
Alphacodes: Usable, Secure Transactions with Untrusted

Providers using Human Computable Puzzles

TR2016-982
Ashlesh Sharma, Entrupy Inc
Varun Chandrasekaran, New York University
Fareeha Amjad, New York University Abu Dhabi
Dennis Shasha, New York University
Lakshminarayanan Subramanian, New York University

Many banking and commerce payment systems, especially in developing regions, continue to require users
to share private or sensitive information in clear-text with untrusted providers exposing them to different

forms of man-in-the-middle attacks. In this paper, we introduce Alphacodes, a new paradigm that provides
a usable security solution that enables users to perform secure transactions with untrusted parties using
the notion of visual puzzles. Alphacodes are designed as verification codes for short message transactions
and provide easy authentication of critical portions of a transaction. We describe how Alphacodes can be

applied in different use cases and also show two simple applications that we have built using the Alphacodes
framework. We show security vulnerabilities in existing systems and show how our protocol overcomes them.
We also demonstrate the ease of use of Alphacodes with minimal training using two simple mechanical turk

studies. Using another simple real world user study involving 10 users who speak Kannada (local Indian
language), we show that the Alphacodes concept can be easily extended to other languages beyond English.

1. INTRODUCTION

Despite advances in security and cryptography, a non-trivial fraction of real-world commerce
transactions continue to be conducted between users and providers in clear-text, where the
user explicitly exposes highly sensitive identity information (such as credit card numbers,
bank accounts etc.) in the clear to an untrusted provider. To complete the transaction, the
provider requires this user information to authenticate the user’s credentials with a trusted
third party issuing the identity (such as banks, Visa/Master/Amex etc.). Revealing identity
information to untrusted providers exposes the user to different types of attacks including
data corruption, replay attacks and identity spoofing affecting the integrity and authenticity
of the transaction.

To elaborate further, consider the following forms of real-world transactions:

(1) Phone-based transactions: Phone-based transactions where users share credit-card num-
bers or bank accounts over a phone line for convenience;

(2) Untrusted websites: E-commerce transactions on unknown, and potentially non-
trustworthy websites where users may reveal their credit-card and CVV/PIN infor-
mation;

(3) Remittances and Money Transfer: Remittance transactions where users interact with
untrusted agents to send or receive money and often may get cheated on the amount of
money being remitted by the recipient [11]. Remittances represents a very large market
with significant fraction of transactions in certain under-developed countries and most
remittance services rely on a network of human agents to correctly deliver cash to the
end-user;

(4) Branchless banking: Branchless banking is a new form of banking in developing regions
where banks work with shopkeepers to act as bank agents to provide financial access. In
this case, users in rural areas interact with untrusted shopkeepers to perform banking
transactions to deposit or withdraw money from their bank accounts.

In all these cases, the real threat is the user interaction with the provider under the
assumption that the provider could be trustworthy; the user reveals all the relevant sensitive
information to the provider, who can in turn potentially use this information for launching
different forms of attacks on the user. Unfortunately, conventional security or cryptographic
solutions may not be able to address this problem since the underlying channel could be
encrypted or signed, but the real threat is the provider in the middle with the power to
launch man-in-the-middle (MitM) attacks. To really address the provider-level threat, one
needs a simple way to provide end-to-end security for each transaction to the user where
the untrusted provider cannot perform any MitM attacks on the user. In other words, we
require a human authentication protocol that enables each user to easily verify the end-to-
end authenticity of any transaction in a simple manner, preferably without the need for any
complex operations or constraints required on behalf of the user. Clearly, any such protocol
would require an out-of-band offline communication of secret information between the user
and the trusted third party. If every message is signed by each party using cryptographic
keys, the underlying problem in many of these cases can be easily solved. However, in
many of the settings outlined above, the goal of the user is to generate a simple, human-
computable proof that guarantees the authenticity of a transaction between a user and an
untrusted provider.
Threat Model: The basic setup that we aim to address comprises a user U , a provider

P (such as e-commerce site or branchless banking provider or banking agent) and a trusted
authority A (such as bank or credit card company) which issues identity credentials to U
(and P in certain cases) to perform transactions between U and P . U and P directly interact
over a channel to perform a transaction and P needs to interact with the authority A to
complete an authorized transaction. We stress that to complete a real world transaction,
it is essential for the commerce provider to directly contact the trusted authority (such as
a bank). In our threat model, a user may expose critical information to a provider which
may enable the provider to launch various types of attacks including identity theft, replay
attacks etc. Ergo, U does not trust the provider P . In addition, we may also have the case
where the communication channel between U and P or between P and A is susceptible to
eavesdroppers from adversarial nodes.

1.1. Our contribution

In this paper, we introduce Alphacodes, a paradigm using visual puzzles that can be used in
a variety of scenarios to enable a user to prove and verify the authenticity of critical portions
of a transaction. Our key contribution is the design of a simple, easy to use protocol that
enables users to verify if the transactions performed are secure, ergo providing them greater
confidence and satisfaction. This protocol is without any complex cryptographic operations,
and is over clear-text channels with potentially untrusted providers.

Alphacodes are a set of simple code-tables/books (or visual puzzles) shared between var-
ious interacting parties. Every time one party wants to conduct a transaction, he performs
the encoding of specific parameters using the simple task of pattern-matching. The trans-
action succeeds only if the counterparty, upon decoding the messages of the transaction,
meets certain constraints. It is important to note that the set of Alphacodes 1 are a secret
between the parties, and are for one-time use only. This ensures that MitM attacks fail. Es-
sentially, each Alphacode is a spin-off of the popular Message Authentication Code (MAC)
paradigm. However, unlike conventional MACs, Alphacodes are reversible and produce out-
put of length of the same order of magnitude as the input. In essence, Alphacodes can
be viewed as one version of short verification codes (replacement for randomly generated
confirmation codes). Unlike traditional authentication mechanisms which primarily just au-

1Used analogously with code-tables, and the actual code produced, depending on context

thenticate identities, Alphacodes can be used for authenticating the important transaction
digits in each transaction.

