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Abstract

Two domain decomposition methods for solving vector field problems posed in

H(curl) and discretized with Nédélec finite elements are considered. These finite

elements are conforming in H(curl).

A two-level overlapping Schwarz algorithm in two dimensions is analyzed, where

the subdomains are only assumed to be uniform in the sense of Peter Jones. The

coarse space is based on energy minimization and its dimension equals the number

of interior subdomain edges. Local direct solvers are based on the overlapping

subdomains. The bound for the condition number depends only on a few geometric

parameters of the decomposition. This bound is independent of jumps in the

coefficients across the interface between the subdomains for most of the different

cases considered.

A bound is also obtained for the condition number of a balancing domain de-

composition by constraints (BDDC) algorithm in two dimensions, with Jones sub-

domains. For the primal variable space, a continuity constraint for the tangential

average over each interior subdomain edge is imposed. For the averaging operator,

a new technique named deluxe scaling is used. The optimal bound is independent

of jumps in the coefficients across the interface between the subdomains.

Furthermore, a new coarse function for problems in three dimensions is intro-

duced, with only one degree of freedom per subdomain edge. In all the cases, it

is established that the algorithms are scalable. Numerical results that verify the

results are provided, including some with subdomains with fractal edges and others

obtained by a mesh partitioner.
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7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.2 Primal constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.3 Deluxe averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.4 Technical tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.4.1 Convergence analysis . . . . . . . . . . . . . . . . . . . . . . 83

7.4.2 Discrete curl extensions . . . . . . . . . . . . . . . . . . . . 84

7.4.3 Estimates for auxiliary functions . . . . . . . . . . . . . . . 85

7.4.4 A stability estimate . . . . . . . . . . . . . . . . . . . . . . . 87

7.5 Condition number for the BDDC deluxe algorithm . . . . . . . . . . 94

7.6 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8 An overlapping Schwarz algorithm for Nédélec vector fields in 3D 104
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Chapter 1

Introduction

1.1 An overview

We are interested in solving linear systems that arise from the discretizations

of Partial Differential Equations (PDEs). There are different means to obtain an

approximate solution for a PDE numerically, such as finite elements and finite

differences, which end up with large and ill-conditioned linear systems of algebraic

equations.

Solving these linear systems is often a hard problem: direct methods require

much time and memory, and many iterative methods will converge slowly, because

of the large condition numbers of the matrices; see Section 1.2. The main goal in

this dissertation will be to construct preconditioners for such linear systems.

Domain decomposition refers to the process of subdividing the solution of a

large linear system into smaller problems whose solutions can be used to produce

a good and scalable preconditioner for the system of equations that results from

discretizing the PDE on the entire domain. They are typically used as precondi-
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tioners for Krylov space iterative methods, such as the Conjugate Gradient (CG)

method or the Generalized Minimal Residual (GMRES) method.

These algorithms typically involve the solution of a global coarse problem (of

modest dimension) and many local subproblems. The coarse problem prevents

the condition number of the preconditioned system to grow as the number of sub-

domains increases. These resulting problems usually can be handled with exact

solvers, due to their smaller size, but inexact solvers can also be used. Geomet-

rically, a coarse grid is often used to define the coarse problem, and the original

domain is often divided into subdomains to obtain local subproblems related to

these subdomains.

The problems on the subdomains are independent, which makes domain de-

composition methods suitable for parallel computing. These algorithms can also

be used for complicated geometries. Thus, the fundamental idea of domain decom-

position methods is to reduce the solution of a problem to the solution of problems

of a similar form on parts of the domain and an easier lower-dimensional problem

on the entire domain.

There exist two main families of domain decomposition methods: overlap-

ping Schwarz methods (with overlapping subdomains) and iterative substructuring

methods (with non-overlapping subdomains).

The earliest known domain decomposition method was proposed by Hermann

A. Schwarz in 1870 as a theoretical device to deduce the existence and uniqueness of

the boundary value problem for Poisson’s equation in the union of two overlapping

subdomains, given that existence of the solution was known for the subdomains.

This method is known as the classical alternating Schwarz method; see e.g., [60]

and [13, Chapter 2.7.2]. These methods have been widely extended to different

2



problems.

With a different approach, iterative substructuring methods reduce the linear

system to a Schur complement system, by eliminating the interior unknowns of

the subdomains. Then, a preconditioner is build for this new system. Two main

classes of iterative substructuring methods are the Balancing Neumann Neumann

(BNN) type and the Finite Element Tearing and Interconnecting (FETI) type al-

gorithms; see [22, 24] respectively. There are many variants, e.g., Dual-Primal

Finite Element Tearing and Interconnecting (FETI-DP) [23], and Balancing Do-

main Decomposition by Constraints (BDDC). The latter was introduced by Clark

Dohrmann in [15], and is currently very important. Other methods, such as multi-

grid and multilevel methods, have also been considered for these problems; see e.g.

[32, 1, 33].

In this dissertation, we will mainly consider two-level overlapping Schwarz

methods and BDDC methods for solving vector-valued problems posed in H(curl)

and discretized with Nédélec finite elements, which are conforming in H(curl) and

were considered first by Jean-Claude Nédélec in [52]. The results from Chapters 6

and 7 have already appeared as technical reports [9, 10] and have been submitted

for publication.

We will use John and Jones subdomains in two dimensions, in order to obtain

a theory that applies to quite general types of subdomains; see Chapter 4. We will

also allow discontinuities across the interface in our analysis.

3



1.2 Iterative methods for solving linear systems

As already noted, there are two different approaches to solve linear systems:

direct methods, where a factorization of the matrix is fully obtained, and iterative

methods, where an approximation for the solution is obtained after a number

of iterations. Direct methods include LU decomposition (Gauss Elimination), QR

factorization, and Cholesky factorization (for symmetric positive definite matrices),

among others. For these algorithms, execution time and storage can impose serious

constraints.

Of particular importance is the nested dissection algorithm, originally proposed

by Alan George in [26], which provides a more efficient algorithm by finding an

elimination ordering, based on a divide and conquer strategy. If applied to a

k × k two-dimensional mesh, nested dissection leads to an asymptotically optimal

ordering, requiring O(n3/2) floating-point operations and O(n log n) storage (non-

zero entries in the Cholesky factorization), where n = k2 is the dimension of the

matrix. For a k × k mesh in 3D, the work is O(n2) and the storage O(n4/3), with

n = k3; see e.g., [14]. For additional pioneering work, see [46, 28, 27].

Two of the best known iterative methods are the Generalized Minimal Resid-

ual method (GMRES, [59]) and for symmetric matrices the Conjugate Gradient

method (CG, [31]). Both belong to the Krylov space methods. In this thesis, we al-

most always will use CG, since most of the matrices considered are symmetric and

positive definite, but GMRES will be used for certain non-symmetric problems,

when hybrid and multiplicative Schwarz operators are considered.

The rate of convergence of the CG method is determined by the condition

number of the linear system. Hence, we can approximate the solution in a few

iterations if the problem is very well-conditioned. If the arithmetic is exact, after
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n iterations we obtain the exact solution but given that n is very large, the goal

is to obtain an accurate solution with just a few iterations. We present the basic

algorithm and a lemma for CG; see, e.g., [68, Chapter 38]. For a description of the

GMRES method, we refer to [59, 68].

Data: A, b, tolerance ε, initial guess u0

Result: Approximation for the solution of Au = b

Initialize r0 = b− Au0;

while ‖rk‖ > ε do

βk = (rk−1, rk−1)/(rk−2, rk−2) (β1 = 0);

pk = rk−1 + βkpk−1;

αk = (rk−1, rk−1)/(pk, Apk);

uk = uk−1 + αkpk;

rk = rk−1 − αkApk;

end

Algorithm 1: Conjugate Gradient

Lemma 1.2.1. Let A be symmetric positive definite. Then, the iterate uk of the

Conjugate Gradient method minimizes ‖uk − u‖A over the space

u0 + span{r0, Ar0, . . . , Ak−1r0},

where u is the solution of Au = b, r0 = b−A0u0 and ‖u‖A := uTAu. We have the

error bound

‖ek‖A
‖e0‖A

≤ 2

(√
κ2(A)− 1√
κ2(A) + 1

)k

.

Proof. See [68, Th. 38.5].

Lemma 1.2.1 suggests that if the condition number of the matrix is large, the
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convergence can be slow. We therefore will build a preconditioner and modify the

previous algorithm, and use the Preconditioned Conjugate Gradient (PCG). Given

a symmetric, positive definite matrix M , we consider the modified linear system

M−1/2AM−1/2v = M−1/2b, v = M1/2u.

We note that M−1/2AM−1/2 is symmetric and positive definite, and reduces to the

identity in case M = A. We consider M a preconditioner and apply Algorithm 1 to

this modified system to obtain the PCG; see Algorithm 2, were we have returned

to the original variables.

Data: A, b, tolerance ε, initial guess u0

Result: Approximation for the solution of Au = b

Initialize r0 = b− Au0;

while ‖rk‖ > ε do

Precondition: zk−1 = M−1rk−1;

βk = (zk−1, rk−1)/(zk−2, rk−2) (β1 = 0);

pk = zk−1 + βkpk−1;

αk = (zk−1, rk−1)/(pk, Apk);

uk = uk−1 + αkpk;

rk = rk−1 − αkApk;

end

Algorithm 2: Preconditioned Conjugate Gradient

In this case, the rate of convergence depends on the condition number of M−1A.

We also note that the algorithm additionally only involves the application of M−1.

We will focus on the construction of preconditioners, such that κ2(M−1A) is small.

This allows us to obtain a good approximation for the solution of the linear system

6



in a few iterations.

It is usually hard to obtain exact spectral information on a matrix. However,

we can obtain approximate information on the eigenvalues by using a tridiagonal

matrix that can be derived from the coefficients of the conjugate gradient algo-

rithm. This information then can be used to estimate the condition number. Thus,

we construct a tridiagonal matrix J (m) as follows:

J (m) :=



1
α0

√
β0

α0
√
β0

α0

1
α1

+ β0

α0

√
β1

α1
√
β1

α1

. . . . . .

. . . . . .
√
βm−2

αm−2√
βm−2

αm−2

1
αm−1

+ βm−2

αm−2


.

By considering the spectral information of J (m), we can estimate the eigenvalues

of the preconditioned system. We note that extreme eigenvalues of J (m) converge

rapidly after a few iterations. For more details, see [55, Section 4.4] and [58, Section

6.7].

1.3 Organization of the dissertation

This thesis is organized as follows. In Chapter 2, we introduce the required

Sobolev and finite element spaces. In Chapter 3, we describe the model problem

that we will discuss throughout this thesis. For two dimensional problems we will

consider Jones subdomains, for which some new tools have been developed and

are included in Chapter 4. A background on Domain Decomposition methods

is given in Chapter 5. In Chapters 6 and 7, an overlapping Schwarz algorithm

7



and a BDDC deluxe method are described for problems in two dimensions and

irregular subdomains, respectively. Finally, in Chapter 8, we introduce a new

coarse function for 3D problems and provide some numerical results for a two-level

overlapping Schwarz algorithm.
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Chapter 2

Finite Element spaces

In this chapter, we introduce the Sobolev spaces and the finite element spaces

that we will use throughout our thesis. The finite element methods are based on a

variational formulation of elliptic PDEs. This variational problem has a solution in

certain function spaces called Sobolev spaces. By introducing a finite-dimensional

subspace, we discretize the equation and obtain a linear system of equations. By

solving this system, we obtain an approximate solution for the PDE.

In this study, a suitable choice for these finite element spaces are the usual

nodal Lagrange elements and the edge Nédélec elements, that will be introduced

in Sections 2.3 and 2.4. We refer to [5, 6] for general introductions to these topics.

2.1 Sobolev spaces

We consider the Sobolev space H(grad,Ω), denoted also by H1(Ω), as the

subspace of L2(Ω) with a gradient with finite L2-norm, and with a scaled norm

‖u‖2
H1(Ω) := |u|2H1(Ω) +

1

H2
‖u‖2

L2(Ω),

9



where H := diam(Ω), and the seminorm | · |H1(Ω) is defined by

|u|2H1(Ω) :=

∫
Ω

|∇u|2 dx.

We also consider the space H(curl,Ω), the subspace of (L2(Ω))d, d = 2 or 3,

with a finite L2-norm of its curl. This is a Hilbert space with the scalar product

and graph norm defined by

(u,v)H(curl,Ω) :=

∫
Ω

u · v dx +

∫
Ω

∇×u · ∇ × v dx, ‖u‖2
H(curl,Ω) := (u,u)H(curl,Ω).

For two dimensions, given a scalar function p and a vector u, the vector and

scalar curl operators are defined, respectively, by

∇× p :=

(
∂p

∂x2

,− ∂p

∂x1

)T
,

and

∇× u :=
∂u2

∂x1

− ∂u1

∂x2

.

We define the unit tangent vector t on the boundary of Ω by

t := (−n2, n1)T ,

where n = (n1, n2)T is the unit outer normal vector. For a generic vector u, its

tangential component on the boundary is u · t = |n× u|.

In three dimensions, given a vector u, the curl operator is defined by

∇× u :=

(
∂u3

∂x2

− ∂u2

∂x3

,
∂u1

∂x3

− ∂u3

∂x1

,
∂u2

∂x1

− ∂u1

∂x2

)T
.

10



The tangential component of a vector u on the boundary of Ω is defined by

ut := u− (u · n)n = (n× u)× n.

Since |ut| = |n×u|, the vector u has a vanishing tangential component if and only

if n× u = 0. With an abuse of notation, we will refer to n× u as the tangential

component of u.

2.2 Triangulations

We will define finite element spaces over a triangulation of our domain in the

following sections. Given a domain Ω, we will use a triangulation Th, which is a

subdivision of Ω consisting of elements (triangles in 2D or tetrahedra in 3D). We

denote by K a generic (closed) element of the triangulation and by hK its diameter.

The following properties should hold:

1. Ω =
⋃
Ki

2. If Ki ∩ Kj (i 6= j) consists of one point, then it is a common vertex of Ki

and Kj.

3. If Ki∩Kj (i 6= j) consists of more than one point, then Ki∩Kj is a common

edge or face of Ki and Kj.

A family of partitions {Th} is called shape regular provided that there exists a

constant C > 0 such that every K ∈ Th contains a circular disk or a spherical ball

of radius ρK with ρK ≥ hK/C.

11



Finally, a family of partitions {Th} is called uniform provided that there exits

a constant C > 0 such that every K ∈ Th contains a circular disk or a spherical

ball of radius ρK with ρK ≥ h/C, where h := maxK hK .

2.3 Nodal finite elements

We consider the finite element spaces

W h
grad(Ω) := {p ∈ C0(Ω) : p|K ∈ Pk(K)},

where Pk(K) is the space of polynomials of degree k defined on a triangle or

tetrahedron K. This is a conforming space, i.e., W h
grad(Ω) ⊂ H1(Ω).

For a fixed polynomial degree k, the set of Lagrangian basis functions {φhi }

associated to a set of nodes {Pi} of the triangulation can be introduced. The basis

functions are uniquely defined by φhi (Pj) = δij, and p(x) =
∑

i p(Pi)φ
h
i (x), for

p ∈ W h
grad(Ω).

We will use linear polynomials defined over each element. The three degrees

of freedom for each triangle are the values of the function at each vertex. A nodal

function associated to a vertex in 2D is depicted in Figure 2.1.

The nodal finite element interpolant of a sufficiently smooth p ∈ H(grad,Ω) is

defined as

Ih(p) :=
∑
v∈Nh

p(v)φv, (2.3.1)

where N h is the set of nodes of Th, φv ∈ W h
grad(Ω) is the shape function for node

v, and p(v) is the value of p at node v. We will need the following auxiliary result:

Lemma 2.3.1. Let p be a continuous piecewise quadratic function defined on Th

12



Figure 2.1: Nodal basis function for nodal elements.

and let Ihp be its piecewise linear interpolant defined by (2.3.1) on the same mesh.

Then, there exists a constant C, depending only on the aspect ratio of K, such that

∣∣Ihp∣∣
H1(K)

≤ C |p|H1(K) for K ∈ Th.

Proof. See [66, Lemma 3.9].

2.4 Nédeléc finite elements

Nédélec elements are finite elements that are conforming in H(curl). Associated

with the triangulation Th, we will consider the space W h
curl(Ω) ⊂ H(curl,Ω), based

on linear triangular or tetrahedral Nédélec edge elements in Ω with zero tangential

component on ∂Ω; see [52].
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2.4.1 Nédélec elements in two dimensions

In two dimensions with triangular elements, the restrictions to an element K

are defined by

Rk(K) := {u + v : u ∈ Pk−1(K)2,v ∈ P̃k(K)2,v · x = 0}, k ≥ 1,

where Pk−1(K) is the space of polynomials of degree k−1 on K, P̃k(K) is the space

of homogeneous polynomials of degree k on K, and a function u(x) ∈ Rk(K) is

uniquely defined by the following degrees of freedom:

∫
e

u · te p ds, p ∈ Pk−1(e),

for each edge e ∈ ∂K, and, in addition, for k > 1,

∫
K

u · p dx, p ∈ Pk−2(K)2.

Here te is a unit vector in the direction of e.

Those of lowest order are defined by

W h
curl(Ω) := {u : u|K ∈ N1(K), K ∈ Th and u ∈ H(curl,Ω)},

where any function in N1(K) has the form

u(x1, x2) = (a1 + bx2, a2 − bx1)T ,

with a1, a2, b ∈ R. The degrees of freedom for an element K ∈ Th are given by the
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average values of the tangential component over the edges of the elements, i.e.,

λe(u) :=
1

|e|

∫
e

u · te ds, (2.4.1)

with e ∈ ∂K. We recall that a function in W h
curl(Ω) has a continuous tangential

component across all the fine edges; see e.g., [52]. A Nédélec function associated

to an edge in 2D is depicted in Figure 2.2.

Figure 2.2: Nédélec basis function for edge elements.

2.4.2 Nédélec elements in three dimensions

For triangulations into tetrahedra, the local spaces on a generic tetrahedron K

are defined as

Rk(K) := {u + v : u ∈ Pk−1(K)3,v ∈ P̃k(K)3,v · x = 0}, k ≥ 1.

