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Abstract

Chalktalk is a visual language based around real-time interaction with virtual objects in
a blackboard-style environment. Its aim is to be a presentation and communication tool,
using animation and interactivity to allow easy illustration of complex topics or ideas.
Among many of the capabilities of these virtual objects is the ability to send data from one
object to another via a visual linking system. In this paper, we describe a way of making
the link system more robust by adding type information to these links, and compare and
contrast the requirements of a presentation-oriented visual language with a more traditional
programming language.
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Background

1.1 Introduction to Chalktalk

Figure 1.1: A polygonal shape (left) is transformed by a rotation matrix (middle) that is
configured to rotate the polygon 1.4 radians around the Z axis, displaying the results on a
set of axes (right).

Blackboards or whiteboards are a common fixture in most classrooms around the world.
Their purpose is to allow teachers to support their verbal explanations with visual aids and
graphical depictions of the subject at hand. This is an effective technique that has been
proven to facilitate and enhance student learning [Pashler et al. 2007].

Classrooms have also more recently been implementing modern technological tools, such
as computer-connected projectors or electronic smart boards. However, the ability of these
tools to display dynamic content has traditionally been underutilized. They are often used
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solely to display pre-made content such as slides, images, or video, and only rarely do they
allow teachers to adjust their depiction of the content in the middle of a lesson the way
a blackboard does. At best, they replicate a blackboard’s functionality by allowing the
teacher to draw and erase static images on a digital canvas.

Chalktalk [Perlin 2016] takes this blackboard metaphor into the future. At its core, it is a
computer-based visual language based around real-time interaction with dynamic animated
objects in a blackboard-style environment. Users create these objects by drawing a shape
that corresponds to one of the objects in Chalktalk’s large library of “sketches”. When this
drawing is clicked, it is then interpreted as its corresponding sketch and “comes to life” by
replacing the freehand drawing with its animated sketch object. These sketches can, among
other things:

• Draw text, lines, or shapes, in 2D or 3D,

• Move and animate,

• Respond to input events such as mouse clicks or drags,

• Generate or play audio, and

• Send data from one sketch to another.

The combination of these features allow for the illustration and visualization of complex
topics or ideas, such as those displayed in Figure 1.1. Chalktalk is currently in active
development and use by Professor Ken Perlin of New York University, as well as several
other students and researchers at New York University’s Future Reality Lab.

Figure 1.2: Left: a pendulum before and after interpretation. Right: a small segment of
Chalktalk’s library of sketches, with the pendulum shown near the center.
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Beyond just teaching, Chalktalk has wide potential as a general communication tool. As
computers become smaller and more integrated into our daily lives, and VR and AR tech-
nology becomes more practical for consumer use, computer-aided visualizations may very
well end up being a part of our everyday communication. In this kind of enviroment,
Chalktalk would not just be a teaching or presentation tool, but would be an aid to anyone
wishing to communicate complex concepts to another person.

1.2 The Chalktalk interface

Given its use as a presentation tool, the Chalktalk interface is deliberately minimal to allow
the viewers of the presentation to focus on the content of the presentation rather than the
interface. When first running the program, the user is presented with an empty canvas.
Clicking and dragging the mouse begins a drawing, and by clicking on a drawing, it is
interpreted and becomes a live object.

Figure 1.3: Left: the sketch radial menu, shown in “help mode” when the cursor hovers over
a sketch. Right: the radial menu shown in “help mode” when the cursor hovers over the
background.

Other actions are done through an invisible radial menu. For example, clicking anywhere
on the background, then clicking below the first click, reveals a color palette, allowing the
user to change the color of the lines being drawn, while clicking the background and then
clicking above the first click zooms the view out to show an overview of the blackboard.
Sketches can also be manipulated with a similar radial menu, where the clicks go in the
opposite direction. For example, clicking to the right of a sketch then on the sketch itself
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deletes a sketch, clicking below a sketch then on the sketch rotates it, and by clicking to the
left of a sketch followed by dragging from one sketch to another, a link is created between
the two sketches so that data can travel from the first sketch to the second.

However, this invisible interface can be difficult to learn for novice users. As such, Chalktalk
also contains an auxiliary interface, termed “help mode”, activated by pressing the space
bar. In help mode, the radial menus are made visible, and auxiliary information about
sketches, hotkeys, and other features of the system are shown to the user directly. Due to
its more cluttered appearance, help mode is not suitable for a live performance, but it is
useful when learning to navigate Chalktalk’s interface.

1.3 Creating new sketches

Users also have the ability to create their own sketches. Because Chalktalk is implemented
in Javascript and runs in any modern web browser, sketches are implemented by creating
a Javascript file. This file contains a single function which initializes the sketch object, and
this function should define, at minimum, a label string with the name of the sketch, and
a render function that describes both how the sketch should be displayed and how it is
drawn by the user.

While Chalktalk is implemented on top of WebGL, users do not have to deal with low-level
WebGL API calls themselves. Instead, a simplified high-level API is provided for sketch
authors, similar to artistic programming tools such as Processing [Processing Foundation
2017] or p5.js [McCarthy et al. 2017]. A similar high-level API is provided for user interac-
tions and interaction with other sketches. While the full range of this API is out of scope
for the purposes of this paper, we will focus on one detail: the input/output system for
sending data between sketches over a link.

Listing 1.1: The code to define a minimal “house” sketch, which is a simple pentagon shape
with no animation or user interaction.
function ( ) {

t h i s . l a b e l = ’ house ’ ;
t h i s . render = function ( ) {

mCurve ( [ [ −1 , . 8 ] , [ −1 , −1 ] , [ 1 , −1 ] , [ 1 , . 8 ] ] ) ;
mCurve ( [ [ 1 , . 8 ] , [ 0 , 1 . 7 ] , [ − 1 , . 8 ] ] ) ;

}
}
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Figure 1.4: The house sketch defined by Listing 1.1. Left shows the sketch after interpreta-
tion, while right shows the steps required to draw it.

1.4 Linking sketches

As previously mentioned, sketches can be linked in order to send data from one sketch to
another. Each sketch has exactly one output that can be sent to any number of sketches,
and each sketch can receive any number of inputs from other sketches. This data is updated
and propagated from each sending sketch to each receiving sketch at every frame.

