
Invisible Safety of Distributed Protocols⋆

Ittai Balaban1, Amir Pnueli1, and Lenore D. Zuck2

1 New York University, New York,{balaban,amir}@cs.nyu.edu
2 University of Illinois at Chicago,lenore@cs.uic.edu

Abstract. The method of “Invisible Invariants” has been applied successfully
to protocols that assume a “symmetric” underlying topology, be it cliques,stars,
or rings. In this paper we show how the method can be applied to proving safety
properties of distributed protocols running under arbitrary topologies. Many safety
properties of such protocols have reachability predicates, which, on first glance,
are beyond the scope of the Invisible Invariants method. To overcome this diffi-
culty, we present a technique, called “coloring,” that allows, in many instances,
to replace the second order reachability predicates by first order predicates, re-
sulting in properties that are amenable to Invisible Invariants, where “reachable”
is replaced by “colored.” We demonstrate our techniques on several distributed
protocols, including a variant on Luby’s Maximal Independent Set protocol, the
Leader Election protocol used in the IEEE 1394 (Firewire) distributed busproto-
col, and various distributed spanning tree algorithms. All examples have been
tested using the symbolic model checkerTLV .

1 Introduction

Uniform verification of parameterized systemsis one of the most challenging problems
in verification today. Given a parameterized systemS(N) : P [1]‖ · · · ‖P [N] and a
propertyp, uniform verification attempts to verifyS(N) |= p for everyN > 1. One
of the most powerful approaches to verification which is not restricted to finite-state
systems isdeductive verification. This approach is based on a set of proof rules in
which the user has to establish the validity of a list of premises in order to validate a
given property of the system. The two tasks that the user has to perform are:

1. Identify some auxiliary constructs which appear in the premises of the rule;
2. Use the auxiliary constructs to establish the logical validity of the premises.

When performing manual deductive verification, the first taskis usually the more dif-
ficult, requiring ingenuity, expertise, and a good understanding of the behavior of the
program and the techniques for formalizing these insights.The second task is often per-
formed using theorem provers such asPVS[1] or STeP [2], which require user guidance
and interaction, and place additional burden on the user. The difficulties in the execu-
tion of these two tasks are the main reason why deductive verification is not used more
widely.

⋆ This research was supported in part by NSF grant CCR-0205571 andONR grant N00014-99-
1-0131.

A representative case is the verification of invariance properties using theinvariance
rule of [3], which is described in Fig. 1. In order to prove that assertionp is an invariant
of programP , the rule calls for anauxiliary assertionϕ that isinductiveand strengthens
(implies)p. Premise I1 requiresϕ to hold at any initial states, which are characterized
by the assertionΘ. Premise I2 requires that everyρ-successor of aϕ-state is alsoϕ-
state, whereρ is the transition relation. Finally, premise I3 specifies thatϕ strengthens
p. The main challenge in applying INV is identifying a goodϕ whenp itself is not
inductive.

I1. Θ → ϕ
I2. ϕ ∧ ρ → ϕ′

I3. ϕ → p

0 p

Fig. 1.The Proof Rule INV

In [4, 5] we introduced the method ofinvisible invariants, which proposes a method
for automatic generation of the auxiliary assertionϕ for parameterized systems, as well
as an efficient algorithm for checking the validity of the premises of the invariance rule.
See [6] for a tool that implements the idea.

The generation of invisible auxiliary constructs is based on the following idea: It is
often the case that an auxiliary assertionϕ for a parameterized system has one of the
formsq(i), ∀i.q(i) or, more generally,∀i 6= j.q(i, j). We construct an instance of the
parameterized system taking a fixed valueN0 for the parameterN . For the finite-state
instantiationS(N0), we compute, usingBDD-techniques, some assertionψ, which we
wish to generalize to an assertion in the required form. Letr1 be the projection ofψ
on process index1, obtained by discarding references to all variables which are local
to all processes other thanP [1]. We takeq(i) to be the generalization ofr1 obtained
by replacing each reference to a local variableP [1].x by a reference toP [i].x. The
obtainedq(i) is our candidate for the body of the inductive assertionϕ : ∀i.q(i). We
refer to this part of the process asproj-gen. For example, when generating invariants,ψ

is the set of reachable states ofS(N0). The process can easily be generalized to generate
assertions of the type∀i1, . . . , ik.p(~i).

Having obtained a candidate for the assertionϕ, we still have to check the validity
of the premises of the proof rule we wish to employ. Under the assumption that our
assertional language is restricted to the predicates of equality and inequality between
bounded range integer variables (which is adequate for manyof the parameterized sys-
tems we considered), we proved asmall modeltheorem, according to which, for a cer-
tain type of assertions, there exists a (small) boundN0 such that such an assertion is
valid for everyN iff it is valid for all N ≤ N0. This enables usingBDD techniques to
check the validity of such an assertion. The assertions covered by the theorem are those
that can be written in the form∀~i∃~j.ψ(~i,~j), whereψ(~i,~j) is a quantifier-free assertion
that may refer only to the global variables and the local variables ofP [i] andP [j],
where the variables are restricted to be stratified. Thus, for example, if we have a finite
domain and an index domain (that ranges over the process id’s[1..N]), stratification
requires that every array is a mapping from the index domain into the finite domain, but
rules out arrays from the index domain into itself.

