
TREE LOCKING ON CHANGING TREES

Vladimir Lanin and Dennis Shasha

Courant Institute of Mathematical Sciences, New York University

lanin@csd2.nyu.edu, shasha@nyu.edu

ABSTRACT: The tree locking protocol is a deadlock-free method of concurrency control defined and

verified by Silberschatz and Kedem for data organized in a directed tree. Can the tree protocol work for

applications that change the tree? We define a set of three operations capable of changing any tree to any

other tree and show that the tree protocol continues to ensure serializability and deadlock-freedom in the

presence of these operations.

1. Introduction

A locking protocol is a set of rules for locking data items such that any concurrent computation fol-

lowing those rules is guaranteed to satisfy some set of conditions. Typically, these conditions may include

serializability, deadlock freedom, or order preservation, which are all rigorously defined below. For exam-

ple, the two-phase protocol guarantees serializability and order preservation, but not deadlock freedom, by

forbidding an action (a term we use interchangeably with ‘‘transaction’’) to place a new lock after releasing

a lock.

In [SK80], Silberschatz and Kedem introduced a locking protocol that guaranteed serializability and

deadlock freedom without requiring two-phasedness. It has since become known as the tree protocol since

it is based on the assumption that that the data resides in a set of nodes organized in a directed tree. In

brief, the protocol allows an action to begin by locking any node, but to place subsequent locks only on the

children of its currently locked nodes, as long as it does not lock a node it has previously unlocked. No res-

trictions are placed on unlocking nodes.

This work was partially supported by the National Science Foundation under grant number IRI-8901699 and by the Office of
Naval Research under grant number N00014-85-K-0046.

2

It is an unstated assumption of the tree protocol that the tree graph remain the same throughout a

computation. This would seem to be a major limitation, since many database applications, such as B-tree

algorithms, require the on-line restructuring of a tree. But does the tree really have to be static?

Several conflict-preserving concurrent B-tree algorithms, including those in [Sa76], [BS77], and

[MR85], do, in fact, bear a striking resemblance to the tree protocol. They always retain the lock on a

parent node until after its child has been locked, and keep a node locked as long as there is any possibility it

might have to be modified. Each has been shown correct by various ad-hoc methods.

In this paper, we define a set of operations for modifying trees, extend the tree protocol to computa-

tions that include these operations, and then show that the resulting protocol continues to guarantee serial-

izability and deadlock freedom. In addition, we examine the conditions under which it is order preserving.

2. Tree Editing Operations

We must now decide on a set of operations powerful enough to introduce arbitrary changes to the tree

graph, yet restricted enough to ensure that the graph remain a tree in all intermediate states. B-tree splits

and merges, for example, are clearly too restrictive in that they can only produce balanced trees and can not

even change the height of any given node. Addition or removal of a single edge, on the other hand, is sure

to disrupt the tree property.

Consider, however, an operation that changes (switches) the parent of a node c from p 1 to p 2 (simul-

taneously removing edge (p 1 ,c) and adding edge (p 2 ,c), see Fig. 1). If p 2 is not c or a descendant of c,

the graph is sure to remain a tree. And yet a sequence of these switch operations can rearrange any given

tree to any other given tree with only two limitations: the same node would remain the root and the set of

nodes would remain the same.

The first limitation is not important, since the root can always be used as just a pointer to the ‘‘real’’

root. To eliminate the second limitation, we introduce another two operations. The add_lea f adds a new

leaf c to the graph, along with the edge (p ,c) from some old node p. The remove_lea f is the inverse,

removing edge (p ,c) to some leaf c and removing c from the set of nodes. Both, of course, maintain the

3

_ __

p’p

c

p’p

c

. .

Figure 1.

The switch(p ,p ′ ,c) operation.
_ __

tree property. Since the switch operation can be used to reposition a new leaf to an arbitrary position in the

tree, or to reposition an arbitrary node to a leaf position where it can be removed, the three operations

together can truly restructure the tree arbitrarily.

Since the tree editing operations treat the tree graph itself as shared data to be examined and

modified, we must require that certain locks be held on the affected nodes before these operations may be

executed. The switch operation requires that the executing action hold write locks on the two parent nodes.

(Incidentally, the locks on the parent nodes make it possible for the switch to appear atomic even though it

is actually likely to be implemented in at least two steps.) Note that the switch need not hold any lock on

the child being moved. The add_lea f requires a write lock on the parent, and grants a write lock on the

new child. The remove_lea f requires a write lock on both parent and child. These requirements are quite

natural if the graph data is stored in the form of a list of children in each node.

As it turns out, certain subclasses of the switch operation have interesting properties to be discussed

below. Let the switch ′(p ,p ′ ,c) be a switch prior to which the executing action has never held a lock on c.

Let the switch ′ ′(p ,p ′ ,c) be a switch where either p is a child of p ′ or vice-versa. A switch operation

belonging to either of these two classes is called restricted. Similarly, a computation where every switch

operation is restricted is called switch restricted.

4

It is noteworthy that the switch ′ ′ subclass alone should be sufficient for most tree-restructuring appli-

cations, since it is unusual to transfer a child between two completely unrelated nodes. To transfer a child

from a node to its sibling, for example, as in a B-tree split or merge, we can use one switch ′ ′ to first transfer

it to the common parent, then another switch ′ ′ to transfer it from the parent to the sibling.

3. Goals

It is now our aim to explore the properties of computations containing the tree editing operations and

following a set of rules (to be explicitly defined below) akin to those of the static tree protocol. We will

eventually show that such computations, just like static tree computations, are always serializable and

deadlock-free, but not necessarily order-preserving. However, we will define conditions under which order

is preserved between certain actions.

One property of the static tree protocol that is not always preserved in dynamic trees is the pre-

determination of the serialization ordering. As we will show, the order in which two actions can appear to

serialize at the end of the computation can be determined in static trees as soon as both have locked their

first nodes. For this property to hold in dynamic trees, the computation must not contain any unrestricted

switch operations.

4. Notation

To proceed further, we must introduce unambiguous notation. To simplify both this notation and the

following discussion, let us initially restrict the protocol to exclusive locks.