Figure 1.5: A swinging pendulum sketch (left) is linked to a graph sketch (right) that plots
the pendulum’s angle over time.
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These links are represented in Chalktalk’s visual interface as arrows pointing from the
sending sketch to the receiving sketch. The order in which inputs are connected matter:
the first link created is considered the sketch’s first input, the second link is the second
input, and so on. For sketches with multiple inputs, the first, second, and third input link
are each annotated visually with an “x”, “y”, and “z” respectively in order to differentiate
the arrows.

Figure 1.6: Logic gate and numerical sketches are used to implement a two-bit binary adder
in Chalktalk. The addition symbol and line here are purely decorative: all addition is being
performed through the linked logic gates.

In the existing link system, the data that is sent can be any Javascript data, from simple
primitive values such as numbers, strings, and arrays to more complex values like objects
and closures. Sketches use this system to send a variety of data, including but not limited
to:

• Numerical values or functions to be plotted on a graph (as seen in Figure 1.5) or used
as controls for another object (as seen in Figure 1.1),

• Boolean true and false values, that can be used to demonstrate concepts in digital
logic,

• Vectors and matrices, represented by arrays of numbers, that are used to perform
linear algebra operations,
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• Note frequencies to be played through an audio synthesizer,

• Functions that take in a time value and return an audio sample to be played through
the computer’s speakers,

• A mesh object containing a list of 3D vertices and edges that can be displayed in a
set of 3D axes (as seen in Figure 1.1),

• A spline curve, used to control the shape or animation of the receiving sketch,

• Text strings, to be displayed, manipulated, or interpreted by the receiving sketch, and

• Color data that can control the display color of a 2D or 3D object.

This variety of data creates a large space for experimentation, and this helps to take Chalk-
talk from a simple animation tool to an exploratory medium. Users can ask questions such
as, “What happens if I take data from this sketch and put it into that sketch?” and by
performing these links find out the answer, or demonstrate it for an audience. As a result,
this linking system is crucial to the usefulness of Chalktalk as a whole.

To allow sketches to respond to links in the existing link system, two things must be
done:

1. For a sketch to emit output values, it must define an output function. The return
value of this function will be the output value of this sketch.

2. For a sketch to respond to input values, it must look at its inValues array, where data
coming in from other sketches is stored, in the order in which they were connected.

Listing 1.2: The output function for the pendulum object, which outputs its angle in radians.
t h i s . output = function ( ) {

return t h i s . ang le ;
}

1.5 Limitations of the existing link system

As mentioned above, Chalktalk supports a wide variety of data being sent over the link
connections. However, there are several flaws to this system:

1. Sketches have no guarantee over what kind of data will be arriving at their inputs.
For example, a sketch that outputs a full 3D mesh object can be connected to a sketch
that expects a simple number as the input, leading to runtime errors if the receiving
sketch attempts to treat the mesh as a number.
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2. While sketches can inspect the runtime type of the input data, these runtime types
are very broad categories that do not inform the sketch of how its value is to be
interpreted. For example, many sketches accept a numerical input as a floating-
point number, but Chalktalk has no way of knowing whether this numerical input
is intended to be a time value in seconds, an audio sample, a frequency in hertz,
an angle in radians, or any other form of numerical input. This can often lead to
confusing situations and unusual behavior, such as when a sketch outputting audio
samples (whose range is −1 to 1) is connected to a synthesizer sketch expecting a
frequency in hertz (in the range of hundreds to thousands), leading to unusual audio
effects due to the misinterpretation of the input data.

3. Because all input values are simply packed into a dynamically-sized array, Chalk-
talk has no knowledge of how many inputs each sketch uses and cannot display this
information to the user.

4. Due to all of the above issues, users have no feedback as to which sketches can be
connected together. Every sketch is allowed to connect to every other sketch regardless
of whether that connection will do anything, and regardless of whether the connection
will cause the sketches to act sensibly. Not even help mode displays this information
to the user.

The end result of these problems is that the presenter must know what sketches are designed
to work well together. This is feasible when the presenter was also the author of the sketches
they’re using, but the end goal of Chalktalk is to provide users with a suitable “standard
vocabulary” of sketches that is suitable for general use in many places, while allowing them
to augment the library with their own sketches and with sketches shared by other users. As
such, the majority of users are not going to be creating the majority of the sketches they
use, and as such better feedback and more sensible default behavior is required.
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Introduction to Atypical

2.1 Solving the linking problem

Many programming languages have long ago solved the problem of determining what kind
of data is allowed to be passed from one object, module, or function to another: they use
static type systems, which explicitly declare what kind of data is allowed to flow between
them. A type system is an extremely attractive solution to the existing problems with the
link system, as it would allow Chalktalk to know what kind of data each sketch is emitting
and expecting, show adequate feedback when compatible and incompatible sketches are
linked, and support the user in their explorations.

However, most programming languages are designed for the creation of large, long-lasting
software systems. As such, type systems in these programming languages focus primarily
on preventing errors at execution time, on making certain erroneous program states impos-
sible, and on presenting error messages to the programmer as early as possible, often at
compilation time [Cardelli 1996].

Chalktalk is not meant for designing computational artifacts and long-lived software sys-
tems, but rather for exploration, presentation, and communication in a real-time setting.
Because the focus of the language is different, so too must the focus of the type system be
different. It is for this reason why its type system will be called Atypical.

2.2 Constraints and criteria for Atypical’s design

We will use the following criteria to evaluate potential type system designs:

1. Similar to most programming language type systems, Atypical should allow Chalk-
talk to discern whether two sketches have compatible input and output types, thus
determining whether they can be connected.

9



2. Related to this, Atypical should allow Chalktalk to inspect these types at runtime so
it can display visual feedback to the user showing whether or not two sketches are
compatible when the user attempts to connect them.