2

Being able to validate the premises onS[N0] has the additional important advantage
that the user never sees the automatically generated auxiliary assertionϕ. This assertion
is produced as part of the procedure and is immediately consumed in order to validate
the premises of the rule. Being generated by symbolicBDD techniques, the representa-
tion of the auxiliary assertions is often extremely unreadable and non-intuitive, and will
usually not contribute to a better understanding of the program or its proof. Because the
user never gets to see it, we refer to this method as the “method of invisible invariants.”

As shown in [4, 5], many concurrent systems are stratified (orcan be stratified),
and the result of embedding a∀~i.q(~i) candidate inductive invariant in the main proof
rule used for their safety properties results in premises that fall under the small model
theorem. In the past we have not studied protocols for general topologies, mainly be-
cause many of these require reachability analysis, which isnot a first order predicate,
and therefore was beyond our methods. Thus, all the systems we applied the invisible
invariant method (or its successors that handle liveness),have an underlying “trivial”
topology, be it a star, a clique, or a ring.

In this paper we study applications of the method of invisible invariants to arbitrary
fixed topologies. We first present a small-model theorem thatapplies to such systems
and demonstrate its application on a variant of Luby’s maximal independent set proto-
col [7]. We then study protocols whose specifications include reachability predicates.
To handle reachability with an invisible-invariant-like strategy, we augment a given pro-
tocol with a coloring scheme that starts at one node (theinitial node), and propagates
colors to adjacent non-colored nodes. At each point in the coloring, only nodes that
are reachable from the initial node are colored, and when thecoloring terminates, all
nodes reachable from the initial node are colored. The coloring allows to replace the
second-order reachability predicate with a first ordercoloredpredicate.

Related Work

We are not aware of any work that deals specifically with automatic verification of dis-
tributed algorithms. Most related to the work here is the work on automatic verification
of parameterized systems. Our work extends the work surveyed in [8]. The PAX project
(e.g., [9]) models parameterized systems in WS1S on which abstractions are computed
and checked in MONA. The index predicates (e.g., [10]) combine predicate abstraction
with a heuristic, similar to that used here, for constructing quantified invariants.

There have been numerous verification efforts specifically targeted at various as-
pects of the IEEE 1394 tree identification protocol, among them are [11, 12]. However,
none of these works attempt at full automation. The work in [13] deals with the proba-
bilistic aspect of the protocol, which we ignore in the work reported here. (We should,
however, state that we have automatically verified the probabilistic aspects of the pro-
tocol using methods that are outside the scope of this paper.) For an in depth survey of
previous verification efforts of the protocol see [11].

The work in [14] uses a coloring scheme, somewhat different than ours, to obtain
over-approximation of reachability predicates for the purpose of shape-analysis. Since
we deal with a fixed topology, our coloring scheme is precise with respect to reachabil-
ity.

3

The paper is organized as follows: Section 2 demonstrates how we model Luby’s
maximal independent set and the leader election protocols.Section 3 presents the formal
model of programs over arbitrary topologies, as well as a small model result. Section 4
formalizes and demonstrates use of the coloring augmentation, Section 5 summarizes
runtime and verification results, and Section 6 discusses future work and concludes.

2 Examples of Distributed Protocols

To demonstrate our techniques, we present two examples of distributed protocols and
their safety properties. The first is a variant of Luby’s maximal independent set (MIS)
protocol ([7]) and the second is the Leader Election protocol [15], which also serves as
thetree identificationprotocol used in the IEEE 1394 bus specification [13].

In all of our examples, we assume a network ofN processes whose id’s are[1..N].
The interconnection among the processes is described by theboolean matrixQ, where
Q[i, j] denotes a direct link fromi to j, and¬Q[i, j] denotes the absence of such a
link. We assume that the communication between neighbors isbi-directional, therefore
Q[i, j] = Q[j, i] for all i andj.

2.1 Luby’s MIS Protocol

The goal of the MIS protocol is to define a maximally independent set among the partic-
ipating processes, i.e., a set which is independent (no two adjacent nodes are members
of it) and is locally maximal (every node outside the set has aneighbor in the set). The
protocols proceeds by letting processes, all of whom are initially undecided, to either
enter the set (“win”) or give up (“lose”). Processes that arewinners or losers halt. The
original protocol is synchronous, consisting of a sequenceof steps, which consist of
three phases: In the first phase, each process draws a number from a fixed range and
sends the result to all its neighbors. In the second phase, each process that holds the
maximum value among its neighbors joins the set (i.e., wins)and sends a message to
that effect to all its neighbors. In the third, each process that receives a message from a
neighbor that joins the set, declares itself a loser.

Since we are interested in safety properties only, and sincethe role of the prob-
abilistic choices it to guarantee convergence – that every process eventually wins or
loses – and the particular values used determine how fast convergence is achieved, we
ignore the probabilistic aspect of the protocol and let values be non-deterministically
chosen from{H,L}. Also, for technical reasons that will become clear when we prove
the small model theorem, we choose to represent the protocolas asynchronous, where
we impose the synchronicity required by letting each process be in one of three phases,
and letting the phases of all the processes be shared variables. Finally, to avoid explicit
communication rounds, we assume that the values drawn, as well as the win/lose state
of each process, are shared between its neighbors.