4.1. States, Operations, and Specifications

We consider a computation to be a sequence of operations, each operation belonging to some higher-

level action. (Since we are dealing with concurrent computations, the operations of concurrent actions will

be interleaved.) The operations we are concerned with here are those locking and unlocking nodes and/or

modifying the tree, i.e. lock_ f irst, lock_child, unlock, switch, add_lea f, and remove_lea f. Each operation

changes the state of the underlying data in accordance with the operation’s specification. To formulate the

specifications, we must rigorously define the states to which they refer.

5

We consider a state of the computation to consist of three components: T, has, and had. T = (E ,N)

is the current tree graph, where E is the set of edges and N is the set of nodes. Has is a function mapping

each action to the set of nodes on which it currently holds locks. Had is a function mapping each action to

the set of nodes on which it either holds or has ever held locks. (Thus, has(a) ⊆ had(a).) Alternatively,

we shall consider has and had to be sets of pairs of the form (a ,n) where a is an action and n is a node.

Thus, if n ∈ has(a), then (a , n) ∈ has. Let ancestors(n ,T) be the set of ancestors of node n in tree T.

We express an operation’s specification in two parts: a transformation from the state in which the

operation starts to the state in which it finishes, and a condition on the starting state for which the operation

waits to become true. (For example, a lock operation waits until its node is not locked, i.e. is not in the has

of any other action.) We assume that the operations are implemented correctly, i.e. that in any concurrent

computation containing the above operations, the operations can be placed in an interleaved order such that

the conditions (both transforming and waiting) of each operation’s specification are fulfilled for the state

preceding and following the operation in the interleaving.

We now list the operations and their specifications. Only lock_ f irst and lock_child have waiting

conditions. Within the context of a specification, let r be the state preceding the operation, and s be the

state following it. We will use state names as subscripts to denote the state to which some particular entity

refers, i.e. T s for the tree in state s. We subscript the operations with the name of the executing action, i.e.

lock_ f irst a (n) is the lock_ f irst operation performed by action a on node n. In both cases, we will some-

times omit the subscript when the meaning is made clear by other means.

lock_ f irst a (n) and lock_child a (p ,n):

waiting condition:
b
∀ n ∈ / has r (b)

transformation: T s = T r has s = has r ∪ (a ,n) had s = had r ∪ (a ,n).

unlocka (n):

transformation: T s = T r has s = has r − (a ,n) had s = had r .

switch a (p ,p ′ ,c):

6

transformation: E s = ((E r − (p ,c)) ∪ (p ′ ,c)) N s = N r has s = has r had s = had r .

add_lea f a (p ,c):

transformation: N s = N r ∪ c E s = E r ∪ (p ,c) has s = has r ∪ (a ,c)

had s = had r ∪ (a ,c).

remove_lea f a (p ,c):

transformation: N s = N r − c E s = E r − (p ,c) has s = has r − (a ,c) had s = had r .

4.2. The Protocol

A locking protocol is an additional set of restrictions on the allowed computations. We shall express

these restrictions as additional conditions on the starting state of each operation. For example, for a

lock_child a (p ,c), p must be the parent of c, a must already hold a lock on p, and a must never have held a

lock on c. As opposed to an operations’ specification, the protocol conditions are achieved not by the

operation itself but by the operations preceding it in the computation. The protocol conditions are:

lock_ f irst a (n)

had r (a) = ∅ n ∈ N r

lock_child a (p ,n):

(p ,c) ∈ E r p ∈ has r (a) c ∈ / had r (a)

unlocka (n):

n ∈ has r (a)

switch a (p ,p ′ ,c):

(p ,c) ∈ E r {p ,p ′} ⊆ has r (a) c ≠ p ′ c ∈ / ancestors(p ′ ,T r)

switch ′ a (p ,p ′ ,c):

same as switch, plus c ∈ / had r (a)

switch ′ ′ a (p ,p ′ ,c):

same as switch, plus (p ,p ′) ∈ T r (p ′ ,p) ∈ T r .

7

add_lea f a (p ,c):

p ∈ has r (a) c ∈ / N r
b
∀ c ∈ / had r (b)

remove_lea f a (p ,c):

(p ,c) ∈ E r
n
∀ (c ,n) ∈ / E r {p ,c} ⊆ has r (a)

A computation satisfies the dynamic tree locking protocol if and only if

1) no action accesses a node on which it does not hold a lock, and

2) the operations listed above are the only ones that place or remove locks on nodes or modify the tree, and

3) the protocol’s conditions hold for each occurrence of the above operation in the state in which it begins.

For short, such a computation is called a dynamic tree computation. In practice, we will not need to

make use of the distinction between transformation, waiting, and protocol conditions. For any dynamic tree

computation, they all hold equally true.

Let us name a computation’s initial state init and its final state f in. For every computation, we

assume that T init is a tree and has init = had init = ∅. By this assumption, by the operations’ specifications,

and by the rules of the protocol, it is easy to verify that in every subsequent state s, T s is still a tree and

has s (a) ∩ has s (b) = ∅ for all distinct actions a and b.

4.3. Ordering Relations

To prove serializability (as well as other properties), we must show that the conflict graph on the

actions in a dynamic tree computation remains acyclic. Instead, it turns out to be more convenient to show

that the transitive closure of a certain superset of the conflict relation remains irreflexive. We now proceed

to define the various relations.

Let a
s

→ b for actions a and b and state s if there exists a state r prior or equal to s such that

has r (b) ∩ had r (a) ≠ ∅. In other words, a
s

→ b if a and b both locked some node n prior to s, and a

locked it before b. Let
s

→+
be the transitive closure of

s
→, and let

s
→*

be its transitive and reflexive clo-

8

sure. We will indicate the closures of other relations in the same manner.

Thus,
s

→ is simply the conflicts-with relation on actions achieved up to state s. For this reason, a

computation is (conflict-preserving) serializable if and only if its
f in
→+

is irreflexive.