3. At the same time, Atypical should allow the user to connect any sketches that have
data that are “close enough”. For example, if the pendulum sketch outputs its angle
as a Radians type, it should still be allowed to connect to sketches that expect a
floating-point number as input. This should allow Atypical to retain the looser “feel”
of a dynamic type system, while still assuring sketch creators that their sketches will
only receive the types of data that they specify.

4. Because Chalktalk was designed for use in real-time presentations, often in front of
a large audience, both Atypical and its integration with Chalktalk should support
this form of interaction by avoiding errors that can spoil the show. Although certain
classes of errors caused by misinterpretation of input data can cause problems during
a presentation, intrusive error messages or crashes during a presentation are far worse.

5. As mentioned in section 1.2, Chalktalk errs on the side of keeping its interface hidden,
so as not to overwhelm those watching a presentation with unnecessary interface
details. However, Atypical should allow Chalktalk to display the types for novice
users in help mode, allowing them to discover what kind of connections are and are
not possible.

6. The type system should also avoid placing an undue burden on sketch authors. As
with Processing and p5.js, we make the assumption that sketch authors may not
be professional programmers, but instead artists, educators, students, scientists, or
anyone else who wishes to communicate an idea to people. We should not require
them to understand the details of the structure and implementation of the type system
itself in order to use it.

In addition, we also have the following practical constraints when implementing this type
system:

1. Because Chalktalk is developed in browser-based Javascript, Atypical must also be
developed either in Javascript or in a compatible language, that can either compile
to or at very least interoperate with Javascript.

2. Chalktalk’s current sketch library contains over 100 sketches from a variety of different
domains. Because of the effort it would take to migrate all these sketches to a new
input and output system, Atypical and its integration with Chalktalk should allow
for at least some level of backwards compatibility with Chalktalk’s older sketches that
do not declare types.

3. However, Atypical should allow, with sufficient effort, for all the current sketches in
Chalktalk to be migrated to use Atypical. In other words, there should exist no sketch
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in the Chalktalk sketch library that is impossible to implement using the Atypical
type system. Some slight variances in the behavioral semantics of some sketches is
acceptable, but overall, sketches should survive the transition effectively intact.

2.3 Evaluation of existing type systems

2.3.1 Static vs. dynamic typing

Because Chalktalk and all its sketches are implemented in Javascript, we can effectively say
that the existing link system uses the Javascript type system. Javascript has a dynamic
type system, which means that types of values are not checked at compile time, but only
at run-time. In addition, when performing an operation on an incorrect type, Javascript
favors casting of values instead of returning an error message. For example, performing
binary addition on two non-numeric, non-string values converts them both to strings and
concatenates those strings [ECMA 2016].

However, most dynamic type systems do not allow for type annotations or restrictions.
Variables can take on any value of any type and it is up to the programmer to verify that
they have received a value of the correct type before continuing execution. Given that this
is the exact problem we described in section 1.5, we conclude that a purely dynamic type
system is insufficient for our purposes.

Standing in contrast to dynamic type systems are static type systems, where types are
explicitly annotated or inferred and are typically known at compile time [Cardelli 1996].
However, a crucial distinction must be made between the static type systems in typical
programming languages and the Atypical system. In a typical programming language, once
the source code is distributed to users, it remains effectively static and the data flow through
the program does not change. In Chalktalk, the user is actively modifying the data flow
during a performance, and as such a purely static, compile-time type system is insufficient
for our purposes.

What we find instead is that we must take a hybrid approach. Sketches should be able to
declare which types they support, but this must be done at run-time. However, the absolute
latest point that the sketch’s input and output types can be defined and set is when the
sketch is added to the blackboard. Once it is added to the board, this type must remain
static and can no longer change, otherwise any links that the user drew may no longer be
valid.
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2.3.2 Inheritance, polymorphism, and subtyping

Most object-oriented languages implement some form of subtyping via inheritance. In these
languages, subtyping is valuable because they allow us to extend a large, existing software
system while allowing it to treat our extended derived types and data structures as if they
were the parent type, which is a form of polymorphism [Cardelli 1991].

Javascript also supports a somewhat different form of inheritance called prototypical inher-
itance, inspired by the language Self [Ungar and Smith 1987]. When accessing a Javascript
object’s properties, if the object does not contain the desired property, then the request
is forwarded to another object called the object’s prototype, followed by its prototype’s
prototype, and so on.

However, because Chalktalk is not designed for the creation of large, long-lived software
systems, the drawbacks of inheritance begin to outweigh the benefits. In particular, in-
heritance and subtyping, particularly without multiple inheritance, places types on a strict
hierarchy where derived types can be treated as their base type but not vice-versa. In
addition, there is usually no interoperability between sibling types without going up the
hierarchy. For example, if Radians and Degrees are both subtypes of the Float type, usu-
ally an explicit conversion must be defined in order to allow systems that accept Radians to
also accept Degrees, and vice-versa. For Chalktalk, we do not want types to be confined to
a strict hierarchy, but instead to be interoperable with a “neighbourhood” of similar types,
and as such inheritance-based type systems are not suitable for our purposes.

Other languages such as Haskell provide polymorphism via type classes [Hall et al. 1996].
Roughly speaking, if a type implements a set of operations related to a particular type
class, then that type is seen as a member of that type class, and is interoperable with
all functions that operate on that type class. However, implementing a system like this
greatly increases the complexity of the type system, and would make it unsuitable for
non-professional programmers and sketch authors.

2.3.3 Generic types

Generic types, sometimes called parametrized types or second-order types [Cardelli 1996],
are, in a manner of speaking, functions that take types as arguments and output new types
in return. For example, a generic type called Array might take in a type such as Float, and
return the constructed type Array(Float), an array of floating-point numbers. Meanwhile,
a generic type called Pair may take in two types, such as Float and String, and return
Pair(Float, String), a product type consisting of a single floating-point number and a
single string.
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Generic types are absolutely essential for Atypical. Chalktalk currently has many sketches
where values such as arrays and functions are used as both inputs and outputs. Without
generic types, you would not be able to define what these arrays contain, or what types
these functions expect as arguments and return as outputs. These sketches would either
lose that type information, or specific types for each kind of array and function would have
to be defined (e.g. FloatArray, StringArray, etc.).

