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Abstract

A recent body of work attempts to understand the behavior and training dynamics of neural

networks by analyzing intermediate representations and designing metrics to define the similarity

between those representations. We observe that the representations of the last layer could be

thought of as the functional output of the model up to that point. In this work, we investigate

if the similarity between these representations can be considered a stand-in for the similarity

of the networks’ output functions. This can have an impact for many downstream tasks, but

we specifically analyze it in the context of transfer learning. Consequently, we perform a series

of experiments to understand the relationship between the representational similarity and the

functional similarity of neural networks. We show in two ways that the leading metric for

representational similarity, CKA, does not bear a strict relationship with functional similarity.
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Chapter 1

Introduction

This work addresses a question on similarity metrics for neural networks [1–3]. Namely, does the

degree of similarity amongst the representations of two networks tell us anything about how

similar the functions defined by those networks are? If the representation is taken from layer

M of an N layer network, then the function is the composition of that representation and the

following N −M layers resulting in an output distribution.

This investigation matters because we have developed strong metrics for representational similarity

such as CCA [4], SVCCA [1], PWCCA [2], or CKA [3]. Yet, we have little ability to probe

the functional similarity besides training multiple networks on a task and then evaluating the

output distributions with respect to some divergence metric such as Jensen-Shannon (JSD) or

Kullback-Liebler (KL).

On the other hand, it would be useful to have a way of inferring the functional similarity of

two networks from their representations (i.e., features). This would allow us to estimate the

functional similarity of two networks on some downstream task without ever actually having to

train (or evaluate) them on that task. With this tool, we could, for example, expedite transfer

learning in real-world scenarios by grouping networks according to their (feature) similarity

and then testing our transfer learning approaches with only one network from each group. If

networks with similar representations are guaranteed to have similar outputs, then they must

also have similar capabilities on downstream tasks.

We perform a series of experiments to answer the above question. We begin by examining how

learned representations cluster by training an SVM to classify among various representation sets.

To assess whether feature similarity correlates with functional similarity, we train networks with

different architectures and initializations on a wide array of tasks. This allows us to empirically

conclude that similarity of representations (measured using CKA) and similarity of functions (as

measured by JSD or the Spearman’s rank correlation coefficient) are not strictly related. We

1
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further devise a setup whereby we produce networks with high representational similarity but

entirely different outputs. The fact that we can do this without any other assumptions validates

the empirical study.

Overall, our novel contributions are the following:

• We empirically show that representational similarity is not suggestive of functional similarity

across a wide range of domains, including both supervised and reinforcement learning

tasks.

• We show that we can create two networks with very high representational similarity but

opposing functions.



Chapter 2

Background

In this section, we briefly review different methods of measuring similarity between neural

network activation vectors. Let X ∈ Rn×p1 denote a matrix of activations of p1 neurons for n

examples, and Y ∈ Rn×p2 denote a matrix of activations of p2 neurons for the same n examples.

We assume that these matrices are centered and p1 ≤ p2. QX and QY represent any orthonormal

basis for the columns of X and Y, which can be computed by QR decomposition.

2.1 Canonical correlation analysis (CCA)

Canonical correlation analysis (CCA) [4] is a statistical technique for inferring the relationship

between two sets of random variables, X and Y. CCA finds two sets of basis vectors (one for

X and one for Y) with the maximum correlation between the projections of X and Y onto the

basis vectors. If we consider two layers of a neural network as the two sets of random variables,

CCA can be used to find the similarity between the layers. As stated in [2], CCA is invariant to

invertible affine transforms, which makes it suitable for neural networks, where representations

at each layer go through an affine transform. It also enables comparisons between different

networks and layers of different output dimensions, where the ordinary dot product between the

representations cannot be computed.

