[[A]](x) log[[A]](x)). (14)
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Similarly, we can show that

s[Φ1(A) ∩Φ2(log B)] = (1,
∑

x

[[A]](x) log[[B]](x)). (15)

The statement of the proposition follows directly from the identities 14 and 15
and Equation 6.

Thus, the computation of the relative entropy is reduced to two single-source
shortest-distance computations over the entropy semiring. The next section
discusses two general algorithms for computing these distances. Since the first
term simply corresponds to the entropy of a single unambiguous probabilistic
automaton, our results clearly also apply to the computation of the entropy.

4.2 Exact Algorithm

A generalization of the classical Floyd-Warshall algorithm can be used to com-
pute all-pairs shortest distances d[p, q] (p, q ∈ Q) over a closed semiring not
necessarily idempotent [Mohri, 1998, 2002b]. This algorithm can thus also be
used to compute s[A] for a weighted automaton A over a non-idempotent semir-
ing, which is needed for our purpose.

In what follows, we assume a definition of closed semirings [Lehmann, 1977]
that is more general than the classical one used by Cormen et al. [Cormen et al.,
1992] in that it does not assume idempotence. This is because idempotence is
not necessary for the proof of the correctness of the generic all-pairs shortest-
distance algorithms of Floyd-Warshall and Gauss-Jordan [Mohri, 1998, 2002b].
More generally, given a graph or automaton A, we introduce the following defi-
nition.

Definition 4. A semiring is closed for A if the infinite sum (closure) is defined
for any cycle weight c of A and if associativity, commutativity, and distributivity
apply to countable sums of cycle weights.

Clearly, the generic Floyd-Warshall algorithm can also be applied to any
automaton A for which the semiring considered is closed. The following lemma
shows that the entropy semiring has the desired property.

Lemma 3. Let A be a weighted automaton over the entropy semiring such that
for any cycle weight w = (x, y), 0 ≤ x < 1. Then, the entropy semiring is closed
for A.

Proof. For any (x, y) ∈ K and k ≥ 0, define Rk as:

Rk =

k times
︷ ︸︸ ︷

(x, y)⊗ . . .⊗ (x, y) . (16)

with R0 = (1, 0). We can show by induction that Rk = (xk, kyxk−1). The base
case is readily established for k = 0. Assume that the hypothesis holds for all
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i < k. Then

Rk = Rk−1 ⊗ (x, y) (17)

= (xk−1, (k − 1)yxk−2)⊗ (x, y)

= (xk, kyxk−1).

For N ≥ 0, define SN by: SN =

N⊕

i=0

Ri. It is easy to prove by induction as

above that SN verifies

SN =

(
1− xN+1

1− x
, y ·

[
1− xN

(1− x)2
− NxN

1− x

])

. (18)

Thus, for 0 ≤ x < 1, the closure of (x, y) is well-defined and in K:3

(x, y)∗ = lim
N→∞

SN =

(
1

1− x
,

y

(1 − x)2

)

. (19)

The associativity, commutativity, and distributivity properties follow the asso-
ciativity, commutativity, and distributivity of the sums SN with other elements
of the entropy semiring and the corresponding properties of their pointwise lim-
its.

Let A be a probabilistic automaton, then the weight u of a cycle must verify
0 ≤ u < 1, otherwise the automaton is not closed. The weight of a cycle of
Φ1(A) ∩ Φ2(log A) is (u, u log u) (see Equation 11), where u is the weight of a
cycle of A, and similarly, the weight of a cycle of Φ1(A) ∩ Φ2(log B) is of the
form (u, u log v), where v is the weight of a matching cycle in B.

Thus, the entropy semiring is closed both for Φ1(A)∩Φ2(log B) and Φ1(A)∩
Φ2(log A) and the generic Floyd-Warshall algorithm can be applied to compute
the shortest-distances s[Φ1(A) ∩ Φ2(log B)] and s[Φ1(A) ∩ Φ2(log A)].

The generic Floyd-Warshall admits an in-place implementation [Mohri, 1998];
the following gives the corresponding pseudocode.