Most statically-typed languages have support for generic types for precisely this reason.
While dynamically-typed languages can mix and match values of different types in an object
such as an array, statically-typed languages cannot do this without losing type assurances.
Even modern statically-typed languages that do not implement generic types, such as Go,
still have a few special types that allow for this type of functionality, such as their array
types [Go Team 2016].

2.3.4 Existing graphical languages

Aside from textual programming languages, graphical languages have also been well studied
and are presently in active commercial use. One of the earliest experiments in this area
was by Robert Sutherland [1966], who described a graphical system for creating software
programs using line drawings and displays. His work only briefly mentions the possibility
of type systems and does not go into detail as to the implementation details.

In the commercial space, Max/MSP is a popular graphical programming language focused
on music production. Max/MSP also uses a data flow system as the foundation of its graphi-
cal language, but the built-in types offered are few and have little opportunity for extension.
In addition, types are often domain-specific and thus lack the kind of interoperability that
Chalktalk needs [Freed et al. 2011].

Xiong, et al. [2000] describe a very well-crafted static type system for Ptolemy II, a graphical
language meant for use in embedded systems. This type system puts types on a lattice that
uses type inequalities to determine where data conversions can be done losslessly. However,
this approach carries with it two flaws when looked at through the lens of Chalktalk. First,
it replicates the same problem we have with inheritance and subtyping: types are placed
on a hierarchy which inhibits type conversion in any direction but up. Second, like many
other programming languages, but unlike Chalktalk, Ptolemy II is meant for the creation of
long-running, safety-critical software, where catching and presenting the programmer with
an error, either at compile time or runtime, is preferable to allowing the program to enter
an undesirable state. Thus, their focus is primarily on ensuring that all data conversions
are lossless, whereas Chalktalk has some tolerance for results that are only approximately
correct.
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2.4 Atypical’s design

Having identified our constraints and criteria for evaluating the design of the language, as
well as having reviewed many aspects of existing programming language type systems, we
will now relate the specific design decisions that were made when designing Atypical.

Types will be coded directly in Javascript, with values of a particular type
implemented as Javascript objects.

While it may have been feasible to define a separate specification language for the types
themselves, ultimately values of a particular type have to be implemented as values in
Javascript in order to run in the browser. In addition, type conversion functions and manip-
ulations of the type objects within the sketches must be done in Javascript, so implementing
the type itself in Javascript avoids requiring sketch authors to learn two representations of
the type, in our specification language and in Javascript.

All types will derive from a single prototype class, Type. No other form
of inheritance or subtyping will be used.

The only purpose of Type is to provide a few convenience methods to all objects that are
defined within the Atypical system. But due to the problems with inheritance explained in
section 2.3.2, as well as the fact that Chalktalk’s data transmission is comprised of short-
lived data messages instead of long-lived software objects, Atypical does not use inheritance
for the purposes of ensuring interoperability between different sketches with similar input
types.

Conversion functions between types will be the primary method of ensur-
ing interoperability. These conversion functions should be as simple as
possible to implement.

Instead of inheritance, interoperability is achieved by allowing the author of a type to define
explicit conversion functions between their type to other types. Under a naive approach, this
would require type authors to define O(n2) conversion functions in order to make n types
interoperable. Atypical does not take this naive approach: type authors have the ability to
define whole swaths of conversion functions at once, under many different configurations,
depending on the kind of type and the explicit conversion functions the type author chooses
to write.
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Among the benefits of this is the fact that type interoperability is not restricted to any one
rigid topology such as a strict hierarchy or lattice. If a conversion between two types is
required, it can simply be defined regardless of what other conversions exist.

Types are to be created very early at runtime, ideally when first loading
the Chalktalk web page.

Types are defined in a typical Javascript file by calling API functions that set up the internal
state of the type system in memory. Because these types must be set up before any other
part of Chalktalk uses them, these files should be loaded early in the page load process
before any user interaction begins. This effectively turns Atypical into a mainly-static type
system when seen from the perspective of the sketches.

Generic types will be implemented as Javascript functions that take types
as arguments and return types.

When the user defines their sketch’s output as an Array(Float), this actually calls a
function called Array passing the Float type constructor as an argument. If the Float
form of Array has already been defined at this point, it its constructor is immediately
returned to the caller. Otherwise, the type is dynamically created and defined based on the
specification of the generic Array type.

While this may seem like an on-the-fly type creation, violating the previous design decision,
in practice, all sketches, including their associated types, are loaded and evaluated as part
of Chalktalk’s loading process. This means that any generic types used in sketches are also
created long before the user actually interacts with the system.
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Atypical’s type API

We now discuss the implementation of the above design.1

3.1 Defining types

Each value in Atypical is implemented as a Javascript object whose properties contain the
actual data for the object.

To give an example, a Color object is represented by a Javascript object containing r,
g, b and a properties, each containing a primitive Javascript number. These properties
represent the red, green, blue, and alpha channels of the color respectively.

Its prototype provides methods and values common to all Color objects, such as a method
for calculating the color’s luminance. Its prototype’s prototype, in turn, is Type as described
in section 2.4, which provides methods common to all typed objects.

In most types, the properties on each object are defined as immutable by using a special
flag passed into Object.defineProperty. The _set method is provided as part of Type as
a convenience for defining these immutable properties.

