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Abstract. Iterative substructuring methods form an important family of domain decomposition
algorithms for elliptic finite element problems. The p-version finite element method based on contin-
uous, piecewise (J, functions is considered for second order elliptic problems in three dimensions; this
special method can also be viewed as a spectral element method. An iterative method is designed for
which the condition number of the relevant operator grows only in proportion to (1 + log p)?.
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1. Introduction. Domain decomposition has developed into an active research
area over the last few years; a seventh, annual, international symposium is being held
October 27-30, 1993 at The Pennsylvania State University; cf. [17,7,8,18,9,21].

The iterative substructuring methods form an important family of domain de-
composition methods for elliptic problems. They are based on a decomposition of the
given region into nonoverlapping subregions, and as all other domain decomposition
methods, provide preconditioners for conjugate gradient type methods. The precon-
ditioners are constructed from solvers for local problems and, in addition, a solver of
a coarse problem similar to that used in a multi-grid algorithm. However, the global,
coarse problem can be quite exotic; cf. e.g. Dryja, Smith, and Widlund [11].

When an iterative substructuring method is used, data is only exchanged between
neighboring local problems through their boundary values. In this they differ from
the Schwarz methods that use overlapping subregions; cf. e.g. Dryja and Widlund
[13,15] for a discussion of recent work on this other major family of methods.

All these iterative methods are thus two-level methods and convincing arguments
have been put forward supporting the opinion that they are particularly well suited for
the large, relatively loosely coupled computing systems that are becoming increasingly
common; c¢f Gropp [19]. The best of these algorithms have proven quite powerful and
very large and very ill-conditioned systems of linear algebraic equations, arising when
elliptic problems are discretized by finite elements and finite differences, have been
solved quite economically; cf. e.g. Gropp and Smith [20] and Smith [33].
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A well known bound on the error, after k steps, of the standard preconditioned
conjugate gradient method is given by the formula

VE—1 Aaz(B™A)
Here A is the coefficient matrix of the original system, and B that of the precondi-

2(

)k where k =

tioner. Therefore, the principal goal of domain decomposition theory is to provide a
good upper bound on the condition number of the preconditioned operator.

Earlier work on iterative substructuring methods focused on the h-version finite
element methods; see e.g. Bramble, Pasciak, and Schatz [5], Dryja [10], Dryja and
Widlund [12], and Smith [31,32,33] for work on three-dimensional elliptic problems.
A recent paper by Dryja, Smith, and Widlund [11] summarizes our knowledge of
the h-version case. The best of these results show that the condition number of the
relevant preconditioned operator grows only linearly with the logarithm of the number
of degrees of freedom of an individual subregion. It is important to note that these
bounds are independent of the number of subproblems and that they are independent
of jumps in the coefficients across subregion boundaries. We also note that there are
considerable differences between good iterative substructuring algorithms for two and
three dimensional problems; some algorithms that are successful for problems in two
dimensions are quite mediocre in three.

The development of iterative methods for higher order and spectral methods poses
a special challenge since the stiffness matrices can be much more ill conditioned than
for lower order methods. The domain decomposition methods that have been proposed
are also less well understood. Since the number of degrees of freedom per element
increases rapidly with p, it is natural to use individual elements as subregions to be
assigned to individual processors of a parallel computing system. In this paper, we
design an algorithm for which we have been able to establish a polylogarithmic bound
in the degree p of the spectral elements. We note that the method developed here is
directly inspired by a method developed by Barry Smith [32,33] for the h-version.

Important progress has previously been reported, for problems in two dimensions,
in Babuska, Craig, Mandel, and Pitkéaranta [1], in which polylogarithmic bounds for
some methods are proved; see also Pavarino [27] for results in two dimensions, which
are similar to those of this paper. In three dimensions, pioneering work has been
carried out by Jan Mandel [25,24,23,26]. His algorithms, which use global spaces
which differ from ours, have also been implemented in industrial software. A number of
domain decomposition methods for spectral elements have been considered by Fischer
and Rgnquist [16] and Rgnquist [29,30]; for a general introduction to spectral element
methods, we refer to Maday and Patera [22] and to Bernardi and Maday [4]. However,
we know of no previous theoretical results that show only polynomial growth, in
log p, for problems in three dimensions. We note that other domain decomposition
algorithms for higher order methods, based on overlapping subregions, have been
considered in Pavarino [28,27].