1 for i← 1 to |Q|
2 do for j ← 1 to |Q|
3 do d[i, j]←

⊕

e∈P (i,j)

w[e]

4 for k ← 1 to |Q|
5 do for i← 1 to |Q|
6 do for j ← 1 to |Q|
7 do d[i, j]← d[i, j]⊕ (d[i, k]⊗ d[k, k]∗ ⊗ d[k, j])
8 return d

3The right-hand side can be written as: (x∗, y(x∗)2), if we denote by x∗ =
P

∞

n=0
xn.
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The ⊕- and ⊗-operations of the entropy semiring can be performed in constant
time. For (x, y) with 0 ≤ x < 1, the closure (x, y)∗ = ( 1

1−x , y
(1−x)2 ) can also be

computed in constant time. Thus, the running time complexity of the algorithm
is Θ(|E|+ |Q|3) and its space complexity is Ω(|Q|2) when applied to a weighted
automaton A = (Q, I, F,Σ, δ, σ, λ, ρ) over the tropical semiring.

The intersection Φ1(A) ∩ Φ2(log A) can be computed in linear time O(|A|)
but the worst cost computation of Φ1(A) ∩ Φ2(log B) is quadratic, O(|A||B|).
The total time complexity of the computation of the relative entropy is thus in
Θ(|A ∩B|3). Its space complexity is in Θ(|A ∩B|2).

This provides an exact algorithm for the computation of the relative entropy.
The cubic time complexity of the algorithm with respect to the size of the
intersection automaton makes it rather slow for large automata.

Its quadratic lower bound complexity with respect to the size of the inter-
section machine makes it prohibitive for use in many applications. In text and
speech processing applications, a weighted automaton may have several hun-
dred million states and transitions. Even, if A has only about 100,000 states
and A ∩ B has about the same number of states, the algorithm requires main-
taining a matrix d with 10 billion entries.

The next section presents an algorithm that exploits the sparseness of the
graph and does not impose these space requirements.

4.3 Approximate Algorithm

A generic single-source shortest-distance algorithm was presented for directed
graphs defined over a k-closed semiring in [Mohri, 2002b]. The algorithm can
be viewed as a generalization to these semirings of classical shortest-paths al-
gorithms. This generalization is not trivial and does not require the semiring
to be idempotent. The algorithm is also generic in the sense that it works with
any queue discipline.

Definition 5. Let k ≥ 0 be an integer. A semiring (K,⊕,⊗, 0, 1) is k-closed if:

∀a ∈ K,

k+1⊕

n=0

an =

k⊕

n=0

an. (20)

More generally, we will say that K is k-closed for a graph G or automaton
A, if Equation 20 holds for all cycle weights a ∈ K.

By definition, the entropy semiring is k-closed for any acyclic automaton A
and thus the generic single-source shortest distance can be used to compute the
relative entropy exactly in such cases. But, in general, the entropy semiring is
not k-closed for a non-acyclic automaton A since by definition of SN ,

∀k > 0, Sk+1 − Sk = Rk+1 = (xk+1, (k + 1)yxk). (21)

But, given a weighted automaton A over the entropy semiring such that all cycle
weights w = (x, y) verify 0 ≤ x < 1, there exists KA sufficiently large such that
for all k ≥ KA, ||Sk+1−Sk||∞ ≤ ǫ. Indeed, let X denote the maximum value of x
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for all cycles and Y the maximum |y|. Then, for k ≥ log(Y/ǫ)
log(1/X) , ||Sk+1−Sk||∞ ≤ ǫ

for all (x, y). This leads us to consider an approximate version of the generic
single-source shortest distance algorithm in non-acyclic cases, where the equality
test is replaced by an ǫ-equality: u =ǫ v if ||u − v||∞ ≤ ǫ. The following gives
the pseudocode of the modified algorithm.

1 for i← 1 to |Q|
2 do d[i]← r[i]← 0
3 d[s]← r[s]← 1
4 S ← {s}
5 while S 6= ∅
6 do q ← head(S)
7 Dequeue(S)
8 r′ ← r[q]
9 r[q]← 0
10 for each e ∈ E[q]
11 do if d[n[e]] 6=ǫ d[n[e]]⊕ (r′ ⊗ w[e])
12 then d[n[e]]← d[n[e]]⊕ (r′ ⊗ w[e])
13 r[n[e]]← r[n[e]]⊕ (r′ ⊗ w[e])
14 if n[e] 6∈ S
15 then Enqueue(S, n[e])

d[q] denotes the tentative shortest distance from the source s to q. r[q] keeps
track of the sum of the weights added to d[q] since the last queue extraction
of q. The attribute r is needed for the shortest-distance algorithm to work in
non-idempotent cases. The algorithm uses a queue S to store the set of states
to consider for the relaxation steps of lines 11-15 [Mohri, 2002b]. Any queue
discipline, e.g., FIFO, shortest-first, topological (in the acyclic case), can be
used. The test of line 11 is based on an ǫ-equality.