We demonstrate how the Alphacodes paradigm is secure against MitM attacks, replay
attacks, spoofing (cellphone or SIM) and prove its security guarantees. The simplicity of the
attacks described coupled with the ease of launching them urges us to rethink the existing
security primitives. The ease of generation and solvability of Alphacodes makes it a viable
solution, favorable for adoption in existing applications. Based on experiments conducted
on Amazon Mechanical Turk, we evaluate the usability of the Alphacodes paradigm based
on ease of solvability and time taken for the same. We observe that on average, a user
could quickly create the encoding in under 20 seconds. We also observe that a majority of
the users solved every puzzle accurately. Alphacodes can be used as a building block for
applications and protocols that can be used in a variety of settings, from branchless banking
application in rural areas to e-commerce transactions over the web.

2. PROBLEM CONTEXT

As mentioned earlier, revealing sensitive transactional and identity information in human-
provider transaction ecosystems is fairly common practice. While readers may be fairly
familiar with the problems of e-commerce transactions in fraudulent websites and phone-
based credit card transactions, we provide some broader context to other lesser known
clear-text transaction modalities which are fairly commonplace in developing regions.
Branchless Banking: According to a study by CGAP and the World Microfinance

Forum on financial inclusion, the leading state-owned banks including the Postal Savings
Bank of China and the Agricultural bank of China boast unthinkable numbers of retail
bank accounts, at 475 million and 320 million, respectively. One out of every three Chinese
citizens holds an account at one of these two banks. The utility of these bank accounts,
however, is the real question. There is a clear recognition that poorer families, particularly
those in remote areas, have trouble accessing accounts and use them mainly for encashment,
which can often require costly travel to bank branches or ATM in distant cities and towns.
Thus, the poor have to ultimately turn to local merchants for loans at exorbitant rates. On
the other hand, due to lack of financial incentive the traditional brick-and-mortar banks do
not have branches in rural areas. It makes no economic sense for a bank to have a branch in
rural areas as the value of deposits are low and the people have poor or non-existent credit
histories. To mitigate these issues, branchless banking initiatives are being implemented in
parts of the developing world.

Recently, finance and security experts have raised concerns about the lack of security in
rural banking models [9; 19]. People are not certain whether it is a safe way to conduct
financial transactions [11]. Higher security might bring more users to use rural banking, but
complex protocols may frustrate or confuse customers. Therefore, it is important to provide
secure but simple to use protocols to conduct banking transactions in remote areas.
Money transfer and Remittances: A significant fraction of families in developing

regions rely on remittances from household members for subsistence. Most money transfer
mechanisms have relied on agent models to deliver money in rural contexts. In many of
these money transfer mechanisms, the final interaction step of the money transfer involves
the user revealing most of the sensitive information attributes to the agent for completing
the transaction. While, one may envision SMS-based mobile banking to have enjoyed wide
acceptance in developing nations such as Kenya, Tanzania, Phillipines and India, the ground
reality is that the user is still dependent on the agent to procure the money. For example,
M-Pesa in Kenya has adopted over 85,000 agents throughout the country who form the
backbone of the mobile banking industry. The security in SMS based mobile banking is
minimal with several known instances of security breaches [19]. We note that in the case of
mobile banking, encryption does not solve the last hop human-provider interaction problem
where the provider may not be trustworthy.

There has been very limited related work in trying to secure branchless banking and
money transfer applications. The work by Sharma et al. [22] uses simple nonces among
the user, agent and bank to provide secure protocols for deposit and withdrawal in a rural
setting where a farmer and a shopkeeper use the shopkeeper’s insecure phone to access a
bank. In that scenario, the farmer does not trust the shopkeeper. Eko, a mobile banking
service in India uses a number matching scheme to authenticate users on a per transaction
basis based on code-books, as the user interacts with the bank [20]. Unfortunately, as the
authors note [20], their authentication scheme does not guarantee strong security again st
adversaries who can spoof caller IDs or mount MitM attacks. The concept of code-books has
partially been used by Paik et al [19] to secure mobile banking transactions; however these
are meant to defend again attacks on SIM authentication. We discuss additional related
work in greater detail later in the paper.

3. ALPHACODES

In this section, we present our straw-man to alleviate the problems discussed in §1. To
briefly summarize, we generate an authentication (verification) code using physical code-
books populated with sufficiently random entries. This authentication code coupled with
transaction details sent in the clear can be used to ensure both transaction integrity and
authentication. Consider Alice and Bob who wish to transact in a secure manner. They
pre-share a pair of Alphacodes, using a secure physical channel such as secure courier. By
encoding a number using the Alphacode, Alice can send Bob the information securely.

Table 1 =

0 YK NP CK
1 CT RK NC
2 HY XA XK
3 AN MF YB
4 RB PL VL
5 OE CA GS
6 JM ER ET
7 SZ FH MA
8 RI WZ BU
9 IP UL DO

Table 2 =

0 DQ MC RF
1 VN FC EY
2 KJ TQ ML
3 AM CH BV
4 EC LD XM
5 CI GT ZG
6 XE DF PA
7 WI ZV OI
8 ZR LQ DQ
9 LF ME IS

Both Alice and Bob have Tables 1 and 2 in their possession. These tables are kept secret
between Alice and Bob. For the sake of simplicity, let us assume a peer-to-peer communi-
cation scenario where Alice wants to send the number 250 to Bob. This is done as follows:

1. The first column in Table 1 are the numbers which Alice chooses in order and matches
with the corresponding letters in the subsequent columns. To elaborate, 2 corresponds to
codeword HY in the first codeword column, 5 corresponds to CA (in the next column) and
0 corresponds to CK (in the rightmost column). Therefore, 250 is encoded as HYCACK.

2. Alice sends HYCACK to Bob. Bob decodes HYCACK to 250 by matching the letters to
numbers using the Table 1 (shared earlier with Alice). Bob now has the information sent to
him by Alice and can be confident that the possessor of Table 1 sent the message, because
most sequences of six letters would fail to represent three numbers. For any n digit number
which is represented by k characters per digit, the probability of generating another valid
sequence (collision) is 26−kn. It is also interesting to note that for N entities communicating
in a peer-to-peer fashion, we would require N2 tables. In subsequent sections, we explain
how we can reduce this number.

3. Similarly, Bob encodes 250 using Table 2 obtaining KJGTRF. He sends the encoding to
Alice across the same channel. Alice receives KJGTRF and decodes it to obtain 250 using

Table 2. Alice is convinced that Bob obtained the correct message because of this challenge-
response mechanism. As explained earlier, the probability of an adversary intercepting this
encoding, and responding with the correct response is negligible.