We note that it is known that certain collocation methods result in coefficient
matrices which are spectrally equivalent to the stiffness matrices derived from the
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Galerkin procedure considered here; cf. Bernardi and Maday [4]. It therefore appears
likely that our algorithm could be of use for collocation problems as well.

2. The elliptic problem and block-Jacobi methods. We consider a linear,
elliptic problem on a bounded domain Q C R? formulated variationally as

a(u,v) = /Q p(x)Vu-Vodr = fo(v),Vve V.

V is an appropriate subspace of H*(2). p(z) > 0 can be discontinuous, with very
different values for different subregions, but we allow this coefficient to vary only
moderately within each subregion £2;. In fact, without decreasing the generality of
our results, we will only consider the piecewise constant case of p(z) = p;, x € Q.

The region is the union of elements, which are cubes or images of a reference cube
under reasonably smooth mappings; no element can be “too distorted”. Almost all
our technical work can in fact be carried out on a single reference cube.

The discrete space VP C V is the space of continuous, piecewise (), elements. This
is a conforming Galerkin method; the finite element problem is obtained by restricting
u and the test functions to the space V?. The finite element solution is a projection
of the exact solution onto the finite element space; the projection is orthogonal with
respect to the bilinear form a(-,-).

The finite element variational problem is turned into a linear system of algebraic
equations, Kz = b, in the usual way. Here K is the stiffness matrix, and b the load
vector. KT = K > 0, a property inherited from the bilinear form a(-, -).

Here we view our iterative substructuring method as a block-Jacobi/conjugate
gradient method; cf. Dryja and Widlund [15]. The stiffness matrix K is preconditioned
by a matrix K, which is the direct sum of diagonal blocks of K. We can also replace
some of these blocks by spectrally equivalent (or almost spectrally equivalent) block
maftrices in an attempt to speed up the computation. However, to arrive at a successful
method, we must first carry out a suitable change of basis and select the blocks
carefully. Each block of the Jacobi splitting corresponds to a set of degrees of freedom
that define a subspace V;. In the case considered, the space V? is the direct sum of
these subspaces.

Block-Jacobi methods such as these can also be viewed differently. For each
subspace V;, we introduce an orthogonal projection P; given by

a(Piu,v) = a(u,v), YoeV,, ueV?,
or an approximation thereof, defined by a different inner product,
a(Tiu,v) = a(u,v), YoeV,, ueV?.

In a simple case, when a subspace corresponds to a set of adjacent degrees of freedom

of a finite element scheme, P; simply corresponds to the inverse of the relevant diagonal

block of K, padded with zero blocks, times K; the sum of these operators represents

K;'K. To obtain T, the special block of K is replaced by an approximate solver for
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the given operator restricted to the subregion. We will see that our successful method
results from selecting one of the subspaces quite differently from that of this simple
example.

The spectrum relevant for this iterative method is that of the operator

The eigenvalues of K~'K;, which are identical to those of the inverse of the operator
T, are given in terms of the Rayleigh quotient

N =~ o N
M7 U:Zu“ u; € V;.

a(u,u)

Providing an upper bound of this Rayleigh quotient is the most challenging part
of our work. Success is tied to estimating the approximate energies a;(u;,u;) uni-
formly, or almost uniformly, in terms of the strain energy a(u,u). An upper bound
on a(u;,u;)/a(u;, u;), u; € Vi, also enters the bound on x(K;'K) if inexact solvers are
used for some or all of the subspaces.

In this study, we use the block-Jacobi framework but there is also a more general
theory; cf. Dryja and Widlund [14]. Thus, any block-Jacobi method can be viewed as
an additive Schwarz method based on a direct sum of subspaces. There are also Gauss-
Seidel-like, multiplicative, as well as hybrid Schwarz algorithms; cf. Dryja, Smith, and
Widlund [11] for a general discussion.