Types are defined by calling defineType(implementation), where implementation is an
object containing:

1. An init method for initialization, which is also used as the type’s constructor func-
tion,

1In the code listings in this section, you may see “AT.” used as a prefix for most of the functions related
to the type system. Atypical is implemented using the Javascript module pattern to provide encapsulation
[Cherry 2010], and AT is the short name for the Atypical Javascript module. This pattern is somewhat
comparable to namespaces in other programming languages, and for the purposes of this paper the “AT.”
prefix can be ignored.
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2. A typename string, which must be a valid Javascript identifier with no dollar sign
characters,

3. Optionally, the special toPrimitivemethod, used to convert this type into a primitive
Javascript object (described in more detail in section 3.6), and

4. Any other methods or constants that objects of this type should have (such as the
aforementioned luminance method).

Listing 3.1: An abbreviated version of the Color object’s type definition, with a Color value
being created below. Extra code that allows this object to be initialized with an array or
another Color object was omitted for brevity.
AT. def ineType ({

typename : "Color " ,
i n i t : function ( r , g , b , a ) {

// . . . Extra convenience code omit ted . . .
// Define a he l p e r f unc t i on to he l p wi th v a l i d a t i o n
function va l i d a t e ( channel , de fau l tVa lue ) {

i f ( channel === undefined ) { channel = de fau l tVa lue ; }
channel = ensureNumeric ( channel ) ;
return Math . min (1 , Math .max(0 , channel ) ) ;

}
t h i s . _set ( " r " , v a l i d a t e ( r , 0) ) ;
t h i s . _set ( "g" , v a l i d a t e ( g , 0) ) ;
t h i s . _set ( "b" , v a l i d a t e (b , 0) ) ;
t h i s . _set ( "a" , v a l i d a t e ( a , 1) ) ;

} ,
luminance : function ( ) {

return 0.2126∗ t h i s . r + 0.7152∗ t h i s . g + 0.0722∗ t h i s . b ;
}
// . . .A few other methods omit ted . . .

}) ;

l e t pink = new AT. Color (1 , 0 . 64 , 0 . 94 ) ;
c on so l e . l og ( pink . g ) ; // Logs "0.64"

3.2 Generic types

Generic types can be defined in a similar manner to standard types, by calling the
defineGenericType(implementation) method with a similar implementation object. As
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described in section 2.4, defineGenericType creates a function that automatically defines
and returns a type constructor (called the “constructed type”) when given other type con-
structors as arguments.

Much like when defining standard types, the implementation object should contain:

1. An init method for initialization, which is also used as the constructor function for
all constructed types of this generic type,

2. A typename string for the generic type, which must be a valid Javascript identifier
with no dollar sign characters,

3. Optionally, the special toPrimitive method, described in section 3.6,

4. Optionally, the special changeTypeParamters, canChangeTypeParameters,
convertToTypeParameter, convertFromTypeParameter, canConvertToTypeParameter,
and canConvertFromTypeParameter methods, discussed in section 3.4, and

5. Any other methods or constants that objects of this generic type should have.

Listing 3.2: The full definition for the Pair type used in Chalktalk, as well as an instance
of one its constructed types below.
AT. def ineGener icType ({

typename : "Pair " ,
i n i t : function ( f i r s t , second ) {

t h i s . _set ( " f i r s t " , AT. wrapOrConvertValue (
t h i s . typeParameters [ 0 ] , f i r s t ) ) ;

t h i s . _set ( " second" , AT. wrapOrConvertValue (
t h i s . typeParameters [ 1 ] , second ) ) ;

} ,
changeTypeParameters : function ( newTypes ) {

return new ( t h i s . gener icType . apply (
null , newTypes ) ) ( t h i s . f i r s t , t h i s . second ) ;

} ,
canConvertToTypeParameter : function ( typeIndex ) {

return typeIndex === 0 | | typeIndex === 1 ;
} ,
convertToTypeParameter : function ( typeIndex ) {

i f ( typeIndex === 0) {
return t h i s . f i r s t ;

}
else {

return t h i s . second ;
}

18



}
}) ;

// Unfor tunate ly , Ja va s c r i p t syntax l im i t a t i o n s r e qu i r e the
// ex t ra s e t o f paren the se s around AT. Pair (AT. Float , AT. S t r ing ) .
l e t f l o a t S t r i n gPa i r

= new (AT. Pair (AT. Float , AT. St r ing ) ) ( 5 . 0 , " f i v e " ) ;

c on so l e . l og ( f l o a t S t r i n gPa i r . f i r s t . va lue ) ; // Logs "5"

3.3 Defining explicit conversions

Conversion functions can be defined between any two types (including constructed types)
by using the defineConversion function, and providing it the two types to be converted,
along with a function that takes in an object of the first type and returns an object of the
second.

Listing 3.3: A sample conversion between the Hertz type that represents frequency and the
standard String type.
AT. de f ineConver s ion (AT. Hertz , AT. Str ing , function ( hz ) {

return new AT. St r ing ( hz . va lue . toFixed (0 ) + " Hz" ) ;
}) ;

Importantly, defining any conversion allows sketches that output the first type to connect
to sketches that take in the second type. Chalktalk automatically performs the conversion
when propagating the output values to each sketch.

3.4 Special conversion functions for generic types

Although explicit conversions, if defined, always take priority, generic types have the op-
portunity to define a large series of conversion functions at once. These are created by
defining one or more of the following methods on the implementation object during its
definition:
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convertToTypeParameter, convertFromTypeParameter

These are optional functions that allow types constructed from this generic type to be
automatically made convertible with their type parameters. For example, if this function is
defined on our Pair example from section 3.2, then these could be defined to automatically
allow Pair(Float, Int) to be convertible to and/or from Float and Int.

If defined, convertToTypeParameter must be a function of one argument taking in the
index of the type parameter this object should be converted to, and returning the converted
object. convertFromTypeParameter, on the other hand, must be defined as a function
of two arguments taking in both the index of the type parameter this object should be
converted from and the value it should be converted from.

When either of these two functions are defined, Atypical automatically generates conversion
functions in the appropriate direction between the type parameters and the constructed
type. This is done at the moment the constructed type is first created.

canConvertToTypeParameter, canConvertFromTypeParameter

These are optional functions that allow the type author to restrict which type parameters
this generic type can be converted to or from. These functions are called by Atypical with
a single argument containing the index of the type parameter, and returning true from
these functions allows the conversion, while returning false does not. This is useful in
several cases. For example, a generic Function type should be convertible from (but not
to) the type parameter representing its return value, because a simple value is effectively
equivalent to a function that always returns a constant value while ignoring its arguments.
However, it would be nonsensical for a Function object to be convertible to or from the
types of its arguments.