In our experiments, we use the mean squared CCA correlation R2
CCA:

R2
CCA =

∑p1
i=1 ρ

2
i

p1
=

∥∥QT
YQX

∥∥2

F

p1

where ‖·‖F is the Frobenius norm.
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2.2 SVCCA

Despite these advantages, CCA is sensitive to perturbations when the condition number of X or

Y is large [5]. To improve robustness, Raghu et al. [1] introduce the singular vector canonical

correlation analysis (SVCCA). SVCCA first performs a singular value decomposition on X and Y,

and then applies CCA to the top m singular vectors. Raghu et al. [1] use SVCCA to investigate

the learning dynamics of a neural network and show that networks converge bottom-up, with

initial layers converging to their final representations before later layers. They also compare the

similarity of representations across different random initializations of the network’s weights.

2.3 Projection-weighted CCA

Inspired by SVCCA, Morcos et al. [2] develop projection weighted canonical correlation analysis

(PWCCA) to provide new insights into the representational similarity of CNNs. They investigate

whether representational similarity is predictive of generalization by studying two types of

networks, generalizing networks (i.e., trained on correct labels) and memorizing networks (i.e.,

trained on randomized labels(. They show that generalizing networks converge to more similar

representations than memorizing networks. They also show that networks with identical topology

but different learning rates converge to a small set of diverse solutions.

2.4 Centered Kernel Alignment (CKA)

As described in [3], CCA is invariant to invertible linear transformations. If a similarity index is

invariant to an invertible linear transformation, it yields the same result for any representation of

width greater than or equal to the dataset size. However, PWCCA is not invariant to orthogonal

transformations. Invariance to orthogonal transformation implies invariance to permutation,

which is necessary when symmetry is present in neural networks.

These limitations led to the adoption of centered kernel alignment (CKA) as a similarity metric

for comparing neural network representations. Cortes et al. [6] introduced it as an approach for

learning kernels based on the notion of centered alignment. The key insight is that one can first

measure the similarity between every pair of examples in each representation separately, and

then compare the similarity structures. Kornblith et al. [3] show that if the inner product is

used to measure similarity, the similarity between representational similarity matrices reduces to

an intuitive notion of pairwise feature similarity.
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In all our experiments, we use linear CKA, which is computed as:

CKA(X,Y ) =

∥∥Y TX
∥∥2

F

‖XTX‖F ‖Y TY ‖F

Linear CKA is related to CCA as :

R2
CCA = CKA(QXQ

T
X , QYQ

T
Y )

√
p2

p1



Chapter 3

Experiments

3.1 Biases in representation space

A good representation should capture information about the input data and be invariant with

respect to the model that generated the representation. To investigate the learned representations,

we perform a similar experiment as Torralba and Efros [7] using the feature representations from

the neural net to verify whether an SVM trained on those representations would be able to tell

apart which dataset and model did the representation come from. We train Resnet 110 [8] for

classification on two datasets: Cifar100 [9] and Imagenet32. Imagenet32 is the downsampled

version of Imagenet [10], where each image is of size 32x32. We choose Imagenet32 to have

features of the same dimension. We train networks with two seeds on each of the datasets. Using

the four trained networks, and two untrained networks (one for each seed), we generate the

feature representations on three test datasets: Cifar100, Imagenet32, and Pascal VOC [11]. We

use Pytorch lightning [12] to train the networks.

We use the entire test dataset of Pascal VOC and 5800 randomly chosen images from Cifar100

and Imagenet’s test sets. We generate features at the last convolution layer. Each feature was

of dimension 1024x2x2, which we flatten to obtain a 4096 dimension vector. We normalize the

features to zero mean and unit variance. Using this setup, we obtain a total of 18 representation

sets (3 datasets x 6 algorithms). We use an SVM [13] to classify these representations into 18

classes. Linear SVM was used, which handles multiclass classification according to a one-vs-the-

rest scheme.

The confusion matrix of SVM would give us insights on the kind of mistakes it made during

classification. It is important because these mistakes would help us know if the model or dataset

has a larger role in cluster formation. Confusion matrix for the SVM classification is in Figure

3.1. The confusion is frequently over the test dataset used (i.e., Cifar vs. Imagenet vs. VOC).

6
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Figure 3.1: We train Resnets with two seeds on Imagenet and Cifar, and test on Imagenet,
Cifar, and Pascal VOC. We generate feature representations on three datasets for these two
seeds and untrained networks. We classify those into 18 classes with an SVM. Cifar Imagenet s1
denotes Imagenet representations from a network trained on Cifar. The confusion matrix seems
to indicate that the SVM is confused frequently over the test dataset used but never over the

model.