3. A choice of subspaces. A method of this kind is primarily defined by a
set of subspaces; the mathematical description of the method is complete when, in
addition, the bilinear forms @;(-,-) have been specified. In designing methods, we
can learn from the h-version case. The first lesson is that we cannot obtain a good
bound if Vy = ()7 and the elements of the other subspaces all vanish at the vertices
of the elements. We must then choose ug € Vj in the decomposition, v = Y u;, as the
interpolant onto V4. In three dimensions, the norm of this interpolant can be much
larger than the norm of u itself and any upper bound on the Rayleigh quotient must
be disappointing. This point is discussed in detail in Dryja, Smith, and Widlund [11]
where remedies, and their consequences, are discussed for the piecewise linear case.

As in the case of h-finite elements, we consider several important geometric ob-
jects: interiors, faces, edges, and vertices. The subspaces will be directly related to
them. For higher order methods this is most natural. For whatever choice of the
basis functions, we find each of them naturally associated with one of these objects;
cf. e.g. Babugka, Griebel, and Pitkaranta [2]. We will merge the edges and vertices of
the individual elements, creating wire baskets VW;, and use a related wire basket based
space Vj.

Let Q; denote the elements of the partitioning of the given region . Our new
method is based on the following subspaces: (some further details are given in the
next section)



e An interior space for each element: @, N H}(;).

e A space for each face. These functions vanish on and outside the boundary of
Q;; = (QUL;; UQ;). Here the two elements share a common face; E’j =Q, ﬂﬁj. Since
it is crucial to have a good recipe for the extension of the values on the designated
face to the interior of the two relevant elements, we use the minimal energy (discrete
harmonic) extension.

o A coarse, global space, Vj, of piecewise discrete harmonic functions, is associated
with the wire baskets of the elements. Its elements are defined solely by their values
on the wire baskets. A central issue is how to define the values on the faces. Once
the face values are given, we use a discrete harmonic extension to the interiors of the
elements. It is known from the work on the h-version that it is crucial to include the
constants in this coarse, global space. We must therefore make sure that an element
of V, which takes on a constant value on the wire basket of an element, takes on the
same value everywhere in the element. This is explained further in the next section.

For the subspace Vj, we use a simple bilinear form,

sz inf [|u — el[7, o

This leads to a coarse problem with only one essentially global degree of freedom, ¢;,
per element. These values are found by solving a linear system of finite difference
type. In addition, a larger linear system with a convenient diagonal matrix is solved
to find all the values on the wire basket.
A complete proof of the following result will be given in a later paper.
THEOREM 1. For the iterative substructuring method just introduced,

k(T) < const.(1 4+ logp)Q.

Here the constant is independent of the number of elements, their diameters, the degree
p, and the size of the jumps of the coefficient p(x) across element boundaries.

4. Bases for the subspaces. We will not provide a proof of our main result
in this paper but we will introduce the bases of the subspaces which both define our
method and are central in our proof. Some of our technical tools come from a paper
by Canuto and Funaro [6], but several appear to be new. As in the the h-version
case, extension theorems play an important role; cf. also Babuska, Craig, Mandel,
and Pitkaranta [1] and Bernardi and Maday [3].

As has been shown by Bramble, et al., and has been clearly explained by Mandel,
we can carry out the analysis locally, one element at a time. Thus, the analysis
can be reduced to studying a preconditioner for the Neumann problem on a single
subregion; see also Dryja, Smith, and Widlund [11]. We can therefore work exclusively
on the unit cube [—1,+1]>. The subproblem on the cube, which corresponds to the
restriction of the global subspace, must have the same null space as the local finite
element problem to make bounds that are independent of the number of subregions
possible; cf. Dryja, Smith, and Widlund [11].
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It is quite clear from the work of Babuska, Griebel, and Pitkéranta [2], Babugka,
Craig, Mandel, and Pitkdranta [1], and others that the choice of bases for the different
subspaces is most crucial for p-version finite element methods and in the design of good
preconditioners. Our subspaces are constructed from several sets of basic functions
defined on the interval [—1,41]. They replace, in a very natural way, the sine and
linear combinations of pairs of exponential functions used when solving Laplace’s
equation in a cube by the method of separation of variables. We denote by P; the
space of degree p polynomials that vanish at the ends of the interval. We use:

e A set of eigenfunctions and eigenvalues, ®; € P} and A\;,7 = 1,---,p—1, defined
by

/_11 dq;:,(; r) dd("c) dr = )\, / Yo(z) de, Vo€ PI.