Note that throughout the paper, we use the term encoding to refer to the process of
generating the appropriate verification code based on an input. Similarly, decoding refers to
the reverse process. In preferred usage, the tables are used for one transaction only, ensuring
uniqueness. To perform another transaction, another set of secret tables have to be shared
between Alice and Bob. The protocol that is employed by Alice and Bob is essentially a
one-time substitution cipher system. The table may have more columns to encrypt larger
messages. Thus, Alphacodes have the following properties:

—Authentication & Integrity: Alphacodes supports both message authentication and in-
tegrity. Only the possessors of the code-books can generate valid sequences for the infor-
mation to be shared ensuring authentic information. Also, any accidental or deliberate
tampering of information is detectable, enforcing message integrity.

—Ease of use: Alphacodes are easy to use because table lookup is a simple task. The
Eko algorithm entails putting in one-time numbers interspersed with numbers from a
personal identification number in various places. That is at least as difficult as the process
described here, yet their user tests indicate that even illiterate users can do this.

— Low Cost: Alphacodes are of lower cost than compared to other technologies such as
two-factor authentication and hardware tokens, in terms of production and deployment.

—Offline: Alphacodes can be distributed in an offline fashion. For example, the bank could
provide paper copies of Alphacodes. The customers could go to the bank and get the
Alphacodes (in a check book format) or the bank could mail the them to the customers.
The customer can then login to the bank’s site using the Alphacodes which would be
known only to the bank and the user.

4. ALPHACODE PROTOCOLS

In previous sections, we observed that peer-to-peer communication involved Alphacodes
which were quadratic in the number of interacting parties. Explained because of its simple
nature, this variant of the protocol does not scale well. In this section we introduce a three-
party protocol which require code-books that scale linearly in the number of interacting
parties. These parties interact in a secure manner based on their mutual trust and super-
vision of a trusted authority. For consistency with previously used nomenclature, we label
the actors: user, service provider, and trusted authority. Explaining the setup once more,
the user wishes to conduct a transaction with a service provider that may not be trusted,
and hence wishes to ensure that his personal or sensitive information is not misused. The
trusted authority checks the personal details and sensitive information and either commits
or aborts the transaction between the user and the service provider. We make the following
assumptions with respect to the actors and protocol:

(1) The user and trusted authority behave in an honest manner. Any deviation from this
behavior will produce unfavorable results for both.

(2) The communication channel between the authority and the service provider is secure
and trustworthy in one direction.

(3) The communication channel between the user and the authority is secure and trustwor-
thy in both directions.

(4) All of the actors have unique identities issued to them. These identities are used as part
of the transaction either in clear or in encoded form.

4.1. The Three Party Protocol

The actors are denoted by the letters U for user, S for service provider, and A for the trusted
authority. Based on our initial assumptions, each service provider is issued a numerical
identifier (NS). In our setup, U interacts with S, but wants A to perform the required
authentication. This entails three distinct communication channels, one between each of
the actors. To briefly summarize the working of the paradigm, observe that both U and
S receive information from A (whether directly or through a third party) in a form that
only A could send, maintaining message integrity. That information preferentially states the
amount of the transaction, though it could also encode approval (commit) or disapproval
(abort) of the transaction. The protocols concern an amount/quantity that could be in some
units of currency or weight or some form of numerical identifier. If the Alphacode allowed
other symbols as input characters, then any set of those symbols could be used. Once A
approves, the transaction between U and S is completed.

Setup: Initially, both U and S register with A before performing any transaction. Upon
registration, A separately issues a collection of Alphacodes to U and S. In the presence of
such a centralized authority, the number of Alphacodes required to communicate is of the
order O(N + M), for N users and M service providers. The booklet given to U contains
two sets of Alphacode tables, namely { UT11, UT12, . . ., UT1n }, as well as { UT21,
UT22, . . ., UT2n }. Similarly, the booklet provided to S will contain tables{ ST11, ST12,
. . ., ST1m } and { ST21, ST22, . . ., ST2m }. The first set of tables are used for encoding
transaction details whilst the second set of tables are used to check if the transaction has
been committed or not. We will explain this in greater detail later in the section. We stress
that each Alphacode table is used for only a single transaction.

Secure Channels: To share the code-tables with the users, the authority may resort to
communication via secure avenues such as courier. Alternatively, the user could pick the
code-tables from the authority from a secure location. This is imperative for the successful
functioning of the paradigm, so as to ensure that there is no duplication of the code-tables,
nor any misuse by any malicious party.

4.2. Protocol Steps

U : Compute δi = alphacode(Am,NS , UT1i)

U → A : uname,Am, δi

U → S : uname,Am

S : Compute γj = alphacode(Am,ST1j)

S → A : uname,Am, δi, sname, γj

(1) It is important to note that all three parties communicate with each other at some
part of time. This is required for successful authentication of transaction details.
Initially, U provides S with enough information in the clear for S to understand
the transaction amount Am, and metadata such as identities of interacting parties.
Additional information could also be provided; this includes any form of specifics
regarding the item being purchased. Similarly, S sends to A enough information to
ensure that A can verify that U and S are asserting the same description of the
transaction. We also note that if either U or S has a trusted channel to communicate
with A, it can avoid using an Alphacode and send content directly to A. As explained
in the steps above, U generates δi based on Am and the table UT1i, by performing
operation alphacode, which is described as follows: If the pth position of Am is a, then

the pth position of δi is the string in p+ 1th column and the a+ 1th row of UT1i. For
example, let Am = 21, NS = 47 and

UTi =

0 KL WR IU AK DO HG SP GZ WM
1 HW TU BQ GN QL JD QB LZ UU
2 YT IP NZ LW ND EL HD JI GX
3 AD HV EI YU XO QM FJ HR GD
4 WO CK DO ER AP IL PR RH HK
5 RN BA LF WV EM OX KS LT KM
6 JL KQ HB PI GI PZ CT OY TL
7 GD GP UA NQ ZJ NA OP MT KY
8 QE SX LX CI DP FI UE YW PO
9 RY RH FP SL JA OC RV LG NV

then δi = YTTUDONQ.