Each processi has a variablestate[i] ∈ {playing , lost ,won} that is initiallyplaying ,
and a variablephase[i] ∈ {0, 1, 2} that is initially 0. Whenphase[i] = k, the process
is in the(k+1)st phase of the three mentioned above. The program MIS is represented
in Fig. 2. Each process loops as long asstate[i] = playing . As a first step in the loop

4

body, the process waits until all neighbors reach a consensus about the current phase.
Such a consensus is reached if all playing neighbors have a phase which either equals
to phase[i] or is the phase followingphase[i]. We represent this synchronization as
an atomic test, allowingP [i] to observe in one step the values of all of its neighbors.
This assumption can be relaxed without affecting the correctness of the algorithm.

Q : array [1..N] of array [1..N] of bool where∀i, j.Q[i, j] = Q[j, i]
state : array [1..N] of {playing ,won, lost} init ∀i.state[i] = playing

val : array [1..N] of {H, L}
phase : array [1..N] of {0, 1, 2} init ∀i.phase[i] = 0

N

i=1

P [i] ::

2

6

6

6

6

6

6

6

6

6

6

4

while state[i] = playing do
2

6

6

6

6

6

6

6

6

4

await ∀j 6= i.Q[i, j] ∧ (state[j] = playing) →
phase[j] ∈ {phase[i],phase[i]+1 mod 3}

if phase[i] = 0 then val [i] := {H, L}
elsif phase[i] = 1 ∧ val [i] = H ∧ ∀j 6= i.Q[i, j] → val [j] = L

then state[i] := won

elsif phase[i] = 2 ∧ ∃j 6= i.Q[i, j] ∧ state[j] = won then state[i] := lost

phase[i] := phase[i]+1 mod 3

3

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

5

Fig. 2.Program MIS

The safety properties of MIS areindependence:

Ind : ∀i, j. 0 (i 6= j ∧ Q[i, j] ∧ state[i] = won → state[j] 6= won)

andmaximality:

Max : ∀i∃j 6= i. 0 (state[i] = lost → Q[i, j] ∧ state[j] = won)

Note that the maximality property is not a∀-property (rather, it’s a∀∃-property) which
is not directly covered by the Invisible Invariant methods.Note also that we are not
dealing with the liveness property of the protocol, which claim that, with probability 1,
every process eventually stops playing.

Another safety property we may wish to establish is that of stability of won/lost
states, i.e., for everyi,

Stbl :

0 (state[i] = won → 0 (state[i] = won)) ∧
0 (state[i] = lost → 0 (state[i] = lost))

and that of “non-drift” among the phases of neighbors that may have been created by
the “de-synchronization” of the protocol, i.e.,

Non drift :

∀i, j. 0 (state[i] = playing ∧ state[j] = playing ∧ Q[i, j] →
(phase[j] − phase[i]) mod 3 ≤ 1)

5

2.2 Leader Election Protocol

IEEE 1394 specifies a network allowing dynamic connection and disconnection of
devices. At each point in time, the network is arranged as a tree, with devices as leaves.
The leader electionsub-protocol is invoked during a connection or disconnection event
when, based on the new topology, a leader needs to be determined anew. Dynamic
aspects of the network need not be modeled here since the leader election sub-protocol
itself assumes a static network (i.e., following a connection/disconnection event).

As before, we model communication between nodes by shared variables. We let
Q denote the adjacency matrix, and for each processi, we assign a boolean variable
done[i] denoting whetheri still participates in the protocol or has determined its par-
ent, a booleanleader [i] which is set wheni becomes the leader, and a boolean matrix
parent [1..N, 1..N] such thatparent [i, j] is set whenj becomes the parent ofi.

In our modeling of the protocol, we assume that each nodei, in a single indivis-
ible atomic step, can check all theparent [1..N, i] variables and setparent [i, j] and
leader [i] accordingly. This is different from the common synchronousmodeling of the
protocol that proceeds in send/receive phases, where at a send phase nodes can send “be
my parent” requests and at receive phases nodes respond to such requests. There,con-
tentionmay occur when two nodes send one anotherbe my parentrequests at the same
phase. The atomicity assumption here bypasses root contention. As discussed later, the
methods proposed here are applicable to less atomic versions that allow for contention.

Q : array [1..N] of array [1..N] of bool where∀i, j.Q[i, j] ↔ Q[j, i]
parent : array [1..N] of array [1..N] of bool init ∀i, j.¬parent [i, j]
leader : array [1..N] of bool init ∀i.¬leader [i]
done : : array [1..N] of bool init ∀i.¬done[i]

i6=j

P [i, j] ::

2

6

6

4

while ¬done[i] do
2

4

if ∀k 6= i.Q[i, k] → parent [k, i] then (leader [i], done[i]) := (1, 1)
elsif (¬parent [j, i] ∧ Q[i, j] ∧ ∀k /∈ {i, j}.Q[i, k] → parent [k, i])

then (parent [i, j], done[i]) := (1, 1)

3

5

3

7

7

5

Fig. 3.Program LEADER-ELECT

The leader election protocol is shown in Fig. 3. For each node, theparent matrix
identifies which node is the parent of another node. There areN(N − 1) processes in
the system, each corresponding to a pair(i, j) ∈ [1..N]2 with i 6= j. Each such process,
P [i, j], repeatedly performs the following two steps whiledone[i] 6= 1:

1. The first if-statement executes if all nodes directly connected toi havei as their
parent. In this case,i becomes the leader and setsleader [i] to 1.