We see that training seed-1 on Cifar gets 70% of the images from Cifar and confuses 15% each

with Imagenet and VOC, which is true for both seeds of Cifar. For Imagenet, it does 80% on its

dataset, with most of the confusion going to its performance on VOC. On Cifar, it does 90% with

the confusion going to VOC. However, on VOC, it does only 80% with confusion split evenly

among Cifar and Imagenet. The SVM is never confused about the model, and the confusion

does not happen over the seed. The SVM always classifies the random models for seed-1 as

being from Imagenet for seed-1. Furthermore, for seed-2, it is always classified as being from

Cifar for seed-2.

We also use t-SNE to reduce the feature vectors to 2-dimensions and plot them for each of the

test datasets. From the t-SNE plots in Figure 3.2, we observe that there are clusters based on
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Figure 3.2: TSNE of features on each of the test datasets. We can see that that there are
clusters based on the model (i.e., CNN used to generate the features), and across datasets, the

cluster positions remain same.

the model (i.e., CNN used to generate features), and across datasets, the cluster positions stay

the same. This cluster formation supports the results from SVM that model, and not the dataset

has a more significant role in the creation of clusters in representation space.
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3.2 Similarity of Network Representations

A good representation should capture information about the input data while being invariant

with respect to the model used to generate that representation. To investigate whether this is

the case for standard training of neural networks, we analyze the similarity between the learned

representations of models trained on different datasets.
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Figure 3.3: CKA similarity of pairwise model representations, computed on test data from
Cifar100, Imagenet32, and Pascal VOC (from left to right). The same networks are used to
obtain representations on each of the three datasets. Cifar s1 denotes a network trained on
Cifar100 with seed 1, while random s1 denotes an untrained network initialized with seed 1.
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We train Resnet18 [8] on Cifar100 [9] and Imagenet32. Imagenet32 is the downsampled version

of Imagenet [10], where each image is of size 32x32. We choose Imagenet32 to have features of

the same dimension. For each dataset, we train three networks with different initializations (i.e.,

seeds). Then we use the trained networks to generate representations of unseen samples from

Cifar100, Imagenet32, and Pascal VOC. We use the entire test dataset of Pascal VOC and 5800

randomly chosen images from Cifar100’s and Imagenet32’s test sets. Here the representations are

defined as the features after the last convolutional layer. Each feature has dimension 1024x2x2,

which is flattened to obtain a 4096-dimensional vector. We also generate features from three

untrained networks with different initializations. Using this setup, we obtain a total of 27

representation sets (9 models x 3 datasets). We then use linear CKA between each pair of models’

representations keeping the test dataset constant. Figure 3.3 shows the results with linear CKA.

Each (i, j) entry from Figure 3.3 is the CKA between the representation of the network on row i

and that of the network on column j. The subplots show the similarities of the corresponding

feature vectors computed on the test data from Cifar, Imagenet32, and VOC (from left to right).

The same networks are used to obtain representations on each of the three datasets. Note that

models trained on the same dataset have a high CKA similarity, even when tested on different

datasets. This suggests that the learned representations are biased with respect to the model

used to generate them, which is not always desirable.

3.3 Feature Similarity vs. Output Similarity

One motivation for measuring feature similarity between different networks is to infer their

functional similarity. A reasonable assumption is that a pair of models with 0.75 CKA has more

similar outputs (and thus their performance on a task will be more similar) to each other than a

pair of networks with 0.5 CKA. However, to the extent of our knowledge, this hypothesis has

not been thoroughly tested.

In this section, we investigate this question by analyzing the relationship between CKA and

output similarity. We use the Jensen-Shannon divergence (JSD) and Spearman rank coefficient

to measure the similarity between the probability distributions outputted by two networks. We

choose JSD over other similarity metrics such as Kullback-Leibler divergence (KL) because JSD

is symmetric.