Different queue disciplines yield different running times for our algorithm.
The choice of the best queue discipline to use can be based on the structure of
the two automata, which can be exploited to obtain a more efficient algorithm to
compute the relative entropy. More specifically, let Q, E denote (respectively)
the set of states and edges in the intersection automata. Further, let N(q)
denote the number of times a state q is inserted in the queue. Then, using the
Fibonacci heap with a shortest first queue discipline (as in Dijkstra’s algorithm),
the complexity of the algorithm is given by:

O(|Q|+ |E|max
q∈Q

N(q) + log |Q|
∑

q∈Q

N(q)). (22)

If the underlying automata are acyclic, then using the queue discipline cor-
responding to the topological order yields the best time complexity, and the
problem can be solved in linear time: O(|Q|+ |E|).

Using a breadth-first queue discipline (as in the Bellman-Ford shortest dis-
tance algorithm), updates to the shortest distance estimates in iteration k can
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be formulated as Dk = MDk−1, where M is the matrix associated to the au-
tomaton, that is the matrix representing the weighted graph defined by the
automaton. Note that the matrix multiplication here is over the ⊕ and ⊗ op-

erations of the semiring, so that Dk[i] = ⊕|Q|
j=1M [i, j]⊗Dk−1[j].

We now analyze the convergence rate of the approximate algorithm with the
breadth-first queue discipline. Let us focus only on the first component of the
distance pair. Let M1 be the matrix obtained by taking the first part of each
element of M . Assume that the matrix M is a stochastic matrix.

By the Perron-Frobenius theorem, we know that the largest eigenvalue is 1
and has a multiplicity of 1. Furthermore, all other eigenvalues λ are such that
|λ| < 1. Using the Jordan canonical form of M , it is not hard to show that the
matrix multiplication operation converges in O(|λ2|k), where λ2 is the second
largest eigenvalue of M (see [Golub and Loan, 1996] for a similar analysis). Thus,

the updates in the kth iteration are proportional to λk
2 , hence, k = log(1/ǫ)

log(1/|λ2|)
.

Plugging in this expression for N(q), the overall complexity of the approximate
algorithm is:

O

(

|Q|+ (|E|+ |Q|) log(1/ǫ)

log(1/|λ2|)

)

. (23)

For ǫ exponentially smaller than |λ2| (ǫ = |λ2|d), the cost in complexity is only
linear: O(|Q|+ d(|E|+ |Q|)).

It is possible to use different queue disciplines in different parts of the graph
and improve the running time of the algorithm. For example, for a large graph
with several strongly connected components, one can use a topological order
on the component graph, with shortest-first queue discipline in each strongly
connected component [Mohri, 2002b]. If there are k strongly connected com-
ponents, with the ith component having ni vertices, then the running time is
given by O(|Q| + |E|maxq∈Q N(q) + log |maxi ni|

∑

q∈Q N(q)). If the largest
component has O(n/k) vertices, then this improves the general complexity by
an additive factor of

∑

q∈Q N(q) log k. Our experience with such computations
for very large graphs of several million states shows that the generic topologi-
cal order with the shortest-fist queue discipline within each strongly connected
component often leads to the most efficient results in practice.

4.4 Comparison with Previous Work

In [Carrasco, 1997], the author describes a procedure for an approximate com-
putation of the relative entropy of two deterministic stochastic automata. The
procedure is based on an iterative method (which can be viewed as approxi-
mating the inverse of a matrix) for computing, for a stochastic automaton A,
the probability of each state q, that is the sum of the weights of all paths going
through q. The convergence is claimed but not proved and no bound is indicated
on the maximum number of iterations.