2. The second if-statement executes if (1)i andj are connected, (2)j has no parent,
and (3) all other neighbors ofi havei as parent. In this case,j becomes parent ofi.

The protocol works as follows: Assume the underlying graph is a tree. Initially, all leaf
nodes (and no internal node) can execute the second step. Then, the algorithm climbs

6

up the tree, each node executing the second step, until the root, which executes the first
step, is reached.

If the original graph consists of a forest of trees, then a leader will be elected in
each tree. If the original graph has non-tree connected components, then no leader will
be elected in these components. The safety property of the protocol therefore states that
each component contains at most one leader, formally statedby the following property:

Unique : ∀i 6= j : reachable(i, j) → ¬(leader [i] ∧ leader [j])

where for everyi, j ∈ [1..N], reachable(i, j) holds if there isQ-path leading fromi
to j, i.e., if there are nodesi1, . . . , ik ∈ [1..N] such thati1 = i, ik = j, and for every
ℓ = 1, . . . , k − 1,Q[iℓ, iℓ+1].

As discussed in the introduction, none of our old methods canbe used to automat-
ically verify this property. The method described in [16] fails since it depends on the
reachable predicate being based on a relation where each node has at most one succes-
sor, andQ, on which our currentreachable is based, does not satisfy this requirement.

3 Formal Model and Verifying Invariance

In this section we present our computational model, as well as the small model property
that forms the basis of the verification method. Both model and property are derived
from [5] and only differ in that the version here allows for matrix types (e.g., theQ and
parent variables in Fig. 3).

3.1 Discrete Systems

As our computational model, we take adiscrete systemS = 〈V,Θ, ρ〉, where

• V — A set ofsystem variables. A stateof S provides a type-consistent interpreta-
tion of the variablesV . For a states and a system variablev ∈ V , we denote by
s[v] the value assigned tov by the states. LetΣ denote the set of all states overV .

• Θ — The initial condition: An assertion (state formula) characterizing the initial
states.

• ρ(V, V ′) — Thetransition relation: An assertion, relating the valuesV of the vari-
ables in states ∈ Σ to the valuesV ′ in anS-successor states′ ∈ Σ.

For an assertionψ, we say thats ∈ Σ is aψ-state ifs |= ψ.
A computationof a systemS is an infinite sequence of statesσ : s0, s1, s2, ...,

satisfying the requirements:

• Initiality — s0 is initial, i.e.,s0 |= Θ.
• Consecution— For eachℓ = 0, 1, ..., the statesℓ+1 is anS-successor ofsℓ. That

is, 〈sℓ, sℓ+1〉 |= ρ(V, V ′) where, for eachv ∈ V , we interpretv assℓ[v] andv′ as
sℓ+1[v].

7

3.2 Finite Network Systems

To allow the automatic decision of validity of assertions, we place further restrictions
on the systems we study, leading to what is essentially the model of bounded discrete
systems of [5] extended with an additional matrix type. For brevity, we describe here
a simplified two-type model; the extension for the general multi-type case is straight-
forward. We allow the following data types parameterized bythe positive integerN ,
intended to specify the size of the topology:

1. bool: boolean and finite-range scalars; With no loss of generality, we assume that
all finite domain values are encoded as booleans.

2. index: [1..N]
3. Arrays of the typesindex 7→ bool (bool array) andindex 7→ index 7→ bool (bool

matrix)

Constants are introduced as variables with reserved names.Thus, we admit the boolean
constants0 and1, andindex constants such as1 andN . We often refer to an element
of type index as anode. Atomic formulasare defined as follows:

• If x is a boolean variable,B is abool array, andy is anindex variable, thenx and
B[y] are atomic formulas.

• If y1 andy2 areindex variables andQ is abool matrix, thenQ[y1, y2] is an atomic
formula.

• If t1 andt2 areindex terms, thent1 = t2 is an atomic formula.

A restricted A-assertion(resp.restricted E-assertion) is a formula of the form∀~y.ψ(~x, ~y)
(resp.∃~y.ψ(~x, ~y)) where~x and~y are lists ofindex variables, andψ(~x, ~y) is a boolean
combination of atomic formulae. Arestricted EA-assertionis an assertion∃~x.∀~y.ψ(~x, ~y, ~u)
where~u is a list of index variables and∀~y.ψ(~x, ~y, ~u) is a restricted A-assertion.Re-
stricted AE-assertions are similarly defined. As the initial conditionΘ and the transition
relationρ we only allow restricted EA-assertions.

Let V be avocabularyof typed variables, whose types are taken from the restricted
type system allowed in a system. AmodelM for V consists of the following elements:

• A positive integerN > 0.
• For each boolean variableb ∈ V, a boolean valueM [b] ∈ {0,1}. It is required that
M [0] = 0 andM [1] = 1.