Let a
s

→ → b if there is a path q from node n to node m in T s such that n ∈ has s (b), m ∈ had s (a),

and the successor of n on q is not in had s (b) (see Fig. 2).

The → → relation reflects conflicts that may arise via future lock_child operations. Thus, when

a → → b, b may lock the nodes on q, starting with the successor of n and continuing down. Then, after it

locks m, a → b becomes true. Note that the above definition allows a → → a. For example, a may hold a

lock on a node and its grandchild, but not on the interceding child. This is significant because if some other

action b then locks the child node, a → → b → → a will result.

Finally, let
s

be the union of
s

→ and
s

→ →. Thus, this relation reflects both conflicts that have already

occurred and that could occur in the immediate future.

5. Intermediate Results

As stated above, an intermediate step to our goal of proving serializability and other properties is

showing that
+

remains irreflexive throughout a dynamic tree computation. To achieve this, we must

examine the effects of the various operations on → and → →.

_ __

n

∈ has(b)

m’

∈ / had(b)

m

∈ had(a)

.

Figure 2.

a → → b by the path from n to m.
If a ≠ b, m ′ and m may be the same node.

_ __

9

_ __

n

∈ has r (d)

f

∈ has s (a)

m’

∈ had r (b)

.

Figure 3.

T s after a lock_ f irst a (f).
If b

s
→ → a

s
d then b

r
→ → d by the path from n to m ′.

(If a
s

→ d, then m ′ is f).

_ __

Lemma 1: if lock_ f irst a (f) maps state r to state s, and a, b and d are actions, then:

1) a
s

a does not hold.

2) if b ≠ a d ≠ a b
s

d, then b
r

d.

3) if b
s

a
s

d, then b
r

d.

Proof:

1) a
s

→ a is impossible by definition, and a
s

→ → a can not hold since T s is a tree and there is only one

node in had s (a).

2) s and r are identical in all respects other than had(a) and has(a), and these play no part in
s

on actions

distinct from a.

3) Since, as of s, a has yet to release any lock, a
s

→ d is impossible for any d. Thus, let a
s

→ → d by path

q from n to m as defined above (see Fig. 3). Note that since had s (a) = { f }, m must be f. If b
s

→ a then

f ∈ had r (b). But then b
r

→ → d via q. Now let b
s

→ → a by path q ′ from n ′ to m ′. Once again, note

n ′ = f. But then b
r

→ → d via q followed by q ′.

10

Lemma 2: Let lock_ f irst a (f) map state r to state s, let a, b and d be actions, and let b
s

+
d, but not

b
r

+
d. Then

1) either b = a, or d = a, and

2) if b = d, then e
r

+
e for some action e.

Proof:

1) Assume b ≠ a d ≠ a. Then, by lemma 1 part 2, there exists a b ′ and d ′ such that b
r

*
b ′

s
a

s
d ′

r

*
d.

But then, by lemma 1 part 3, b ′
r

d ′, thus b
r

+
d, which is a contradiction.

2) Let b = d. Then, by part 1 of this lemma, b = d = a, thus a
s

+
a. Then, by lemma 1 part 1, a

s

+
e

s

+
a

for some e ≠ a. Thus, e
s

+
a

s

+
e. Then, by lemma 1 part 2, there exist an e ′ and e ′ ′ such that

e
r

*
e ′

s
a

s
e ′ ′

r

*
e. But then by lemma 1 part 3, e ′

r
e ′ ′, thus e

r

+
e.

As we are about to show, it is the property of the static tree protocol that lock_ f irst is the only opera-

tion that introduces new edges to
+

. Together with lemma 2, this is sufficient to prove serializability and go

a long way toward deadlock freedom. The remainder of this paper would be much simpler if this property

also held true for the dynamic case.

Unfortunately, however, the switch operation can, under certain circumstances, add new edges to
+

.

Consider, for example, the scenario in Fig. 4. Up to the switch operation, b and d are unrelated in . After it,

however, b → → d. Furthermore, the last operation could have just as easily been switch a (p ,g ,c ′), result-

ing in d → → b.

This is not just an artifact of a poor definition for . The switch performed by a makes it possible for d

to go on to lock c, resulting in b
f in
→ d. Had a performed switch a (p ,g ,c ′), b could go on to lock c ′, result-

ing in d
f in
→ b. As we will show, in the static case, one can determine an order in which b and d can appear

11

_ __

p

c

g

c’

g’

T init

a b d_ __
lock_ f irst(p)
lock_child(p ,c)
lock_child(c ,g)
lock_child(p ,c ′)
lock_child(c ′ ,g ′)
unlock(c)
unlock(c ′)

lock_ f irst(c)
lock_ f irst(c ′)

switch(p ,g ′ ,c)_ __

Figure 4.

The non-restricted switch makes b → → d.
_ __

in the serialization ordering as soon as both have locked their first node.

Still, this property of the static protocol can be retained by restricting the switch operation to switch ′

and switch ′ ′. Thus, we now show that operations other than lock_ f irst and non-restricted switch do not

expand
+

.

Lemma 3: Let o be any operation other than lock_ f irst or a non-restricted switch, and let o map state

r to state s. Then
s

+
⊆

r

+
.

Proof: Let us consider each operation in turn.

• unlocka (n) and remove_lea f a (p ,c): Note that has s ⊆ has r and had s = had r , thus
s

→ =
r

→. Further-

more, since E s ⊆ E r , s
→ → ⊆

r
→ →.

12

• add_lea f a (p ,c): Since had s = had r ∪ (a ,c), and c has never been locked before,
s

→ =
r

→. Now

assume b
s

→ → d but not b
r

→ → d. Let q be the path from n to m by which b
s

→ → d. Since

E s = E r ∪ (p ,c), and the only newly locked node is c, which is a leaf, it must be that c = m a = b.

Note that p must be the predecessor of c in q, and p ∈ has r (b). Note p ≠ n (otherwise b = a = d, but

a
s

→ → a can not hold for the single-edge path from n = p to m = c). But then b
r

→ → d by the path from

n to p.