A vector u ∈ Rk(K) is uniquely defined by the following degrees of freedom:
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First, for the six edges e of K,

∫
e

u · te p ds, p ∈ Pk−1(e),

for k > 1 and the four faces f of K,

∫
f

(u× n) · p dS, p ∈ Pk−2(f)3,

and, additionally for k > 2,

∫
K

u · p dx, p ∈ Pk−3(K)3.

In the case k = 1, the elements of the local space R1(K) have the simple form

R1(K) = {u = a + b× x,a, b ∈ P0(K)3}.

It is immediate to see that the tangential components of a vector in R1(K) are

constant on the six edges e of K. These values, λe(u), can be taken as the degrees

of freedom, as in the two-dimensional case.

We will work with the lowest order Nédélec elements in two and three dimen-

sions. Let N e ∈ W h
curl(Ω) denote the finite element shape function for an edge e

of the finite element mesh Th. We assume that N e is scaled such that N e · te = 1

along e and N e′ · te = 0 for e 6= e′. The edge finite element interpolant of a

sufficiently smooth vector function u ∈ H(curl,Ω) is then defined as

Πh(u) :=
∑
e∈Mh

ueN e, ue :=
1

|e|

∫
e

u · teds,
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where Mh is the set of element edges of Ω and |e| is the length of e. We will also

need the following auxiliary result:

Lemma 2.4.1. Let u ∈ W h
curl(Ω), and let θ be a continuous, piecewise linear,

scalar function on Ω. Then, there exists a constant C, depending only on the

aspect ratio of K, such that for K ∈ Th,

∥∥Πh(θu)
∥∥
L2(K)

≤ C ‖θu‖L2(K) ,

∥∥∇× (Πh(θu)
)∥∥

L2(K)
≤ C ‖∇ × (θu)‖L2(K) ,

Proof. See [66, Lemma 10.8].

2.5 An inverse inequality

We present an inverse inequality for elements in the space W h
curl(Ω) which will

be used in our discussion. First, we have the following elementary estimates for a

function in W h
curl(Ω) in terms of its degrees of freedom defined in (2.4.1).

Lemma 2.5.1. Let K ∈ Th. Then, there exist positive constants c and C, depend-

ing only on the aspect ratio of K, such that for all u ∈ W h
curl(Ω), Ω ⊂ Rd,

c
∑
e∈∂K

hdeλ
2
e(u) ≤ ‖u‖2

L2(K) ≤ C
∑
e∈∂K

hdeλ
2
e(u), and

‖∇ × u‖2
L2(K) ≤ C

∑
e∈∂K

hd−2
e λ2

e(u).

Proof. See [57, Proposition 6.3.1] or [67, Lemma 3.1] for the elementary proofs.

Combining these two inequalities, we find an inverse inequality:
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Corollary 2.5.2 (Inverse inequality). For u ∈ W h
curl(Ω), there exists a constant

C that depends only on the aspect ratio of K, such that

‖∇ × u‖2
L2(K) ≤ Ch−2

K ‖u‖
2
L2(K). (2.5.1)

2.6 A discrete Helmholtz decomposition

The following lemma will allow us to obtain a stable decomposition for functions

in W h
curl(Ω). The HX-preconditioner, due to Hiptmair and Xu, is based on the

following decomposition, see [34, 71].

Lemma 2.6.1. Given Ω homotopy equivalent to a ball, and u ∈ W h
curl(Ω), there

exist q ∈ W h
curl(Ω), Ψ ∈

(
W h

grad(Ω)
)d

, p ∈ W h
grad(Ω), and a constant C, such that

u = q + Πh(Ψ) +∇p, (2.6.1)

where

‖∇p‖2
L2(Ω) ≤ C

(
‖u‖2

L2(Ω) +H2‖∇ × u‖2
L2(Ω)

)
, (2.6.2a)

‖h−1q‖2
L2(Ω) + ‖Ψ‖2

H1(Ω) ≤ C‖∇ × u‖2
L2(Ω). (2.6.2b)

The constant C depends on Ω and the shape regularity of the mesh.

Proof. See [34, Lemma 5.1].

If the domain Ω is convex, we can improve the bounds given in (2.6.2a) and

(2.6.2b):

Lemma 2.6.2. If the domain Ω is convex, the splitting (2.6.1) from Lemma 2.6.1
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can be chosen such that, in addition to the estimates of Lemma 2.6.1, we have

‖∇p‖2
L2(Ω) ≤ C‖u‖2

L2(Ω), ‖Ψ‖2
L2(Ω) ≤ C‖u‖2

L2(Ω),

with C a constant depending on the quasi-uniformity of the mesh.

Proof. See [34, Lemma 5.2].

We have also the following decomposition for John domains in two dimensions;

see Section 4 for the definition of John domains.

Lemma 2.6.3. Given a John domain D ⊂ R2 of diameter H and u ∈ W h
curl(D),

there exist p ∈ W h
grad(D), r ∈ W h

curl(D) and a constant C such that

u = ∇p+ r,

‖∇p‖2
L2(D) ≤ C

(
‖u‖2

L2(D) +H2‖∇ × u‖2
L2(D)

)
, and (2.6.3a)

‖r‖2
L∞(D) ≤ C

(
1 + log

H

h

)
‖∇ × u‖2

L2(D). (2.6.3b)

The constant C depends on D and the shape regularity of the mesh.

Proof. See [19, Lemma 3.14].
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Chapter 3

A model problem

3.1 Introduction

The space H(curl) is used for electromagnetism and some formulations of

Navier-Stokes equations. We will consider a model problem that arises, for ex-

ample, from implicit time integration or the eddy current model of Maxwell’s

equation; see, e.g., [4, Chapter 8]. It is also considered in [2, 29, 30, 32, 34, 62, 67].

When time-dependent equations are considered, the electric field u satisfies the

equation

∇×
(
µ−1∇× u

)
+ ε

∂2u

∂t2
+ σ

∂t

∂t
= −∂J

∂t
, in Ω× (0, T ), (3.1.1)

where J(x, t) is the current density, and ε, µ, σ are positive definite tensors that, in

general, describe the electromagnetic properties of the medium. For their meaning

and a general discussion of Maxwell’s equations, see [51, 43, 12]. A similar equation

holds for the magnetic field. For a conducting medium and low-frequency fields,

σ is large, and the term in (3.1.1) involving the second derivative in time can be
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neglected, giving rise to a parabolic equation.

We will consider the boundary value problem in Rd, d = 2 or 3, with a perfect

conducting boundary, given by

∇× (α∇× u) +Bu = f in Ω, (3.1.2a)

u× n = 0 on ∂Ω, (3.1.2b)

where α(x) ≥ 0, B is a d × d strictly positive definite symmetric matrix. This

PDE is obtained from (3.1.1) by a discretization in time with an implicit finite

difference time scheme, and (3.1.2) has to be solved at each time step. We could

equally well consider cases where the boundary condition (3.1.2b) is imposed only

on one or several subdomain edges or faces which form part of ∂Ω, with a natural

boundary condition over the rest of the boundary.

3.2 Weak form and discretization

In order to formulate an appropriate weak form for problem (3.1.2), we will

use the Hilbert space H(curl,Ω), see Section 2.1. By integration by parts, we then

obtain a weak formulation: Find u ∈ H0(curl,Ω) such that

a(u,v) = (f ,v) ∀ v ∈ H0(curl,Ω), (3.2.1)

with

a(u,v) :=

∫
Ω

[α(∇× u) · (∇× v) +Bu · v] dx, (f ,v) :=

∫
Ω

f · v dx.

(3.2.2)
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Here, H0(curl,Ω) is the subspace of H(curl,Ω) with a vanishing tangential com-

ponent on ∂Ω.

In order to discretize equation (3.2.1), we introduce a triangulation Th as in

Section 2.2. By considering the basis {N ei}ni=1 for the finite-dimensional space

W h
curl(Ω) described in Section 2.4, we obtain the problem: Find uh ∈ W h

curl(Ω)

such that

a(uh,vh) = (f ,vh) ∀ vh ∈ W h
curl(Ω),

and the associated sparse, symmetric linear system

Au = g,

where Ai,j = a(N ej ,N ei), gi = (f ,N ei), and u is the vector of coordinates of uh

with respect to the basis {N ei}ni=1. We are interested in building preconditioners

for this ill-conditioned system of equations, given that the condition number of the

matrix A satisfies κ(A) = O(h−2).

3.3 Notation

We next introduce some notation that we will use throughout our thesis. We

will decompose the domain Ω into N non-overlapping subdomains {Ωi}Ni=1, each of

which is the union of elements of the triangulation Th of Ω. Each Ωi will be simply

connected and will have a connected boundary ∂Ωi. We denote by Hi the diameter

of Ωi, by hi the smallest element diameter of the shape-regular triangulation Thi

of Ωi, and by H/h the maximum of the ratios Hi/hi.

In the case that we consider overlapping subdomains, we will construct Ω′i by
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adding layers of fine elements to Ωi, and will denote by δi the minimal distance

from ∂Ω′j∩Ωi to Ωi∩Ωj, for all indices j 6= i such that Ωi∩Ω′j 6= ∅. The maximum

of the ratios Hi/δi and δi/hi are denoted by H/δ and δ/h.

The interface of the decomposition {Ωi}Ni=1 is given by

Γ :=

(
N⋃
i=1

∂Ωi

)
\ ∂Ω,

and the contribution to Γ from ∂Ωi by Γi := ∂Ωi \ ∂Ω. These sets are unions of

subdomain faces, edges and vertices in 3D, and subdomain edges and vertices in

2D. We recall that there are no degrees of freedom associated with the subdomain

vertices, and that the interface does not include edges and faces that lie on the

boundary of Ω. We will denote by MG the set of finite element edges on G, and

by NG the set of nodes on G.

In our analysis, we will replace B by βI, and assume that α, β are constants

αi, βi in each subdomain Ωi. We denote by ai(u,v) the bilinear form a(·, ·) defined

in (3.2.2) restricted to Ωi, and by ED(v) the energy of v over a set D, i.e.

ED(v) :=

∫
D

α|∇ × v|2 + β|v|2 dx.

We can also rewrite the bilinear form (3.2.2) as

a(u,v) =
N∑
i=1

αi

∫
Ωi

(∇× u) · (∇× v) dx + βi

∫
Ωi

u · v dx.

For the 2D problems, we will denote the subdomain edges of Ωi by E ij, given

by the intersection of the closure of Ωi and Ωj, excluding the two vertices at their

endpoints. We note that the intersection of the closure of two subdomains might
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have several components; in such a case, each component will be regarded as an

edge. We will write E instead of E ij when there is no ambiguity.

The set of all subdomain edges is defined as

SE := {E ij : i < j, E ij 6= ∅}

and SEi is the subset of subdomain edges which belong to Γi. When there is a

need to uniquely define the unit tangential vector tE over a subdomain edge, we

will select the subdomain with the smallest index and use the counterclockwise

direction over the boundary of the relevant subdomain. The unit vector in the

direction from one endpoint of a subdomain edge E to the other (with the same

sense of direction as tE) is denoted by dE , and the distance between the two

endpoints is dE .

Finally, we will consider subdomain edges that can be quite irregular. In two

dimensions we will consider a covering by disks of a subdomain edge, and we will

denote by χE(d)(dE/d) the number of closed circular disks of diameter d that are

required to cover it. We note that χE(d) = 1 if the edge is straight and that it can

be proved that for a prefractal Koch snowflake curve, which is a polygon with side

length hi and diameter Hi, χE(hi) ≤ (Hi/hi)
log(4/3) < (Hi/hi)

1/8; see [19, Section

3.2]. This is not a large factor, being less than 10 even in the extreme case of

Hi/hi = 108.

In three dimensions, the subdomain face common to Ωi and Ωj will be denoted

by F ij, regarded as an open set, and the subdomain edges of Ωi by E ij. We

note that the intersection of the closure of two subdomains might have several

components. In such a case, each component will be regarded as a face. We will
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write F and E instead of F ij and E ij when there is no ambiguity. The wire-basket

of the decomposition is the union of the subdomain edges, and will be denote by

W . The local contribution from Ωi to the wire-basket will be denoted by Wi.

We will also consider unit vectors tangential to ∂F and E , denoted by t∂F and

tE , respectively. The union of the closed triangles that have one edge on ∂F will

be denoted by Fb, and we then define

∆i :=
⋃
F∈∂Ωi

Fb.

We also define

Ξij :=
(
Ωi ∪ F ij ∪ Ωj

)
∩
(
Ω′i ∩ Ω′j

)
, and

Υjl :=
⋂
m∈Ijl

Ω′m,

which is the intersection of the extensions Ω′m of all subdomains Ωm which have

the edge E jl in common with Ωi. Here, Ijl also includes i.

3.4 Some implementation details

We recall that the edge element basis functions N e satisfy

λe′(N e) =

 1 if e′ = e

0 if e′ 6= e
.
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They have the representation

N e = ce (λe1∇λe2 − λe2∇λe1) , (3.4.1)

where ce is a constant independent of h such that N e · te = 1, and λe1, λe2 are the

two barycentric basis functions for the two endpoints of e.

In order to compute the entries of the matrix A, we need to evaluate the

integrals

∫
K

∇×N ei · ∇ ×N ej dx and

∫
K

N ei ·N ej dx, K ∈ Th.

For the linear edge elements, ∇ × N e is piecewise constant, and it is easy to

compute them from the gradient of the corresponding barycentric basis functions.

Hence, the curl-contribution for the assembled matrix is trivial. For the mass-

contribution, we use the formula

∫
K

λiλj dx =
1 + δij
C
|K|,

where δij is the usual Kronecker delta function, and C = 12 or C = 20 for two or

three dimensional problems, respectively. In order to obtain the right-hand side g,

we also use (3.4.1) with a quadrature formula.

We present in Table 3.1 the assembling time (in seconds) for the matrix A for

different values of the number of degrees of freedom and the corresponding storage

(number on non-zero entries), for the problem on the unit cube partitioned into

tetrahedral elements, with a sequential code implemented in Matlab, and a 2.4GHz

Intel Core i5 processor.

26



Table 3.1: Assembling time for the stiffness matrix A in 3D.

Size Time (s) nnz(A)
795 024 8 12 167 520

1 872 064 20 29 163 664
3 641 840 46 57 340 352
6 276 384 93 99 523 824

3.5 Some previous work on vector-valued prob-

lems

Work on vector-valued problems include [33], where overlapping Schwarz meth-

ods are analyzed for elliptic problems in H(curl) and H(div) in three dimensions.

With the assumption that Ω is a convex polyhedral domain and B = I, the con-

dition number is bounded by C(1 +H/δ)2, where subdomains are tetrahedra and

constant coefficients are considered. In a previous study related to H(curl), the

same estimate is given in [62] for an overlapping Schwarz algorithm in three dimen-

sions, where the coarse space consists of standard edge finite element functions for

coarse tetrahedral elements, the domain is assumed convex and α ≡ 1, B ≡ I over

the whole domain. The coarse triangulation is shape-regular and quasi-uniform.

Also in [70, 67], the bound C(1 + log(H/h))2 is found for H(div) and H(curl)

problems for bounded polygonal domains in R3 and R2 respectively, where an itera-

tive substructuring algorithm is used with shape regular hexahedral and triangular

subdomains. In [53], a two-level overlapping Schwarz method for Raviart-Thomas

vector fields is developed. Here the bilinear form is

a(u,v) =

∫
Ω

[αdiv udiv v +Bu · v]dx
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and the condition number is bounded by C(1 +H/δ)(1 + log(H/h)), where the do-

main is a bounded polyhedron in R3 and discontinuous coefficients and hexahedral

elements are considered. A BDDC algorithm with deluxe averaging is studied in

[54] for the space H(div), with Raviart-Thomas elements, where convex polyhedral

subdomains are assumed. The condition number is bounded by C(1 + log(H/h))2,

where the constant is independent of the values and jumps of the coefficients across

the interface.

Studies based on FETI algorithms for our problem include [64, 65] for problems

posed in 2D, and [63] in 3D. The subdomains are bounded convex polyhedra and

the bounds depend on the coefficients αi, βi andHi. In addition, a BDDC algorithm

with deluxe scaling is considered in [21] for 3D.

There are also some related studies with Algebraic Multigrid Methods (AMG).

A parallel implementation of different preconditioners based on the Hiptmair-Xu

decomposition (derived in [34]) is analyzed in [40]. Also, different coarse spaces

are constructed for problems in 3D with unstructured meshes in [41]. More studies

on multigrid and multilevel methods include [32, 1, 33].
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Chapter 4

John and Jones domains

4.1 Introduction

Previous studies on domain decomposition algorithms for our model problem

include different methods, but usually with certain restrictions such as the convex-

ity of the subdomains and the continuity of the coefficients.

As for the geometry of the substructures in two dimensions, we will consider

John domains and Jones domains; see Definitions 4.2.1 and 4.2.6. John domains

where first considered by Fritz John in work on elasticity [36], and were named

after him by Martio and Sarvas in [49]. Jones domains were introduced as (ε, δ)

domains by Peter Jones [37], and we will consider the case of δ = ∞. These

domains form the largest family of domains for which a bounded extension of

H(grad,Ω) to H(grad,R2) is possible.

In domain decomposition theory, it is typically assumed that each subdomain

is quite regular, e.g., the union of a small set of coarse triangles or tetrahedra.

But, it is unrealistic in general to assume that the subdomains are regular. Thus,

29



subdomain boundaries that arise from mesh partitioners might not even be Lips-

chitz continuous, i.e., the number of patches required to cover the boundary of the

region in each of which the boundary is the graph of a Lipschitz continuous func-

tion, might not be uniformly bounded independently of the finite element mesh

size. We also note that the shape of the subdomains are likely to change if the

mesh size is altered and a mesh partitioner is used several times.

Some recent work and technical tools have been developed for irregular subdo-

mains, cf. [69]. Scalar elliptic problems in the plane are analyzed in [16, 18]; [39]

includes a FETI-DP algorithm for scalar elliptic and elasticity problems, [17] an

overlapping Shwarz algorithm for almost incompressible elasticity, and [19] con-

cerns an iterative substructuring method, different from ours, for problems in

H(curl) in 2D. In this dissertation we will consider a two-level overlapping Schwarz

algorithm and a BDDC deluxe method for irregular subdomains in two dimensions.

4.2 Definitions and properties

We start this section by defining the type of subdomains that we will consider

for the partition of the domain of our model problem in 2D. We also collect some

well-known tools for these particular domains.