• For eachindex variablex ∈ V, a natural valueM [x] ∈ [1..N].
• For each boolean arrayB ∈ V, a boolean functionM [B] : [1..N] 7→ {0,1}.
• For each boolean matrixQ ∈ V , a functionM [Q] : [1..N] 7→ [1..N] 7→ {0,1}

We define thesizeof modelM to beN .
The following theorem states that a restricted AE-assertion is valid iff it is valid over

all models of a bounded size. It follows from a similar theorem of [5] (which does not
deal with the boolean matrix data-type).

Theorem 1 (Small Model Property). Let ϕ : ∀~y ∃~x.ψ(~y, ~x) be a closed restricted
AE-assertion. Thenϕ is valid iff it is valid over all models of size not exceeding|~y|.

8

3.3 Checking Invariance

Consider the INV proof rule of Fig. 1. When validating the premises of INV for re-
stricted A-assertionsp andϕ, I3 is a boolean combination of A- and E-assertions, while
I1 and I2 are AE-assertions. We now compute the cut-off bounds determined by the
small model theorem to validate Premises I1 and I2. Assume that the assertions appear-
ing in INV are of the form:

p : (∀u1, . . . , uc.p1(~u)) ⊗ ∃~x.p2(~x)
ϕ : (∀u1, . . . , unϕ

.ϕ1(~u)) ⊗ ∃x1, . . . , xmϕ
.ϕ2(~x)

Θ : ∃y1, . . . , ya.∀~x.t(~y, ~x)
ρ : ∃y1, . . . , yb.∀~x.R(~y, ~x)

where⊗ ∈ {∨,∧}. I.e, p andϕ are assertions that are disjunctions or conjunctions
of a restricted A-assertion and a restricted E-assertion, andΘ andρ are restricted EA-
assertions. Ifp has free variables, then letĉ bec plus the number of free variables inp.
Definen̂ϕ, m̂ϕ, â, andb̂ similarly. Theorem 1 now implies:

Corollary 1. The premises of ruleINV are valid overS(N) for all N > 1 iff they are
valid overS(N) for all N ≤ max{â+ n̂ϕ, b̂+ n̂ϕ + m̂ϕ, m̂ϕ + ĉ}.

3.4 Example: Verifying Program M IS

Consider Program MIS of Section 2. The system is of the form described in Section 3.
Inspecting the structure of assertionsΘ andρ for this system, we see thata = 0 and
b = 2 (since the transition relation is of the form∃i, j.∀k.R(i, j, k)).

For the property of independence we havec = 2. We instantiated the system to
4 processes and, usingproj-gen, generated a candidate universal invariantϕ(i, j) with
nϕ = 2 (andmϕ = 0). According to Corollary 1, it suffices to validate the premises of
INV on models no larger thanmax{2, 2 + 2, 2} = 4.

Next, let us consider the property of maximality which can bespecified by the
formula 0 p = 0 ∀i∃j.g(i, j), whereg(i, j) is given by

g(i, j) : state[i] = lost → (Q[i, j] ∧ state[j] = won)

Being an AE formula by itself, it is not implied by the invisibly derived inductive asser-
tion. To establish this property, we directly apply rule INVwith ϕ = p = ∀i∃j.g(i, j).
On the face of it, this proofseemsto fall outside the scope of the small model theorem
since premise I2 has the form(∀i∃j.g(i, j))∧ ρ→ (∀u∃v.g′(u, v)), which is not of the
required∀∃ form. We resolve this difficulty by observing that premise I2is logically
implied by the following∀∃ restricted assertion:

∀u.((∃j.g(u, j)) ∧ ρ → ∃v.g′(u, v))

Hence, it is sufficient to check this stronger implication over the instanceS(4).
To show the stability ofstate[i] = won, we only need to show that it is preserved

under transitions, i.e., that∀i.(state[i] = won ∧ρ→ state ′[i] = won). From the small
model theorem (sinceρ has two indices under existential quantification) it follows that

9

it suffices to check the above forN0 ≤ 3. The case of stability ofstate[i] = lost is
similar.

The property of “non-drift” is established in the standard way, since it is a universal
assertion withnϕ = 2 which is implied by the invisibly derived invariant.

4 Reachability Avoidance

It is very often the case that safety properties of distributed systems include reachabil-
ity predicates which are captured neither by Theorem 1 nor bytheproj-genheuristic.
In this section we define the reachability properties we are interested in, and show a
methodology that overcomes the challenges they pose to the Invisible Invariant method.

4.1 Safety Properties with Reachability

Let S be a distributed system with an underlying topology described by the adjacency
matrixQ. Recall thereachable(y1, y2) predicate denoting thaty2 isQ-reachable from
y1. In this section we study how to prove invariant properties of the type 0 (α ⊗ β),
whereα is a restricted A-assertion that allows forreachable predicates,⊗ ∈ {∨,∧},
andβ is a restricted E-assertion (without reachability predicates).

For simplicity of exposition, we further restrictα to have a single occurrence of a
reachable predicate, both arguments of which are bound by the universal quantifier. Our
results can be easily extended to cases whereα has several occurrences ofreachable,
and to cases where some arguments ofreachable are free. An example of such a prop-
erty isUnique of program LEADER-ELECT in Section 2. There,β is trivial andα has
a singlereachable predicate, both of whose arguments are under the scope of theuni-
versal quantification.