Observe that the input for the code-book is Am||NS , where || denotes the concatenation
operation. Once U computes δi, U sends uname, Am and δi to S. Similarly, S computes
γj using Am and ST1j by performing operation alphacode. It sends uname, Am, δi,
sname (name of the service), and γj to A. The input (i.e. Am||NS) could also be
padded with leading zeros. For example, 21 could be thought of as 0000021 having the
Alphacode output as KLWRIUAKDOELQBRHKY.

A : Compute δ′i = alphacode(Am,NS , UT1i)

A : Compute γ′

j = alphacode(Am,ST1j)

if : δi 6= δ′i or γj 6= γ′

j

A : Compute αi = alphacode(00, UT2i)

A : Compute βj = alphacode(00, ST2j)

if : δi = δ′i and γj = γ′

j

A : Compute αi = alphacode(Am,UT2i)

A : Compute βj = alphacode(Am,ST2j)

A → S : αi, βj

S → U : αi

(2) Note that both U and A must use table UT1i for only one transaction. A must have
some additional state information (such as timestamps) to keep track of transactions it
has already conducted with U . Thus, the amount of state information required grows
linearly with the number of transactions authorized (or rejected) by the authority. We
argue that this state information will not bloat up, given the nature of the use-case for
the Alphacodes paradigm in ensuring satisfaction within a semi-literate populous who
transact infrequently, coupled with storage available at a low cost.
If a second transaction uses the same table and a different amount, it violates the
uniqueness property of the code-book and could indicate an attempt at fraud. A must
also check that the encoded NS corresponds to the sname sent from the sender who
purports to be S. Without this additional check, U might think it is paying S but a
malicious S′ profits instead. Normally, NS might require many digits but we use just
two for the purpose of explanation.

(3) Next, A computes δ′i using Am′ (it has received from U), NS , and UT1i. Similarly,
based on state information, A gets the corresponding corresponding ST1j . A computes
γ′

j using Am′′ (it has received from S) and ST1j .

(a) If δi 6= δ′i or if γj 6= γ′

j , or if the server name does not correspond to NS encoded
in δi, then A computes αi = alphacode(00, UT2i) and βj = alphacode(00, ST2j). This
means that the first parameter of the operation alphacode would be two zeros instead
of Am. Those two zeros would be transformed into four letters, signaling A to abort
the transaction. If Alphacodes are reused in transactions, A aborts them. The only
exception to this occurs when A receives exactly the same message from S as it did in
an earlier transaction (re-transmission), in which case A will not commit or abort any
transaction, but will send the response message it had sent earlier.

(b) If δi = δ′i, γj = γ′

j and neither has been used for another transaction, A computes
αi using Am (which is proven to be the same as Am′) and UT2i and computes βj

using Am (which is proven to be the same as Am′′) and ST2j . A sends αi and βj to
S. S sends αi to U . A also commits the transaction at this point even though U and
S do not yet know the transaction is committed. Committing means that the trusted
authority declares this transaction to be complete and, for example, might perform a
money transfer from U to S.

S : Compute β′

j = alphacode(Am,ST2j)

U : Compute α′

i = alphacode(Am,UT2i)

If (for U) : αi 6= α′

i

Transaction has been aborted by A

If (for S) : βj 6= β′

j

Transaction has been aborted by A

If (at U) : αi = α′

i

U knows that transaction

has been committed by A

If (at S) : βj = β′

j

S knows that transaction

has been committed by A

(4) S computes β′

j using Am and ST2j . U computes α′

i using Am and UT2i. If αi 6= α′

i

for U or βj 6= β′

j , then the transaction has been rejected by A. That is, if the response
is not well formed based on the Alphacode (i.e. the encoded text does not correspond
to any possible sequence of code-words), then the party receiving such a malformed
message simply requests for a re-transmission. If the response is well-formed then it
should either correspond to the amount originally sent or should be all zeros. If it is the
latter case of all zeros, then the receiving party should note that the transaction has
been aborted.

4.3. Protocol Over a Noisy Channel

In the face of message loss in the communication channel, good protocol design necessitates
the ability to resend any lost message. A must keep track of transactions that have been
executed and never execute the same transaction (in response to the same messages from U

and/or S) more than once. As explained earlier, this can be implemented trivially by saving
the transactions in a serial order within a database. The authority should store information
regarding the relationships between messages received with the corresponding transactions
performed, and always looking up messages received against those in the database. On the
other hand, though A will not re-execute the transaction corresponding to a previously
received message, it will repeat its response to other parties.

4.4. Analysis

In this subsection, we wish to highlight some of the salient features from the above discus-
sion. The most basic property of Alphacodes can be stated by the following simple lemma:

Lemma 4.1.
For an Alphacode using the English alphabet, the probability of guessing each entry of an

English-based code-table correctly is 26−ℓ, where ℓ is the size of the Alphacode for a given
transaction input.

Each entry in the code-table is a letter ranging from A to Z. Each entry is sampled
uniformly at random, therefore the entries are independent of each other. Hence, the proba-
bility to guess an entry correctly is 26−ℓ. It is easy to observe that if the size of the alphabet
used to create the tables increases, the probability of correctly guessing each entry decreases
further for the same size of the input entry.

We highlight the following key properties of the protocol:

(1) If δi 6= δ′i or if γj 6= γ′

j or sname does not correspond to NS as encoded in δi, then
A implies adversarial presence. In this case, A computes αi and βj using zeros as the
parameter in operation alphacode and aborts the transaction. This is required as if A
sent ABORT or any other message in cleartext, the adversary might be able to change
it and continue the transaction. It is hard for an adversary to decode either αi or βj , or
forge a message from A having zeros because the adversary can encode zeros properly
with negligible probability without the Alphacode table. Denial of transaction attacks
are dealt with in §4.3.

(2) If δi = δ′i and γi = γ′

i and sname corresponds to NS , then A can be confident the
message has been sent by U and S respectively.

(3) S computes β′

j using ST2j and U computes α′

i using UT2i. S and U check the authen-
ticity of βj and αi as follows: If αi 6= α′

i but α
′

i uses possible outputs from the Alphacode
table, then U knows that the transaction has been aborted. That is, the abortion takes
place with clear knowledge that A sent the message. If α′

i is not composed of possible
outputs, then U requests the message again. If after several retries, U continues to see
this inequality, then U waits more or has to go out-of-band to find the status of the
transaction. Similarly for S.