To compute the JSD of two probability distributions, the output distributions should have the

same dimension. In particular, the models should have the same number of output classes.

Hence, we train the networks only on the Cifar100 dataset. The architectures used for training

were VGG16, VGG11, VGG13 [14], Resnet18, Resnet34 [8], Mobilenet, and Mobilenetv2 [15].
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Figure 3.4: CKA similarity vs. JSD and Spearman rank coefficient for networks trained on
Cifar100 dataset. Blue points correspond to pairs of fully trained models, while red points
correspond to pairs of random networks. ρ is the correlation between X and Y of the blue points.

Figure 3.4 shows the relationship between CKA and JSD, and CKA and Spearman rank

coefficient for pairwise model representations and outputs on the Cifar100 dataset. The blue

points correspond to pairs of fully trained models, while the red points correspond to pairs of

random networks. Note that there is a vaguely inverse relationship between CKA similarity and

JSD. However, there are many points with the same CKA and different JSD, or with different

CKA and the same JSD. The points in red also contradict the inverse relationship as all of them

have a JSD close to 0. These points are the untrained networks that predict nearly uniform

probability for all classes. This suggests that there is some correlation between the similarity

of two networks in representation space and their functional (or output) similarity, but this

relationship is not very strong and can be easily violated.

3.4 Mapping the Full Similarity Domain

Note that Figure 3.4 does not contain any points with CKA < 0.3 or CKA > 0.8. However, it

is important to understand how JSD varies with CKA for the entire range of CKA similarities

(i.e., from 0 to 1). One way to generate pairs of networks that cover the full similarity domain is

by comparing a fully trained network with different checkpoints of that network during training.

This experiment will provide insight on whether during training, a network’s representation and

output become progressively more similar to its final ones.

We train Resnet18 and VGG16 on Cifar100, with two seeds for each architecture. During training,

since the rate at which a network becomes similar to its final version depends on the learning

rate, we used three different learning rates (0.01, 0.001, 0.0001). We generate features at epochs

[0,1,2,...10, 15, 20, .. 40, 50, 60, ... 90, 100], and compute the CKA and JSD between the last

checkpoint and each of the previous ones.
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Figure 3.5 shows the scatter plots for variation of similarity with epoch, JSD with epoch, and

the relationship between similarity and JSD of a model during training with the fully trained

version of itself. The plots show that models during training converge to the fully trained version

in both representation space and outputs, and there is a clear inverse relationship between the

similarity of representations and output similarity. With a higher learning rate, we can see that

the models converge faster to their final representation and output, which can be explained by

larger gradient steps taken during training. We observe a linear relationship between CKA and

output similarity, but the slope seems to be dependent on the architecture.
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Figure 3.5: From left to right: Variation of similarity with epoch, JSD with epoch and
relationship between similarity and jsd of a model during training with the fully trained version
of itself. We train the networks on Cifar-100. VGG16 s1 denotes VGG 16 trained with seed=1.
There is a linear relationship between similarity and JSD, and the models converge to their final

form both in CKA and JSD.

3.5 Relation in Reinforcement learning

While the inverse relationship between CKA and JSD holds between network checkpoints and

their final version, the relationship is not as strict across different networks (as we saw in

Section 3.2). In this section, we investigate whether the relationship discovered in Section 3.2 for

classification tasks also holds for reinforcement learning (RL) tasks. In RL with discrete action

spaces, the output of the networks is the probability distribution over all possible actions. For
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Figure 3.6: Relation between CKA of features and JSD of action probabilities for agents
trained on MiniGrid. Slope is the slope of the best fit line (red line), and ρ is the Spearman
correlation coefficient between x and y. We can see that there is a linear relationship, but the
slope of the best fit line is not constant across the plots. Plots to the right have fewer points
because we ignore the agents that follow sub-optimal paths to traverse the grid. Green: Both
agents are optimal, Magenta: Optimal vs mediocre, Blue: Optimal vs poor, Orange: Everything

else.

our experiments, we use the Empty environment from MiniGrid [16]. The agent starts at the

top-left tile, and the goal is to reach the bottom-right tile of the grid. We train agents on four

grid sizes: 5, 6, 8, and 16. To generate intermediate features and action probabilities, we use

grids of size 5, 6, 8. Unlike supervised learning, RL does not have a test set on which we can

compare the networks. To compute the similarity between a pair of networks (in this case agent

policies), we gather rollouts using the two corresponding policies and use the rollout states as

inputs. We use the proximal policy optimization (PPO) [17] algorithm to train the agents.