Definition 4.2.1 (John domain). A domain Ω ⊂ Rn — an open, bounded, and

connected set — is a John domain if there exists a constant CJ ≥ 1 and a dis-

tinguished central point x0 ∈ Ω, such that each x ∈ Ω can be joined to x0 by a

rectifiable curve γ : [0, 1]→ Ω, with γ(0) = x0, γ(1) = x, and

|x− γ(t)| ≤ CJ · dist (γ(t), ∂Ω) , ∀t ∈ [0, 1].
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This condition can be viewed as a twisted cone condition. We note that certain

snowflake curves with fractal boundaries are John domains, and that the length of

the boundary of a John domain can be arbitrary much greater than its diameter.

John domains may possess internal cusps while external cusps are excluded. It is

also easy to see that diam(Ω) ≤ 2CJrΩ, where rΩ is the radius of the largest ball

inscribed in Ω and centered at x0.

Remark 4.2.2. For a rectangular domain, CJ ≥ L1/L2, where L1, L2 are the height

and width of the domain, respectively. Thus, the constant CJ can be large if the

subdomain has a large aspect ratio.

For domain decomposition methods with a coarse level, a Poincaré inequality

is necessary, which is closely related to an isoperimetric inequality. We have the

following result; see [50, 25].

Lemma 4.2.3 (Isoperimetric inequality). Let Ω ⊂ Rn be a domain and let u be

sufficiently smooth. Then,

inf
c∈R

(∫
Ω

|u− c|n/(n−1)dx

)(n−1)/n

≤ γ(Ω, n)

∫
Ω

|∇u|dx, (4.2.1)

if and only if,

(min (|A|, |B|))1−1/n ≤ γ(Ω, n)|∂A ∩ ∂B|.

Here, A ⊂ Ω is an arbitrary open set, and B = Ω \ A; γ(Ω, n) is the best possible

constant and |A| is the measure of the set A, etc.

A simply connected plane domain of finite area satisfies (4.2.1) if and only if Ω

is a John domain; see [8]. Furthermore, the parameter γ(Ω, 2) can be expressed in

terms of the John constant CJ ; see [3].
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For two dimensions, we immediately obtain a standard Poincaré inequality from

(4.2.1) by using the Cauchy-Schwarz inequality. We note that the best choice of

c is uΩ, the average of u over the domain. For three dimensions, we use Hölder

inequality several times.

Lemma 4.2.4 (Poincaré’s inequality). Consider a John domain Ω ⊂ Rd, d = 2, 3.

Then

‖u− ūΩ‖2
L2(Ω) ≤ C|Ω|2/d‖∇u‖2

L2(Ω) ∀ u ∈ H(grad,Ω),

where the constant C depends on the John constant CJ(Ω).

Finally, we need the following discrete Sobolev inequality, proved in [16, Lemma

3.2] for John domains in 2D:

Lemma 4.2.5. Consider a John domain Ω ⊂ R2. For u ∈ W h
grad(Ω), there exists

a constant C such that

‖u‖2
L∞(Ω) ≤ C

(
1 + log

H

h

)
‖u‖2

H1(Ω),

‖u− ūΩ‖2
L∞(Ω) ≤ C

(
1 + log

H

h

)
|u|2H1(Ω),

where H := diam(Ω). The constant C depends on the John constant CJ(Ω) and

the shape regularity of the elements.

We will also consider Jones domains, also known as (ε,∞) or uniform domains:

Definition 4.2.6 (Jones domain). A bounded domain Ω ⊂ R2 is uniform if there

exists a constant CU(Ω) > 0 such that for any pair of points a, b in the closure of

Ω, there is a curve γ(t) : [0, l] → Ω, parametrized by arc length, with γ(0) = a,
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γ(l) = b, and with

l ≤ CU |a− b|,

min(|γ(t)− a|, |γ(t)− b|) ≤ CUdist(γ(t), ∂Ω).

Remark 4.2.7. The left-hand side of the second condition can be replaced by

min
t

(t, l − t) or by
|γ(t)− x||γ(t)− y|

|x− y|
.

It is easy to see that any Jones domain is a John domain, and therefore Lemmas

4.2.4 and 4.2.5 are valid for Jones domains. The Jones domains form the largest

class of finitely connected domains for which an extension theorem holds in two

dimensions; see [37, Theorem 4].

Related to the curve γ in Definition 4.2.6, we define the following region:

Definition 4.2.8. Let a and b denote the endpoints of E = E ij ∈ SEi . The region

RE is defined as the open set with boundary ∂RE = γab∪E , where γab is the curve

γ in Definition 4.2.6.

By simple geometric considerations, it is easy to prove that RE satisfies the

following lemma; see [19, Lemma 3.4].

Lemma 4.2.9. Given a uniform subdomain Ωi and a connected subset E ⊂ ∂Ωi,

the region RE satisfies

|RE | ≤ (C2
U/π)d2

E ,

diam(RE) ≤ (2CU − 1)dE .

Finally, we introduce a modified region R̂E related to RE , that will be used as

the support of functions constructed for each subdomain:
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Lemma 4.2.10. Given a uniform domain Ωi and a connected subset E ⊂ ∂Ωi,

there exist a constant C, depending on CU(Ωi), and a uniform domain R̂E , which

is a union of finite elements of Ωi, such that RE ⊂ R̂E , ∂R̂E ∩ ∂Ωi = E, and

|R̂E | ≤ Cd2
E ,

diam(R̂E) ≤ CdE .

Proof. See [19, Lemma 3.5].
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Chapter 5

Domain Decomposition methods

Domain decomposition methods have been studied widely for different prob-

lems. We refer to [61, 56, 66] for general introductions to these topics.

5.1 Abstract Schwarz theory

We introduce the abstract Schwarz analysis in this section, which is useful in

the design and analysis of different iterative methods.

5.1.1 Schwarz methods

Consider a finite dimensional Hilbert space V . Given a symmetric, positive

definite bilinear form,

a(·, ·) : V × V → R,

and an element f ∈ V ′, we consider the problem: Find u ∈ V , such that

a(u, v) = f(v), ∀v ∈ V.
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Given a basis for V , denote by A the corresponding stiffness matrix relative to

the bilinear form a(·, ·). Then, the problem is equivalent to the linear system

Au = f,

with A a symmetric, positive definite matrix.

We next consider a family of spaces {Vi, i = 0, . . . , N}, and suppose that there

exist extension operators

RT
i : Vi → V.

We assume that V admits the (not necessarily a direct sum) decomposition

V = RT
0 V0 +

N∑
i=1

RT
i Vi.

The Vi, i ≥ 1, do not need to be subspaces of V , but they are often called

subspaces or local spaces, and V0 is named the coarse space, and is usually related

to a coarse lower-dimensional problem.

We introduce local symmetric positive definite bilinear forms on the subspaces,

ãi(·, ·) : Vi × Vi → R, i = 0, . . . , N,

and the associated local stiffness matrices

Ãi : Vi → Vi.
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We can use the original bilinear form on the subspaces by choosing

ãi(ui, vi) = a(RT
i ui, R

T
i vi), ui, vi ∈ Vi,

and then

Ãi = RiAR
T
i .

In this case, we say that we use exact local solvers.

Schwarz operators are defined in terms of projection-like operators

Pi := RT
i P̃i : V → RT

i Vi ⊂ V, i = 0, . . . , N,

where P̃i : V → Vi is defined by

ãi(P̃iu, vi) = a(u,RT
i vi), vi ∈ Vi.

We note that P̃i is well-defined since the local bilinear forms are coercive. In

the case of exact solvers, we have

a(Piu,R
T
i vi) = a(u,RT

i vi), vi ∈ Vi.

It can be proven easily that the Pi can be written as

Pi = RT
i Ã
−1
i RiA, 0 ≤ i ≤ N,

and that in the case of exact solvers, Pi is a projection; see [66, Lemma 2.1].

We can now define a number of different Schwarz operators. The additive
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operator is defined by

Pad :=
N∑
i=0

Pi. (5.1.1)

A multiplicative operator is defined by

Pmu := I − Emu, (5.1.2)

where the error propagation operator Emu is defined by

Emu := (I − PN) (I − PN−1) . . . (I − P0) .

A hybrid operator is defined by

Phy1 = I − Ehy1, Ehy1 := (I − P0)

(
I −

N∑
i=1

Pi

)
(I − P0) , (5.1.3)

which is additive with respect to the local components and multiplicative with

respect to the levels. In the case of exact solvers, we can rewrite this operator as

Phy1 = P0 + (I − P0)
N∑
i=0

Pi (I − P0) .

All these Schwarz operators provide preconditioned operators for the original

operator A and can be written as the product of a suitable preconditioner and A,

where the former only involves extensions RT
i , restrictions Ri, local operators Ã−1

i ,

and A. For example,

Pad = A−1
adA, A

−1
ad =

N∑
i=0

RT
i Ã
−1
i Ri.
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5.1.2 Convergence theory

We consider the solution of Padu = gad, where gad := A−1
ad f . In an abstract

setting, we need to consider the following assumptions:

Assumption 5.1.1. There exists a constant C0, such that every u ∈ V admits a

decomposition

u =
N∑
i=0

RT
i ui, {ui ∈ Vi, 0 ≤ i ≤ N},

that satisfies
N∑
i=0

ãi(ui, ui) ≤ C2
0a(u, u).

Assumption 5.1.2. There exist constants 0 ≤ εij ≤ 1, 1 ≤ i, j ≤ N , such that

∣∣a(RT
i ui, R

T
j uj)

∣∣ ≤ εija(RT
i ui, R

T
i ui)

1/2a(RT
j uj, R

T
j uj)

1/2,

for ui ∈ Vi, uj ∈ Vj. We will denote the spectral radius of E = (εij) by ρ(E).

Assumption 5.1.3. There exists ω > 0 such that

a(RT
i ui, R

T
i ui) ≤ ω ãi(ui, ui), ui ∈ range(P̃i) ⊂ Vi, 0 ≤ i ≤ N.

We then have the following lemmas:

Lemma 5.1.4. Let Assumption 5.1.1 be satisfied. Then,

a(Padu, u) ≥ C−2
0 a(u, u), u ∈ V.

Proof. See [66, Lemma 2.5]
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Lemma 5.1.5. Let Assumptions 5.1.2 and 5.1.3 be satisfied. Then,

‖Pi‖a ≤ ω, for i = 0, . . . , N.

In addition,

a(Padu, u) ≤ ω (ρ(E) + 1) a(u, u).

Proof. See [66, Lemma 2.6]

Combining the previous two lemmas, we obtain the following bound for the

condition number of the preconditioned system; see [66, Theorem 2.7].

Theorem 5.1.6. The condition number of the additive Schwarz operator (5.1.1)

satisfies

κ(Pad) ≤ C2
0ω (ρ(E) + 1) .

Remark 5.1.7. We can bound ρ(E) by N c, the minimum number of colors needed

to color the subdomains associated with the local subproblems such that no pair of

subdomains of the same color intersect; see [66, Section 3.6]. Also, if exact solvers

are used, it is clear that ω = 1.

We also have the following bounds for the multiplicative and hybrid operators

defined in (5.1.2) and (5.1.3), respectively; see [66, Theorems 2.9 and 2.13].

Lemma 5.1.8. Let Assumptions 5.1.1, 5.1.2 and 5.1.3 be satisfied and suppose

that ω ∈ (0, 2). Then, the error propagation operator of the multiplicative Schwarz

algorithm satisfies

‖Emu‖2
a ≤ 1− 2− ω

(2ω̂2ρ(E)2 + 1)C2
0

< 1,
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where ω̂ = max{1, ω}.

Lemma 5.1.9. Let Assumptions 5.1.1, 5.1.2 and 5.1.3 be satisfied, where Assump-

tion 5.1.1 holds for any u ∈ range(I− P0). Then,

max{1, C2
0}−1a(u, u) ≤ a(Phy1u, u) ≤ max{1, ωρ(E)}a(u, u).

5.2 Overlapping Schwarz methods

We will consider an additive two-level Schwarz algorithm for problems in 2D

and 3D in Chapters 6 and 8, respectively. The need of a coarse level arises from

the fact that the condition number estimate deteriorates as the number of subdo-

main increases. As we will see, our overlapping Schwarz methods will be scalable,

meaning that its rate of convergence does not deteriorate when the number of

subdomains grows.

We will consider a particular coarse space for each problem V0 (see Sections

6.2.1 and 8.2), and the local spaces

Vi :=
{
wi ∈ W hi

curl(Ω
′
i) : wi =

∑
e∈MΩ′

i

αeN e

}
,

where MΩ′i
is the set of element edges in Ω′i, 1 ≤ i ≤ N .

We will use exact local solvers in the overlapping domains Ω′i; see Section 5.1.1.

Therefore, in order to estimate κ(Pad), our problem reduces to obtaining a constant

C2
0 such that

a(u0,u0) +
N∑
i=1

a′i(ui,ui) ≤ C2
0a(u,u),
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where

u = RT
0 u0 +

N∑
i=1

RT
i ui, u ∈ W h

curl(Ω),

and the local bilinear forms are defined by

a′i(u,u) :=

∫
Ω′i

(
α|∇ × u|2 + β|u|2

)
dx.

By Theorem 5.1.6, the condition number of the additive operator (5.1.1) is

bounded by

κ(Pad) ≤ (NC + 1)C2
0 , (5.2.1)

where NC is the minimum number of colors needed to color the overlapping sub-

domains Ω′i such that no pair of subdomains of the same color intersect. Clearly,

as the overlap increases, the number of colors required can become larger.

In order to use the preconditioned conjugate gradient, we need a subroutine that

applies the preconditioner to a vector; see Algorithm 2. This is trivial if we want

to compute the action of the additive preconditioner A−1
ad . For the multiplicative

preconditioner

Pmu = A−1
muA,

we use the following subroutine in order to compute A−1
mur. A similar subroutine

can be written for the hybrid preconditioner A−1
hy1.
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Result: Compute A−1
mur

y = RT
0 Ã
−1
0 R0r;

for i = 1, . . . , N do

y = y +RT
i Ã
−1
i Ri(r − Ay);

end

Algorithm 3: Applying A−1
mu to a vector r

5.3 BDDC methods

In this section, we describe the BDDC algorithms. For simplicity, we write

W (i) := W hi
curl(Ωi). We decompose this space into two, W (i) := W

(i)
I ⊕W

(i)
Γ , where

W
(i)
I represents the interior space and W

(i)
Γ the interface space, associated to the

interior and interface degrees of freedom, respectively. We decompose the space

W
(i)
Γ as the sum of a dual and a primal space, W

(i)
Γ := W

(i)
∆ ⊕W

(i)
Π .

We make a change of variables in order to work explicitly with these primal

variables, similar to what is done in [45, Section 3.3]. The complementary dual

space will then be represented by elements with zero values at the primal degrees

of freedom.

We will also use the following product spaces, which allow discontinuities across

the interface:

W :=
N∏
i=1

W (i), WI :=
N∏
i=1

W
(i)
I , WΓ :=

N∏
i=1

W
(i)
Γ ,

and

W∆ :=
N∏
i=1

W
(i)
∆ , WΠ :=

N∏
i=1

W
(i)
Π .
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We then have

W = WI ⊕WΓ = WI ⊕W∆ ⊕WΠ.

The finite element solutions have a continuous tangential component across

the interface and we denote the corresponding subspace of WΓ by ŴΓ; generally,

functions in WΓ do not satisfy this condition. We also introduce a subspace W̃Γ,

intermediate between ŴΓ and WΓ, for which all the primal constraints are enforced.

We can then decompose

ŴΓ := Ŵ∆ ⊕ ŴΠ, W̃Γ := W∆ ⊕ ŴΠ,

where Ŵ∆ is the continuous dual variable subspace and ŴΠ is the continuous

primal variable subspace.

The contribution of our problem to the subdomain Ωi can be written in terms

of the local stiffness matrix A(i) and the local right hand side f (i),

A(i) =


A

(i)
II A

(i)
I∆ A

(i)
IΠ

A
(i)
∆I A

(i)
∆∆ A

(i)
∆Π

A
(i)
ΠI A

(i)
Π∆ A

(i)
ΠΠ

 , f (i) =


f

(i)
I

f
(i)
∆

f
(i)
Π

 . (5.3.1)

We can express the global linear system by assembling the local subdomain

problems as

A


uI

u∆

uΠ

 =


AII AI∆ AIΠ

A∆I A∆∆ A∆Π

AΠI AΠ∆ AΠΠ




uI

u∆

uΠ

 =


f I

f∆

fΠ

 , (5.3.2)
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with uI ∈ WI , u∆ ∈ Ŵ∆, uΠ ∈ ŴΠ.

We now define some operators that we will also use in our analysis. We first

introduce restriction operators. Let

R̂
(i)
Γ : ŴΓ → W

(i)
Γ , R̃

(i)
Γ : W̃Γ → W

(i)
Γ

be the operators that map global interface vectors defined on Γ to their components

on Γi. Similarly, we define

R
(i)
∆ : W∆ → W

(i)
∆ , R

(i)
Π : ŴΠ → W

(i)
Π , R̃Γ∆ : W̃Γ → W∆,

R̃ΓΠ : W̃Γ → ŴΠ and R
(i)
Γ∆ : W

(i)
Γ → W

(i)
∆ .

We also will use the direct sums

R̂Γ :=
N⊕
i=1

R̂
(i)
Γ and RΓ :=

N⊕
i=1

R̃
(i)
Γ .

Furthermore, R̃Γ : ŴΓ → W̃Γ will be the direct sum of R̂Π and the R̂
(i)
∆ , where

R̂Π : ŴΓ → ŴΠ and R̂
(i)
∆ : ŴΓ → W

(i)
∆ are the corresponding restriction operators.

We next introduce scaling matrices D(i), acting on the degrees of freedom as-

sociated with Γi. They are combined into a block diagonal matrix and should

provide a discrete partition of unity, i.e.,

R̂T
Γ



D(1)

D(2)

. . .

D(N)


R̂Γ = I. (5.3.3)
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We then define the scaled operators R
(i)
D,Γ := D(i)R̂

(i)
Γ , R̃

(i)
D,∆ := R

(i)
Γ∆R

(i)
D,Γ. We

next consider a globally scaled operator R̃D,Γ : W̃Γ → W̃Γ defined by

R̃D,Γ := R̂Π ⊕

(
N⊕
i=1

R̃
(i)
D,∆

)
.