• lock_child a (p ,c): Let b
s

→ d but not b
r

→ d. Then the conflict occurred at c, thus a = d, and

c ∈ had r (b). Since p ∈ has r (d), b
r

→ → d by the path from p to c.

Now let b
s

→ → d but not b
r

→ → d. Let q be the path from n to m by which b
s

→ → d. Since

T s = T r , and the only newly locked node is c, either c = n a = d, or c = m a = b. In the first case,

since c ∈ / had r (a), b
r

→ → d by the path from p to c to m. For the second case, see the corresponding argu-

ment under add_lea f.

• switch ′ a (p ,p ′ ,c) and switch ′ ′ a (p ,p ′ ,c): There are no newly locked nodes in s, thus
s

→ =
r

→. Assume

that indeed b
s

→ → d, but not b
r

→ → d, for some actions b and d. The only new edge in T s is (p ′ ,c). Then

q (the path from n to m defined above by which b
s

→ → d) must include (p ′ ,c) (see Fig. 5).

If n = p ′, then c ∈ / had r (d). Furthermore, since n ∈ has r (d), and p ′ ∈ has r (a), a must then be d.

But then b
r

→ → d by the path from p to c to m. Thus, we assume n ≠ p ′, and therefore a
r

→ → d by the

path from n to p ′. (We know the successor of n on this path is not in had r (d) because the path from n to m

by which b
s

→ → d goes through p ′).

For switch ′, since c ∈ / had r (a), b
r

→ → a by the path from p to c to m. Thus, b
r

→ → a
r

→ → d.

For switch ′ ′, if (p ′ ,p) ∈ E r , then b
r

→ → d by the path from n to p ′ to p to c to m. And if

(p ,p ′) ∈ E r , then p must be the predecessor of p ′ on q, thus b
r

→ → d by the path from n to p to c to m.

13

_ __

n ∈ has r (d)

....

p’ ∈ has r (a)p ∈ has r (a)

c ∈ / had r (a)

....

m ∈ had r (b)

switch ′: c ∈ / had r (a)

n ∈ has r (d)

....

p

p’c

....

m ∈ had r (b)

switch ′ ′: (p ,p ′) ∈ E r

n ∈ has r (d)

....

p’

p

c

....

m ∈ had r (b)

switch ′ ′: (p ′ ,p) ∈ E r

Figure 5.

T r prior to restricted switch a (p ,p ′ ,c) resulting in b
s

→ → d.

In all cases, b
r

→ →
+

d.

_ __

(We know that p ′ must have a predecessor on q since p ′ ≠ n.)

As mentioned above, one consequence of lemmas 2 and 3 is that the switch-restricted tree protocol

(but not the unrestricted one) determines an action’s position in the serialization ordering as soon as the

action locks its first node:

Lemma 4: In any switch-restricted dynamic tree computation, if b
f in

+
d, then b

+
d as soon as both b

and d have executed their lock_ f irst operations, and in all subsequent states.

Proof: Assume otherwise. Then at least one operation mapping state r to state s where b
s

+
d but not

b
r

+
d must occur after both b and d have started. Let o be that operation. By lemma 3, o must be a

14

lock_ f irst a for some a. But by lemma 2 part 1, a is either b or d, which is a contradiction.

Another immediate consequence of lemmas 2 and 3 is that
+

remains irreflexive in all states, thus

guaranteeing serializability for switch-restricted computations.

We now proceed to show that this result also holds for non-restricted computations, even though

lemma 3 is not sufficient for them. Doing this requires some extra work.

Definition: let lca(v ,v ′ ,T) be the lowest common ancestor of nodes v and v ′ in tree T, i.e. the node in

({v} ∪ ancestors(v ,T)) ∩ ({v ′} ∪ ancestors(v ′ ,T)) that is furthest from the root of T. Let Λ(v ,v ′ ,T)

be the set of nodes on the paths in T from lca(v ,v ′ ,T) to v and v ′ (including v, v ′, and lca(v ,v ′ ,T)).

Lemma 5: In any state s of a dynamic tree computation, let v and v ′ be any two nodes in had s (b) for

any action b. Then for every node u in Λ(v ,v ′ ,T s) there exists some action b ′ such that u ∈ had s (b ′) and

b
s

→*
b ′.

Proof: by induction on the length of the computation. The lemma is trivially true for the initial state.

We will now consider each operation in turn, assuming the lemma holds in the state r preceding it. It is

helpful to remember that, by definition, for all actions a and a ′, if a
r

→ a ′, then a
s

→ a ′, and, for all

nodes v, if v ∈ had r (a), then v ∈ had s (a).

• unlocka (n) and remove_lea f a (p ,c): for any two nodes, the lemma holds in s the same way it holds in r.

• lock_ f irst a (f): for any two nodes distinct from f, or if b ≠ a, the lemma holds in s the same way it holds

in r. As for v = f b = a, had s (a) = { f }, and Λ(f , f ,T s) = { f }, and f ∈ had s (a).

• lock_child b (p ,c) and add_lea f b (p ,c): for any two nodes distinct from c, the lemma holds in s the same

way it holds in r. Also, if v = c, but b ≠ a, the lemma holds in s as in r (in the add_lea f case,

c ∈ / had r (b) ∪ had s (b) for any b ≠ a). As for v = c b = a, let v ′ be any other node in had s (a). Note

that Λ(c ,v ′ ,T s) = Λ(p ,v ′ ,T r) ∪ {c}. Since p and v ′ are in had r (a), we know the lemma holds for the

nodes in Λ(p ,v ′ ,T r), and c ∈ had s (a).

• switch a (p ,p ′ ,c): For any {v ,v ′} ⊆ had s (b) for some action b, if Λ(v ,v ′ ,T s) does not include both p ′

15

_ __

..

..

..

..

..

. ..
..
..

..
..
.. .
..

..
..

..
..

..
..

..
..

..
..

..
..v’ p p’

c

v

. : Λ(v ,v ′ ,T s)

: Λ(p ,p ′ ,T r) = Λ(p ,p ′ ,T s)

: Λ(v ,v ′ ,T r)

Figure 6.