(4) If αi = α′

i then U knows that αi is authentic and it was sent by A and that U and S
agreed on the amount and that A is aware of this amount. If βj = β′

j then S knows
that βi is authentic and it was sent by A. It also means A has certified that the amount
it receives agrees with the amount that U and S agreed to and that in fact U and S
did send the same amount.

5. THWARTING ATTACK VECTORS

GCASH, M-Pesa, mChek, Obopay, Zain, Cellpay are some of the well known players in
the field of mobile banking. A paper on mobile banking technology by Ignacio Mas of
CGAP [2; 13] provides a breakdown of mobile banking based on the technologies currently
in use (Voice, SMS, IVR etc) [13]. All the major mobile banking organizations either use
SMS (Short Message Service), USSD (Unstructured Supplementary Service Data), STK

(SIM ToolKit), Java based GPRS application or IVR (Interactive Voice Response). We
look at typical attacks such as replay, spoofing, phishing, man-in-the-middle, rootkit and
key stealing, that plague and have the potential to disrupt mobile and branchless banking
schemes and show how our scheme provides better, if not comparable security guarantees.

5.1. Replay Attacks

If the service provided is based on SMS, replay or outright forgery attacks are easy to
facilitate as most of the SMS in the developing world uses A5/0 or A5/2 algorithm for
over-the-air encryption. A5/0 is a dummy encryption and the SMS is sent in clear-text
to the base station from the cellphone. Even though the GSM voice traffic is encrypted
(using A5/1 or A5/2), SMS is sent in clear-text [12]. It is important to note that A5/2 is
a weaker form of A5 encryption that has been phased out by the GSM Association, but
is still in widespread use in developing regions. A5/2 can be decrypted in real-time [5; 25]
and this makes SMS using A5/2 encryption insecure. GCASH, Movibanco, and BAC Movil
use SMS to send transaction details along with the secret PIN. A simple replay attack,
where a message is intercepted and replayed multiple times to the service provider can be
implemented with ease. Alphacode protocols, on the other hand, thwart replay attacks as
Alphacodes cannot be reused to perform a new transaction. The trusted authority detects
reuse but does not repeat the transaction as explained in §4.

5.2. Spoofing and Phishing

Though new SIM cards (Version 3) are harder to clone, older versions of SIM cards can
be cloned [24]. Due to such cloning, mobile banking services dependent on SMS (such as
GCASH) or SIM ToolKit (such as M-Pesa) break since the adversary has control of the
secret key present in the SIM. It can pretend to be a client and conduct the transaction,
oblivious to the service provider. The Alphacode protocols are agnostic to the capabilities
of the SIM. Even if a SIM is cloned, the adversary would need the code-tables, nonces and
unique identities which are distributed through a different secure channel, to complete the
transaction.

5.3. Man-in-the-Middle Attacks

In mobile banking, one can launch a MitM attack by configuring a USRP radio to act as
a fake base station [19; 3]. In such an attack, nearby cellphones associate themselves to
the USRP device instead of the actual base station. Each handset uses the GSM mandated
ciphering algorithm, but the base station can negotiate the ciphering algorithm and bring
it down to A5/0 (i.e. no encryption). Once a cellphone associates itself to a USRP device,
the transaction details that pass through the USRP could be modified to suit the adversary
unwitting to the user and the service provider. We have shown that the Alphacode protocols
are secure against MitM attacks in §4.4.

5.4. Rootkit

Rootkits are malware that stealthily modify the OS functionality to achieve malicious goals.
Cabir, Mabir, Skull.D [1] are some of the popular malware that infected the cellphones
through SMS, MMS or Bluetooth. Bickford et. al. [4], have shown that it is possible to
eavesdrop on cellphone voice conversations if the cellphone is infected with a rootkit. This
has serious consequences to Interactive Voice Response (IVR) based banking services such
as mChek. The Alphacode protocols are secure against rootkit attacks, as the probability of
the protocol to succeed if there is any type of interception and modification of transaction
details is negligible as shown in §4.

6. APPLICATIONS

This section explains how the Alphacode protocols can be applied in many real-world sce-
narios.

6.1. E-commerce Transactions

For e-commerce, the purchaser plays the role of U in the protocols of the previous section,
the vendor plays the role of S, and the bank or credit card provider plays the role of A. The
registration and the steps of the protocols are the same as the protocols in §4. Transactions
made by the purchaser are validated by the bank or credit card provider in the absence of
any malicious activity from the vendor.

6.2. Mobile Banking

Another direct application is mobile banking where users can leverage their phones to
perform banking transactions such as money transfer and payments. Consider the setup
where one can use two independent channels for performing a transaction. A bank shares
Alphacodes with an end-user through a trusted channel such as a physical channel or signed
e-mail. Using the Alphacode, the user follows the steps in the §4 to perform a transaction
over a mobile channel such as SMS. Given that the individual codes are short, each of the
3 steps of the protocols can easily be encoded in a 140-byte SMS message.

6.3. Voice-based Transactions and Phone Banking

We assume that phone lines constitute an unsecure channel. The customer service represen-
tative plays the role of the service provider (S), the customer plays the role of the user (U)
and the bank plays the role of the trusted authority (A). Given these roles, the protocols are
the same as described in §4. This illustrates that the protocol works regardless of medium
(text or voice).

6.4. Rural Banking

Consider a scenario where a shopkeeper plays the role of the service provider (S), a farmer
plays the role of the user (U) and the bank plays the role of the trusted authority (A).
The protocols are the same as described in §4 except that there is a need to perform both
deposits and withdrawals. A simple way to specify transaction nature involves representing
deposits by 00 and withdrawals by 11. This assignment for deposit and withdrawal is known
to both the farmer and the shopkeeper. As part of the amount Am, the first two numbers
(independent of the leading zeroes) would be either 00 or 11 depending on whether the
farmer wants to deposit or withdraw money. The bank uses the encoding of the first two
numbers in Am to determine the nature of the transaction. For example, if the farmer wants
to deposit $ 20, then Am would be 0020. Similarly if the farmer wants to withdraw $ 20,
then Am would be 1120.

7. IMPLEMENTATION

We have implemented two simple applications to enable secure transactions using the Al-
phacodes framework.