For the remaining part of this section we fix a safety property0 φwe wish to verify
overS, whereφ = α⊗ β of the form above.

Let t be someindex variable that does not appear free in eitherφ or the transition
relation. Without loss of generality, assume thatα : ∀i1, . . . , ik.p(i1, . . . , ik), whereik
is the first parameter of the (single) reachability predicate inα. Letα[t] be the formula
∀i1, . . . , ik−1.p(i1, . . . , ik−1, t), andφ[t] be the formulaα[t]⊗ β. From the choice oft
it follows thatS |= 0 φ[t] implies thatS |= 0 φ.

For example, for propertyUnique andt = 1, we obtain:

Unique[1] : ∀j.j 6= 1 ∧ reachable(1, j) → ¬(leader [1] ∧ leader [j])

4.2 Replacing Reachability with a First Order Predicate

The propertyφ[t] still contains a reachability predicate and its invariancecannot be
handled by the method of Invisible Invariants. We next augment S with a “coloring
protocol” and replaceφ with a new property,φt, such thatφt is of the form described
in Section 3, such that when the augmented system satisfies0 φt we can conclude that
S |= 0 φ[t], and thereforeS |= 0 φ.

The system and coloring protocol alternate once between “protocol” and “coloring”
phases. While in the “protocol” phase, the system behaves like S, and the coloring

10

scheme is inactive. Similarly, while in the “coloring” phase, the system is inactive, and
the coloring scheme behaves according to its protocol,Ct. An additional component,
the “phase changer,” determines which phase is first, and switches (once) between them.
We shall return to the phase changer and first describe the coloring protocol.

The coloring protocolcolort, described in Fig. 4, propagates a marking starting
at the nodet. We assume abooleanarrayCt that does not appear inS, all of whose
entries are initially0, denoting that all nodes are uncolored. Once activated, thecoloring
protocol first setsCt[t], thus marking nodet. Thereafter, when an uncolored nodei has
a colored neighborj,Ct[i] is set. The correctness ofcolort is expressed in the following

colort ::
local Ct : array [1..N] of bool init ∀i.Ct[i] = 0

i6=j

ˆ

if ((i = t) ∨ (Q[i, j] ∧ Ct[j] ∧ ¬Ct[i])) then Ct[i] := 1
˜

Fig. 4.Systemcolort

theorem, whose proof is by induction on the topology of the network:

Theorem 2. LetS[t] = S‖colort. Then, for every nodei, the following all hold:

1. reachable(t, i) is S-valid iff it is S[t]-valid, i.e., bothS and S[t] have the same
reachability relations;

2. S[t] |= 0 (Ct[i] → reachable(t, i)), i.e., every colored node is reachable fromt;

Assumephase andinit phase are variables not inS that can take on the values
{color,protocol}. Thephase changerPHASE is a module which composed with the
S andcolort that is allowed to change the phase once, when a conditionΨ , which is an
input to PHASE, is met. The module PHASE is described in Fig. 5. There, “phase :=
¬phase” has the obvious meaning. In Subsection 4.3 we discuss howinit phase and
Ψ are initialized.

PHASE(Ψ) ::
phase, init phase : {protocol, color} init phase = init phase
ˆ

if (Ψ ∧ phase = init phase) then phase := ¬phase
˜

Fig. 5.System PHASE(Ψ)

LetS′ be the systemS where each instruction is prefixed by “if (phase = protocol) then . . .”.
Formally, if S is described by〈V,Θ, ρ〉 thenS′ is described by〈V ∪ {phase}, Θ, ρ′〉
whereρ′ = (phase = protocol ∧ ρ) ∨ (phase = color ∧

∧

v∈V v = v′). Similarly,

11

let colort
′ be the systemcolort where each instruction is prefixed by “if (phase =

color) then . . .”. Then systemSaug is defined by the compositionS′‖colort
′‖PHASE.

The following claim follows immediately from the definitionof Saug:

Claim. Letψ be a safety property overV . ThenS |= ψ iff Saug |= ψ.

We next construct, fromφ[t], a propertyφt such thatSt |= 0 φt implies that
Saug |= 0 φ[t] (which, according to the previous claim, implies thatS |= 0 φ[t]).
Recall thatφ[t] is of the form∀α[t] ⊗ ∃β where the single reachability inφ[t] appears
in α in the formreachable(t, j). We first replace thereachable(t, j) assertion inα by
Ct[j]. If reachable(t, j) appears inα[t] under positive polarity, we add to the resulting
formula the disjunct

∃j 6= k.Q[j, k] ∧ Ct[j] ∧ ¬Ct[k]

that captures the situation in which the coloring algorithmhas not terminated yet. We
takeφt to be the resulting formula.

For example, under this transformation,Unique[1] becomes:

Unique1 : ∀j.j 6= 1 ∧ C1[j] → ¬(leader [1] ∧ leader [j]) (1)

The following theorem, whose proof is in Appendix A, establishes the soundness of
the transformation.

Theorem 3.