Λ(v ,v ′ ,T s) ⊆ Λ(v ,v ′ ,T r) ∪ Λ(p ,p ′ ,T r)
_ __

and c, the lemma holds in s as in r. Thus, let the path from lca(v ,v ′ ,T s) to v include edge (p ′ ,c). Then, by

definition of lca, v ′ is not in the subtree dominated by c (see Fig. 6). Then, in T r , the path from

lca(v ,v ′ ,T r) to v had to include (p ,c).

By the inductive hypothesis, since p ∈ Λ(v ,v ′ ,T r), there exists a b ′ such that p ∈ had r (b ′) and

b
r

→*
b ′. Thus, since p ∈ has r (a), b

r
→*

b ′
r

→*
a.

Note that Λ(v ,v ′ ,T s) ⊆ Λ(v ,v ′ ,T r) ∪ Λ(p ,p ′ ,T r) (see Fig. 6). Since {v ,v ′} ⊆ had r (b), the

lemma holds in s as in r for all nodes in Λ(v ,v ′ ,T r). As for nodes u in Λ(p ,p ′ ,T r), since

{p ,p ′} ⊆ had r (a), there exists an a ′ such that u ∈ had r (a ′) and a
r

→*
a ′. Thus, b

r
→*

a
r

→*
a ′.

Corollary: In any state s of a dynamic tree computation, if nodes v and v ′ are in had s (a) for some

action a, and some node u is in has s (b) for some distinct action b, and u ∈ Λ(v ,v ′ ,T s), then a
s

→+
b.

Lemma 6: Let switch a (p ,p ′ ,c) map state r to state s in a dynamic tree computation containing no

remove_lea f operations, let b and d be actions, and let b
s

d, but not b
r

+
d. Let S c be the set of nodes in

16

the subtree dominated by c, and note that S c is the same in T s and T r . Then

1) b
s

→ → d by a path that includes (p ′ ,c), and

2) had s (b) ⊆ S c , and

3) b ≠ d, and

4) if b ′
s

b for any action b ′, then b ′
s

d.

Proof: Since
s

→ =
r

→, b
s

→ → d by a path from node n to node m that includes edge (p ′ ,c) (part 1).

See Figure 7.

_ __

n ∈ has r (d)

....

p’ ∈ has r (a)p ∈ has r (a)

c

....

m ∈ had r (b)

S c ⊇ had r (b)

Figure 7.

T r prior to an (unrestricted) switch a (p ,p ′ ,c) resulting in b
s

→ → d.

As shown in lemma 6, as long as had s (b) ⊆ N s ,
had s (b) ⊆ S c .

_ __

17

If n = p ′, then c ∈ / had r (d). Furthermore, since n ∈ has r (d), and p ′ ∈ has r (a), a must then be d.

But then b
r

→ → d by the path from p to c to m, which is a contradiction. Thus, n ≠ p ′, and therefore

a
r

→ → d by the path from n to p ′.

Assume there exists a node m ′ in had s (b) − S c . Since the computation contains no remove_lea f

operations, had s (b) ⊆ N s . Then p ∈ Λ(m ,m ′ ,T r). Then by the corollary to lemma 5, b
r

→*
a. But

since a
r

→ → d, this is a contradiction. Thus, had s (b) ⊆ S c (part 2). Since n ∈ had s (d) but n ∈ / S c ,

b ≠ d (part 3).

Case 1: b ′
s

→ b for some node m ′. Then m ′ ∈ had s (b) ⊆ S c . But then b ′
s

→ → d by the path

from n to c to m ′ (part 4).

Case 2: b ′
s

→ → b by a path from some node n ′ to some node m ′. Then n ′ ∈ had s (b) ⊆ S c . But

then b ′
s

→ → d by the path from n to c to n ′ to m ′ (part 4).

Lemma 7: In any dynamic tree computation C,
+

is irreflexive in all states.

Proof: Assume otherwise. Let C ′ be the computation derived from C by replacing every

remove_lea f a (p ,c) operation with an unlocka (c). (Since the specification of remove_lea f includes releas-

ing a’s lock on c anyway, this replacement only has the effect of keeping c in the tree.) Clearly, C ′ is a per-

fectly legal dynamic tree computation, and, for any state s in C and its corresponding state s ′ in C ′,

had s′ = had s , has s′ = has s , and E s′ ⊇ E s . Therefore,
s′

→ =
s

→, and
s′

→ → ⊇
s

→ →.

Thus, if there is a state with a reflexive
+

in C, there is such a state in C ′. Let s be the first such state.

Since had init = ∅, s ≠ init. Thus, let o be the operation preceding s, and let r be the state preceding o,

with
r

+
irreflexive. Lemma 3 shows that o is either a lock_ f irst or a switch. Lemma 2 part 2 shows that o is

not a lock_ f irst. Thus, o is a switch.

Let b 0 s
b 1 s

. . .
s

b k − 1 s
b 0 be a minimal cycle in

s
. Since

r

+
is irreflexive, b j r

b (j + 1) mod k does

18

not hold for some j.

By lemma 6, part 3, k > 1. Since b (j − 1) mod k s
b j , by lemma 6, part 4, b (j − 1) mod k s

b (j + 1) mod k .

But then the cycle is not minimal, which is a contradiction.

6. Serializability in the Presence of Readers

We say that a computation is conflict-preserving serializable if its
f in
→+

relation is irreflexive. Our first

main result, a corollary of lemma 7, is:

Theorem 1: Every dynamic tree computation is conflict-preserving serializable.

The original tree protocol as defined in [SK80] dealt only with exclusive locks. Since this is a drastic

limitation on a protocol’s practicality, [KS83] considered the problem of extending a locking protocol to

the use of read-locks. As a first step, they adopted the following:

Segregation Rule: an action may place either only read-locks or only write-locks.

In the first case, the action is known as a reader, in the second, a writer. Thus, Let R be the set of

readers and W be the set of writers.