E-commerce transactions on the web: We assume that the user who aims to perform
E-commerce transactions registers with a trusted authority which is responsible for issuing
an unique identity to the user and there is secure channel for the trusted authority to
disseminate Alphacodes to the user. Here, the Alphacode puzzles are similar to the use
of per-transaction CVV codes or PIN numbers used in credit cards. We also assume that
every Alphacode is associated with a unique puzzle number apart from the actual codes.
Assume that a user performs an E-commerce transaction on an untrusted site. We created
a simple E-commerce site which simulates an online shopping site where the user can select

several items in a shopping cart and perform an online transaction. When completing the
transaction, the user has to enter the user identity, the trusted authority issuing the identity
and Alphacodes, puzzle number corresponding to a chosen Alphacode and the solution to
the sender puzzle based on the significant digits of the transaction amount. The untrusted
E-commerce site needs to obtain authorization for the transaction amount from the trusted
authority and hence needs to share the user information along with the Alphacode puzzle
number and the sender code. The trusted authority can accept or reject the transaction
depending on the whether the solution to the Alphacode is correct. If correct, the trusted
authority shares the recipient code response back to the untrusted site which needs to be
disseminated to the user as the confirmation code for the transaction. If the confirmation
code does not match the correct trusted authority response, the user can initiate a dispute
resolution for the transaction with the trusted authority.

SMS Money transfer Application: Here, we assume that all users have a unique
identity issued by a bank. The user identity is also directly linked to the mobile number of
the user. The trusted authority runs a mobile money transfer service where users can send
money from their account to another account using Alphacodes. In this case, we assume
that Alphacodes are disseminated through an alternative secure channel where users can
physically purchase Alphacodes similar to scratch cards which are in essence pre-certified
Alphacodes issued by the trusted authority. The Alphacodes can be user-specific or user-
agnostic. An Alphacode in isolation has no monetary value. Once a user is in possession
of an unused Alphacode, the user sends an SMS for the transaction with the code. This
message is sent to the SMS mobile number corresponding to the bank. The bank checks the
code and if its correct sends the corresponding response code over SMS to the recipient. If
the response code does not match the expected response, the sender can initiate a dispute
resolution with the bank.

8. MECHANICAL TURK EXPERIMENTS

We conducted two experiments on Amazon Mechanical Turk to find the ease of solvability
of Alphacodes at a user-level. These tests are necessary to understand the ease of adoption
of the paradigm by a target population.

8.1. Sample

As per guidelines set by Amazon, all the participants were from the Unites States, and are
naturally assumed to have working knowledge of the English language. These participants
(referred to as workers) are screened by Amazon and expected to follow a set of guidelines
ensuring honest and quality responses to tasks raised by requesters. Hence, we believe that
this should be deemed as a first order test to see whether Alphacodes are indeed easy to
use, with a small, concise set of instructions provided to guide participants. In both the
crowd-sourced experiments, two solved questions were provided at the beginning of each
task as examples. In essence, users had to bootstrap the Alphacodes concept using only two
examples.

8.2. Task Definition

As shown in the examples prior, each Alphacode table (or grid) was composed of 10 rows
and K columns, where a K digit number was provided as input. We use K = 4 across most
experiments, to ensure sufficient complexity in the tasks provided without overburdening
the workers. In addition, the choices we provided as answers were meant to specifically
confuse the users and were set as slight variants of the correct answer. We expected the
workers to perform simple tasks including adhering to the instructions provided, perform
pattern matching, and select the radio button corresponding to the correct answer. We
believe that workers are motivated to act honestly due to strict regulations enforced by

Amazon on deviants. In subsequent subsections, we describe the experiments in greater
detail and explain the results obtained.

8.3. Solvability of Alphacodes

This experiment was specifically designed to test and observe the ease of adoption (via
solvability) of the Alphacodes paradigm. To do so, our MTurk worker pool contained 27
randomly chosen participants. A collection of 540 unique puzzles were evenly distributed
among them i.e each user was given 20 puzzles to solve. 10 of these puzzles had English
content populating the grids, and 10 had Non-English (or symbolic) content. As explained
earlier, each participant was provided the same set of concise instructions and two solved
examples to enable a quick bootstrap for the paradigm. Subsequently, each participant was
allotted 15 minutes to solve all 20 puzzles. We believed this time limit to be reasonable as
solving each puzzle only entailed selecting the button corresponding to its solution after
performing rudimentary pattern matching.

We found that on an average, each user took 6.8 minutes (with 8.2 minutes to spare) to
complete the entire task which roughly translates to 20 seconds for solving each puzzle. The
median and mode accuracy was 100% which means that the majority of the users got all
puzzles correct and errors were committed by a small minority. Out of the 540 puzzles posed,
the number of errors committed was higher in English-based puzzles (22 out of 270) when
compared to symbol-based puzzles (15 out of 270). Despite strict guidelines imposed, we
suspect that this was due to the lack of user-interest in performing the repetitive task. The
average time taken to solve the puzzles indicates the simplicity of the paradigm proposed,
suggesting easy adoption among the semi-literate masses. As the users were not all provided
the same puzzle, we are unable to comment on the difficulty of each puzzle individually.
Surprisingly, the participants performed better on symbol-based puzzles. Even among those
users who committed errors, we observed that as the participants observed more puzzles,
the accuracy became slightly better. Since the non-English puzzles came after the English
puzzles, we believe the solvability improved. Overall, we conclude with knowledge that the
participants understood how to use Alphacodes with limited training.