If convertToTypeParameter and/or convertFromTypeParameter is defined on a generic
type and its corresponding canConvert function is not, Atypical assumes that this generic
type can be converted to and/or from all of its type parameters and will automatically
define a default implementation of the corresponding canConvert function to reflect this
assumption.

changeTypeParameters

If defined, this function is used to create the conversion function between different con-
structed types that share the same generic type, such as, for example, Array(Float) and
Array(String). By defining this one function, the type author can define a large number of
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conversions between all constructed types of a particular generic type, such as all Functions
or all Pairs.

This must be defined as a function of a single argument that takes in an array of the new
type parameters.

Listing 3.4: The changeTypeParameters function for the generic Array type. This function
returns a new array with the values converted from their existing types to the new types.
changeTypeParameters : function ( newTypeParams ) {

return new ( t h i s . gener icType (newTypeParams [ 0 ] ) ) (
t h i s . va lue s .map( function ( va lue ) {

return value . convert (newTypeParams [ 0 ] ) ;
}

) ) ;
}

canChangeTypeParameters

By default, constructed types can only be converted via changeTypeParameters when
the number of type parameters in the initial type (the “source type”) and the type being
converted to (the “destination type”) are the same, and when each type in the source type’s
type parameters is convertible to its corresponding type in the destination type’s type
parameters.

However, by defining canChangeTypeParameters, the type author can customize the con-
ditions under which this kind of type conversion is allowed to take place. By returning
true, the conversion is allowed to take place, and by returning false, it is prevented. Like
changeTypeParameters, this function must be defined as a function of a single argument
that takes in an array of the new type parameters.

For an example where this is useful, consider the generic Function type, which is imple-
mented as a wrapper around an ordinary Javascript function. If we consider a Function(A,
B, C)—that is, a function that takes in two arguments of type A and B and returns a value
of type C—and we wish to convert it to a Function(X, Y, Z) object, we can do so by
wrapping our original Function(A, B, C) inside a Function(X, Y, Z), and convert both
the argument types and the return type internally. For this kind of conversion to be pos-
sible, we need C to be convertible to Z so that we can convert the return value from the
internal Function(A, B, C) to a Z. However, the argument types need to be converted in
the opposite direction, from X to A and from Y to B. We can say that the conversion re-
quirements for a generic Function type are covariant in the output type but contravariant
in the input types.
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In addition, functions that take in fewer arguments can easily be converted to functions
that take in more arguments by simply ignoring the additional arguments. By customizing
canChangeTypeParameters and comparing the type parameters currently used to the type
parameters given, we can account for all of these conditions, making a large variety of
different Function types interoperable and convertible by default.

3.5 Intermediary conversions

Certain types, such as Radians, can be seen as specializations of more general types such as
Float. We can easily define a conversion from Radians to Float in order to make sketches
that output Radians, such as the pendulum, interoperable with sketches that expect a
Float value as input. However, this approach has a drawback. Sketches that output
Float can be connected to a wide variety of sketches that take in types such as Bool, Int,
Function(Float) and Array(Float), because all these types are convertible from Float.
However, although Radians is convertible to Float, it is not immediately convertible to
any of these other types.

Defining explicit conversions for all of these types would be extremely time-consuming,
and as such Atypical allows for a special kind of conversion to be defined: an intermediary
conversion. In short, defining an intermediary conversion allows for conversion from a source
type S to a destination type D by first converting S to an intermediary type I, and then
converting the resulting value from I to D. For example, we can define a conversion from
Radians to Function(Float) by first converting the Radians to a Float value, and then
converting the Float to a Function(Float).

There are three forms of intermediary conversions:

1. Explicit intermediary conversions, defined by calling
defineConversionsViaIntermediary(S, I, D) with all three arguments defined.
This creates a single intermediary conversion from S to D using I as an intermediary
type, and is treated identically to a regular explicit conversion.

2. Broad intermediary conversions from any source, defined by calling
defineConversionsViaIntermediary(null, I, D). This allows any type that is ex-
plicitly convertible to I to be convertible to D by first converting to I and then con-
verting to D.

3. Broad intermediary conversions from any destination, defined by calling
defineConversionsViaIntermediary(S, I, null). This allows S to be converted
to any type that is explicitly convertible from I, by first converting S to I and then
converting to the destination type.
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Above, we mention that types must be “explicitly convertible” to allow broad conversions
to take place. This means they must be convertible through either an explicit conversion
or a special generic conversion. Atypical does not allow broad intermediary conversions to
be “chained”, to avoid creating spurious and surprising conversions between types that were
not meant to be interoperable. Broad intermediary conversions are also a lower priority
than both explicit conversions and generic type conversions, and will not be used if either
of those types of conversion functions are defined for the types being converted.

3.6 Primitive types

While every value in Atypical is implemented as a Javascript object, for certain types such
as Float, Array, or String, it can be burdensome to work with the values as wrapped
objects. In a sketch, for example, sketch authors must remember to always unwrap the
values after they receive them and wrap them again before sending them as output.

To alleviate this problem, any type can be defined as a “primitive type” by defining the
toPrimitive method in its implementation. The return value of toPrimitive is assumed
to be the primitive Javascript value that corresponds with the Atypical value, such as the
Javascript floating-point number in an Atypical Float object. Primitive types are also
expected to accept these primitive Javascript values in their init functions to allow them
to be re-wrapped.

When using a primitive type as an input to a sketch, it is automatically unwrapped by
default, and when using a primitive value as an output, it is automatically re-wrapped.
This allows sketch authors to work with native Javascript values within their sketches in
cases where a more complex object is not needed.
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Integration with Chalktalk

4.1 Defining inputs and outputs

In addition to the Atypical type system, Chalktalk’s system of sketch inputs and outputs
was completely reworked to be more rigorous. Instead of simply defining an output function,
sketches must now define an output function and a type that the function outputs. Sketches
must also define the types of inputs that they intend to receive.

The functions for defining input and output types are as follows:

• defineOutput(outputType, outputFunction): Defines the sketch’s output type and
the function that is called every frame to generate the output value.

• defineInput(inputType, preprocessingFunction): Defines an input to the sketch.
This function may be called multiple times to define multiple inputs.

The preprocessing function is optional: if defined as a function of one argument, it
will be called every time this input receives a value, with the value as the argument.
When accessing the input value in the sketch, the return value of this function will be
received instead. For primitive types, this is set to the type’s toPrimitive method
by default.