From (5.3.3), it follows that

R̃T
Γ R̃D,Γ = R̃T

D,ΓR̃Γ = I. (5.3.4)

Finally, we introduce an averaging operator ED : W̃Γ → ŴΓ by

ED := R̃ΓR̃
T
D,Γ. (5.3.5)

This operator is a projection, i.e., E2
D = ED; this follows from (5.3.4) and therefore

ED provides a weighted average across the interface Γ.

We will consider the subdomain Schur complements

S
(i)
Γ := A

(i)
ΓΓ − A

(i)
ΓIA

(i)−1

II A
(i)
IΓ, (5.3.6)

where

A
(i)
ΓΓ :=

 A
(i)
∆∆ A

(i)
∆Π

A
(i)
Π∆ A

(i)
ΠΠ


is the block matrix corresponding to the interface degrees of freedom in (5.3.1).

From (5.3.6), we note that we can compute S
(i)
Γ times a vector by a local compu-

tation involving Ωi; the application of the inverse of A
(i)
II to a vector corresponds

to the solution of a Dirichlet problem in Ωi. Similarly, we can find S
(i)−1

Γ u
(i)
Γ by
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solving a linear system with the matrix A(i) and right hand side (0,u
(i)
Γ )T . Hence,

we do not need to compute the elements of the Schur complements.

We denote the global Schur complement by SΓ, given by the direct sum of

the local Schur complements S
(i)
Γ . By using the local Schur complements, we can

build a global interface problem. By eliminating the interior variables, the global

problem (5.3.2) can thus be reduced to

ŜΓuΓ = gΓ, (5.3.7)

with

ŜΓ :=
N∑
i=1

R̂
(i)T

Γ S
(i)
Γ R̂

(i)
Γ = R̂T

ΓSΓR̂Γ,

and

gΓ :=
N∑
i=1

R̂
(i)T

Γ


 f

(i)
∆

f
(i)
Π

−
 A

(i)
∆I

A
(i)
ΠI

A
(i)−1

II f
(i)
I

 .
We will build a preconditioner for (5.3.7). Once u

(i)
Γ has been found, u

(i)
I is found

by solving

A
(i)
IIu

(i)
I = f

(i)
I −

(
A

(i)
I∆A

(i)
IΠ

)
u

(i)
Γ .

We now consider a partially subassembled Schur complement S̃Γ on the space
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W̃Γ: given uΓ ∈ W̃Γ, S̃ΓuΓ ∈ W̃Γ is determined such that



A
(1)
II A

(1)T

∆I A
(1)T

ΠI

A
(1)
∆I A

(1)
∆∆ A

(1)T

Π∆

. . .
...

A
(N)
II A

(N)T

∆I A
(N)T

ΠI

A
(N)
∆I A

(N)
∆∆ A

(N)T

Π∆

A
(1)
ΠI A

(1)
Π∆ · · · A

(N)
ΠI A

(N)
Π∆ ÂΠΠ





u
(1)
I

u
(1)
∆

...

u
(N)
I

u
(N)
∆

uΠ


=



0

R
(1)
∆ R̃Γ∆S̃ΓuΓ

...

0

R
(N)
∆ R̃Γ∆S̃ΓuΓ

R̃ΓΠS̃ΓuΓ


.

Here,

ÂΠΠ :=
N∑
i=1

R
(i)T

Π A
(i)
ΠΠR

(i)
Π and R̃i := R

(i)
∆ R̃Γ∆S̃ΓuΓ.

We note that S̃Γ = R
T

ΓSΓRΓ, and by using restriction and extension operators,

we also find that ŜΓ = R̃T
Γ S̃ΓR̃Γ. Then, (5.3.7) can be rewritten as

R̃T
Γ S̃ΓR̃ΓuΓ = gΓ. (5.3.8)

A linear system with the matrix S̃Γ can be solved by using the fact that

S̃−1
Γ = R̃T

Γ∆

 N∑
i=1

(
0 R

(i)T

∆

) A
(i)
II A

(i)
I∆

A
(i)
∆I A

(i)
∆∆


−1 0

R
(i)
∆


 R̃Γ∆ + ΦS−1

ΠΠΦT ,

with

Φ := R̃T
ΓΠ − R̃T

Γ∆

N∑
i=1

(
0 R

(i)T

∆

) A
(i)
II A

(i)
I∆

A
(i)
∆I A

(i)
∆∆


−1 A

(i)T

ΠI

A
(i)T

Π∆

R
(i)
Π
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and where

SΠΠ :=
N∑
i=1

R
(i)T

Π

A(i)
ΠΠ −

(
A

(i)
ΠI A

(i)
Π∆

) A
(i)
II A

(i)
I∆

A
(i)
∆I A

(i)
∆∆


−1 A

(i)T

ΠI

A
(i)T

Π∆


R

(i)
Π ;

see, e.g., [45].

In order to define a particular BDDC method, all that is left is to define the

primal constraints and the average on the interface; see Chapter 7 for the descrip-

tion of our algorithm. With these operators, we define the BDDC preconditioner

as

M−1
BDDC := R̃T

D,ΓS̃
−1
Γ R̃D,Γ, (5.3.9)

and, from (5.3.8), the preconditioned linear system is given by

M−1
BDDCŜΓuΓ = R̃T

D,ΓS̃
−1
Γ R̃D,ΓR̃

T
Γ S̃ΓR̃ΓuΓ = R̃T

D,ΓS̃
−1
Γ R̃D,ΓgΓ.

We next define norms related to the Schur complements. The SΓ-norm is

given by ‖uΓ‖2
SΓ

:= uTΓSΓuΓ for uΓ ∈ WΓ. Similar expressions can be written for

‖u(i)
Γ ‖2

S
(i)
Γ

, ‖u(i)
E ‖2

S
(i)
E

and ‖ũΓ‖2
S̃Γ

. It is easy to see that ‖ũΓ‖2
S̃Γ

= ‖RΓũΓ‖2
SΓ
.

Finally, the condition number of the BDDC algorithm satisfies (see Lemmas

7.5.1 and 7.5.2):

κ(M−1
BDDCŜΓ) ≤ ‖ED‖2

S̃Γ
.
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Chapter 6

An overlapping Schwarz

algorithm for Nédélec vector

fields in 2D

6.1 Introduction

In this chapter, we analyze a two-level overlapping Schwarz method for our

problem in two dimensions, with Jones subdomains. Our study applies to a much

broader range of material properties and subdomain geometries than previous stud-

ies. We obtain the bound

κ ≤ C|Ξ|χη
(

1 + log
δ

h

)(
1 +

H

δ

)(
1 + log

H

h

)
,

where C is independent of the jumps of the coefficients between the subdomains.

The parameter χ is related to the geometry of the subdomains and it is quite close
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to 1 even for fractal edges and large values of H/h (see Section 3.3), |Ξ| represents

the maximum number of neighbors for any subdomain, and

η = max
i

{
min

{
H2
i

h2
i

, 1 +
βiH

2
i

αi

}}
,

where the maximum is taken over all the subdomains; see Section 6.3. We observe

that in many cases we can obtain a bound independent of η; see Theorem 6.3.2.

The standard way of constructing the local components involves a partition of

unity for all of Ω. This is a decomposition of functions in the sense of the Schwarz

theory as in Section 5.1. In our study, we adopt a different strategy, creating a

partition of unity for the interface and we then split the corresponding functions

supported in the different overlapping regions, in a way similar to what is done in

[17].

We also introduce a new type of cutoff function for overlapping regions with

John subdomains. We recall that certain snowflake curves with fractal boundaries

are John domains, and that the length of the boundary of a John domain can be

arbitrary greater that its diameter. This cutoff function will allow us to define

local decompositions, and can be used in different overlapping Scharwz algorithms

for problems with discontinuities in the coefficients across the interface, reducing

the problem to obtaining local bounds. This idea is used in Section 6.2.3, where

we analyze a stability result for our coarse space.

6.2 Technical tools

The auxiliary results presented in this section will be used in the proof of our

main results, Theorems 6.3.1 and 6.3.2.
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6.2.1 Coarse functions

We will consider the same coarse space functions as introduced in [19]. For

E ∈ SE , we define the coarse function cE with tangential data given by cE ·te = dE ·te

along E and with cE · te = 0 on Γ∪∂Ω\E . We obtain cE by the energy minimizing

extension of this tangential data into the interiors of the two subdomains sharing E .

We note that the construction of cEij involves the solution of a Dirichlet problem

with inhomogeneous boundary data for Ωi and Ωj. We then define the coarse

interpolant for u ∈ H(curl,Ω) by

u0 :=
∑
E∈SE

uEcE , with uE :=
1

dE

∫
E
u · tEds. (6.2.1)

6.2.2 Cutoff functions

We introduce a new cutoff function that will provide a partition of unity on the

interface of the domain and which will be used later for the local decomposition.

The following result is valid for John subdomains.

Lemma 6.2.1. Let E ∈ SEi with endpoints a and b. Then there exists an edge

function θδE ∈ W
hi
grad(Ωi) that takes the value 1 at the nodes on E, vanishes in Ωi\Ω′j,

and such that

‖∇θδE‖2
L2(Ωi∩Ω′j) ≤ CχE(δi)

(
1 +

dE
δi

)(
1 + log

δi
hi

)
, (6.2.2)

for some constant C depending on CJ and the shape regularity of the elements.

Proof. For the proof of this lemma, we use similar ideas as in [18, Lemma 2.7] and

[19, Lemma 3.6]. Rename E1 := E and let E2 := ∂
(
Ωi ∩ Ω′j

)
\ E . Split E2 into two
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subsets, E3 := E2 ∩ ∂Ω′j and E4 := E2 \ E3. Note that E4 is a subset of ∂Ωi with two

components, one with a and the other with b as endpoints. Denote by di(x) the

distance of x to the edge Ei and consider the function θ̃E given by

θ̃E(x) :=
1/d1(x)

1/d1(x) + 1/d2(x)

for x ∈ Ωi ∩ Ω′j and by zero everywhere else in Ωi. At the endpoints a and b,

we set this function to zero. Note that this function vanishes on E2 and takes the

required values on E . We then define θδE := Ih(θ̃E).

We first note that the contribution from any element with a or b as an vertex

is bounded, because the gradient of the interpolant is bounded by 1/hi, since all

the nodal values are between 0 and 1.

We next estimate the energy over all the elements that do not intersect the

endpoints and lie inside Ωi ∩ Ω′j. We denote this region by R. It is easy to prove

that

|∇θ̃E(x)| ≤ 1

d1(x) + d2(x)
.

We divide R into two disjoint sets, R1 := {x ∈ R : d3(x) ≤ d4(x)}, and R2, its

complement.

First, for x ∈ R1, we note that d2(x) = d3(x). Let x1 and x3 be the points on

E1 and E3 closest to x. We have δi ≤ d(x1, E3) ≤ |x1 − x3| ≤ d1(x) + d3(x) and

then |∇θ̃E(x)| ≤ 1/δi. As in [16, Section 4], we cover the set with square patches

with diameters of the order of δi and note that on the order of χE(δi)dE/δi of them

will suffice. The contribution of each square is bounded, and therefore

∫
R1

|∇θ̃E(x)|2dx ≤ CχE(δi)
dE
δi
.
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Second, for x ∈ R2, we note that d2(x) = d4(x). Denote by r(x) the minimal

distance of x to a and b. We claim that d1(x) +d4(x) ≥ Cr(x). This implies that

∫
R2

|∇θ̃E(x)|2dx ≤ C

∫
R2

1

r2(x)
dx ≤ C log

δi
hi
,

by using polar coordinates centered at a and b. From the last two inequalities,

and the fact that |∇θδE | = |∇Ih(θ̃E)| ≤ C maxx∈K |∇θ̃E |, we obtain (6.2.2).

All that is left is to show that d1(x) + d4(x) ≥ Cr(x) for some constant C.

Without loss of generality, assume that |x−a| ≤ |x− b|. Consider the curve γ(t)

in the Definition 4.2.1 between x0 and a, and let xγ be the point on γ which is

closest to x. By the triangle inequality and the definition of a John domain, we

have that

r(x) = |x− a| ≤ |x− xγ|+ CJdist(xγ, E1).

Again by the triangle inequality and the fact that dist(xγ, E1) ≤ |xγ − x1|, where

x1 is the point on E1 closest to x, we obtain

r(x) ≤ (CJ + 1) |x− xγ|+ CJ |x− x1|.

We notice that if x lies in the region between γ and E , then |x − xγ| ≤ d4(x)

and if not, then |x − xγ| ≤ d1(x). In both cases we can deduce that |x − xγ| ≤

d1(x) + d4(x). This concludes the proof of the lemma.

From the proof of Lemma 6.2.1, we can estimate the diameter and area of

Ωi ∩ Ω′j:

54



Lemma 6.2.2. For each coarse edge E ij ∈ SEi, we have that

diam(Ωi ∩ Ω′j) ≤ CχE(δi)dE , and

|Ωi ∩ Ω′j| ≤ CχE(δi)dEδi.

Proof. Consider the covering by squares at the end of the proof of Lemma 6.2.1.

Given two points x, y ∈ Ωi ∩ Ω′j, we can join them by segments that lie in the

interior of a certain number of squares. Each of these segments have a length less

than
√

2δi and since the total number of squares is on the order of χE(δi)dE/δi, we

can conclude that the diameter of Ωi ∩ Ω′j is bounded by CχE(δi)dE . The second

inequality follows by adding the area of all the squares that cover Ωi ∩ Ω′j.

6.2.3 Estimates for auxiliary functions

We start by introducing a linear interpolant for functions in W hi
grad(Ωi). Con-

sider an edge E ∈ SEi with endpoints a and b, and moving from a past b,

pick a point c on ∂Ωi, such that |c − b| is of order dE . Consider the function

θb` ∈ W hi
grad(Ωi) constructed in [18, Lemma 2.7] for the points a, b and c. This

function is uniformly bounded in Ωi, θb`(a) = 0, θb`(b) = 1, and also satisfies

‖∇θb`‖2
L2(Ωi)

≤ C, and ∇θb` · te =
1

dE
dE · te

along E . Using this function, we introduce our linear interpolant:

Definition 6.2.3 (linear interpolant). Given f ∈ W hi
grad(Ωi) and a subdomain edge
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E ∈ SEi with endpoints a and b, we define the linear function

fE`(x) := f(a) + (f(b)− f(a)) θb`(x).

We note that fE`(a) = f(a), fE`(b) = f(b), and that

∇fE`(x) · te =
f(b)− f(a)

dE
dE · te

along E .

Lemma 6.2.4. For any p ∈ W hi
grad(Ωi), there exists a function pE∆ ∈ W hi

grad(Ωi)

such that pE∆ = p− pE` along E. This function vanishes along ∂
(
Ωi ∩ Ω′j

)
\ E and

∂Ωi \ E, and satisfies

‖∇pE∆‖2
L2(Ωi)

≤ CχE(δi)

(
1 + log

δi
hi

)(
1 +

dE
δi

)(
1 + log

Hi

hi

)
‖∇p‖2

L2(Ωi)

for some constant C depending on CJ and the shape regularity of the elements.

Proof. We define pE∆ := Ihi(θδE(p− pE`)). We use the inequality

|p(b)− p(a)|2 ≤ C

(
1 + log

Hi

hi

)
‖∇p‖2

L2(Ωi)
,

which follows from Lemma 4.2.5, and since p− pE` = (p− p(a))− (pE`− p(a)), we

have

‖p− pE`‖2
L∞(Ωi∩Ω′j)

≤ C

(
1 + log

Hi

hi

)
‖∇p‖2

L2(Ωi)
.

Since ∇pE`(x) = (p(b)− p(a))∇θb`(x), we have

‖∇pE`‖2
L2(Ωi∩Ω′j)

≤ C

(
1 + log

Hi

hi

)
‖∇p‖2

L2(Ωi)
.
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From these estimates, Lemma 6.2.1 and

∇(θδE(p− pE`)) = ∇θδE(p− pE`) +∇(p− pE`)θδE ,

we find that

|θδE(p− pE`)|2H1(Ωi)
≤ CχE(δi)

(
1 + log

δi
hi

)(
1 +

dE
δi

)(
1 + log

Hi

hi

)
‖∇p‖2

L2(Ωi)
.

The result then follows by using Lemma 2.3.1.

Lemma 6.2.5. Given E ∈ SEi, there exists a coarse space function N E ∈ W hi
curl(Ωi)

that vanishes in Ωi \Ω′j, with N E · te = dE · te along E, and N E · te = 0 everywhere

else on ∂Ωi, such that

‖N E‖2
L2(Ωi)

≤ CχE(δi)dEδi,

‖∇ ×N E‖2
L2(Ωi)

≤ CχE(δi)

(
1 + log

δi
hi

)(
1 +

dE
δi

)
,

for some constant C depending on CJ and the shape regularity of the elements.

Proof. Consider the function

N E := Πhi(θδEdE) + bE/2,

where

bE := (dE · tea)N ea + (dE · teb)N eb ,

and ea, eb are the two finite element edges at the ends of E . It is easy to check

that N E matches the specified tangential data and that it vanishes in Ωi \ Ω′j.
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By using Lemmas 2.5.1 and 2.4.1, we can prove that

‖bE‖2
L2(Ωi)

≤ Ch2
i , ‖∇ × bE‖2

L2(Ωi)
≤ C,

‖Πhi(θδEdE)‖2
L2(Ωi)

≤ CχE(δi)dEδi, and

‖∇ × Πhi(θδEdE)‖2
L2(Ωi)

≤ CχE(δi)

(
1 + log

δi
hi

)(
1 +

dE
δi

)
,

where we have also used Lemmas 6.2.1 and 6.2.2. The lemma follows by combining

these inequalities.

Lemma 6.2.6. Given r ∈ W hi
curl(Ωi) and E ∈ SEi, there exists a function rE ∈

W hi
curl(Ωi) that vanishes in Ωi \ Ω′j, such that rE · te = r · te along E, and with

vanishing tangential data along ∂(Ωi ∩ Ω′j) \ E and ∂Ωi \ E. Further,

‖rE‖2
L2(Ωi)

≤ CχE(δi)dEδi‖r‖2
L∞(Ωi∩Ω′j),

‖∇ × rE‖2
L2(Ωi)

≤ C

(
‖∇ × r‖2

L2(Ωi∩Ω′j)+

+ χE(δi)

(
1 + log

δi
hi

)(
1 +

dE
δi

)
‖r‖2

L∞(Ωi∩Ω′j)

)
,

for some constant C depending on CJ and the shape regularity of the elements.