St |= 0 φt =⇒ Saug |= 0 φ[t]

[Move theorem to tech report]
Note that0 φt is now of the form covered by Corollary 1. For example, to verify

Unique1, we havea = 0 (since the initial condition has no existential quantifiers),
b = 3 since the transition relation of the augmentedSt hasi andj under existential
quantification, andt appears free in it, andc = 2, havingj universally quantified andt
free. Thus, for an auxiliary invariantϕ, we would obtain a cutoff value ofmax{nϕ, 3+
nϕ +mϕ,mϕ + 2} = 3 + nϕ +mϕ. We generated aϕ with nϕ = 2 andmϕ = 0, and
thus verified the premises of INV for everyN0 ≤ 5.

4.3 Determining the Phase Alternation

There are two main choices to be made, namely, whetherinit phase is protocol or
color, and whetherΨ is trivially 1 or some non-trivial predicate. In our experiments,
we used the trivialΨ = 1 with init phase being bothprotocol or color. As to non-
trivial Ψ , we had to use it only once, in the verification of LEADER-ELECT, and then
init phase was set toprotocol andΨ was defined asleader [t]. We recommend first
trying to use a trivialΨ = 1, and only if it fails under both choices ofinit phase, to
attempt some obviousΨ ’s.

12

5 Evaluation

We have evaluated our method on a set of algorithms which, with the exception of
Luby’s maximal independent set algorithm, are based on versions found in [15]. The
test cases consist of the leader election protocol used as the running example, a version
of leader election that does not assume atomic parent request/acknowledge steps, as
well as a distributed spanning tree algorithm. All experiments were evaluated using the
TLV symbolic model-checker [17] on a Pentium 3 1GHz PC with 512Mbmemory, and
can be found athttp://www.cs.nyu.edu/acsys/dist-protocols/index.html. A summary of
runtime results is shown in Fig. 6. The rest of this section summarizes each test case.

Algorithm Runtime (seconds)

Leader Election 5
Leader Election (alternate) 54
Spanning Tree 36
MIS 30

Fig. 6.Runtime Results

The alternate version of leader election allows for contention between nodes. While
like the running example it treats the check over all of a node’s neighbors as atomic,
the assignment of parents is done in 2 phases, arequestphase and anacknowledgement
phase. Concretely, the matrixparent is now of type
array [1..N] of array [1..N] of {no, req,ack}. Nodej is considered the parent ofi if
parent [i, j] = ack.

For both versions of the leader election protocol, we verified the propertyUnique

defined in Section 2. For the alternate version we proved the additional property oflim-
ited contention, specifying that if neighboring nodes have requested parenthood from
some neighbor, then the request is mutual:

∀i 6= j, k, l : Q[i, j] ∧ parent [i, k] = req ∧ parent [j, l] = req→ k = l

Since this invariant effectively localizes contention in the protocol to two adjacent
nodes, it serves as the basis for a liveness proof showing that any contention eventu-
ally converges with probability 1.

The spanning tree algorithm is similar to the coloring protocol colort in that an ar-
bitrary node is designated as the root, and nodes are added tothe tree in a top-down, dis-
tributed fashion, starting at the root. For this algorithm we sought to verify the property
that any node reachable from the root participates in the tree, unless tree propagation
has not yet terminated, expressed as:

p : (∀i, t : reachable(t, i) → in tree[i]) ∨ (∃j 6= k : Q[j][k] ∧ in tree[j] ∧ ¬in tree[k])

where the boolean array intree denotes participation of nodes in the tree. However,
we failed to generate an inductive auxiliary assertion thatalso implies this property.
Instead, we did successfully verify thatϕ ∧ p is an inductive invariant, whereϕ is the
generated auxiliary assertion.

13

6 Conclusion and Discussion

We have described how the application of the method of Invisible Invariants to dis-
tributed protocols with an arbitrary fixed topology.

Contrary to common belief, we found that the extension of themethod to arbitrary,
as opposed to trivial, topologies is rather straightforward (as demonstrated by the verifi-
cation of Luby’s MIS protocol). Yet, the correctness of many such protocols is specified
by means of reachability predicates, which cannot be captured by the invisible invariant
method. We present a simple coloring augmentation that allows, in many cases, to re-
place reachability predicates by simpler first order predicates that can be dealt with by
the invisible invariant methods.

There are several weaknesses to our scheme:

– Many distributed systems are modeled as synchronous, i.e.,their transition relation
is an AEA-assertion. This is beyond the power of our small model theorem, hence
we “de-synchronize” them. We would like to identify the types of synchronous
systems our method applies to;

– Our scheme depends on running the “system” and the “coloring,” one after the
other, switching once from one to the other at some point. Often, this point is non-
deterministic and the only choice is which protocol to run first. Yet, it is sometimes
the case that the switch can happen only when some condition is attained. Here
the method is not fully automatic since the user has to guess the condition, which
requires some familiarity with the protocol.

– Our scheme is dependent on the invisible invariant method, and is restricted by
its power. Being aBDD-based method, the size of the instantiation of the system
required may be too large to handle. In addition,proj-gencan only generate invari-
ants of certain syntactic type, and it may be the case that theinvariants needed are
beyond its power. (For example,proj-gengenerates restricted EA-invariants, is is
extremely limited in the AE-invariants it generates.)

Yet, in spite of the restrictions, we succeeded to automatically verify, for the first
time, some classical examples that have been thoroughly studied in the literature.

We are hopeful that our coloring augmentation can be used in verification of other
systems too, for example, pointer systems. We are currentlyworking on extending the
system to handle mobile networks.