The author reports no complexity result for the procedure described, which
makes it difficult to compare with our algorithm. Our most favorable estimate
of its complexity is Ω(|A|2|B|2(T +|Σ|)), where T denotes the maximum number
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of iterations executed. This is because the procedure requires using a matrix of
size |A|2|B|2. The complexity of the procedure also depends on the size of the
alphabet, which, in some applications such as natural language processing ap-
plications, may be very large. Furthermore, the lower bound space complexity
of this procedure is Ω(|A|2|B|2). This makes it unsuitable for computing the rel-
ative entropy of large weighted automata. Note that the experiments reported
by the author were carried out with very small grammars of about 30 rules.
Nevertheless, the procedure bears some resemblance with our approximate al-
gorithm. It can be viewed as an alphabet-dependent non-sparse implementation
of that algorithm for the particular case of a FIFO queue discipline.

4.5 Experiments

We implemented both the generic Floyd-Warshall algorithm and the approx-
imate algorithm for the computation of the relative entropy of unambiguous
probabilistic automata.

To avoid the numerical instability issues related to the multiplications of
probabilities, we used instead negative log probabilities. This corresponds to
taking the image of the entropy semiring by the semiring morphism log×I
where I is the identity over the second element of the weights.

To evaluate the efficiency of our approximate algorithm for computing the
relative entropy we created two n-gram statistical models trained on a large
corpus – one a bigram model (n = 2) and one a trigram model (n = 3). The
minimal deterministic weighted automaton representing the bigram model had
about 200,000 transitions, that of the trigram model about 400,000 transitions.
It took about 3s on a single 2GHz Intel processor with 128MB of RAM to
compute the relative entropy of these large weighted automata using a FIFO
queue discipline. With a shortest-first queue discipline, the time was reduced
to 2s.

5 Relative Entropy of Arbitrary Probabilistic

Automata

This section proves a hardness result suggesting that the problem of computing
the relative entropy of arbitrary probabilistic automata is intractable.

5.1 Hardness Result

Automaton A0. First we wish to describe the automaton A0. This automa-
ton is used in reducing the problem of determining whether the language ac-
cepted by an automaton is Σ∗ to the problem of determining whether the relative
entropy of two probabilistic automata is infinite.

Fix a real number α > 0 such that α|Σ| < 1 and let A0 be the one-state
weighted automaton representing the rational power series (1 − α)(

∑

x∈Σ αx)∗

as depicted in Figure 3 for Σ = {a, b}. By definition, A0 accepts all strings
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0/1 − 2α

a/α
b/α

Figure 3: The automaton A0 that accepts all strings, {a, b}∗, and assigns a
weight of αn(1 − α) to any string of length n. α > 0 is a constant such that
2α < 1.

x ∈ Σ∗ and for all x ∈ Σ∗, [[A]](x) = α|x|(1 − |Σ|α). By construction, A0 is
stochastic and thus probabilistic. Here is also a direct verification:

∑

x∈Σ∗

[[A0]](x) =

∞∑

n=0

∑

|x|=n

αn(1− |Σ|α) =

∞∑

n=0

|Σ|nαn(1 − |Σ|α) (24)

= (1 − |Σ|α)
1

1− |Σ|α = 1. (25)

The following theorem shows that the problem of determining the relative
entropy of two arbitrary probabilistic automata is at least as hard as determining
if a finite automaton accepts Σ∗.

Theorem 4. Let A be an arbitrary probabilistic automaton, then D(A0‖A) <∞
iff A accepts Σ∗.

Proof. Assume that [[A]](x) = 0 for some x ∈ Σ∗. Then, since [[A0]](x) > 0,

[[A0]](x) log [[A0]](x)
[[A]](x) is infinite and D(A0‖A) =∞.

Assume now that A accepts Σ∗, thus [[A]](x) 6= 0 for all x ∈ Σ∗. Without loss
of generality, we can assume A to be trim. Let E denote the set of transitions
of A and let δ denote the minimum weight of a transition: δ = mine∈E w[e].
By assumption, δ > 0 since the automaton A is trim and probabilistic. For
x ∈ Σ∗, |x| = n, [[A]](x) ≥ δn. Thus

∀x ∈ Σ∗,
[[A0]](x)

[[A]](x)
=

αn(1− |Σ|α)

[[A]](x)
≤ (1 − |Σ|α)

(α

δ

)n

. (26)

It follows that:

∀x ∈ Σ∗, [[A0]](x) log
[[A0]](x)

[[A]](x)
≤ αn(1− |Σ|α) (n log(α/δ) + log(1− |Σ|α)) .