• defineAllRemainingInputs(inputType, preprocessingFunction): This function
allows sketches to accept a variable number of inputs of the given type. The number of
inputs is dynamically adjusted to match the number of input links currently connected
to the sketch. As with defineInput, the preprocessing function is optional.

• defineAlternateInputType(inputType, preprocessingFunction): This function,
called after an input has been defined, adds another supported type to the most
recently defined input (including variable-size inputs). This allows sketches to accept
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multiple different types over the same input port. Each supported type has its own
independent preprocessing function.

This does require the sketch author to do some runtime checking of the input value
within the sketch, or to normalize the input values in the preprocessing functions,
bringing us a bit closer to dynamic type checking instead of static type checking.
However, this ability is extremely important for allowing a second layer of interoper-
ability between sketches. If a particular type is either not convertible to the sketch’s
input type, or if the type must be accepted without the potential data degradation
that comes from a lossy conversion, then it can simply be added as an alternate input
type for the same port.

Listing 4.1: The input and output definitions for a simple sketch that displays boolean values.
This sketch outputs its current state, and can either be toggled by clicking on it, or can be
controlled by a boolean input value. Note that Bool is a primitive type, allowing the sketch
author to work with normal Javascript boolean values within the sketch.
t h i s . de f i ne Input (AT. Bool ) ;

t h i s . def ineOutput (AT. Bool , function ( ) {
i f ( t h i s . inputs . hasValue (0 ) ) {

return t h i s . inputs . va lue (0 ) ;
}
return t h i s . s t a t e ;

}) ;

4.2 Backwards compatibility

As mentioned in section 2.2, Atypical and the new input/output system must allow for some
level of backwards compatibility with older sketches. This was achieved by creating a type
called Unknown. Unknown is simply a wrapper around any Javascript value and carries with
it no additional type information. In addition, almost all Atypical types are convertible to
Unknown but none are convertible from it.

Because Unknown is not much more than a simple wrapper, converting a value of another
Atypical type to Unknown and then unwrapping the Unknown is effectively equivalent to
converting the Atypical type to a normal Javascript value. With these conversions, we
can define the inputs and outputs of these legacy sketches to be Unknown. This allows the
output of most of the new-style sketches to be connected to the inputs of the old-style
sketches, and allows new-style sketches to opt in to receiving values from old-style sketches
by defining Unknown as one of their accepted input types.
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4.3 Integration with Chalktalk’s user interface

When performing presentations, users now have direct feedback as to whether the connec-
tion they’re attempting to make is valid or not. Chalktalk no longer creates links from
sketches that have no outputs, no longer allows links to sketches that have no inputs, and
only allows links between sketches whose types can be properly converted.

Figure 4.1: The user is attempting to connect a sound file sketch (left)—whose output is
a Function(Seconds, AudioSamples)—to a synthesizer sketch whose first input is Hertz.
These types are incompatible, and so Chalktalk prevents the link from being created and
shows feedback in the form of an X-shaped arrowhead.

Figure 4.2: The user is attempting the same connection from Figure 4.1, but with help
mode enabled. The output type is displayed at the end of the arrow, and the input types
are displayed within each sketch, making the reason for the incompatibility immediately
apparent.

The more dramatic changes, however, are in help mode. When the user begins a link while
in help mode, several visual changes occur:
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Figure 4.3: Multiple sound files are connected to a mixer sketch that combines their sound
into one audio stream. The mixer contains a variable-sized input, which is displayed with
dots (:) to its left. Filled inputs are displayed with an X.

1. The name of the output type is displayed at the end of the arrow the user is drawing.

2. The name of the sketch’s input types are shown at the top left of each sketch, in the
following format:

• The names of the accepted types of each input are shown starting at the top left
corner of the sketch, with each subsequent input below the previous one.

• If an input has multiple accepted types, the names of all the accepted types are
shown separated by the word “or”.

• The first unlinked input is shown with a large circle to its left (O).

• Later unlinked ports are shown with a small circle to their left (o).

• Filled, linked ports are shown with an X to their left.

• Variable-size ports are shown with dots to their left (:).

3. Sketches that are compatible with the output type of the link being drawn are high-
lighted in blue.
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Figure 4.4: A link is being dragged from a sketch that outputs a Bool value. Sketches that
are compatible with this link are highlighted in blue. Compatible sketches are the “not” gate,
which takes in a Bool, and the graph, which takes in a Float, which Bool can be converted
to. Incompatible sketches include the slider, which has no inputs, and the axes, which are
intended to display 3D Mesh objects.
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Evaluation of Atypical

5.1 Evaluation against the constraints and criteria

We can now look back at our constraints and criteria from section 2.2, and evaluate the
current incarnation of Atypical against them:

1. Atypical should allow Chalktalk to discern whether two sketches have compatible input
and output types.

Atypical succeeds at this by requiring sketch authors to specify the desired input and
output types of each sketch.

2. Atypical should allow Chalktalk to inspect these types at runtime so it can display
visual feedback to the user.

This has been implemented, and is shown by the changing arrow heads as the user
draws a link.

3. Atypical should allow the user to connect any sketches that have data that are “close
enough” to be interpreted.

The system for defining conversions, and the “type graph” it creates, strikes an ac-
ceptable middle ground between overly-strict typing that harms interoperability and
overly-loose typing that harms type safety. In addition, it allows for tweaking the
amount of conversion in particular instances for particular types.

4. Atypical and its integration with Chalktalk should support live performances by avoid-
ing intrusive errors that can spoil the show.

Atypical achieves its goals of improving on feedback for the user without displaying
intrusive error messages or crashing.
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5. Atypical should allow Chalktalk to display the types for novice users in help mode,
allowing them to discover what kind of connections are and are not possible.

Help mode now contains a significant amount of type information displayed when the
user begins a link, in a way that is useful for novice users.

6. The type system should avoid placing an undue burden on sketch authors.

While it increases the burden to a certain degree, by requiring sketch authors to specify
and manage the types of data, this is actually an improvement over the previous status
quo.