Acknowledgement: We would like to thank Shuvendu Lahiri, who brought the Leader
Election protocol to our attention, and Yi Fang who pointed out that our existing small
model theorem can be applied to adjacency matrices.

References

1. Shankar, N., Owre, S., Rushby, J.M.: A tutorial on specification and verification using PVS.
Technical report (1993)

2. Bjørner, N., Browne, I., Chang, E., Colón, M., Kapur, A., Manna, Z., Sipma, H., Uribe, T.:
STeP: The Stanford Temporal Prover, User’s Manual. Technical Report STAN-CS-TR-95-
1562, Computer Science Department, Stanford University (1995)

14

3. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems:Safety. Springer Verlag,
New York (1995)

4. Pnueli, A., Ruah, S., Zuck, L.: Automatic deductive verification with invisible invariants. In:
TACAS’01, LNCS 2031 (2001) 82–97

5. Arons, T., Pnueli, A., Ruah, S., Xu, J., Zuck, L.: Parameterized verification with automati-
cally computed inductive assertions. In: CAV’01, LNCS 2102 (2001) 221–234

6. Balaban, I., Fang, Y., Pnueli, A., Zuck, L.: IIV: An invisible invariant verifier. In: Computer
Aided Verification (CAV). (2005)

7. Luby, M.: A simple parallel algorithm for the maximal independent setproblem. SIAM
Journal of Computing15(4) (1986) 1036–1053

8. Zuck, L., Pnueli, A.: Model checking and abstraction to the aid of parameterized systems.
Computer Languages, Systems, and Structures30(3–4) (2004) 139–169

9. Baukus, K., Lakhnech, Y., Stahl, K.: Parameterized verification of a cache coherence proto-
col safety and liveness. In: Proceedings of the 6th International Conference on Verification,
Model Checking, and Abstract Interpretation. (2002) 317–330

10. Lahiri, S., Bryant, R.: Constructing quantified invariants via predicate abstraction. In: Pro-
ceedings of the 5th International Conference on Verification, Model Checking, and Abstract
Interpretation. (2004) 267–281

11. Romijn, J.M.T.: A timed verification of the IEEE 1394 leader election protocol. In Gnesi,
S., Latella, D., eds.: Proceedings of the Fourth International ERCIM Workshop on Formal
Methods for Industrial Critical Systems (FMICS’99). (1999) pages 3–29

12. Devillers, M., Griffioen, W., Romijn, J., Vaandrager, F.: Verification of a leader election
protocol: Formal methods applied to IEEE 1394. Technical Report CSI-R9728, Computing
Science Institute, Nijmegen (1997)

13. Daws, C., Kwiatkowska, M., Norman, G.: Automatic verification of the IEEE 1394 root
contention protocol with KRONOS and PRISM. In Cleaveland, R., Garavel, H., eds.: Proc.
7th International Workshop on Formal Methods for Industrial Critical Systems (FMICS’02).
Volume 66.2 of Electronic Notes in Theoretical Computer Science., Elsevier (2002)

14. Lev-Ami, T., Immerman, N., Reps, T.W., Sagiv, S., Srivastava, S., Yorsh, G.: Simulating
reachability using first-order logic with applications to verification of linked data structures.
In: CADE. (2005) 99–115

15. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann PublishersInc., San Francisco,
CA, USA (1996)

16. Balaban, I., Pnueli, A., Zuck, L.: Shape analysis by predicate abstraction. In: Proceedings
of the 6th International Conference on Verification, Model Checking, and Abstract Interpre-
tation. (2005) 164–180

17. Shahar, E.: The TLV Manual. (2000) http://www.cs.nyu.edu/acsys/tlv.

A Proof of Theorem 3

Assume thatφt is St-valid. From Theorem 2 it suffices to show that everyS′-state
satisfiesφ[t]. Assume that the boolean connective,⊗, in φ[t] is a disjunction (the case
of a conjunction is similarly established). Lets be anSt-state so thats satisfiesφt. If
the reachability assertion inα is of negative polarity, then from part (2) of Theorem 2 it
follows thats |= ¬reachable(t, i) → ¬Ct[i]. Hence, ifφt holds ins, then so doesφ[t].

Assume therefore that the reachability assertion inα, reachable(t, i), is in positive
polarity. If in s, Ct[i] is set, or if¬reachable(t, i) holds, then obviouslys satisfied
φ. Assume therefore thats |= reachable(t, i) ∧ ¬Ct[i]. It can be easily shown from

15

Systemcolort that there exist nodesj andk such thats |= Q[i, j]∧Ct[j]∧¬Ct[k]. Let
σ : s0, s1, . . . be anSt-computation, starting withs that include no idle steps. Moreover,
if s |= ¬color, then let the first transition inσ be one that setscolor. Note that such a
σ must exist. Since oncecolor holds the evaluation ofφ[t] remains invariant, in that if
for somej, sj |= φ[t], we can conclude thats = s0 |= φ[t].

The computationσ must have a statesk in which the coloring terminates. Sinceφt

is St-valid, φt holds insk. Also, since insk, reachable(t, i) ↔ Ct[i], φ[t] holds insk.
It now follows thatφ[t] holds ins. ⊓⊔

16