(27)
For any positive integer N , summing over all strings x of length at most N , in
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the order of increasing |x| yields:

∑

|x|≤N

[[A0]](x) log
[[A0]](x)

[[A]](x)
=

N∑

n=0

∑

x:|x|=n

[[A0]](x) log
[[A0]](x)

[[A]](x)
(28)

≤
N∑

n=0

|Σ|nαn(1− |Σ|α) (n log(α/δ) + log(1 − |Σ|α)) .

Since α|Σ| < 1 the two series in this summation,
∑

n nβn and
∑

n βn with
β = |Σ|α < 1, converge. It is straightforward to verify that for 0 ≤ β < 1,
∑∞

n=0 nβn = β
(1−β)2 . Using this identity, we obtain the following bound on

D(A0‖A):

D(A0‖A) ≤ (1− |Σ|α)

( |Σ|α log(α/δ)

(1− |Σ|α)2
+

log(1 − |Σ|α)

1− |Σ|α

)

. (29)

Thus D(A0‖A) <∞.

Theorem 5. The problem of computing the relative entropy of two arbitrary
probabilistic automata is PSPACE-complete.

Proof. The universality problem, i.e., the problem of deciding if a trim finite
automaton A accepts Σ∗, is PSPACE-complete [Stockmeyer and Meyer, 1973,
Garey and Johnson, 1979]. The transitions of any trim finite automaton A can
be augmented with positive weights so that it becomes a probabilistic automa-
ton. This can be done by weighting each outgoing transition of state q, or final
weight if q is final, by 1/nq where nq is the out-degree of q, plus one if q is final.
By Theorem 4, it can be decided if a probabilistic automaton A accepts all
strings by computing the relative entropy D(A0‖A) and testing its finiteness.
Thus, the computation of the relative entropy can determine if a trim finite
automaton A accepts Σ∗.

5.2 Remarks

Theorem 5 suggests that the general problem of computing the relative entropy
of arbitrary probabilistic automata is intractable. However, one may resort to
various approximations of practical importance. An example is an approxima-
tion based on the use of the log-sum inequality by [Singer and Warmuth, 1997]
in the context of machine learning. We have initiated a specific study of such
approximations, in particular by examining the quality of an approximation
when using the algorithms we presented for the unambiguous case.

Note that the general problem of determining if a weighted automaton over
the (R, +, ·, 0, 1) semiring accepts the full free monoid Σ∗ is undecidable [Berstel
and Reutenauer, 1988]. Here, we are considering the same decidability question
but only for probabilistic automata, which form a restricted class of all weighted
automata over the (R, +, ·, 0, 1) semiring. However, we conjecture that the prob-
lem is in fact undecidable even in this case.
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6 Relative Entropy as a Kernel

This section examines the use of the relative entropy, or its symmetrized version,
in machine learning algorithms. The results hold in general and are not limited
to the particular case of probabilistic automata.

In machine learning, functions K : X × X → R are called kernels. A ker-
nel is said to be positive definite symmetric (PDS for short) if it is symmetric,
K(x, y) = K(y, x) for all x, y ∈ X , and if for any subset {x1, . . . , xm} ⊆ X ,
the eigenvalues of the matrix [K(xi, xj)]1≤i,j≤m are non-negative. PDS ker-
nels play an important role in machine learning since they can be combined
with discriminant algorithms such as support vector machines (SVMs) to create
powerful predictors [Schölkopf and Smola, 2002], the PDS condition ensuring
the convergence of training.

In some cases, a symmetric kernel K is not positive definite but exp(−λK)
is PDS for any λ > 0. K is then said to be negative definite symmetric (NDS).
Such kernels are also important since they can be used to defined PDS kernels
as in the case of Gaussian kernels.

We will show however that the symmetrized relative entropy is neither PDS
nor NDS, contrarily to what is stated in a number of machine learning papers,
which limits its use and application in kernel methods.

The symmetrized relative entropy of two distributions p and q is given by:

Dsym(p‖q) =
D(p‖q) + D(q‖p)

2
=

∑

x∈X

[p(x) − q(x)] log
p(x)

q(x)
. (30)

Theorem 6. The symmetrized relative entropy is not a PDS kernel.

Proof. Let {q1, q2, . . . , qm} be a set of probability distributions over X . Consider
the Gram matrix K ∈ R

m×m defined by Ki,j = Dsym(qi‖qj). By definition of
Dsym, Dsym(qi‖qi) = 0 for all i ∈ [1, m], thus tr(K) = 0. When K 6= 0, this
implies that K admits at least one negative eigenvalue.