Proof. We write the function r in the Nédélec basis as

r =
∑

e∈MΩi

reN e,
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and define

rE :=
∑

e∈MΩi

θδ,eE reN e + (reaN ea + rebN eb) /2,

where θδ,eE is the value of θδE at the middle point of e, and ea, eb are the edges at

the ends of E . We have that

‖reaN ea + rebN eb‖2
L2(Ωi)

≤ Ch2
i ‖r‖2

L∞(Ωi∩Ω′j),

‖∇ × (reaN ea + rebN eb) ‖2
L2(Ωi)

≤ C‖r‖2
L∞(Ωi∩Ω′j),∥∥∥∥∥∥

∑
e∈MΩi

θδ,eE reN e

∥∥∥∥∥∥
2

L2(Ωi)

≤ C‖r‖2
L2(Ωi∩Ω′j), and

∥∥∥∥∥∥
∑

e∈MΩi

∇× θδ,eE reN e

∥∥∥∥∥∥
2

L2(Ωi)

≤ C
(
‖∇ × r‖2

L2(Ωi∩Ω′j)+

+ ‖r‖2
L∞(Ωi∩Ω′j)‖∇θδE‖2

L2(Ωi∩Ω′j)

)
.

We conclude our proof by using Lemmas 6.2.1 and 6.2.2.

Lemma 6.2.7. Given r ∈ W hi
curl(Ωi), with Ωi a Jones domain, and a subdomain

edge E ∈ SEi, it holds that

|rE |2 ≤ C
(
‖r‖2

L∞(Ωi)
+ ‖∇ × r‖2

L2(Ωi)

)
,

where

rE :=
1

dE

∫
E
r · tEds (6.2.3)

and the constant C depends only on the Jones parameter CU(Ωi).
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Proof. A similar bound is obtained in the proof of [19, Lemma 3.10] over a subset

of Ωi, from which our result follows.

6.3 Main result

6.3.1 The coarse space component

In this section, we build an explicit function that will provide a bound for the

coarse function u0 defined in (6.2.1). We consider the Helmholtz decomposition of

Lemma 2.6.3 for each uniform domain Ωi and write u = ∇pi + ri. We have

uE =
pi(b)− pi(a)

dE
+

1

dE

∫
E
ri · tE ds. (6.3.1)

For any edge E ∈ SEi , we define the function

wEi := ∇pE∆
i + rEi − riEN E , (6.3.2)

where ∇pE∆
i , rEi and N E are the functions from Lemmas 6.2.4, 6.2.6 and 6.2.5

respectively, and riE is given by (6.2.3). By construction, wEi vanishes in Ωi \ Ω′j.

We define wEj over Ωj ∩ Ω′i, similarly. We first find that

wEi · te = ∇pi · te + ri · te −∇pE`i · te − riEN E · te

= (u− u0) · te

along E , where we have used (6.3.1) in the last step. Similarly wEj ·te = (u−u0)·te.
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Hence, the function wE given by

wE(x) :=

 wEi (x) if x ∈ Ωi ∩ Ω′j

wEj (x) if x ∈ Ωj ∩ Ω′i

is well-defined and belongs to W hi
curl(Ω), since its tangential data is continuous

across E (in fact, it is equal to the tangential component of u−u0). We note that

wE is supported in Ω′i ∩ Ω′j.

Finally, consider the function

g := u−
∑
E∈SE

wE . (6.3.3)

We find that g · te = u0 · te along the interface. Thus g has the same tangential

data as u0 along the interface, and therefore its energy will provide an upper bound

for the energy of u0, since u0 minimizes the energy for the specified boundary data.

We next find bounds for the energy of the components of wE . First, from

Lemma 6.2.4, (2.6.3a) and (2.5.1), we easily deduce that

ai(∇pE∆
i ,∇pE∆

i ) = βi‖∇pE∆
i ‖2

L2(Ωi)

≤ CχE(δi)ηi

(
1 + log

δi
hi

)(
1 +

Hi

δi

)(
1 + log

Hi

hi

)
ai(u,u),

(6.3.4)

where ηi := min

{
H2
i

h2
i

, 1 +
βiH

2
i

αi

}
.
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For the second term of (6.3.2), we get from Lemma 6.2.6 and (2.6.3b),

αi‖∇ × rEi ‖2
L2(Ωi)

≤ CχE(δi)

(
1 + log

δi
hi

)(
1 +

Hi

δi

)(
1 + log

Hi

hi

)
ai(u,u),

(6.3.5)

where we have replaced ∇× ri by ∇× u, since ∇×∇pi = 0. Also,

βi‖rEi ‖2
L2(Ωi)

≤ CχE(δi)βidEδi

(
1 + log

Hi

hi

)
‖∇ × u‖2

L2(Ωi)

≤ CχE(δi)ηi

(
1 + log

Hi

hi

)
ai(u,u). (6.3.6)

From (6.3.5) and (6.3.6), we get

ai(r
E
i , r

E
i ) ≤ CχE(δi)ηi

(
1 + log

δi
hi

)(
1 +

Hi

δi

)(
1 + log

Hi

hi

)
ai(u,u). (6.3.7)

Next, from Lemmas 6.2.7 and (2.6.3b),

|riE |2 ≤ C
(
‖ri‖2

L∞(Ωi)
+ ‖∇ × ri‖2

L2(Ωi)

)
≤ C

(
1 + log

Hi

hi

)
‖∇ × u‖2

L2(Ωi)
.
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Hence, by Lemma 6.2.5,

ai(riEN E , riEN E) = |riE |2
(
αi‖∇ ×N E‖2

L2(Ωi)
+ βi‖N E‖2

L2(Ωi)

)
≤ CχE(δi)ηi

(
1 + log

δi
hi

)(
1 +

Hi

δi

)(
1 + log

Hi

hi

)
ai(u,u),

(6.3.8)

by a similar argument as in (6.3.6). From (6.3.4), (6.3.7) and (6.3.8), we conclude

that

ai(w
E
i ,w

E
i ) ≤ CχE(δi)ηi

(
1 + log

δi
hi

)(
1 +

Hi

δi

)(
1 + log

Hi

hi

)
ai(u,u). (6.3.9)

From (6.3.3) and (6.3.9), we conclude that

a(u0,u0) ≤ a(g, g) ≤ C|Ξ|χη
(

1 + log
δ

h

)(
1 +

H

δ

)(
1 + log

H

h

)
a(u,u),

(6.3.10)

where χ := max
i

max
E∈SEi

χE(δi), |Ξ| is the maximum number of subdomain edges for

any subdomain, and η := max
i
ηi. We note that ηi ≤ 2 for the curl-dominated

case, where βiH
2
i ≤ αi. For the mass-dominated case, where βiH

2
i > αi, we cannot

always remove the factor η, but see Theorem 6.3.2 and Remark 6.3.3 for some

comments and bounds independent on η.

6.3.2 Local subspaces

For the decomposition in local components, we write

u− u0 = (u− g) + (g − u0) =
∑
E∈SE

wE + wr,
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with wr := g − u0. We have that wr · te = 0 along the interface. Thus, we can

write wr =
∑N

i=1 wir, with wir the restriction of wr to Ωi. We can naturally

consider a zero extension for wir to Ω′i, denoted still by wir, that satisfies

a′i(wir,wir) ≤ C|Ξ|χη
(

1 + log
δ

h

)(
1 +

H

δ

)(
1 + log

H

h

)
ai(u,u). (6.3.11)

We write also ∑
E∈SE

wE =
N∑
i=1

wEi ,

with

wEi :=
1

2

∑
E∈SEi

wE .

Note that wEi is supported in Ω′i and satisfies

a′i(w
E
i ,w

E
i ) ≤ C|Ξ|χη

(
1 + log

δ

h

)(
1 +

H

δ

)(
1 + log

H

h

)
(ai(u,u) + aj(u,u)).

(6.3.12)

Therefore, we have the decomposition

u = u0 +
N∑
i=1

(
wir + wEi

)
,

and by (6.3.10), (6.3.11) and (6.3.12), we conclude that

C2
0 ≤ C|Ξ|χη

(
1 + log

δ

h

)(
1 +

H

δ

)(
1 + log

H

h

)
. (6.3.13)

From (5.2.1) and (6.3.13), we obtain our main result:

Theorem 6.3.1. The condition number κ(Pad) of our overlapping additive two-
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level Schwarz method is bounded by

κ(Pad) ≤ C|Ξ|χη
(

1 + log
δ

h

)(
1 +

H

δ

)(
1 + log

H

h

)
,

with χ = max
i

max
E∈SEi

χE(δi), η = max
i
{min{(Hi/hi)

2, 1 + βiH
2
i /αi}}, and |Ξ| is the

maximum number of subdomain edges for any subdomain. The constant C is in-

dependent of hi, Hi, δi and the coefficients αi, βi.

We can obtain a bound independent of the jumps in the coefficients across the

interface with an additional condition:

Theorem 6.3.2. If the mass-dominated subdomains are convex, then the condition

number of our overlapping additive two-level Schwarz method is bounded by

κ(Pad) ≤ C|Ξ|χ
(

1 + log
δ

h

)(
1 +

H

δ

)(
1 + log

H

h

)
, (6.3.14)

where C is independent of hi, Hi, δi and the coefficients αi, βi.

Proof. We can improve our result by using a stronger estimate than (2.6.3a):

‖∇p‖2
L2(Ωi)

≤ C‖u‖2
L2(Ωi)

; see Lemma 2.6.2. Therefore, we can simplify our es-

timate in (6.3.4) and can deduce (6.3.14).

Remark 6.3.3. Numerical experiments confirm the estimates of Theorems 6.3.1

and 6.3.2. The factor η affects the condition number only when we consider some

non-convex decompositions with mass-dominated subdomains (αi ≤ H2
i βi); see

Example 6.4.3. We also note that the factor 1 + log δ
h

is not relevant. Numerical

results show that a small overlap gives small condition numbers for most of the

decompositions considered, with the advantage that we obtain local problems in

65



Ω′i without a significant increase in the size, compared with the local solvers over

Ωi.

6.4 Numerical results

Numerical examples are presented in this section to confirm the bound of The-

orems 6.3.1 and 6.3.2 for four different types of subdomains shown in Figure 6.1,

which have been subdivided into triangular linear edge elements. Type 1 sub-

domains have a square geometry, Type 2 subdomains include boundaries with a

“sawtooth” shape, and for Type 3 we use equilateral triangles with edges that

are part straight, part fractal. The fourth type of subdomains are obtained by

the graph partitioning software METIS [38]. Our choices of subdomain geome-

tries are similar to those of [18, Section 5]. See also [19, Section 6.1] for some

implementation details.

Some numerical results for an overlapping Schwarz method with square edge

elements are presented in [19, Section 6] without a theoretical bound. Here we

include similar experiments and have provided an analysis. We notice that our

condition numbers, in general, are smaller than those obtained in [19]. For pur-

poses of comparison, we also present results for multiplicative and hybrid Schwarz

algorithms, see Section 5.2.

For Type 1 and 2 subdomains, the ratio H/h is increased by a a factor of 2 with

each additional level of mesh refinement. At the i−th (i ≥ 0) level of refinement

for Type 3 subdomains, H/h = (H/Hf )3
i+1, where H/Hf = 5 is fixed. We note

that the fractal segment lengths grow by a factor of 4/3 with each mesh refinement

whereas the straight line segments remain constant. For each refinement of Type

66



3 subdomains, every element edge on the fractal part of the boundary is first

divided into three shorter edges of 1/3 the length. The middle of these edges is

then replaced by two other edges with which it forms an equilateral triangle.

(a) Type 1 (b) Type 2

(c) Type 3 (d) Type METIS

Figure 6.1: Four types of subdomains used in the numerical examples.

We solve the resulting linear systems by using a preconditioned conjugate gra-

dient method and random right-hand sides, to a relative residual tolerance of 10−8.

The number of iterations and condition number estimates (in parenthesis) are re-

ported for each of the experiments. These estimates are obtained as mentioned in

Section 1.2.

We notice that the numerical experiments for our algorithm show an improve-

ment in the iteration count and the condition number estimates, compared to an
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(a) Type 2 (b) Type 3

Figure 6.2: Two domain decompositions used in numerical examples for N = 16.

iterative substructuring method presented in [19]. Nevertheless, the BDDC algo-

rithm with deluxe scaling considered in the next chapter gives a further significant

improvement in the iteration counts and estimates. We note that the overlapping

Schwarz method can be used for problems for which only the fully assembled ma-

trix is available, while the BDDC and FETI methods require subdomain matrices

corresponding to subdomains problems with natural boundary conditions.

Example 6.4.1. We verify the scalability of the algorithm for Type 1 and 2

subdomains over the unit square. As shown in Table 6.1, it is clear that the

condition number is independent of the number of subdomains.

Example 6.4.2. This example is used to study the behavior of our algorithm for

increasing values of H/h. We present two experiments. First, we use Type 1, 2

and 3 subdomains with constant coefficients. Second, we consider non-constant

coefficients, arranged in a “checkerboard” pattern, using alternating values of 10−3

and 103 for βi; results are shown in Table 6.2. We note that the condition number

is not sensitive to the mesh parameter H/h.
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Table 6.1: Results for Type 1 and 2 subdomains, where the unit square is decom-
posed into N subdomains, with H/h = 4, H/δ = 4, αi = 1 and βi = β.

Type N β = 10−3 β = 1 β = 103

1 256 26(5.7) 23(5.8) 20(5.2)
576 27(5.8) 24(5.8) 21(5.5)
784 27(5.8) 24(5.9) 21(5.5)
1024 27(5.8) 24(5.9) 21(5.5)

2 256 30(7.2) 26(7.3) 20(5.3)
576 31(7.5) 28(7.6) 21(5.5)
784 31(7.6) 28(7.7) 21(6.0)
1024 31(7.7) 28(7.8) 22(6.4)

Table 6.2: Results for the unit square decomposed into 16 subdomains, with αi = 1,
βi = β, H/δ = 4 for Type 1 and 2, and H/δ = 5 for Type 3 subdomains . For the
last column, βi alternates for adjacent subdomains, taking the values 10−3 and 103

in a checkerboard configuration.

Type H/h β = 10−3 β = 1 β = 103 Disc.
1 16 23(5.5) 21(5.6) 17(5.0) 20(4.8)

32 23(5.5) 21(5.5) 17(4.8) 20(4.6)
64 23(5.3) 22(5.4) 17(4.6) 20(4.6)
128 23(5.4) 22(5.2) 18(4.7) 21(4.6)

2 16 24(6.3) 23(5.7) 17(5.1) 21(5.0)
32 25(6.8) 23(5.9) 18(5.1) 22(5.1)
64 25(6.5) 22(5.6) 18(5.1) 22(5.1)
128 25(6.7) 23(6.1) 18(5.1) 22(5.1)

3 15 28(8.2) 26(8.0) 20(7.1) 23(7.8)
45 28(8.0) 26(8.0) 21(7.1) 24(7.0)
135 28(8.0) 26(8.0) 22(7.2) 24(7.1)
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Example 6.4.3. This example is used to confirm the factor (1 + H/δ) in the

condition number estimate. For Type 1 and 2 subdomains we use H/h = 100

and for Type 3 subdomains, H/h = 135, with N = 16 in all the cases. Results

are shown in Table 6.3. We notice that in these examples the growth is linear, as

expected. We also consider the decomposition shown in Figure 6.3. Results are

presented in Table 6.4. In this case, for large values of β we observe a quadratic

dependence on H/δ, but the condition numbers are in fact quite small; see Figure

6.4.

Table 6.3: Results for Type 1, 2 and 3 subdomains with 16 subdomains, αi = 1
and βi = β. For Type 1 and 2 subdomains, H/h = 100; for Type 3, H/h = 135.
See also Figure 6.4.

Type H/δ β = 10−3 β = 1 β = 103

1 10 30(9.8) 26(9.9) 19(5.5)
20 37(17.8) 35(17.6) 22(7.9)
25 40(22.6) 38(21.1) 24(8.8)
50 54(40.8) 52(40.7) 30(14.6)

2 10 30(10.2) 27(10.4) 21(6.7)
20 38(17.0) 34(17.1) 23(7.6)
25 40(19.7) 38(19.6) 24(9.1)
50 54(34.5) 49(34.1) 29(13.4)

3 15 45(33.3) 40(31.9) 26(12.1)
27 56(64.7) 52(57.6) 31(20.1)
45 73(121) 67(111) 37(31.0)

67.5 92(185) 81(203) 42(56.0)

Table 6.4: Results for domain decomposition shown in Figure 6.3, with 12 subdo-
mains, H/h = 96, αi = 1 and βi = β. See also Figure 6.4.

H/δ β = 10−3 β = 103

24 43(23.1) 23(7.1)
32 47(28.8) 24(9.0)
48 58(47.0) 28(14.1)
96 79(99.5) 36(39.4)
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Figure 6.3: L-shaped domain decomposition used in Example 6.4.3. See also
Figure 6.4 and Table 6.4.

Example 6.4.4. This example is used to confirm that the condition number esti-

mate does not require all subdomain edges to be of comparable length. Here, the

smaller subdomains shown in Figure 6.5 have only 6 elements, while the mesh pa-

rameter H/h is increased for the larger surrounding subdomains. We use N = 16

and H/δ = 4. The results are shown in Table 6.5.

Table 6.5: Results for the unit square decomposed into 16 large and 9 small sub-
domains, with H/δ = 4, αi = 1, βi = β. See also Figure 6.5.

H/h β = 10−3 β = 1 β = 103

8 26(6.8) 24(7.0) 19(6.1)
16 27(7.6) 25(7.0) 20(6.1)
32 28(8.3) 25(7.1) 20(6.8)
64 27(8.3) 25(7.0) 20(6.5)
128 27(8.1) 25(7.2) 21(6.2)
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Figure 6.4: Condition number as a function of H/δ. (Left) Least-squares fit to a
linear polynomial in H/δ for data in Table 6.3 for β = 10−3 and β = 103. (Right)
Least-squares fit to a polynomial in H/δ for a METIS and a L-shaped domain
decomposition; see data in Table 6.4.