We normalize these functions to have unit H! —norm. We also use:
e Two sets of degree p polynomials, equal to one at 1 and zero at —1, defined by

1 g dv(x)
/ dpi(w) dv(z) - A / )de =0, Yoe Pl
1 dx dz 2

and

/ dpij(@) dv(@) o0y, —|—/\]-)/1 i i(x)v(z) de =0, Vo€ Pl
-1 dzx dz -1

These functions are different from the sine and exponential functions used in the
continuous case in several ways; e.g. A\,_; grows approximately as C'p*® not as C'p*.
We note that similar sets of functions are used in the work of Babuska, Griebel, and
Pitkaranta [2] and Canuto and Funaro [6].

In addition, we use:

e The degree p polynomial ¢ that solves

min |||z, (1,0, ¢(1) =1, ¢(=1) = 0.

We are now ready to describe our subspaces. We note that all of them, except
the first, consist of discrete harmonic functions.
e The interior basis functions are defined by

(I)Z(r)q)](y)q)k(z)v LaJak = 17 L, P — 1.

They are a(-,-)— and Ly—orthogonal.
o The face basis functions are given by

Di(2)®;(y)pij(2), t,9=1,---,p—1,

for the face defined by z = 1.

The wire basket space is given in terms of edge and vertex basis functions. As we
will see, the elements of the subspace spanned by these functions are later “corrected”
so that they also contain certain components from the face spaces.
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o The edge basis functions are given by

@i(x)Wi(y)(I)i(Z)a i=1,---,p—1,

for the edge defined by x =1,y = 1.
e One of the eight vertex basis functions is given by

wo()po(y)pol(z)-

Six special functions ki(x,y,z) are now constructed. Each of them belongs to
one of the face spaces; each of them vanishes on five of the faces. They are defined in
terms of their sum

6
k(x,y,z) = E ki(z,y,2).
k=1
In turn, s(x,y,z) is the difference between the constant function 1 and the unique
element in the space spanned by the edge and vertex basis functions that equals 1 on
the wire basket.

An element in the final wire basket space is now obtained by first matching given
values on the wire basket with a function in the space of edge and vertex basis func-
tions. We then add six terms which are the products of the averages, of the given
function, over the boundary of the kth face and ki(z,y,z). This process defines an
interpolation operator; the range of it defines the wire basket space. It is important to
note that this operator has been constructed so that it reproduces constants exactly.
The null space condition mentioned previously is therefore fulfilled.

5. A numerical study of the condition number. As we have previously
pointed out, an upper bound for the condition number of the whole problem can be
obtained by considering a preconditioner for a Neumann problem on the reference
element. Thus it becomes possible to compute this bound from the eigenvalues of a
matrix pencil defined by the contributions from an individual element to the stiffness
matrix and to the preconditioner. Both these matrices are singular and have the
same null space; only the space orthogonal to this one dimensional space is relevant
in our analysis. We have carried out a series of MATLAB 4.0 experiments, which
closely parallel those of Smith [33] for the case of piecewise linear elements. In our
table, S denotes the part of the stiffness matrix which is attributable to the discrete
harmonic part of the space. This is the only part of the matrix that is relevant.
M 1is its preconditioner. It follows from standard theory for iterative substructuring
methods that «(M™'S) provides an upper bound for the condition number of the
entire preconditioned operator.

It is interesting to note that the condition number estimates obtained in this way
quite closely approach those obtained by Smith [33] for h-version problems, with the
same number of degrees of freedom, as the size of the local problem increases. Thus,
for the cases which correspond to p = 7,8 and 9, Smith reports condition numbers of

15.86,17.59 and 19.23, respectively.
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Local condition numbers

D 3 4 ) 6 7 8 9 10 11
k(M~'S)| 7.21 998 12.08 14.20 15.96 17.74 19.23 20.79 22.08
Amaz 1.84 195 198 202 204 206 207 208 2.09

A'rm’n

0.255 0.196 0.164 0.142 0.128 0.116 0.108 0.100 0.095
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