To show that the symmetrized relative entropy is not an NDS kernel, we use
the following property of NDS kernels.

Theorem 7 ([Berg et al., 1984]). Let K : X × X → R be an NDS kernel such
that for x, y ∈ X , K(x, y) = 0 iff x = y. Then, there exist a Hilbert space H
and a mapping Φ : X → H such that

∀x, y ∈ X , K(x, y) = ||Φ(x) − Φ(y)||2. (31)

Thus, under the hypothesis of the theorem,
√

K defines a metric.

Theorem 8. The symmetrized relative entropy is not an NDS kernel.

Proof. Note that for any two distributions p and q, Dsym(p‖q) = 0 iff D(p‖q) =
D(q‖p) = 0 that is iff p = q. Thus, by Theorem 7, if Dsym is an NDS kernel,
√

Dsym defines a metric. We prove that
√

Dsym does not obey the triangle
inequality, which will show that Dsym is not NDS.

19



For the sake of simplicity, the proof is given in the case of a universe of
events limited to two elements: X = {x1, x2}. Let ǫ > 0 and let q1, q2, q3 be the
three distributions over X defined by:

∀i ∈ [1, 3], qi(x1) = 1− iǫ and qi(x2) = iǫ. (32)

By definition of the symmetrized relative entropy,

Dsym(q1‖q2) = ǫ log
1− ǫ

1− 2ǫ
− ǫ log

ǫ

2ǫ
= ǫ log

2(1− ǫ)

1− 2ǫ
. (33)

Similarly, Dsym(q2‖q3) = ǫ log 3(1−2ǫ)
2(1−3ǫ) and Dsym(q1‖q3) = 2ǫ log 3(1−2ǫ)

1−3ǫ . Note

that:

Dsym(q1‖q3) = 2ǫ log 3(1−2ǫ)
1−3ǫ = 2

(
ǫ log 2(1−ǫ)

1−2ǫ + ǫ log 3(1−2ǫ)
2(1−3ǫ)

)

= 2
(
Dsym(q1‖q2) + Dsym(q2‖q3)

)
.

(34)

Since
√· is strictly concave,

√

Dsym(q1‖q3) = 2

√
Dsym(q1‖q2)

2 +
Dsym(q2‖q3)

2

>
√

Dsym(q1‖q2) +
√

Dsym(q2‖q3).
(35)

This shows that
√

Dsym does not obey the triangle inequality.

7 Computation of the Norm of a Probabilistic

Automaton

In Section 4, we gave a general algorithm for computing the relative entropy of
two unambiguous probabilistic automaton by relating this problem to a shortest-
distance problem over the appropriate semiring. A special case of that algorithm
can be used to compute the entropy of a single unambiguous probabilistic au-
tomaton. One may ask if such results could be generalized to the computation
of other similar quantities that we will refer to as the norm of an unambiguous
probabilistic automaton. This section shows how they can be generalized indeed
by considering an arbitrary monoid morphism.

7.1 Computation of the Norm of an Unambiguous Prob-

abilistic Automaton

Let (K,⊕,⊗, 0, 1) be a closed, or ǫ-k-closed semiring. Let Φ : (R+, ·, 1) →
(K,⊗, 1) be a monoid morphism. We will say that Φ preserves closedness, if for
all x, 0 ≤ x < 1,

⊕∞
n=0 Φ(xn) is well-defined and in K. For a such a morphism,

we can define the Φ-norm of a probabilistic automaton as:

‖A‖Φ =
⊕

x∈Σ∗

Φ([[A]](x)). (36)
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Theorem 9. Let (K,⊕,⊗, 0, 1) be a closed or ǫ-k-closed semiring and let Φ :
(R+, ·, 1) → (K,⊗, 1) be a monoid morphism preserving closedness. Then, for
any unambiguous probabilistic automaton A, ‖A‖Φ can be computed exactly in
time O(|A|3).

Proof. The automaton Φ(A) derived from A by replacing each weight x by
Φ(x) is a weighted automaton over the semiring K. Since A is unambiguous,
at most one path in A, π = e1 · · · ek, is labeled with any string x ∈ Σ∗. Since
Φ is a monoid morphism, Φ([[A]](x)) =

⊗k
j=1 Φ(i[ej]), that is the weight of the

path labeled with x in Φ(A). This shows that ‖A‖Φ = s(A) and proves the
theorem.