(a) H/h = 4 (b) H/h = 8 (c) H/h = 16

Figure 6.5: Domain decomposition used in Example 6.4.4. See also Table 6.5
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Example 6.4.5. This example is used to confirm that the estimate is indepen-

dent of the material property values in the subdomains. Insensitivity to jumps in

material properties is evident in Table 6.6. We also include results with random

coefficients, where we generate random numbers ri1, ri2 ∈ [−3, 3] with a uniform

distribution, and assign αi = 10ri1 , βi = 10ri2 .

Table 6.6: Results for the unit square decomposed into 256 subdomains, with
H/δ = 8, H/h = 16. For the first set of experiments, the subdomains along the
diagonal have αi = α and βi = β, while the remaining subdomains have αi = 1
and βi = 1. For the second set of experiments, all the coefficients are random
numbers, from 10−3 to 103.

α β Type 1 Type 2
10−3 10−3 31(11.2) 31(10.7)
10−3 1 28(8.1) 27(7.7)
10−3 103 29(8.8) 28(8.0)

1 10−3 27(9.7) 27(9.9)
1 1 27(8.4) 25(7.8)
1 103 31(10.8) 27(8.3)

103 10−3 27(9.6) 27(9.9)
103 1 27(8.4) 26(7.8)
103 103 34(11.1) 26(8.3)
αr1 βr1 30(9.1) 27(8.3)
αr2 βr2 29(8.2) 28(8.4)
αr3 βr3 29(8.1) 27(8.3)
αr4 βr4 30(9.1) 27(7.9)
αr5 βr5 29(9.1) 27(7.9)

Example 6.4.6. This example is used to demonstrate that the performance of

the algorithm need not diminish significantly when a mesh partitioner is used

to decompose the mesh. Example mesh decompositions for N = 16, N = 64 and

N = 144, shown in Figure 6.6, were obtained using the graph partitioning software

METIS [38]. Results are shown in Table 6.7.
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Table 6.7: Comparison of results for Type 1 subdomains and subdomains generated
by METIS. Material properties are homogeneous with αi = 1, βi = β. For Type 1
subdomains, H/h = 8. For subdomains generated by METIS, see Figure 6.6.

Type N β = 10−3 β = 1 β = 103

1 16 23(5.4) 21(5.5) 16(5.0)
64 24(5.6) 22(5.4) 19(4.7)

144 24(5.6) 22(5.5) 19(4.9)
256 24(5.5) 23(5.5) 20(5.1)
400 24(5.5) 23(5.5) 21(5.2)

METIS 16 27(7.1) 23(6.8) 19(5.3)
64 33(8.8) 29(8.8) 23(5.8)

144 35(11.4) 31(10.9) 25(7.3)
256 36(12.2) 31(12.0) 26(7.8)
400 38(11.2) 33(11.1) 27(8.7)

(a) N = 64 (b) N = 144

Figure 6.6: Decomposition used in Example 6.4.6, obtained with the software
METIS.
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Example 6.4.7. We present some results for Type 1 subdomains with the multi-

plicative and hybrid operators. We use GMRES [59] to solve the associated linear

system in the case of the non-symmetric operator Pmu. Experimental results show

that the symmetrized multiplicative Schwarz method (P sym
mu = I − E∗muEmu) does

not offer a significant advantage. See results in Table 6.8. The multiplicative

method improves considerably the number of iterations and the hybrid method

behaves slightly better than the additive operator.

Table 6.8: Results for Type 1 subdomains, where the unit square is decomposed
into N subdomains, with H/h = 4, H/δ = 4, αi = 1 and βi = β.

β N Pad Phy Pmu
103 144 20(5.0) 18(4.5) 4

400 21(5.4) 19(5.1) 5
784 21(5.5) 19(5.5) 5
1024 21(5.5) 19(5.6) 5

1 144 23(5.8) 22(5.3) 8
400 23(5.8) 22(5.2) 9
784 24(5.9) 22(5.2) 9
1024 24(5.9) 22(5.3) 9

10−3 144 26(5.7) 25(4.9) 12
400 26(5.8) 25(4.9) 12
784 27(5.8) 25(5.0) 12
1024 27(5.8) 25(5.0) 12

Example 6.4.8. This example is used to compare the behavior of our algorithm

when the matrix

B =

 b11 b12

b12 b22


in (3.1.2) is not a constant multiple of the identity. We note that our theory does

not cover these cases, but that bounds depending on the eigenvalues of B can

be found. First we study the variation in the condition number as a function of
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(a) b12 = 0 (b) b12 = 1

(c) b12 = 10−3 (d) b12 = 103

Figure 6.7: Condition number for different values of log b11 (x-axis) and log b22

(y-axis).

the entries of B. For this purpose, we consider Type 1 subdomains, with N = 64,

H/h = 8, H/δ = 4, α = 1; see Figure 6.7. In general, the condition number slightly

increases when there is a big difference between b11 and b22, but does not vary in

the extreme cases. We also notice a growth in the condition number as the number

of subdomains increases. Hence, in this case our coarse space is not satisfactory

and the algorithm is not scalable. Nevertheless, it only increases logarithmically,

and numerical experiments show that the condition number does not deteriorates

significantly, see Figure 6.8.

Example 6.4.9. This example is used to compare the behavior of our algorithm
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Figure 6.8: Condition number as a function of the number of subdomains, for
Type 1 subdomains with H/h = 4, H/δ = 4, α = 1, b22 = 1, b12 = b21 = 0.

when there are discontinuous coefficients inside each substructure. Each subdo-

main is divided in two subregions: in the interior we impose α = β = 1, and in the

second region the coefficients are assigned randomly as in Example 6.4.5, and then

these values are used for all the experiments; see Figure 6.9, Table 6.9 and Table

6.10. For this particular discontinuity pattern, results are similar for any set of

random numbers. We note that our theory does not cover these cases. However,

our algorithm works well even though there are discontinuities inside each subdo-

main. A second set of experiments is presented in Table 6.11. Here, each coefficient

has four different values for each quarter of the subdomain, assigned randomly for

each test; see Figure 6.10. Experimental results show that the condition number

deteriorates when we have discontinuities only for βi, as shown in Table 6.11.
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Table 6.9: Results for the unit square decomposed into 64 subdomains, with H/δ =
8 for Type 1 and 2, H/δ = 15 for Type 3, αi and βi discontinuous inside each
subdomain, as shown in Figure 6.9, where the width of the band is 1/4 of the
subdomain diameter.

Type H/h α = 1, βi disc. β = 1, αi disc. αi, βi disc.
1 16 29(9.3) 29(7.3) 30(8.4)

24 30(9.4) 29(7.4) 31(8.8)
32 30(9.5) 29(7.5) 31(9.1)

2 16 29(9.2) 28(7.2) 29( 9.1)
24 30(9.5) 28(7.5) 30(10.1)
32 30(9.7) 29(7.7) 31(10.9)

3 15 32(21.0) 45(26.0) 30(13.2)
45 33(23.0) 44(27.8) 30(14.7)
135 33(24.4) 45(28.7) 32(15.1)

Table 6.10: Results for the unit square decomposed into 16 subdomains, with
H/h = 48 for Type 1 and 2, H/δ = 45 for Type 3, αi and βi discontinuous inside
each subdomain, as shown in Figure 6.9, where the width of the band is 1/4 of the
subdomain diameter.

Type H/δ α = 1, βi disc. β = 1, αi disc. αi, βi disc.
1 3 22(5.2) 24(5.1) 23(5.4)

6 25(6.2) 26(6.3) 27(6.9)
24 37(17.7) 42(18.1) 38(16.7)

2 3 23(5.4) 24(5.4) 24(5.4)
6 26(6.9) 27(6.8) 27(7.0)
24 36(18.7) 40(16.1) 39(16.4)

3 5 27(8.7) 28(8.4) 25(6.4)
15 32(22.7) 42(28.0) 30(14.2)

22.5 35(25.9) 52(42.2) 33(18.0)

Table 6.11: Results for the unit square decomposed into 16 Type 1 subdomains,
with H/h = 16, H/δ = 8, αi and βi discontinuous inside each Ωi and on its
interface Γi, as shown in Figure 6.10.

Test α = 1, βi disc. β = 1, αi disc. αi, βi disc.
1 45(63) 35(14) 56(167)
2 47(34) 34(14) 45(47)
3 54(61) 35(14) 45(50)
4 42(39) 36(15) 54(217)
5 46(107) 34(14) 46(42)
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Figure 6.9: Coefficient distribution for α (left) and β (right) with Type 1 subdo-
mains used in Example 6.4.9 for N = 64. The coefficients were obtained randomly,
and then fixed for all the experiments. They vary from 10−3 (blue) to 103 (red).
See Tables 6.9 and 6.10.
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Figure 6.10: Coefficient distribution for α (left) and β (right) with Type 1 sub-
domains used in Example 6.4.9 for N = 16. The coefficients vary randomly over
the 16 subdomains, from 10−3 (blue) to 103 (red). See Table 6.11.
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Chapter 7

A BDDC deluxe algorithm for

Nédélec vector fields in 2D

7.1 Introduction

The BDDC method was first proposed in [15] and convergence bounds for these

algorithms were provided in [47]. The BDDC methods are closely related to the

dual-primal finite element tearing and interconnecting methods (FETI-DP): the

spectra of the relevant operators of these two algorithms with the same set of

primal constraints are the same, except possibly for eigenvalues of 0 and 1; see,

e.g., [48, 45, 7].

In the construction of a BDDC preconditioner, a set of primal constraints and a

weighted average need to be chosen and these choices affect the rate of convergence.

For the primal variable space, we impose a continuity constraint for the tangential

average over each subdomain edge; see Section 7.2 for more details.

Classical choices for the weighted average include the inverse of the cardinality
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of a subdomain edge (the number of subdomains sharing the edge) and weights

proportional to entries on the diagonals of subdomain matrices. A scaling that

depends on the coefficients α and β is considered in [63], but with the limitation

that only one coefficient is allowed to present discontinuities. We will use a deluxe

average, introduced in [20] for three dimensional problems. This technique is

used in [11], where a BDDC preconditioner is extended to Isogeometric Analysis

for scalar elliptic problems. The bound is independent of discontinuities in the

coefficients across the interface. This deluxe average is also used in [42, 54, 21].

Our study applies to a broad range of material properties and subdomain ge-

ometries. We obtain the optimal bound

κ ≤ Cχ2|Ξ|
(

1 + log
H

h

)2

for our deluxe BDDC method with Jones subdomains, a bound independent of the

jumps of the coefficients between the subdomains. We recall that condition number

estimates obtained in previous studies for equivalent FETI-DP methods depend

on the coefficients of the problem, and other papers include certain restrictions on

the coefficients. The constant χ is related to the geometry of the subdomains and

it is quite small even for fractal edges and large values of H/h, and |Ξ| represents

the maximum number of neighbors for any subdomain.

7.2 Primal constraints

For E ∈ SE , we define the coarse function cE similarly as in Section 6.2.1. The

primal space will be spanned by these coarse basis functions, and therefore its

dimension is the same as the number of interior subdomain edges.
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Given u(i) ∈ W (i) and u(j) ∈ W (j), we impose the constraint

∫
Eij

u(i) · tEds =

∫
Eij

u(j) · tEds.

We recall that we make a change of variables in order to work explicitly with

these primal variables; see Section 5.3. The complementary dual space will then

be represented by elements with zero values at the primal degrees of freedom, i.e.,

they will satisfy ∫
E
u

(i)
∆ · tEds = 0

for all the subdomain edges E ∈ SEi .

7.3 Deluxe averaging

In this section we define the weighted operators D(i). For our deluxe scaling,

we consider the Schur complements related to a coarse edge E ij. Let

A
(k)

Eij :=

 A
(k)
II A

(k)

IEij

A
(k)

EijI A
(k)

EijEij

 ,

for k ∈ {i, j}. The two Schur complements associated with E ij are given by

S
(k)

Eij := A
(k)

EijEij − A
(k)

EijIA
(k)−1

II A
(k)

IEij
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for k ∈ {i, j}. We define the scaling matrices D
(i)
j :=

(
S

(i)

Eij + S
(j)

Eij

)−1

S
(i)

Eij . The

deluxe scaling operator D(i) is given by

D(i) :=



D
(i)
j1

D
(i)
j2

. . .

D
(i)
jk


where j1, . . . , jk ∈ Ξi, with Ξi the set of indices of the subdomains Ωj, j 6= i, which

share a subdomain edge with Ωi. Denote by u
(i)

Eij := REiju
(i) the restriction of u(i)

to the edge E ij. We can rewrite the average over E ij as

uEij =
(
S

(i)

Eij + S
(j)

Eij

)−1 (
S

(i)

Eiju
(i)

Eij + S
(j)

Eiju
(j)

Eij

)
.

7.4 Technical tools

In this section, we collect some technical tools and define functions that will

be used in the proof of our main theorem.

7.4.1 Convergence analysis

Following [11, Theorem 4.4], in order to get an estimate for ‖ED‖2
S̃Γ

, we will

reduce the problem to obtaining a bound for ‖D(j)
i (u

(i)
E − u

(i)
ΠE)‖2

S
(i)
E

, where u
(i)
ΠE

is the primal component of u
(i)
Π restricted to the edge E . By using the fact that

S
(i)
E

(
S

(i)
E + S

(j)
E

)−1

S
(j)
E is symmetric and that

S
(i)
E

(
S

(i)
E + S

(j)
E

)−1

S
(j)
E =

(
S

(i)−1

E + S
(j)−1

E

)−1

< S
(i)
E ,
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by simple algebra we can deduce that

‖D(j)
i (u

(i)
E − u

(i)
ΠE)‖

2

S
(i)
E

+ ‖D(i)
j (u

(i)
E − u

(i)
ΠE)‖

2

S
(j)
E

= (u
(i)
E − u

(i)
ΠE)

T
(
S

(j)
E

(
S

(i)
E + S

(j)
E

)−1

S
(i)
E

(
S

(i)
E + S

(j)
E

)−1

S
(j)
E +

+ S
(i)
E

(
S

(i)
E + S

(j)
E

)−1

S
(j)
E

(
S

(i)
E + S

(j)
E

)−1

S
(i)
E

)
(u

(i)
E − u

(i)
ΠE)

= (u
(i)
E − u

(i)
ΠE)

T
(
S

(i)−1

E + S
(j)−1

E

)−1

(u
(i)
E − u

(i)
ΠE)

≤ ‖u(i)
E − u

(i)
ΠE‖

2

S
(i)
E
. (7.4.1)

Thus, we only need to obtain local bounds for the individual terms in the right-

hand side. For this purpose, we will construct explicit functions with the required

tangential data on E and a proper bound. This construction is presented in Section

7.4.4, where we closely follow [19, Section 4].

7.4.2 Discrete curl extensions

The space of discrete harmonic functions is directly related to the Schur com-

plements. Given u
(i)
Γ ∈ W

(i)
Γ , we define the discrete curl extension of u

(i)
Γ into Ωi

as Hi(u
(i)
Γ ) := u(i) where u(i) satisfies

A
(i)
IIu

(i)
I + A

(i)
IΓu

(i)
Γ = 0.

Clearly Hi(u
(i)
Γ ) is completely defined by the tangential data on Γi. We have the

following lemma:
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Lemma 7.4.1. The discrete curl extension u(i) = Hi(u
(i)
Γ ) into Ωi satisfies

ai(u
(i),u(i)) = min

v(i)×n(i)=u
(i)
Γ

ai(v
(i),v(i))

and

‖u(i)
Γ ‖

2

S
(i)
Γ

= ai(u
(i),u(i)).

Proof. The proof in [66, Lemma 4.9] for W hi
grad(Ωi) can be easily modified for func-

tions in W hi
curl(Ωi).

7.4.3 Estimates for auxiliary functions

We borrow some results from [19], which are modifications from the technical

tools from Chapter 6, for functions now with support R̂E , instead of an overlap-

ping region. We start by introducing a coarse linear interpolant for functions in

W hi
grad(Ωi), similar to the one in Definition 6.2.3.

Definition 7.4.2 (linear interpolant). Given f ∈ W hi
grad(Ωi) and a subdomain edge

E ∈ SEi , we define the linear function

fE`(x) := f(a) +
f(b)− f(a)

dE
(x− a) · dE .

We note that fE`(a) = f(a), fE`(b) = f(b) and that fE` varies linearly in the

direction dE . We will use the following lemmas:

Lemma 7.4.3. Let R̂E be the uniform domain of Lemma 4.2.10. For any p ∈

W hi
grad(Ωi), there exists a function pE∆ ∈ W hi

grad(Ωi) such that pE∆ = p − pE` along
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E. This function vanishes along ∂R̂E \ E and ∂Ωi \ E, and satisfies

‖∇pE∆‖2
L2(Ωi)

≤ C

(
1 + log

dE
hi

)2

‖∇p‖2
L2(R̂E)

,

for some constant C depending on CU and the shape regularity of the elements.

Proof. The proof is similar to Lemma 6.2.4, where we also need to use Lemma

4.2.10.

Lemma 7.4.4. Given r ∈ W hi
curl(Ωi) and a subdomain edge E ∈ SEi, it holds that

|r̄E |2 ≤ C
(
‖r‖2

L∞(R̂E)
+ ‖∇ × r‖2

L2(R̂E)

)
,

where

r̄E :=
1

dE

∫
E
r · tEds, (7.4.2)

and the constant C depends only on the uniform parameter CU(Ωi).

Proof. This result follows from [19, Lemma 3.10] and the fact that RE ⊂ R̂E .

Lemma 7.4.5. Given E ∈ SEi, there exists a coarse space function N E ∈ W hi
curl(Ωi)

with λe(N E) = λe(dE) along E and with λe(N E) = 0 everywhere else on ∂Ωi such

that

‖N E‖2
L2(Ωi)

≤ Cd2
E ,

‖∇ ×N E‖2
L2(Ωi)

≤ C

(
1 + log

dE
hi

)
,

for some constant C depending on CU and the shape regularity of the elements.