8.4. Transactions using Alphacodes

This experiment focused on understanding if users are capable of performing secure trans-
actions using Alphacodes. This involved encoding the transaction amount into a character
string, performing a function similar to that of a one-time pad. Though not the exact pro-
tocol, this test was performed with the intention of understanding if users are able to detect
fraud during the transaction process. To elaborate, each user was given the task of per-
forming a transaction of a specified amount. The amount was specified with two decimal
digit accuracy and the total number of digits varied between 3 to 6. The users are expected
to choose the K = 4 significant digits to solve the Alphacode puzzles. If the number of
digits including the decimal places is less than 4, the user is expected to prepend the corre-
sponding number of 0’s after considering the decimal places. The user is provided multiple
examples on how to choose the 4 significant digits. Each user is expected to perform 20
transactions where each transaction involves solving two puzzles: the Sender Puzzle and
the Receiver Puzzle. For the Sender puzzle, the participant is required to type the correct
solution. In the Receiver puzzle, the user is specified a confirmation code as the solution and
the participant is required to verify if the solution provided is correct or not. For 50% of
randomly chosen transactions, we provided incorrect answers for the receiver puzzles which
were very similar to the correct answer. For this experiment, our user pool had 18 mem-
bers (not overlapping with the previous turk experiment). A collection of 20 transactions
containing 40 unique puzzles (20 sender puzzles and 20 receiver puzzles) were distributed

among them. Each user was given the same 40 puzzles to solve and was allotted 30 minutes
to solve all 20 transactions.
We found that on the average, each user took 19.8 minutes to complete the entire task. We

noted that the participants performed significantly better on receiver puzzles. The number
of errors committed was higher in the sender puzzle category (28 out of 360) when compared
to receiver puzzle category (6 out of 360). Similar to the previous case, we observed the
median accuracy for both sender and receiver puzzles to be 100%. More than half the
users got all 20 transactions completely correct, including both sender and receiver puzzles.
Given that we observed an extremely high receiver puzzle solving accuracy despite giving
incorrect codes for half the transactions, we strongly believe that the users did not have
much difficulty understanding the Alphacode paradigm. Unlike the first experiment, the
sender puzzle error rate was marginally higher since we expected the users to type down
the answer We observe that the solvability of puzzles also got distinctly better as users solved
more puzzles. Overall, we believe that despite minimal training of less than 2− 3 minutes,
users could quickly and accurately perform transactions using Alphacodes. We admit that
these are not full scale human-interface experiments but they provide encouraging evidence
that the idea is feasible in practice. We also believe that performing the required operations
at an application level will further reduce the error to a negligible value

9. ALPHACODES SOLVABILITY IN A LOCAL LANGUAGE

To demonstrate the power of people to solve Alphacodes in a local language, we perform
a simple user study in the Kannada language (Indian language in the state of Karnataka)
with a small population of 10 users who all spoke the language. We gave the participants
two tasks to complete. In the first task, the participants were given a sheet of paper which
consisted of an Alphacodes table. In the table, the English letters were replaced with the
letters of the local language, Kannada. At the top of the table a three digit number was
written and the users were told to match the three digit number with the corresponding
letters as per the rules of the protocol. Each participant was individually instructed of the
rules and a few sample tables were filled by us to show the participants the rules of the
process. The teaching part took about 5 minutes per participant, and they were told to
fill up a new sheet based on the instructions provided and the examples that they filled
previously. Most (80%) of the participants were able to complete the task correctly within
the specified time. The rest needed more time to understand the process, but they too
completed the task after under going additional training.
The second task was as follows: A set of letters were written at the top of the table and

the users had to match the letters with the corresponding numbers as per the pre-specified
rules of the protocol. In this task, we increased the number of characters per digit to two
Kannada characters. Note that Kannada is significantly more complex than English with
over 500 different written symbols in the alphabet. We first ask each user to pick a number,
decipher the letters of the code and write the deciphered letters on top of the table. Once
the letters are deciphered, the task is for each user to check whether the deciphered letters
match the chosen number in the table.
Similar to the first task, instructions were provided on an individual basis and sheets

were filled up as part of the initial training process. Additional time was spent to make sure
everyone understood the procedure. Once the training was complete, the users were given
new sheet to fill up. All the users were able to satisfactorily complete the task as per the
specified procedure. We believe that the training in the first task helped the users in more
quickly grasping the concept for the second task.
Figure 1a shows one of the tables used in the first study. The number 463 is written at

the top of the table and the participant sifts through the first row (the number row) on
the table to find 4, and circles the corresponding letters in the first column. Similarly, the
participant circles the letters in the next two columns. Figure 1b shows an example table

(a) (b)

Fig. 1: (a) One of the tables used as part of the user study. The participant successfully
circles the letters based on the number 463. (b) The participant successfully circles the letters
based on the letters printed above the table and marks the corresponding row number.

used in the second task, where the participant circles the letters that is printed on top of
the table and marks the corresponding row number.

Both these simple experiments demonstrate two powerful facts about Alphacodes: (a)
The concept of Alphacodes can be easily extended to other languages beyond English quite
easily; (b) The time taken for novice users to learn about the Alphacodes concept is quite
small. Given repetitive practice, users can quickly master solving Alphacodes.

10. ADDITIONAL RELATED WORK

Moran and Naor [14; 15], use physical envelopes in establishing a plausibly deniable polling
scheme. They use basic cryptographic techniques and rigorously prove the security of their
scheme under the UC (Universal Composable) model. The physical envelopes were a physical
realization of an ideal definition of Distinguishing Envelopes (DE), which was described
in their previous work on cryptographic protocols using Tamper Evident Seals [14]. This
concept could be applied to alphacodes implemented as scratch cards. Once the surface is
scratched off, anyone looking at the scratch card is aware that it has been scratched off.
Moran and Naor [14; 15] use scratch cards for polling.

One-time Message Authentication Codes (MAC) provide an authentication scheme, where
a one-time secret key is used to both compute and authenticate a message. The standard
technique of computing one-time MACs uses pairwise-independent hash functions [23]. Our
paper shows how to build a humanly computable one-time MAC where each scratch-card
contains the secret key that can be used to authenticate a single transaction.

There has been some work in the area of using physical objects in cryptographic protocols.
Fagin, Naor and Winkler [8] use physical objects such as cups, labels and a telephone system
to share secret information between two parties. Naor, Naor and Reingold [18] propose a
zero knowledge proof of knowledge protocol that uses newspaper and scissors to solve a kid’s
puzzle known as ”Where’s Waldo”. Crepeau and Kilian [7] propose a protocol for sharing
secret information between two parties using a deck of cards to play discreet solitary games.

Scheiner [21] used a deck of cards to implement Solitaire cipher that is used in commu-
nicating information between parties. Naor and Shamir [17] propose Visual Cryptography

and implement Visual Authentication and Identification [16] protocols based on simple
operations on binary images. They propose to implement their protocol using slides and
transparencies. Chaum [6] proposes a new protocol for verifiable voting using secure paper
ballots. These protocols (or variants) are hard to implement in the field due to two reasons.
One, to use transparencies or slides in authenticating a transaction is impractical. Second,
the protocols are too complex for users to understand and use on a daily basis.