Theorem 9 provides an algorithm for computing the Φ-norm of unambiguous
probabilistic automata for arbitrary monoid morphisms preserving closedness.
We will briefly illustrate two applications of the theorem.

(a) Entropy of a Probabilistic Automaton.

Let (K,⊕,⊗, (0, 0), (1, 0)) be the entropy semiring. It is not hard to
see that function Φ : (R+, +, ·, 0, 1) → (K,⊕,⊗, (0, 0), (1, 0)) defined by:
∀x ∈ R+, Φ(x) = (x,−x log x), is a monoid morphism preserving closed-
ness. Thus, the norm-Φ of an unambiguous probabilistic automaton can
be computed efficiently using a single-source shortest-distance algorithm.
Its second component is exactly the entropy of A, thus this provides an
efficient and simple algorithm for computing the entropy of A.

(b) Norm Lα of a Probabilistic Automaton, α ∈ R+.

The function Φ : (R+, +, ·, 0, 1) → (R+, +, ·, 0, 1) defined by Φ(x) = xα

is clearly a monoid morphism. Since for 0 ≤ x < 1, 0 ≤ xα < 1, it also
preserves closedness. Thus, the Lα-norm of an unambiguous probabilistic
automaton A can be computed efficiently using a shortest-distance algo-
rithm. In particular, the Bhattacharya norm, i.e., L 1

2

-norm, of A can be
computed efficiently.

7.2 Computation of the Norm of Arbitrary Automata

In general, a probabilistic automaton may not be unambiguous. But, the Lp-
norm can still be computed in polynomial time for any integer p ≥ 1.

Theorem 10. The Lp-norm of a probabilistic automaton A can be computed
exactly in time O(|A|3p) time and Θ(|A|2p) space.

Proof. Let A(p) denote the automaton obtained by intersecting A with itself p−1
times. Then, by definition of intersection, (s[A(p)])1/p represents the Lp-norm
of A. The cost of intersection to create A(p) is in O(|A|p).
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7.3 Approximate Computation

Here we consider the specific case of the computation of the Lp-norm of a
probabilistic automaton. Our results can be generalized to cover more general
cases, in particular in the case of unambiguous automata.

Since for any ǫ > 0, a probabilistic automaton is ǫ-k-closed for the probability
semiring, instead of the (generalized) Floyd-Warshall algorithm, we can use a
single-source shortest-distance algorithm to compute s[A] as already described
in Section 4.3. This algorithm works with any queue discipline and its space
complexity is linear which is significantly more efficient than the Floyd-Warshall
algorithm. The complexity results and analyses detailed in Section 4.3 apply
identically here.

8 Conclusion

We presented an exhaustive study of the problem of computing the relative
entropy of probabilistic automata.

Our results demonstrate the benefit of semiring theory for the formulation of
the problem which becomes as a single-source shortest-distance one. This results
in the definition of simple but efficient algorithms, both exact and approximate,
for the computation of the relative entropy of two unambiguous probabilistic
automata or the entropy of a single unambiguous probabilistic automaton. As
shown by our experimental results, these algorithms scale to large probabilistic
automata of several hundred thousand transitions.

Our algorithms can be adapted straightforwardly to compute the so-called
unnormalized relative entropy of two unambiguous probabilistic automata, de-
fined by:

D(A‖B) =
∑

x

[[A]](x) log
[[A]](x)

[[B]](x)
− [[A]](x) + [[B]](x) (37)

simply by replacing Φ1 and Φ2 by Φ′
1 and Φ′

2, where Φ′
1(A) (Φ′

2(A)) is the
weighted automaton over the entropy semiring derived from A by replacing
each weight w with the pair (w, 1) (resp (w, w)). The entropy semiring can also
be used to give a conceptually simple formulation of the computation of the
relative entropy of tree automata and to derive similar computation algorithms.

We proved that the computation of the relative entropy of arbitrary proba-
bilistic automata is PSPACE-complete and thus likely to be intractable. This
suggests examining approximate computations of the relative entropy. We have
already initiated the study of a natural approximate computation of the relative
entropy that extends the results presented in this paper.
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