Proof. The proof is similar to Lemma 6.2.5.
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Lemma 7.4.6. Given r ∈ W hi
curl(Ωi) and E ∈ SEi, there exists a function rE ∈

W hi
curl(Ωi) such that λe(r

E) = λe(r) along E and with vanishing tangential data

along ∂R̂E \ E and ∂Ωi \ E. Further,

‖rE‖2
L2(Ωi)

≤ Cd2
E‖r‖2

L∞(R̂E)
,

‖∇ × rE‖2
L2(Ωi)

≤ C

(
‖∇ × r‖2

L2(R̂E)
+

(
1 + log

dE
hi

)
‖r‖2

L∞(R̂E)

)
,

for some constant C depending on CU and the shape regularity of the elements.

Proof. The proof is similar to Lemma 6.2.6.

7.4.4 A stability estimate

In this section, we will derive an edge lemma that will provide a bound for the

terms in the right-hand side of (7.4.1). For that, we split the set of edges SEi into

two subsets. We define

d̂i := max
(
hi,
√
αi/βi

)
and consider the two cases dE < d̂i (curl-dominated) and dE ≥ d̂i (mass-dominated)

separately. Accordingly, we partition the set of subdomain edges of Ωi as

SEi = ScEi ∪ S
m
Ei ,

where dE < d̂i for all the edges in ScEi , and dE ≥ d̂i for those in SmEi . We will prove

the next lemma, using a similar construction as in [19].
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Lemma 7.4.7. For u(i) ∈ W (i) and E ∈ SEi, there exist v
(i)
E ,v

(i)
ΠE ∈ W (i) such that

 λe(v
(i)
E ) = λe(u

(i)) if e ⊂ E

λe(v
(i)
E ) = 0 if e ⊂ ∂Ωi \ E ,

(7.4.3)

and  λe(v
(i)
ΠE) = ūEλe(dE) if e ⊂ E

λe(v
(i)
ΠE) = 0 if e ⊂ ∂Ωi \ E .

(7.4.4)

Furthermore,

ai(v
(i)
E − v

(i)
ΠE ,v

(i)
E − v

(i)
ΠE) ≤ Cχ2

(
1 + log

H

h

)2

ai(u
(i),u(i)),

where χ = max
i

max
E∈Sm

Ei

χE(d̂i) and C depends only on CU(Ωi) and the shape regularity

of the elements.

Proof. Let us first consider an edge E ∈ ScEi and its corresponding region R̂E from

Lemma 4.2.10. We use the Helmholtz decomposition from Lemma 2.6.3 in this

region and write u(i) = ∇p+ r. Define the functions wE,c,wE,cΠ ∈ W (i) by

wE,c := ∇pE∆ + rE +
p(b)− p(a)

dE
N E and (7.4.5)

wE,cΠ :=

(
p(b)− p(a)

dE
+ r̄E

)
N E ,

where ∇pE∆, rE and N E are the functions from Lemmas 7.4.3, 7.4.6 and 7.4.5, and

r̄E is given by (7.4.2). We find that λe(w
E,c) = λe(u

(i)) and λe(w
E,c
Π ) = ūEλe(dE)

along E , and that they vanish on ∂Ωi \ E . Hence, wE,c and wE,cΠ satisfy (7.4.3) and

(7.4.4).

We next find bounds for the energy of the components of wE,c and wE,cΠ . First,
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from Lemma 7.4.3, (2.6.3a) and the fact that βid
2
E ≤ αi for E ∈ ScEi , we obtain

Ei(∇pE∆) = βi‖∇pE∆‖2
L2(Ωi)

≤ C

(
1 + log

dE
hi

)2

ER̂E (u
(i)). (7.4.6)

For the second term of (7.4.5), from Lemma 7.4.6 and (2.6.3b), we get

Ei(r
E) = αi‖∇ × rE‖2

L2(Ωi)
+ βi‖rE‖2

L2(Ωi)

≤ C

(
1 + log

dE
hi

)2

ER̂E (u
(i)), (7.4.7)

where we have replaced ∇×r by ∇×u(i), since ∇×∇p = 0. Next, from Lemmas

7.4.4 and (2.6.3b),

|r̄E |2 ≤ C

(
1 + log

dE
hi

)
‖∇ × u(i)‖2

L2(R̂E)
. (7.4.8)

Hence, by Lemma 7.4.5,

Ei(r̄EN E) = |r̄E |2
(
αi‖∇ ×N E‖2

L2(Ωi)
+ βi‖N E‖2

L2(Ωi)

)
≤ C

(
1 + log

dE
hi

)2

ER̂E (u
(i)). (7.4.9)

From (7.4.6), (7.4.7) and (7.4.9), we conclude that

ai(w
E,c −wE,cΠ ,wE,c −wE,cΠ ) ≤ C

(
1 + log

dE
hi

)2

ER̂E (u
(i)). (7.4.10)

We next consider an edge E ∈ SmEi . We divide E in the following way: starting

at a and moving towards b, we pick p1 := a and then p2 ∈ E as the edge node

closest to the last point of exit of E from the circular disk of radius d̂i centered at
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p1. Similarly, p3 ∈ E is chosen as the edge node closest to the last point of exit of

E from the circular disk of radius d̂i centered at p2. This process is repeated until

|pM − b| < d̂i, and we then set pM+1 = b. We denote the segment of E between

pk and pk+1 by Ek. We have an M on the order of χE(d̂i)(dE/d̂i). By construction,

we have that d̂i ≤ dEk ≤ 2d̂i.

For each subedge Ek, k = 1, . . . ,M(E , d̂i), we consider the region R̂Ek from

Lemma 4.2.10 and the corresponding Helmholtz decomposition u(i) = ∇pk + rk.

For each term, we define pEk∆, rEk and N Ek similarly as in (7.4.5), and consider

wE,m :=

M(E,d̂i)∑
k=1

∇pEk∆ + rEk + p̄EkN Ek , (7.4.11)

wE,mΠ := ūE

M(E,d̂i)∑
k=1

N Ek , where p̄Ek :=
p(bk)− p(ak)

dEk

and ak, bk are the endpoints of Ek. Now, (∇pEk∆ + rEk + p̄EkN Ek) · te = u(i) · te

along Ek. It vanishes everywhere else on E and therefore λe(w
E,m) = λe(u

(i)) along

E and λe(w
E,m) = 0 along ∂Ωi\E . We also obtain that λe(w

E,m
Π ) = ūEλe(dE) along

E and that λe(w
E,m
Π ) = 0 along ∂Ωi \ E . Hence, the two functions satisfy (7.4.3)

and (7.4.4).

By a similar argument as the one that led to (7.4.6), and using the fact that

dEk ≤ 2d̂i, we obtain

Ei(∇pEk∆) ≤ C

(
1 + log

d̂i
hi

)2

βi

(
‖u(i)‖2

L2(R̂Ek) + d̂2
i ‖∇ × u(i)‖2

L2(R̂Ek)

)
.

From the definition of d̂i, we observe that if d̂i = hi, we can use the inverse

estimate (2.5.1) to bound the term h2
i ‖∇ × u(i)‖2

L2(R̂Ek)
by ‖u(i)‖2

L2(R̂Ek)
and if

90



d̂i =
√
αi/βi it follows that βid̂

2
i = αi. In both cases, we can conclude that

Ei(∇pEk∆) ≤ C

(
1 + log

d̂i
hi

)2

ER̂Ek
(u(i)). (7.4.12)

The bound

Ei(r
Ek) ≤ C

(
1 + log

d̂i
hi

)2

ER̂Ek
(u(i)) (7.4.13)

follows similarly as (7.4.7) by considering both cases for d̂i as in (7.4.12). For the

third term of (7.4.11), we have that

|p̄Ek |2 ≤
C

d̂2
i

(
1 + log

d̂i
hi

)(
‖u(i)‖2

L2(R̂Ek) + d̂2
i ‖∇ × u(i)‖2

L2(R̂Ek)

)
, (7.4.14)

where we have used Lemma 4.2.5 and (2.6.3a). By Lemma 7.4.5,

Ei(N Ek) ≤ Cβid̂
2
i

(
1 + log

d̂i
hi

)
, (7.4.15)

since αi ≤ βid̂
2
i . From (7.4.14) and (7.4.15), we deduce that

Ei(p̄EkN Ek) ≤ C

(
1 + log

d̂i
hi

)2

βi

(
‖u(i)‖2

L2(R̂Ek) + d̂2
i ‖∇ × u(i)‖2

L2(R̂Ek)

)
.

By considering both cases for d̂i as in (7.4.12), we obtain

Ei(p̄EkN Ek) ≤ C

(
1 + log

d̂i
hi

)2

ER̂Ek
(u(i)). (7.4.16)

Now, since ūE =
1

dE

M(E,d̂i)∑
k=1

∫
Ek

(∇pk + rk) · tE ds, by Cauchy-Schwarz and the
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fact that M(E , d̂i) is of order χE(d̂i)dE/d̂i, we have

|ūE |2 ≤
C

d2
E
χE(d̂i)

dE

d̂i

M(E,d̂i)∑
k=1

d2
Ek

(
|p̄Ek |2 + |r̄Ek |2

)
≤ CχE(d̂i)

dE d̂i

(
1 + log

d̂i
hi

)
M(E,d̂i)∑
k=1

(
‖u(i)‖2

L2(R̂Ek) + d̂2
i ‖∇ × u(i)‖2

L2(R̂Ek)

)

≤ CχE(d̂i)

βidE d̂i

(
1 + log

d̂i
hi

)
M(E,d̂i)∑
k=1

ER̂Ek
(u(i))

≤ CχE(d̂i)

βidE d̂i

(
1 + log

d̂i
hi

)
ER̃E (u

(i)), (7.4.17)

with R̃E =
⋃
k R̂Ek . Here we have used (7.4.14) and (7.4.8) in the second step, and

the fact that each R̂Ek intersects only a bounded number of other such regions in

the last inequality.

From (7.4.15) and (7.4.17), we obtain

Ei(w
E,m
Π ) ≤ Cχ2

E(d̂i)

(
1 + log

d̂i
hi

)2

ER̃E (u
(i)). (7.4.18)

Hence, from (7.4.12), (7.4.13), (7.4.16) and (7.4.18), we obtain

ai(w
E,m −wE,mΠ ,wE,m −wE,mΠ ) ≤ Cχ2

E(d̂i)

(
1 + log

d̂i
hi

)2

ER̃E (u
(i)). (7.4.19)

Finally, for E ∈ SEi consider the functions v
(i)
E ,v

(i)
ΠE defined by

v
(i)
E :=

 wE,c if E ∈ ScEi
wE,m if E ∈ SmEi

, v
(i)
ΠE :=

 wE,cΠ if E ∈ ScEi
wE,mΠ if E ∈ SmEi

.
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By (7.4.10) and (7.4.19),

ai(v
(i)
E − v

(i)
ΠE ,v

(i)
E − v

(i)
ΠE) ≤ Cχ2

(
1 + log

H

h

)2

ai(u
(i),u(i)).

These functions also satisfy conditions (7.4.3) and (7.4.4) and the lemma holds.

Remark 7.4.8. We note that the constant C used in (2.6.3a) and (2.6.3b) is different

for each region R̂E and R̂Ek . This constant deteriorates for large aspect ratios, but

this is not our case, due to Lemma 4.2.10.

We are now ready to prove the following edge extension lemma:

Lemma 7.4.9. Given u
(i)
Γ = u

(i)
Π + u

(i)
∆ ∈ W

(i)
Γ , denote by u

(i)
E and u

(i)
ΠE the re-

strictions of u
(i)
Γ and u

(i)
Π to the subdomain edge E. There exists a constant C,

independent of αi, βi, hi and Hi, such that

‖u(i)
E − u

(i)
ΠE‖

2

S
(i)
E
≤ Cχ2

(
1 + log

H

h

)2

‖u(i)
Γ ‖

2

S
(i)
Γ

.

Proof. Let u(i) := Hi(u
(i)
Γ ) be the discrete curl extension of u

(i)
Γ over Ωi. By Lemma

7.4.7 applied to u(i), there exist v
(i)
E and v

(i)
ΠE such that

‖u(i)
E − u

(i)
ΠE‖

2

S
(i)
E
≤ ai(v

(i)
E − v

(i)
ΠE ,v

(i)
E − v

(i)
ΠE)

≤ Cχ2

(
1 + log

H

h

)2

ai(u
(i),u(i))

= Cχ2

(
1 + log

H

h

)2

‖u(i)
Γ ‖

2

S
(i)
Γ

,

where we have used Lemma 7.4.1 and the fact that the degrees of freedom satisfy

λe(u
(i)
E ) = λe(v

(i)
E ) and λe(u

(i)
ΠE) = λe(v

(i)
ΠE) for e ⊂ ∂Ωi.
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7.5 Condition number for the BDDC deluxe al-

gorithm

In this section, we present the proof of our main result, Theorem 7.5.3. The

analysis is done in a similar way as in [11, Section 4].

Lemma 7.5.1. For u ∈ ŴΓ, we have that uTMBDDCu ≤ uT ŜΓu. In particular,

the eigenvalues of the BDDC deluxe operator are bounded from below by 1.

Proof. Let w = MBDDCu, with u ∈ ŴΓ. Using (5.3.4), we have

uTMBDDCu = uTw = uT R̃T
Γ R̃D,Γw = uT R̃T

Γ S̃ΓS̃
−1
Γ R̃D,Γw

≤
(
uT R̃T

Γ S̃ΓR̃Γu
)1/2 (

wT R̃T
D,ΓS̃

−1
Γ S̃ΓS̃

−1
Γ R̃D,Γw

)1/2

= (uT ŜΓu)1/2(uTMBDDCu)1/2.

Therefore uTMBDDCu ≤ uT ŜΓu for all u ∈ ŴΓ and the result follows.

Lemma 7.5.2. If ‖EDu‖2
S̃Γ
≤ CE‖u‖2

S̃Γ
for all u ∈ W̃Γ, then the eigenvalues of

the BDDC deluxe operator are bounded from above by CE.

Proof. Let w = MBDDCu, with u ∈ ŴΓ. We have that

uT Ŝu = uT R̃T
Γ S̃ΓR̃ΓR̃

T
D,ΓS̃

−1
Γ R̃D,Γw

≤ (R̃Γu, R̃Γu)
1/2

S̃Γ

(
EDS̃

−1
Γ R̃D,Γw, EDS̃

−1
Γ R̃D,Γw

)1/2

S̃Γ

≤
(
uT R̃T

Γ S̃ΓR̃Γu
)1/2

C
1/2
E

(
S̃−1

Γ R̃D,Γw, S̃
−1
Γ R̃D,Γw

)1/2

S̃Γ

= C
1/2
E

(
uT ŜΓu

)1/2

(uTMBDDCu)1/2,

and therefore uT ŜΓu ≤ CEu
TMBDDCu for all u ∈ ŴΓ.
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Theorem 7.5.3. The condition number of the BDDC deluxe operator satisfies

κ(M−1
BDDCŜ) ≤ Cχ2|Ξ|

(
1 + log

H

h

)2

,

for some constant C that is independent of H, h, β and α. Here

χ = max
i

max
E∈Sm

Ei

χE(d̂i)

and |Ξ| = maxi |Ξi| is the maximum number of subdomain edges for any subdomain.

Proof. We have that

‖EDuΓ‖2
S̃Γ
≤ 2

(
‖uΓ‖2

S̃Γ
+ ‖uΓ − EDuΓ‖2

S̃Γ

)
= 2

(
‖uΓ‖2

S̃Γ
+ ‖RΓ(uΓ − EDuΓ)‖2

SΓ

)
= 2

(
‖uΓ‖2

S̃Γ
+

N∑
i=1

‖R̃(i)
Γ (uΓ − EDuΓ)‖2

S
(i)
Γ

)
.

Let u
(i)
Γ := R̃

(i)
Γ uΓ. Denote by u

(i)
E and u

(j)
E the restrictions of u

(i)
Γ and u

(j)
Γ to

the common edge E , respectively. We have that R̃
(i)
Γ (uΓ−EDuΓ) = D

(j)
i (u

(i)
E −u

(j)
E )

on E . Hence,

‖R̃(i)
Γ (uΓ − EDuΓ)‖2

S
(i)
Γ

=
∑
j∈Ξi

‖D(j)
i (u

(i)
E − u

(j)
E )‖2

S
(i)
E
,

where Ξi is the set of subdomain indices sharing an edge E with Ωi. Then,

‖EDuΓ‖2
S̃Γ
≤ 2

(
‖uΓ‖2

S̃Γ
+
∑
E∈SE

‖D(j)
i (u

(i)
E − u

(j)
E )‖2

S
(i)
E

+ ‖D(i)
j (u

(j)
E − u

(i)
E )‖2

S
(j)
E

)
.

(7.5.1)
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Denote by u
(i)
ΠE and u

(j)
ΠE the restriction to E of the primal components corre-

sponding to u
(i)
Γ and u

(j)
Γ . Since u

(i)
ΠE = u

(j)
ΠE , we have that

‖D(j)
i (u

(i)
E − u

(j)
E )‖2

S
(i)
E
≤ 2‖D(j)

i (u
(i)
E − u

(i)
ΠE)‖

2

S
(i)
E

+ 2‖D(j)
i (u

(j)
E − u

(j)
ΠE)‖

2

S
(i)
E
,

and by (7.4.1),

‖D(j)
i (u

(i)
E − u

(j)
E )‖2

S
(i)
E

+‖D(i)
j (u

(j)
E − u

(i)
E )‖2

S
(j)
E
≤

2‖u(i)
E − u

(i)
ΠE‖

2

S
(i)
E

+ 2‖u(j)
E − u

(j)
ΠE‖

2

S
(j)
E
. (7.5.2)

Therefore, by combining (7.5.1), (7.5.2), and Lemma 7.4.9, we conclude that

‖EDuΓ‖2
S̃Γ
≤ C|Ξ|χ2

(
1 + log

H

h

)2

‖uΓ‖2
S̃Γ
,

where |Ξ| = maxi |Ξi|. We conclude the proof of the theorem by using Lemmas

7.5.1 and 7.5.2.

7.6 Numerical results

Numerical examples are presented in this section to confirm the bound of The-

orem 7.5.3 for different types of subdomains, similar to what is done in Section

6.4. We consider a new Type 4 subdomain, with edges with both straight and

fractal segments. For these new subdomains, we divide the unit square into nine

squares and construct a fractal edge over each initial edge on the interface. We

note that the fractal segment lengths grow by a factor of 4/3 with each mesh re-

finement whereas the straight line segments remain constant. For each refinement
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of Type 4 subdomains, every element edge on the fractal part of the boundary is

first divided into three shorter edges of 1/3 the length. The middle of these edges

is then replaced by two other edges with which it forms an equilateral triangle.