Figure 3.6 shows CKA-JSD scatter plots for agents trained on MiniGrid. The columns correspond

to different grid sizes used during training (5x5, 6x6, 8x8, and 16x16 from left to right). The

rows correspond to grid sizes used during testing (5x5, 6x6, and 8x8, from top to bottom). Each

point is a CKA and JSD comparison between two agents. We use the color scheme below to

differentiate between optimal (R > 0.8), sub-optimal (0.8 > R > 0.2) and poor (R < 0.2) agents

where R is the average total reward obtained by the agent on the grid on which the agent was

trained.



List of Tables 14

We also plot the line of best fit for each of the scatter plots and calculate the correlation coefficient

r. Similar to Figure 3.4, one can see that many points violate the inverse linear relationship.

Note that the slope of the best fit lines is not constant across the plots.
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(b) Bottleneck implementation

Figure 3.7: Network architecture of original implementation (a) vs bottleneck implementation
(b) for agents trained on MiniGrid. Bottleneck was introduced to reduce the capacity of the
network between the features used to measure CKA similarities and the output probabilities.

3.5.1 FC layer with bottleneck

One potential explanation for the difference in best-fit slopes is that the fully-connected (FC)

layer (on top of the feature vectors used to measure CKA) has enough capacity to change the

relationship between CKA and JSD. In other words, the features are similar up to the last

convolutional layer, but the outputs (i.e., probability distributions) diverge due to the large

capacity of the penultimate and final FC layers. To verify this hypothesis, we introduce a

bottleneck layer that reduces the number of filters and computes the CKA similarity after the

bottleneck. The bottleneck is followed by the final FC layer, which outputs the probability

distribution over classes or actions.
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Figure 3.8: Relation between CKA of features and JSD of action probabilities for agents
trained with the bottleneck. The dimension of the bottleneck layer is 8. Slope is the slope of the
best fit line (red line), and ρ is the Spearman correlation coefficient between x and y. The best fit
lines have more consistent slopes across plots, relative to earlier experiments. However, we can
still observe many points with the same JSD and different CKA, and vice versa. Green: Both
agents are optimal, Magenta: Optimal vs mediocre, Blue: Optimal vs poor, Orange: Everything

else

Experiment Spearman correlation

CKA vs. JSD
CKA vs.

Spearman correlation

Cifar : trained nets -0.75 0.703

MiniGrid (average) -0.721 0.58

MiniGrid with bottleneck -0.781 0.602

Table 3.1: Correlation coefficient of CKA vs JSD and CKA vs Spearman RC from Figures 3.4,
3.6 and 3.8.

The scatter plot of CKA similarity vs. JSD can be found in Figure 3.8. We use a bottleneck

that downsamples the features from 64 to 8 dimensions. We compute CKA for the downsampled

features. The best fit lines have more consistent slopes across plots in comparison to earlier

experiments. However, we can still observe many points with the same JSD, different CKA, and

vice versa. This result suggests that FC capacity might not be the reason for the inconsistent

relationship between feature and output similarity.

We compare the scatter plots from Figures 3.4, 3.6, and 3.7 in Table 3.1. We estimate the

goodness of a scatter plot by measuring the Spearman correlation between X and Y coordinates
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of the points. Ideally, we expect the correlation between CKA and JSD to be 1, and between

CKA and Spearman correlation to be -1. We can see that using the bottleneck improves the

correlation, but the relationship from the plots is still inconsistent. For the Minigrid experiments,

we report the correlation averaged across all train and test grid sizes.