With this innovation, certain alterations must be made to the specifications of the operations. The

waiting condition
b
∀ n ∈ / has r (b) for lock_ f irst a (n) and lock_child a (p ,n) has to be replaced with

b
∀ n ∈ / has r (b) {a ,b} ⊆ R. The protocol conditions of switch a , add_lea f a , and remove_lea f a must

now be modified to include a ∈ W. The definitions of
s

→ and
s

→ → need also be revamped. For a
s

→ b

to hold now, at least one of a and b must be a writer. The same is true for a
s

→ → b, except a
s

→ → a must

still hold even if a is a reader.

Surprisingly, as shown in [KS83], the segregation rule alone is insufficient to guarantee serializability

even in the original tree protocol. In the presence of readers,
+

may indeed cease to be irreflexive. (The

problem occurs in the proof of lemma 1. It may be that b
s

a
s

→ → d, but not b
r

→ → d because both b and

d are readers.)

19

Fortunately, one of the theorems in [KS83] shows that any serializable write-lock protocol can be

converted to the use of read-locks if the segregation rule is combined with the following:

Transitive Conflict Rule: if w
f in
→ r

f in
→ w ′ where r is a reader and w ≠ w ′, then w

f in
→ w ′ must also

hold.

This method may be applied to the dynamic tree protocol as well, thus producing the segregated

dynamic tree protocol. We paraphrase and extend the proof of the relevant theorem in [KS83] below:

Lemma 8: The segregated dynamic tree protocol is serializable.

Proof: Assume there exists a computation C where a 0 f in
→ a 1 f in

→ . . .
f in
→ a n − 1 f in

→ a 0 is a

minimal cycle in
f in
→. Note that since readers can not conflict with other readers, a i ∈ R implies

{a i − 1 ,a i + 1 } ⊆ W. Then there are two cases.

Case 1: n > 2. Then i − 1 ≠ i + 1 (modulo n) for all 0 ≤ i ≤ n − 1. Thus, since the cycle is minimal,

a (i − 1) mod n ≠ a (i + 1) mod n . Then by the transitive conflict rule, if a i is a reader, then

a (i − 1) mod n f in
→ a (i + 1) mod n . But then the cycle is not minimal, so all the a i’s must be writers. Let C ′ be

C restricted to the writer actions. Since reader actions are not allowed tree-modifying operations, C ′ is a

perfectly legal writer-only dynamic tree computation. But now a 0 f in
→ . . .

f in
→ a n − 1 f in

→ a 0 in C ′,

which contradicts Theorem 1.

Case 2: n ≤ 2. Since a → a is impossible by definition, n = 2. If both a 0 and a 1 are writers,

proceed as in case 1. Otherwise, since both can’t be readers, let a 0 be the reader. Let C ′ be C restricted to

the writer actions and a 0 , and let a 0 now be a writer. Since the readers are not allowed tree modifying

operations, and the locks of a 0 conflicted with the locks of all the writers anyway, C ′ is a legal writer-only

dynamic tree computation. But now a 0 f in
→ a 1 f in

→ a 0 in C ′ which contradicts Theorem 1.

We should note that the transitive conflict rule may be enforced by having all writers start at the root

(as suggested in [KS83]), or by restricting readers to locking only one node (i.e. disallowing them

lock_child operations).

20

7. Deadlock Freedom

Deadlock is a state where there exists a set of actions a 0 , . . . ,a n − 1 such that a i is waiting for a

resource held by a (i + 1) mod n . In our context, locks are the only resource for which an action can wait.

Although waiting can be initiated by both the lock_ f irst and lock_child operations, the lock_ f irst can not

play a part in the deadlock cycle because an action can never be holding other locks while waiting for its

first lock.

Thus, in a segregated dynamic tree protocol, state r is said to be deadlock-prone if there exists a sets

of actions a 0 , . . . ,a n − 1 , nodes p 0 , . . . ,p n − 1 , and nodes c 0 , . . . ,c n − 1 such that, for 0 ≤ i ≤ n − 1,

(p i ,c i) ∈ E r , p i ∈ has r (a i), c i ∈ / had r (a i), c i ∈ has r (a (i + 1) mod n), and a i ∈ R implies

a (i + 1) mod n ∈ W. >From such a state, deadlock would result if each a i issued lock_child(p i ,c i). Con-

versely, since lock_child operations are the only ones that can be involved in the deadlock cycle, deadlock

can only be reached by going through a deadlock-prone state.

Theorem 2: A writer-only dynamic tree computation C never enters a deadlock-prone state s.

Proof: Assume otherwise. By definition of deadlock-prone state, a i s
→ → a (i + 1) mod n by the path

from p i to c i . Thus, a 0 s

+
a 0 , which contradicts lemma 7.

As with serializability, problems arise when we try to extend this result to computations containing

readers. In fact, as illustrated by Fig. 8, even a segregated computation satisfying the original (non-

dynamic) tree protocol and the transitive conflict rule may reach a deadlock-prone state. Thus, to guarantee

deadlock freedom, we need to enforce some variation of the transitive conflict rule, such as:

For any state s, if w
s

→ → r
s

→ → w ′ where r is a reader and w ≠ w ′, then w
s

→ → w ′ must also hold.

It is easily shown by an argument similar to the proof of lemma 8 that this guarantees that → →
+

stays

irreflexive in all states, thus making a deadlock-prone state impossible. We should also note that the

methods mentioned above for enforcing the transitive conflict rule also work to enforce this variation.

21

_ __

p

c

g

c’

g’

T init

r1 ∈ R r2 ∈ R w1 ∈ W w2 ∈ W_ ___
lock_ f irst(p)
lock_child(p ,c)
lock_child(c ,g)
unlock(c)

lock_ f irst(p)
lock_child(p ,c ′)
lock_child(c ′ ,g ′)
unlock(c ′)

lock_ f irst(c)
lock_ f irst(c ′)_ ___

Figure 8.

A serializable segregated computation satisfying the transitive conflict rule
with a deadlock-prone final state:

r2 may wait for w1 at c,
w1 may wait for r1 at g,
r1 may wait for w2 at c ′,
w2 may wait for r2 at g ′.

