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Abstract

Optical Mapping is an emerging technology for constructing ordered restriction maps of
DNA molecules. The study of the complexity of the problems arising in Optical Mapping
has generated considerable interest amongst computer science researchers [9], [10], [11], [12],
[13]. In this paper we examine the complexity of these problems.

Optical Mapping leads to various computational problems such as the Binary Flip Cut
(BFC) problem [9, 10], the Weighted Flip Cut (WFC) problem [10] the Exclusive Binary
Flip Cut (EBFC) problem [9, 10], the Binary Shift Cut (BSC) problem [12, 11], the Binary
Partition Cut (BPC) [12] problem and others. The complexity and the hardness of the BFC
problem [9], the WFC problem [10] were not known. Using the technique of gap-preserving
reduction (see [7, 8]) of the max-cut problem, we show that BFC and WFC problems are
MAX SNP-hard [6] and achieving an approximation ratio 1 — Y /7 for these problems is NP-
hard, where T denotes the upper bound on the polynomial time approximation factor of the
well-known max cut problem. A slight variation of BFC, BFCp,ax k, had been shown to be
NP-hard [12]; we improve the result to show that BFCax k is MAX SNP-hard and achieving
an approximation ratio (1 — T/7)% for BFCpax x 1s NP-hard, where ppin and pmax are
the minimum and maximum of the digestion rates in the given problem. The EBFC problem
was shown to be NP-Complete [11]; we improve this result to show that EBFC is MAX SNP-
hard and achieving an approximation ratio 1 — YT /7 for EBFC is NP-hard. However, a dense
instance of the EBFC problem does have a PTAS [9].

The Binary Partition Cut (modeling spurious molecules) problem has been shown to be
NP-Complete [12]: we show, in this paper, that a (reasonable) unrestrained version of it has
an efficient polynomial time algorithm. A variation of the Binary Shift Cut (modeling missing
fragments) BSCnax k', had been shown to be NP-hard [12]; we show both the versions of this
problem to be MAX SNP-hard and achieving an approximation ratio 1 — T /6 for BSC and a
ratio (1 — T/6)1ﬁ for BSCax x is NP-hard. In addition, we show that d-wise Match (dM)

problem [13] is MAX SNP-hard and achieving an approximation ratio 1 — T is NP-hard.

*Dept. of Computer Science, Courant Inst. of Math. Sciences, NYU, USA, parida@cs.nyu.edu.



1 Introduction

The ultimate goal of many efforts in Molecular Biology, including the Human Genome Project, is
to determine the entire sequence of Human DNA and to extract genetic information from it. In this
context an important step is to build restriction maps of portions of the DNA [1]. A restriction
enzyme cleaves or cuts a DNA molecule at some fixed site called the restriction site. An ordered
restriction map specifies the location of these identifiable markers or restriction sites along a DNA
molecule. Construction of ordered restriction maps for eukaryotic chromosomes is laborious and
difficult, in part because many of the current procedures for mapping and sequencing DNA were
originally designed to analyze genes rather than genomes. A microscope-based technique called
Optical Mapping [2], [3], [4] is a very promising emerging technology for rapid production of
ordered restriction maps. The Optical Mapping process fixes elongated DNA molecules onto
polylysine-treated glass surfaces. The fixation conditions are carefully controlled (to minimize
DNA coil relaxation effects but allow enough relaxation) at restriction sites for their detection by
flourescence microscopy. The size of the resulting individual restriction fragments is determined
by relative fluorescence intensity and apparent molecular contour length measurements and other
parameters. The fragment size information is used to obtain the ordered restriction maps.

Various combinatorial problems arising from Optical Mapping model the different kinds of errors
that arise in the experimental and/or pre-processing stages. Some of these problems had been
shown to be NP-Complete;in this paper we show that most of these problems are MAX SNP-hard
[6], that is, they do not admit a Polynomial Time Approximation Scheme (PTAS), unless P=NP
[8]. One exception is the Binary Partition Cut (BPC) problem that models spurious molecules, and
can be solved in polynomial time under a reasonable model; this may be of particular interest to
chemists who generate the data, since it may provide guidelines to keep the related computational
problems simple and tractable. However, it is important to bear in mind that the hardness proofs
are for the problems in their total generality. In real life, the data arise from a well-controlled
(benevolent) process. Hence (alternate) efficient, practical solutions have been proposed— use of
mean field annealing techniques [9], Exclusive Binary Flip Cut (EBFC) based approximation [10],
branch-and-bound heuristics [12]. Also, the dense (number of 1’s in a column is at least 7 times
the number of rows, for every column, 0 < 7 < 1) EBFC has been shown to have a PTAS [10].

The sections are organized as follows: Section 2 defines the various errors used in the models,
Section 3 describes the notation used and Section 4 describes the BFC, EBFC, WFC, dM and
related problems. Sections 5 and 6 deal with the Binary Partition Cut (spurious molecules) and the
Binary Shift Cut (missing fragments) problems respectively. Section 7 discusses the k-populations
problem and also gives a polynomial time algorithm to the 2-populations problem under one of
the models.



2 The Ordered Restriction Map Problem

We will define the problem informally as follows. Let us view this as a game played by Ann and
John. John has a string S, of length n, of 0’s and 1’s. He makes m copies of this string and,
using some process, alters the m copies in some controlled manner.

John assures Ann that the number of these alterations is not very large. Now, this altered set of
m strings, called the data set, is made available to Ann and she is required to guess the original
string S John started with. Ann makes a (reasonable) guess by providing an S’. The problem
that Ann solves is the Ordered Restriction Map problem.

Let us now look at the (reasonable) alterations John can make.

1. False Positives: John can change some 0’s to 1’s in the m copies. But he must assure Ann
that the number of such changes is very small.