The key point to be made here is that these issues with compatibility had always
existed, but were previously implicit. There were no guarantees as to the type of data
sketches were to receive, and so sketch authors were required to implement runtime
type checks in order to avoid errors. Atypical requires sketch authors to specify the
types for their sketches, but it transitions the problem from being implicit to being
explicit, and helps guarantee that fewer runtime errors will occur once the types are
specified.

As for our practical constraints:

1. Atypical must be compatible with Chalktalk’s Javascript-based infrastructure.

Being implemented in Javascript was the easiest way to achieve this goal.

2. Atypical and its integration with Chalktalk should allow for some level of backwards
compatibility with Chalktalk’s older sketches that do not declare types.

The Unknown type, and its interoperability with the older input and output system,
implements this to an acceptable degree.

3. Atypical should allow, with sufficient effort, for all the current sketches in Chalktalk
to be migrated to use Atypical.

Of the nine examples of different data sent over sketch links given in section 1.4, eight
of them have already been migrated to Atypical and the last can be relatively easily
ported. A review of Chalktalk’s sketch library showed that no sketches implemented
pathological behavior that would be impossible to define in Atypical.

5.2 Additional benefits

Atypical has also aided interoperability between some sketches. Rather than implementing
compatibility with a wide variety of data types within each sketch, these concerns can
now be brought up to the type system level by implementing type conversions. Figure
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5.1, for example, shows a scenario that would have been much more difficult, or even
impossible, to implement using Chalktalk’s existing linking system, involving a type-system
level conversion between two very disparate types, and an output link that allows multiple
pieces of data to sketches that accept either.

Figure 5.1: A swinging pendulum (outputting Radians) is acting as a control input to two
matrices implementing a rotation operation. The “R” is outputting a String, which is being
converted at the type system level into a 3D Mesh in the shape of an “R”. The outputs of the
matrix sketches are a Pair(Matrix, Mesh) containing both the values of the matrix itself
and the “R” mesh after being transformed by the matrix. The first set of axes shows the “R”
after the first rotation (about the Z axis), receiving only the Mesh part of the pair through
a generic type conversion. The second matrix receives the whole Pair, multiplies the first
matrix by its own internal state (which contains a rotation about the X axis), and outputs
both the multiplied Matrix value and the twice-rotated Mesh to the final set of axes, where
the Mesh is again plotted showing the combined rotation.
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5.3 Limitations of the design

This approach did have a few drawbacks, however. First and foremost, the performance of
this new system is somewhat worse than the old one, largely due to the conversions that
this system has to do at every frame in order to implement the type conversions. The
asymptotic complexity is typically linear in the number of links, but when called with a
densely connected board 60 times per second, even a linear slowdown can be noticed on
slower computers. In most cases, the performance degradation is not enough to impede
functionality, but it becomes noticeable in certain cases, such as the AudioSample sketches,
or when help mode is enabled with a large number of sketches and links on the screen.

In addition, while this type system does not create a burden on sketch designers, and
even frees them from having to consider certain classes of errors, it adds the necessity of
maintaining the type system itself, of adding new types and new conversions where needed.
These can sometimes be complex to manage, especially when it comes to broad intermediary
conversions that can greatly impact the type conversion graph.
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Future work

There is still much room for exploration and future research with this system.

To begin with, both the linking system and Chalktalk as a whole would benefit from more
formal user testing. While I did gather informal feedback throughout the project from both
novice and experienced Chalktalk users and sketch authors—the earlier ones of which drove
the decision to take on the specific project of reforming the linking system—a more formal
set of user tests would give far greater clarity as to which parts of the interface are difficult
to use or confusing, both in the linking system and in Chalktalk as a whole.

At the moment, the only way to define conversions between two different generic types, such
as Pair and Array, is to define explicit conversions for each of their constructed types. This
is limiting, and Atypical should allow large classes of conversions to be defined at once, such
as between any Pair to any Array, or, for example from any Array(T) to String wherever
T is convertible to String.

Although I specified in section 3.5 that broad intermediary conversions were not “chainable”,
to avoid unplanned spurious conversions from appearing in distant types, it may be worth
exploring the benefits of allowing this. This would involve broadening the intermediary
conversion functionality to essentially becoming a graph search algorithm, and would allow
things such as the scenario depicted in Listing 6.1:

Listing 6.1: If intermediary conversions were chainable, the two types A and B would for
all intents and purposes become equivalent, where A can convert to everything that B can
convert to and vice-versa, including other broad intermediary conversions.
de f ineConver s ionsVia Inte rmed iary (null , A, B) ;
de f ineConver s ionsVia Inte rmed iary (B, A, null ) ;
de f ineConver s ionsVia Inte rmed iary (A, B, null ) ;
de f ineConver s ionsVia Inte rmed iary (null , B, A) ;
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This would allow far a greater number of conversions to be defined by defining broad
intermediary conversions, but likely at an additional performance penalty and a cognitive
cost on the users and developers in understanding how two types came to be convertible to
each other.

Finally, Chalktalk’s links are all visually depicted as arrows, which works very well for static
sketches but is less well-suited to sketches that have significant amounts of animation. Not
only that, but each link must be explicitly created by the performer, and each link is one-
to-one by design. It may be worth exploring different possibilities for how sketches can
interact, such as broadcast messaging or sending data based on proximity. This would
enable a much wider variety of interactions between different sketches.
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Conclusion

This paper investigated the question of what a type system would look like when applied
not to a programming language, but to Chalktalk, a visual communication language meant
for real-time presentation and communication. In investigating the requirements of such
a type system, we identified where they differed from the typical requirements of a type
system meant for programming languages, such as an increased need for flexibility and
interoperability, and a decreased need for strict static type safety assurances and intrusive
error messages. The system presented, termed Atypical, is a type system built on top of
Javascript to meet those requirements.

While Atypical does make some tradeoffs in terms of performance and development burden,
it was shown to be more than capable of acting in place of the previous dynamic type system,
with significantly increased type safety and much more robust user feedback. In the end,
Atypical allows Chalktalk to more safely perform all the same functions it always has, while
enabling it to perform new functions it never could.
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