_ __

22

_ __

p

c

g

T init

a b d_ ___
lock_ f irst(p)
lock_child(p ,c)
unlock(p)

lock_ f irst(p)
unlock(p)

lock_ f irst(g)
unlock(g)

lock_child(c ,g)_ ___

Figure 9.

Even though b completely precedes d, d
f in
→ a

f in
→ b.

_ __

8. Order Preservation

We say that action a completely precedes action b if a releases all its locks before b places its first

lock. A computation is order-preserving if, whenever a
f in
→+

b, b does not completely precede a. In other

words, if two actions actually executed in a certain order, they shouldn’t appear by the results of the compu-

tation to execute in the opposite order.

The dynamic tree locking protocol, like the original tree protocol, does not in general guarantee order

preservation. (See Fig. 9 for an example.) However, both protocols can be shown to preserve the temporal

ordering between those pairs of actions related to each other in one of a number of ways.

In the case of the static tree protocol, the three relationships known to us can be stated succinctly.

Order will be preserved between action b and a subsequent action d if d either

1) locked a node also locked by b, or

23

2) locked a node that is an ancestor of a node locked by b, or

3) locked a node that is a child of a node locked by b.

In the dynamic tree case, both the statement and proof of parts 2 and 3 above are complicated by the

transiency of child and ancestor relationships: one is forced to state precisely when these relationships must

have held in relation to the time that b and d locked the nodes involved. Thus, we break up this statement

into three separate theorems:

Theorem 3: Let C be a computation of the segregated tree protocol wherein action b completely pre-

cedes action d. If there exists a node n ∈ (had f in (b) ∩ had f in (d)), then d
f in
→+

b does not hold.

Proof: Let us construct a new computation, C ′, consisting only of the writers in C, as well as b and d.

Since reader actions are not allowed switch, add_lea f, or remove_lea f operations, C ′ is a perfectly legal

segregated dynamic tree computation.

Now, make both b and d writers in C ′. Since b and d are not concurrent, and their locks conflict with

all the other (writer) actions anyway, C ′ is still a perfectly legal dynamic tree computation, but now consist-

ing only of writers. And since C satisfied the transitive conflict rule, d
f in
→+

b can hold in C only if it holds

in C ′.

Note that even if both b and d were readers in C, they are writers in C ′, thus b
f in
→ d in C ′ (at n).

Therefore, by lemma 7, d
f in
→+

b can not hold in C ′.

It is noteworthy that the most common method of enforcing the Transitive Conflict Rule — having

all actions start at the same node — also makes the dynamic tree protocol order-preserving by Theorem 3.

Thus, Theorems 1, 2, and 3 can serve as rigorous correctness proofs for the B-tree algorithms in [Sa76],

[BS77], and [MR85].

Theorem 4: Let C be a computation of the segregated tree protocol wherein action b completely pre-

cedes action d. If C is switch-restricted, and, in some state s, some node n ∈ has s (d) is an ancestor of

some node m ∈ had s (b), then d
f in
→+

b does not hold.

24

Proof: Let us construct C ′ from C just as in Theorem 3. Let s be the first state in C ′ where

n ∈ has s (d), m ∈ had s (b), and n is an ancestor of m. Let o be the operation preceding s, and let r be the

state preceding o. Since r does not satisfy the above conditions, o must be either lock_ f irst d (n) or

switch a (p ,p ′ ,c) for some a where (p ′ ,c) is an edge on the path from n to m.

If o is a lock_ f irst, then the successor of n on the path from n to m is not in had s (d) = {n}, and

thus b
s

→ → d by the path from n to m. Unfortunately, we can make no assumption about the successor of n

in the o = switch a (p ,p ′ ,c) case. However, we can show that b
s

+
d also holds there anyway (see Fig. 10).

Since p is an ancestor of m ∈ had r (b) in r, and the conditions of the case do not hold in r,

n ∈ has r (d) can not be p or an ancestor of p. Furthermore, since p ∈ has r (a), a can not be d. And since

p ′ ∈ has r (a) but n ∈ has r (d), p ′ also isn’t n. However, since (p ′ ,c) is an edge on the path from n to m

in s, n is an ancestor of p ′. Thus, n ∈ Λ(p ,p ′ ,T s) − {p ,p ′}. Then, by the corollary to lemma 5, a
s

→+
d.

_ __

n ∈ has r (d)

....

p’ ∈ has r (a)p ∈ has r (a)

lca(p ,p ′ ,T s)
.

...........................

c

....

m ∈ had r (b)

Figure 10.

T r prior to a restricted switch resulting in n ∈ ancestors(m ,T s).
_ __

25

For a switch ′ ′, Λ(p ,p ′ ,T s) = {p ,p ′}. Thus, o is not a switch ′ ′. Since C is switch-restricted, o is

therefore a switch ′, and c ∈ / had s (a). Then b
s

→ → a by the path from p ′ to c to m. Thus, b
s

→ → a
s

→+
d,

and b
s

+
d whether o is a lock_ f irst or a switch.

For d
f in
→+

b to hold in C, it must hold in C ′. Then, since C ′ is writer-only and switch-restricted,

d
s

+
b must hold by lemma 4. But by lemma 7 and the previous result, this is impossible.

We should note that, as illustrated by the counterexample in Fig. 11, the condition that C be switch-

restricted really is necessary for Theorem 4 to hold.

The final installment of the order preservation story requires some preparatory work.

Lemma 9: Let p be the parent of some node c in some state r of a dynamic tree computation, and let

p ′ be the parent of c in some subsequent state s. If p ∈ had r (a) for some action a, then there exists some

action a ′ such that p ′ ∈ had s (a ′), and a
s

→*
a ′.

Proof: Trivial if p = p ′. If p ≠ p ′, then between r and s occurred the operations

w i = switch e i
(p i − 1 ,p i ,c), 1 ≤ i ≤ k, where p 0 = p and p k = p ′. Since e 1 held a lock on p as of w 1 ,

and e 1 is a writer, either a = e 1 , or a
s

→ e 1 . And whenever e i ≠ e i + 1 , e i held a lock on p i before

e i + 1 , therefore e i s
→ e i + 1 . Thus, a

s
→*

e k . Since p ′ ∈ had s (e k), the lemma holds for a ′ = e k .