We call the number of partitions realized over the original straight edge the order

of the fractal. See Figure 7.1.

(a) Type 1 (b) Type 4

Figure 7.1: Two domain decompositions used in numerical examples.

To solve the resulting linear systems, we use a preconditioned conjugate gradi-

ent method to a relative residual tolerance of 10−8 with random right-hand sides.

The number of iterations and maximum eigenvalues estimates (in parenthesis) are

reported for each of the experiments. The condition number estimates are ob-

tained as mentioned in Section 1.2. We approximate the condition number by the

maximum eigenvalue, since the approximate value for the minimum eigenvalue is

always close to 1. We note that 1 is the minimum eigenvalue of our preconditioned

linear system; see e.g. [44, Lemma 6.4], [7, Lemma 3.4].

We recall that the numerical experiments for our algorithm show an improve-

ment in the iteration count and the condition number estimates, compared to an

iterative substructuring method presented in [19] and the two-level overlapping
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Schwarz method considered in Chapter 6.

Example 7.6.1. We verify the scalability of our algorithm for Type 1 and 2 sub-

domains over the unit square. It is clear that the condition number is independent

of the number of subdomains, as shown in Table 7.1.

Table 7.1: Results for Type 1 and 2 subdomains, where the unit square is decom-
posed into N subdomains, with H/h = 4, αi = 1 and βi = β. SE is the number
of subdomain edges, TE is the total number of degrees of freedom and ΓE the
number of degrees of freedom on the interface. Number of iterations and condition
number estimates (in parenthesis) are reported for a relative residual tolerance of
10−8.

Type N SE TE ΓE β = 10−3 β = 1 β = 103

1 64 112 3008 448 9(1.5) 8(1.5) 7(1.3)
256 480 12160 1920 9(1.5) 9(1.5) 11(1.9)
576 1104 27456 4416 9(1.5) 9(1.5) 10(1.8)

1024 1984 48896 7936 9(1.5) 9(1.5) 9(1.6)
2 64 161 3008 735 10(2.0) 11(2.0) 9(1.5)

256 705 12160 3135 10(2.0) 10(2.0) 12(2.3)
576 1633 27456 7199 10(2.0) 10(2.0) 13(3.1)

1024 2945 48896 12927 10(1.9) 10(1.9) 13(2.4)

Example 7.6.2. This example is used to confirm the logarithmic factor in the

bound of the condition number, for increasing values of H/h, with N = 16 subdo-

mains. For Type 4 subdomains, we approximate H/h by maxi
√
|dofi|; see Table

7.3. We have a growth in the condition number as expected; see Figures 7.2 and

7.3. We note that our algorithm does not require all subdomain edges to be of

comparable length, since Type 2 subdomains include edges both of order Hi and

hi.
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Figure 7.2: Least-squares fit to a degree 2 polynomial in log(H/h) for data of Table
7.2.
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Figure 7.3: Least-squares fit to a degree 2 polynomial in log(H/h) for data of Table
7.3.

99



Table 7.2: Results for the unit square decomposed into 16 subdomains, with αi = 1,
βi = β. ΓE is the number of degrees of freedom on the interface, SE is 24 and 33,
for Type 1 and Type 2 subdomains, respectively. See Figure 7.2.

Type H/h β = 10−3 β = 1 β = 103 ΓE
1 16 13(2.8) 12(2.9) 8(1.7) 384

24 14(3.4) 14(3.3) 9(2.0) 576
32 14(3.8) 14(3.7) 10(2.3) 768
40 16(4.2) 14(4.1) 10(2.6) 960
48 16(4.5) 15(4.4) 10(2.8) 1152

2 16 9(1.7) 9(1.7) 8(1.4) 735
24 10(1.9) 10(1.9) 8(1.5) 1119
32 11(2.0) 10(2.0) 8(1.6) 1503
40 11(2.1) 11(2.1) 8(1.7) 1887
48 11(2.2) 11(2.2) 8(1.7) 2271

Table 7.3: Results for Type 4 subdomains, with αi = 1, βi = β, SE = 12, N = 9.
Subdomain edges are fractals. TE is the total number of degrees of freedom and
ΓE is the number of degrees of freedom on the interface. The order of the fractal
refers to the number of partitions realized over the original straight edge. See
Figure 7.3.

Order H/h β = 10−3 β = 1 β = 103 ΓE TE
2 16 19(1.9) 19 (2.1) 7(1.4) 200 2821
3 26 16(4.3) 16(4.3) 10(2.2) 768 7683
4 44 18(7.3) 19 (7.3) 13(3.7) 3072 21497
5 76 22(9.9) 23(10.2) 15(5.0) 12288 58934
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Example 7.6.3. This example is used to demonstrate that the performance of

the algorithm need not diminish significantly when a mesh partitioner is used

to decompose the mesh. Example mesh decompositions for N = 16, N = 64 and

N = 144, shown in Figure 6.6, were obtained using the graph partitioning software

METIS, see [38]. Results are shown in Table 7.4.

Table 7.4: Comparison of results for Type 1 subdomains and subdomains generated
by METIS. Material properties are homogeneous with αi = 1, βi = β. For Type 1
subdomains, H/h = 8. For subdomains generated by METIS, see Figure 6.6.

Type N β = 10−3 β = 1 β = 103 ΓE
1 16 11(2.0) 11(2.0) 7(1.2) 192

64 11(2.1) 11(2.1) 10(1.8) 896
144 11(2.2) 11(2.1) 12(2.4) 2112
256 11(2.1) 11(2.1) 14(3.0) 3840
400 11(2.2) 11(2.1) 14(2.8) 6080

METIS 16 18(8.9) 18(8.8) 9(1.6) 204
64 27(10.7) 25(10.3) 12(2.3) 963

144 25(11.7) 25(11.7) 15(2.9) 2258
256 25(15.0) 25(15.0) 19(4.9) 4061
400 26(10.6) 26(10.6) 20(6.8) 6420

Example 7.6.4. This example is used to confirm that our estimate is indepen-

dent of the material property values in each subdomain. Insensitivity to jumps in

material properties is evident in Table 7.5. For the first set of experiments, the

subdomains along the diagonal have αi = α and βi = β, while the remaining sub-

domains have αi = 1 and βi = 1. We also include results with random coefficients,

where we generate random numbers ri1, ri2 ∈ [−3, 3] with a uniform distribution,

and assign αi = 10ri1 , βi = 10ri2 for all the elements inside each subdomain Ωi.
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Table 7.5: Results for the unit square decomposed into 9 subdomains. For Type
1, H/h = 24, ΓE = 288, SE = 12. For Type 2, H/h = 24, ΓE = 560, SE = 16.
For Type 3, H/h ≈ 26, ΓE = 768, SE = 12 and the fractals segments have order
3.

α β Type 1 Type 2 Type 3
10−3 10−3 9(3.0) 8(1.7) 10(3.5)
10−3 1 12(2.9) 9(1.8) 15(3.5)
10−3 103 10(2.6) 10(2.2) 12(3.6)

1 10−3 9(3.0) 8(1.7) 10(3.5)
1 1 12(3.3) 10(1.8) 16(4.3)
1 103 10(2.6) 10(2.2) 12(3.7)

103 10−3 9(3.0) 8(1.7) 10(3.5)
103 1 12(3.3) 10(1.8) 16(4.3)
103 103 10(2.6) 10(2.2) 12(3.7)
αr1 βr1 11(2.8) 10(1.9) 11(4.3)
αr2 βr2 12(2.9) 11(2.3) 15(4.5)
αr3 βr3 10(3.3) 11(2.0) 12(4.3)
αr4 βr4 12(3.4) 11(2.6) 13(4.2)
αr5 βr5 9(3.0) 11(2.5) 14(4.3)

Example 7.6.5. This example is used to compare the behavior of our algorithm

when there are discontinuous coefficients inside each substructure. First, the coeffi-

cients are assigned as in Figure 6.9; see Table 7.6. For this particular discontinuity

pattern, results are similar for any set of random numbers. We note that our theory

does not cover these cases. However, our algorithm works well even though there

are discontinuities inside each subdomain. A second set of experiments is presented

in Table 7.7. Here, each coefficient is assigned as in Figure 6.10. Experimental

results show that the condition number deteriorates when we have discontinuities

only for βi, as shown in Table 7.7.
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Table 7.6: Results for the unit square decomposed into 9 subdomains, with αi and
βi discontinuous inside each subdomain, as shown in Figure 6.9.

Type H/h α = 1, βi disc. β = 1, αi disc. αi, βi disc.
1 16 10(2.4) 12(2.8) 11(2.5)

24 11(2.9) 13(3.4) 11(2.9)
36 11(3.4) 13(4.0) 13(3.4)

2 16 9(2.5) 10(1.9) 9(2.7)
24 10(2.7) 10(2.0) 10(2.9)
36 11(3.1) 11(2.1) 10(3.1)

4 16 13(4.5) 15(3.2) 15(5.1)
26 14(5.7) 15(4.1) 14(5.6)
44 16(7.1) 16(6.1) 16(8.1)

Table 7.7: Results for the unit square decomposed into 16 Type 1 subdomains,
with H/h = 16, αi and βi discontinuous inside each Ωi and on its interface Γi, as
shown in Figure 6.10.

Test α = 1, βi disc. β = 1, αi disc. αi, βi disc.
1 35(86) 13(2.8) 35(106)
2 52(613) 13(2.9) 37(482)
3 47(332) 13(2.8) 35(69)
4 39(119) 13(3.5) 36(64)
5 55(626) 13(2.9) 54(606)
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Chapter 8

An overlapping Schwarz

algorithm for Nédélec vector

fields in 3D

8.1 Introduction

In this chapter, we present a new coarse space for our problem in three dimen-

sions and some numerical results. We recall that previous studies for overlapping

Schwarz methods in 3D are very restrictive about the geometry of the subdomains.

To the best of our knowledge, the subdomains are usually tetrahedra or cubes, and

the coarse space is the usual Nédélec space defined on the coarse grid; see, e.g.,

[62, 33, 35]. Results for more general subdomains were obtained in [21], where a

BDDC method with deluxe scaling is analyzed.

In the next section, we introduce a new coarse space, valid for general sub-

domains. The two-level overlapping Schwarz algorithm with this new subspace
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appears to be scalable, and independent of variations in H/h and of jumps in the

coefficients across the interface, and the condition number grows quadratically as

a function of H/δ, similar to the bound obtained in [62, 33].

We notice that we have tried several different approaches before, in order to

obtain an scalable algorithm for irregular subdomains. The coarse space described

in the following section is the only one that we have found to meet this requirement.

We present some numerical results without a theoretical analysis. We note that

we have some bounds for different functions that are part of a possible stable

decomposition, and we hope to complete the analysis in the near future.

8.2 A coarse space

We start by defining our coarse space V0. For each subdomain edge E , we define

a function cE as follows. First, we define λe(cE) = dE · te for e ⊂ E and λe(cE) = 0

for any other edge e on the wire-basket. Then, we extend these values over the

faces that have E on its boundary. For this purpose, let F ij be a face that has E

on its boundary, and consider the local matrices A(i) and A(j), where we partition

the degrees of freedom as

A(k) =


A

(k)
C,C A

(k)
C,F A

(k)
C,∂F

A
(k)
F ,C A

(k)
F ,F A

(k)
F ,∂F

A
(k)
∂F ,C A

(k)
∂F ,F A

(k)
∂F ,∂F

 ,
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for k ∈ {i, j}. Here, C represents the degrees of freedom in the complement of the

closure of the face. We then define

S
(k)
F ,F := A

(k)
F ,F − A

(k)
F ,CA

(k)
C,C
−1
A

(k)
C,F ,

and

S
(k)
F ,∂F := A

(k)
F ,∂F − A

(k)
F ,CA

(k)
C,C
−1
A

(k)
C,∂F .

These two matrices are blocks of the Schur complement of A(k) after that all the

degrees of freedom in the complement of the closure of the face are eliminated. We

then define the degrees of freedom for the face as

uF := −
(
S

(i)
F ,F + S

(j)
F ,F

)−1 (
S

(i)
F ,∂F + S

(j)
F ,∂F

)
u∂F .

We note that uF can be computed by solving a problem in Ωi ∪ Ωj. Finally,

we extend the values on the boundary of the subdomains harmonically into the

interiors of the subdomains, given the values over each local interface Γi.

8.3 Numerical Results

We present some numerical results for our two-level overlapping additive algo-

rithm. We consider a Type 1 decomposition, where the subdomains are cubes, and

a METIS decomposition (see Figure 8.1).

We solve the resulting linear systems using a preconditioned conjugate gradient

method and random right-hand sides, to a relative residual tolerance of 10−6. The

number of iterations and condition number estimates (in parenthesis) are reported

for each of the experiments. These estimates are obtained as mentioned in Section
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1.2.

(a) Decomposition (b) Subdomain

Figure 8.1: Domain decomposition obtained by METIS for the unit cube, N = 27.

Example 8.3.1. We verify the scalability of our algorithm for Type 1 and METIS

subdomains over the unit cube. It is clear that the condition number is independent

of the number of subdomains, as shown in Table 8.1.

Table 8.1: Results for the unit cube decomposed into N subdomains, with αi = 1,
βi = β, H/h = 8, H/δ = 4.

Type N β = 10−3 β = 1 β = 103 dof faces edges
1 33 23(10.3) 24(10.5) 18(9.4) 102024 54 36

43 24(10.5) 25(10.9) 19(9.2) 238688 144 108
53 24(10.6) 25(10.9) 21(9.2) 462520 300 240
63 24(10.3) 25(10.8) 21(9.1) 795024 540 450

METIS 33 26(10.5) 26(10.8) 18(7.3) 102024 101 126
43 28(12.2) 28(12.3) 19(7.5) 238688 287 389
53 29(12.3) 30(14.5) 22(8.4) 462520 657 951
63 29(12.4) 30(14.7) 22(8.5) 795024 1210 1804

Example 8.3.2. This example is used to study the behavior of our algorithm for

increasing values of H/h; see results in Table 8.2. We note that the condition

number is not sensitive to the mesh parameter H/h.
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Table 8.2: Results for the unit cube decomposed into 64 Type 1 and METIS
subdomains, with αi = 1, βi = β, H/δ = 4.

Type H/h β = 10−3 β = 1 β = 103 |dof | faces edges
1 4 22(10.2) 24(11.4) 18(9.4) 31024 144 108

8 24(10.5) 25(10.9) 19(9.2) 238688 144 108
12 25(10.7) 26(11.0) 20(9.3) 795024 144 108

METIS 4 29(13.5) 30(16.2) 20(8.5) 31024 291 387
8 28(12.2) 28(12.3) 19(7.5) 238688 287 389

12 29(13.1) 29(12.9) 20(8.7) 795024 300 418

Example 8.3.3. This example is used to study the behavior of our algorithm for

increasing values of H/δ; see results in Table 8.3. Numerical results suggest a

quadratic growth of the condition number as a function of H/δ.

Table 8.3: Results for the unit cube decomposed into 27 Type 1 and METIS
subdomains, with αi = 1, βi = β, H/h = 12.

Type H/δ β = 10−3 β = 1 β = 103

1 3 23(9.8) 24(9.7) 18(8.5)
4 24(10.4) 25(10.8) 19(9.9)
6 26(12.9) 27(12.9) 19(8.6)

12 31(24.9) 32(26.0) 21(10.4)
METIS 3 26(9.9) 26(9.9) 20(7.9)

4 27(11.0) 27(10.9) 19(7.6)
6 29(13.1) 30(13.8) 19(7.3)

12 36(20.3) 38(24.4) 20(8.0)

Example 8.3.4. This example is used to study the behavior of our algorithm for

discontinuous coefficients. Results are shown in Table 8.4. We include results with

random coefficients, where we generate random numbers ri1, ri2 ∈ [−3, 3] with a

uniform distribution, and assign αi = 10ri1 , βi = 10ri2 for all the elements inside

each subdomain Ωi.
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Table 8.4: Results for the unit cube decomposed into 64 subdomains, with H/h =
8, H/δ = 4.

α β Type 1 METIS
10−3 10−3 22(8.6) 25(9.7)
10−3 1 22(8.6) 25(9.6)
10−3 103 19(8.3) 20(7.1)

1 10−3 23(10.4) 26(10.4)
1 1 24(10.5) 26(10.8)
1 103 21(9.4) 22(8.6)

103 10−3 23(9.0) 26(10.3)
103 1 25(10.8) 27(10.2)
103 103 23(8.5) 24(8.7)
αr1 βr1 30(12.3) 30(12.2)
αr2 βr2 26(10.9) 29(11.2)
αr3 βr3 27(10.5) 28(11.1)
αr4 βr4 30(12.0) 28(11.2)
αr5 βr5 29(11.8) 29(10.2)

109



Bibliography

[1] D. N. Arnold, R. S. Falk, and R. Winther, Multigrid in H(div) and H(curl),

Numer. Math. 85 (2000), no. 2, 197–217.

[2] R. Beck, R. Hiptmair, R. H. W. Hoppe, and B. Wohlmuth, Residual based

a posteriori error estimators for eddy current computation, ESAIM: Math.

Model. Numer. Anal. 34 (2000), 159–182.

[3] B. Bojarski, Remarks on Sobolev imbedding inequalities, Lecture Notes in

Math. 1351 (1989), 52–68.

[4] A. Bossavit, Discretization of electromagnetic problems: The generalized finite

differences approach, Handb. Numer. Anal. 13 (2005), 105–197.

[5] D. Braess, Finite elements: Theory, fast solvers, and applications in solid

mechanics, Cambridge University Press, 2001.

[6] S. C. Brenner and R. Scott, The mathematical theory of finite element meth-

ods, Texts in Applied Mathematics, Springer, 2008.

[7] S. C. Brenner and L.-Y. Sung, BDDC and FETI-DP without matrices or

vectors, Comput. Methods Appl. Mech. Engrg. 196 (2007), 1429 – 1435.

110



[8] S. M. Buckley and P. Koskela, Sobolev-Poincaré implies John, Math. Res.
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