Two-factor authentication is being used by a number of organizations to provide extra
security to users [10]. Although it provides an additional layer of security, it does not
take away the problem of data leakage in unencrypted channels. The PIN acts as another
password that has to be entered to gain access to the site, whereas secure data would still
be vulnerable to a MitM attack.

11. CONCLUSIONS

Clear-text transactions between users and providers such as phone-based transactions, e-
commerce in untrusted websites, remittances and branchless banking continue to remain
common practice, due to the convenience it provides the users. This convenience comes
at the risk of exposing the users to different forms of MitM attacks for several types of
real-world commerce transactions. This paper aims to build new protocols based on the
concept of Alphacodes which are simple to use, secure against failures in infrastructure,
and should prevent exploitation of the poor by unscrupulous merchants. Alphacode proto-
cols are simple to use and can specifically enable new types of secure transactions relevant
in developing regions. The Alphacode protocols are designed to tolerate dropped messages,
corrupt messages, man-in-the-middle attacks, and other malicious attacks. We believe Al-
phacodes represent a very simple and effective way of bootstrapping security in end-to-end
transactions especially in phone-based transactions, untrusted e-commerce site, remittances,
mobile banking and branchless banking contexts.

REFERENCES

F-secure. http://www.f-secure.com.

Ignacio Mas, Kabir Kumar. Banking on Mobiles: Why, How, for Whom?
http://www.cgap.org/gm/document-1.9.4400/FN48.pdf.

Practical Cellphone Spying. https://www.defcon.org/html/defcon-18/dc-18-speakers.html#Paget.

Bickford, J., O’Hare, R., Baliga, A., Ganapathy, V., and Iftode, L. Rootkits on smart phones:
attacks, implications and opportunities. HotMobile ’10, ACM, pp. 49–54.

Biryukov, A., Shamir, A., and Wagner, D. Real Time Cryptanalysis of A5/1 on a PC. In Proceedings of
the 7th International Workshop on Fast Software Encryption (London, UK, 2001), FSE ’00, Springer-
Verlag, pp. 1–18.

Chaum, D. Secret-ballot receipts: True voter-verifiable elections. IEEE Security and Privacy 2 (January
2004), 38–47.

Crépeau, C., and Kilian, J. Discreet solitary games. In Proceedings of the 13th annual international
cryptology conference on Advances in cryptology (New York, NY, USA, 1994), Springer-Verlag New
York, Inc., pp. 319–330.

Fagin, R., Naor, M., and Winkler, P. Comparing information without leaking it. Commun. ACM 39
(May 1996), 77–85.

GCash, G. http://www.234next.com/csp/cms/sites/
Next/Home/5413169-146/Branchless
banking: Uncertainties emerge.csp.

Grosse, E., and Upadhyay, M. Authentication at scale. IEEE Security and Privacy 11 (2013), 15–22.

Ivatury, G., and Mas, I. Early experiences with branchless banking. In CGAP Focus Note 46 (Washington
D.C., 2008).

Lord, S. Trouble at the Telco: When GSM goes bad. Network Security (January 2003).

Mas, I. Economics of Branchless Banking. Innovations Vol. 4, Issue 2 (January 2009).

Moran, T., and Naor, M. Basing cryptographic protocols on tamper-evident seals. In ICALP 2005 (July
2005), L. C. et al., Ed., vol. 3580 of Lecture Notes in Computer Science, Springer-Verlag, pp. 285–297.

http://www.f-secure.com
http://www.cgap.org/gm/document-1.9.4400/FN48.pdf
https://www.defcon.org/html/defcon-18/dc-18-speakers.html#Paget

Moran, T., and Naor, M. Polling with physical envelopes: a rigorous analysis of a human-centric protocol.
In Eurocrypt 2006 (May 2006), S. Vaudenay, Ed., vol. 4004 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 88–108.

Naor, M., and Pinkas, B. Visual authentication and identification. In Proceedings of the 17th Annual
International Cryptology Conference on Advances in Cryptology (London, UK, 1997), Springer-Verlag,
pp. 322–336.

Naor, M., and Shamir, A. Visual cryptography. Springer-Verlag, pp. 1–12.

Naor, M., Y, N., and Reingold, O. Applied kid cryptography:
http://www.wisdom.weizmann.ac.il/ naor/papers/waldo.ps.

Paik, M. Stragglers of the herd get eaten: security concerns for gsm mobile banking applications. In Pro-
ceedings of the Eleventh Workshop on Mobile Computing Systems & Applications (New York,
NY, USA, 2010), HotMobile ’10, ACM, pp. 54–59.

Panjwani, S., and Cutrell, E. Usable, low-cost, authentication for mobile banking. In SOUPS (2010).

Schneier, B. The solitaire encryption algorithm: http://www.schneier.com/solitaire.html.

Sharma, A., Subramanian, L., and Shasha, D. Secure branchless banking. In NSDR ’09: Networked
Systems for Developing Regions (New York, NY, USA, 2009), ACM.

Stinson, D. R. Universal hashing and authentication codes. In International Crytology Conference, pp. 74–
85.

Wagner, D., and Goldberg, I.GSM Cloning. http://www.isaac.cs.berkeley.edu/isaac/gsm-faq.html, 1998.

Wagner, D., and Goldberg, I. The Real-Time Cryptanalysis of A5/2. Rump Session Crypto ’99 (1999).

http://www.isaac.cs.berkeley.edu/isaac/gsm-faq.html

	Introduction
	Our contribution

	Problem Context
	Alphacodes
	Alphacode Protocols
	The Three Party Protocol
	Protocol Steps
	Protocol Over a Noisy Channel
	Analysis

	Thwarting Attack Vectors
	Replay Attacks
	Spoofing and Phishing
	Man-in-the-Middle Attacks
	Rootkit

	Applications
	E-commerce Transactions
	Mobile Banking
	Voice-based Transactions and Phone Banking
	Rural Banking

	Implementation
	Mechanical Turk Experiments
	Sample
	Task Definition
	Solvability of Alphacodes
	Transactions using Alphacodes

	Alphacodes solvability in a local language
	Additional Related Work
	Conclusions