Lemma 10: If d
s

→ → a by a path from n to m, and, in some previous state, some action b ≠ a held a

lock on the parent of m, then b
s

+
a.

Proof: Let p be the parent of m in s. By lemma 9, there exists a b ′ such that b
s

→*
b ′ and

p ∈ had s (b ′) (see Fig. 12). If b ′ = a, we are done. Thus, assume b ′ ≠ a. If n ≠ p, then b ′
s

→ → a by the

path from n to p. And if n = p, b ′
s

→ a at n. Thus, b
s

→*
b ′

s
a.

26

_ __

v1

n

v2

m

v3

v4

T init

e a b d_ __
lock_ f irst(v1)
lock_child(v1 ,n)
lock_child(n ,v2)
lock_child(v2 ,m)
lock_child(m ,v3)
lock_child(v3 ,v4)
unlock(n)
unlock(m)
unlock(v3)

lock_ f irst(m)
lock_child(m ,v3)
unlock(m)

lock_ f irst(m)
unlock(m)

lock_ f irst(n)
unlock(n)

switch(v2 ,v1 ,m)
switch(v1 ,v4 ,n)
unlock(v4)

lock_child(v3 ,v4)
lock_child(v4 ,n)_ __

Figure 11.

Because the computation is not switch-restricted,
d

f in
→ a

f in
→ b

even though b → → d right after d’s lock_ f irst,
and even though b completely precedes d.

_ __

27

_ __

n ∈ has s (a)

....

p ∈ had s (b ′)

m ∈ had s (d)

Figure 12.
_ __

Theorem 5: Let C be a computation of the segregated tree protocol wherein action b completely pre-

cedes action d. If, in some state q of C, some node p ∈ had q (b) is the parent of node c ∈ / had q (d), but

c ∈ had f in (d), then d
f in
→+

b does not hold.

Proof: Let us construct C ′ from C as in Theorem 3, and let us further modify C ′ by replacing every

remove_lea f e (p ,c) with an unlock e (c). By the same simple argument as in the proof of lemma 7, C ′ is

still a legal dynamic tree computation, and d
f in
→+

b holds in C only if it holds in C ′. The terms of the

theorem must also still apply to C ′.

Since c ∈ had f in (d), d executed either a lock_ f irst d (c) or a lock_child d (p ′ ,c) for some p ′. (An

add_lea f d (p ′ ,c) is impossible since c was in the tree before d locked it.)

First, consider the lock_child case. Let s be the state right before the lock_child. By lemma 9,

p ′ ∈ had s (b ′) for some b ′ such that b
s

→*
b ′. But since p ′ ∈ has s (d), b ′

s
→*

d. Thus, since b ≠ d,

b
s

→+
d, thus b

f in
→+

d. Therefore, by lemma 7, d
f in
→+

b can not hold.

Now, consider the lock_ f irst d (c) case. Assume d
f in
→+

b and proceed by contradiction. Let s be the

first state in C ′ such that d
s

+
b. Note that q comes before s. Let o be the operation preceding s. By lemma

28

3, o must be either a lock_ f irst e or a non-restricted switch e for some action e.

First, let o be a lock_ f irst e . Then, by lemma 2, e = d, and o is lock_ f irst d (c). Note that d
s

→ → b

is impossible since has s (b) = ∅. Also note that d
s

→ a is impossible for any a since d has yet to unlock

any node. Thus, d
s

→ → a
s

+
b for some a. Since had s (d) = {c}, d

s
→ → a by a path from some n to c.

But then, by lemma 10, b
s

+
a, which contradicts lemma 7.

Now, let o be a switch e (p e ,p ′ e ,c e), and let r be the state preceding o. Let d also be known as a 0 , b

as a k , and let a 0 s
a 1 s

. . .
s

a k be the shortest-length path connecting d to b in
s
. Note that d

s
→ → b is

impossible since has s (b) = ∅, and d
s

→ b is impossible since b completely precedes d. Thus, k > 1.

By lemma 6 part 4, if a i r

+
a i + 1 does not hold for some i between 1 and k − 1 inclusive, then

a i − 1 s
a i + 1 . But then the path was not of minimal length, which is a contradiction. Thus, a 1 r

+
b. And

since d
r

+
b does not hold, neither does d

r
a 1 .

Thus, by lemma 6, part 1, d
s

→ → a 1 by a path from n to m that includes (p ′ e ,c e). By part 2 of

lemma 6, c is in the subtree dominated by c e . Thus, d
s

→ → a 1 also holds by the path from n to c e to c.

But then, by lemma 10, b
s

+
a 1 , which contradicts lemma 7.

9. Conclusion

The Silberschatz and Kedem tree protocol can be extended to dynamic trees by allowing the general-

purpose operations switch, add_lea f, and remove_lea f. The resulting protocol is serializable in both its

exclusive-lock only and segregated varieties, and is no less deadlock-free then the original tree protocol.

However, unless the switch operation is further restricted, it no longer has the original protocol’s property

of determining an action’s position in the serialization ordering as soon as the action locks its first node.

We have also explored under what circumstances either protocol guarantees order preservation, and found

that these too can depend on restricting the switch operation.

29

REFERENCES

[BS77] BAYER, R. and SCHKOLNIK, M. Concurrency of operations on B-trees. Acta Informatica 9,1

(January 1977) 1-21.

[KS83] KEDEM, Z. and SILBERSCHATZ, A. Locking protocols: from exclusive to shared locks. J. of

the ACM 30,4 (October 1983) 787-804

[MR85] MOND, Y. and RAZ, Y. Concurrency control in B+-tree databases using preparatory operations.

Proc. of International Conference on Very Large Data Bases, 1985, 331-334

[Sa76] SAMADI, B. B-trees in systems with multiple users. Inf. Processing Letters 5, 4 (October 1976)

107-112

[SK80] SILBERSCHATZ, A. and KEDEM, Z. Consistency in hierarchical database systems. J. of the

ACM 27,1 (January 1980) 72-80