Chapter 4

Existance Proof

The question we have been addressing is whether high feature similarity is correlated with high

output similarity. Up to now, we have seen results that mostly suggested a positive, albeit loose,

correlation. However, we show in this section that we can design a pair of networks with high

feature similarity and low or variable output similarity. To achieve this, we train two networks

on the Cats vs. Dogs dataset, Net1, and Net2. The networks use a pretrained Resnet18 (on

ImageNet32) as the base architecture, which was then frozen for this task. The input to both

networks is a three-channel image of size 224x224, and the output is a feature vector of size 512.

The features obtained from the base are masked, setting the majority of the activations to 0.

However, the two networks are masked in different ways. We first set a ratio, dratio, which is the

number of unmasked nodes over the total number of nodes. Net1 has active nodes for the first

N dimensions of the feature vector, while Net2 has active nodes for the last 512−N dimensions

of the feature vector. The ratio of active nodes over the total number of nodes of the feature

vector, dratio, is varied. We train Net1 with true labels and Net2 with flipped labels. See figure

4.1 for the network architecture.

The representational similarity is computed using CKA and CCA between the feature vectors

before the masking layer. Since the two networks have the same base (which is never updated),

their feature similarity is high. However, Net2 is trained with inverted labels, so its outputs will

be very different from those of Net1. JSD and rank coefficient is used to measure the functional

similarity of the two networks. The results can be seen in Table 4.1. Note that the output

similarity can be controlled by adjusting dratio.

This experiment shows that we can easily construct an example in which the similarity between

the representations of two networks is very high, while the similarity of their outputs is very low.

This observation supports our claim that current feature similarity metrics are not always an

good estimate of functional similarity.

17
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Figure 4.1: Architecture of the setup used to train networks with a high feature similarity
and a wide range of output similarities. d is a hyperparameter that controls the number of
active nodes after the masking layer. We train Net1 with true labels and Net2 with inverted
labels. Since the networks’ outputs are different, we expect them to have a low feature similarity.
However, the CKA (and the CCA) similarity between the networks’ representations is high since

their bottom layers have the same weights.

dratio
Similarity

JSD
Rank

coefficient
Validation
accuracyCKA CCA

0 0.99 0.99 0.59 -0.95 97.7

0.25 0.99 0.99 0.57 -0.93 97.1

0.5 0.99 0.99 0.53 -0.91 96.4

0.8 0.99 0.99 0.41 -0.81 93.5

0.9 0.99 0.99 0.29 -0.70 89.5

Table 4.1: Relation between feature similarity and output similarity for our setup with masking.
We can see that CKA and CCA estimate a very high similarity between the layers, whereas JSD

and rank coefficient between the outputs are entirely different.
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Conclusion

Designing a feature similarity metric that fully captures the functional similarity of the neural

networks is a challenging problem. In this paper, we show that the proposed similarity metrics

lack this property. We also show how to easily design pairs of neural networks with high repre-

sentational similarities and a wide range of output similarities (including very low similarities).

This design can be used for evaluating similarity metrics of network representations and their

correlation with output similarity. One promising direction for future work is the use of gradients

for capturing both representational and functional similarity.

19



Appendix

We show the scatter plots from Figure 3.6 and 3.8 with the output similarity computed by

Spearman rank correlation instead of JSD.
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Figure 1: Relation between CKA and the Spearman Rank coefficient of action probability
distributions for agents trained on MiniGrid. Slope is the slope of the best fit line (red line), and
ρ is the Spearman correlation between X and Y. We can see that there is a linear relationship,
but the slope of the best fit line varies across the plots, just like in Figure 3.6. Green: Both
agents are optimal, Magenta: Optimal vs mediocre, Blue: Optimal vs poor, Orange: Everything

else
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Figure 2: Relation between CKA of features and Spearman Rank coerrelation of action
probabilities for agents trained with the bottleneck. The dimension of the bottleneck layer is 8.
Slope is the slope of the best fit line (red line), and r is the Spearman correlation coefficient
between x and y. Just like Figure 3.8 We can still observe many points with the same rank

coefficient, different CKA and vice versa.
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