In practice, these may be due to actual false cuts or due to errors in the pre-processing
stage.

2. False Negatives: John can change some 1’s to 0’s in the m copies. But he must assure Ann
that the number of such changes is no more than mc; for each column j. Note that in
the absence of this restraint on John (and with False Positives), Ann will have no way of
guessing a reasonable S’.

(1 —¢;) = p; is the digestion rate of the experiment or the minimum number of 1’s required
for a column j to be designated a consensus site .

3. Spurious Molecules: John can throw out some, say k, molecules from this data set and throw
in k random strings of 0’s and 1’s in its place.

In practice, some “bad” molecules get into the sample population; these need to be invali-
dated and not used in the map computation.

4. Sizing Errors: John moves the positions of some 1’s in a small neighborhood, that is, for
some ¢ > 0, he can move the position of a 1 in the molecule at j to anywhere between j — ¢
and j + &.

This corresponds to the possible sizing errors of the fragments. The input data does not
depict the location of restriction sites accurately because of the error inherent in measuring
the lengths of fragments that remain after digestion by the restriction enzyme. Thus a 1 at
some site in the molecule might in fact signal a restriction site in one of its neighbors. This
fuzziness is the result of coarse resolution and discretization, other experimental errors, or

'Tt may be noted that if the number of false positives per column j is ¢;, then Ann cannot make a reasonable
guess, if the following holds: p; + ¢; = 1, for any j.



errors in preprocessing the data prior to constructing physical maps such as in the image
processing phase.

5. Orientation Uncertainties: John flips some of the strings: if s = zy29...2,_12, is a string
with z; =0 or 1,7=1,2,...,n, the flipped string is z,z,_1 ...z227.

When the molecule is laid out on a surface, the left-to-right or right-to-left order is lost.
However, the orientation information may be given in the data (using a more elaborate
chemical protocol) with a vector arm on one fixed side of the molecule [2]. The model can
view this as a consensus cut site at one end of the map. Notwithstanding this, there is a
non-zero probability of the orientation of the molecule being still unknown.

6. Missing Fragments: John can remove some fragments of the string.

This corresponds to fragments that get washed away during the experiment, which is com-
mon for BAC DNA, although not for cosmids and ADNA [12].

Circular Ordered Restriction Map Problem. If John take the string S and glues the two
free ends producing a “seamless” ring, the corresponding problem is the circular DNA problem.
In this version John makes m altered rings (instead of linear molecules as in the previous case)
available to Ann. The seamlessness refers to Ann not having any information about where John
glued the ends.

Ann provides an S’ that minimizes the number of certain alterations that John has to make to
produce the m data set from this S’. The alterations for which Ann has to pay a “price” are: (1)
changing a 1 to 0, or (2) a 0 to 1 2. Any other change comes for free. Other ways of counting the
cost will, of course, give rise to other cost functions. [13] gives a characterization of the various
models.

3 Notation

The correspondence of the Ann & John game (see Section 2) to the Ordered Restriction Map
problem is as follows: a string is a molecule, the length of the string corresponds to the number
of sites on each molecule, the 1’s in the string refer to cuts and a 0’s refer to no-cuts at that site.
The string S is called the map, and the 1’s on S are the consensus cuts. The changes that John
makes correspond to the various experimental and/or pre-processing inaccuracies that creep in
at various stages.

2These two changes are usually not symmetric, since the former denotes missing a true cut and the latter
denotes a false cut.



In the rest of the paper we will deal with problems which take into account subsets of the possible
errors described above. Almost all the models deal with false positive and negative errors.

Let the data be represented in a m X n binary matrix [M;;] with each entry as either 0 or 1. Each
row represents a molecule and each column refers to a site on the molecule: thus there are m

th

molecules and 7 sites. A 1 at position (¢, 7) means that the 7' site (column) of the it molecule

(row) is a cut. A 0 indicates the absence of a cut.

Alignment of the rows/molecules refers to assignment of the following:

1. Labeling a molecule as spurious or not.
2. Labeling the orientation of the molecule as flipped or not.

3. Assigning a left-flushed or right-flushed or any other positioning of each molecule.

A map is an n-length string that designates each site as a consensus cut site or not.
Cost of an alignment is a function (measure) of the alignment which we optimize. [13] discusses
various cost functions. In this paper we deal with the following cost functions:

1. Given an alignment, maximize the total number of 1’s in the consensus cut columns of the

aligned molecules.

2. Given an alignment, maximize the the number of consensus cuts K.

We summarize the results that we present in the rest of the paper in Table 1.

4 The Binary Flip Cut (BFC) Problem

The BFC problem as formalized in [9], takes the following errors into account: (1) false positives,
(2) false negatives and (3) orientations.

Given m molecules with n sites each, and, p; as the digestion rate for column 7, obtain an

alignment of the molecules such that the following holds.

1. BFC problem [9]: The total number of 1’s in the consensus cut columns, .J, which is at least
mpy in each, is maximized.



Problem

Complexity class

Approx factor
(upper bound)

Errors modeled

Exclusive Binary Flip Cutf
(EBFC)

MAX SNP-hard

1-71/7

Binary Flip Cut* (BFC)

BFCmaX I&"T

MAX SNP-hard

MAX SNP-hard

1-71/7

(1= /7)kzmes

Pmin

1) False positives
2) False negatives
3) Orientation Uncertainties

d-wise Match* (dM) MAX SNP-hard 1-7
Consistency Graph* (CG)&
Weighted Consistency Graph* | MAX SNP-hard 1-7
(WCGQG)
1) False positives

. . N 2) False negatives

Weighted Flip Cut* (WFC) MAX SNP-hard 1-7/7 3) Orientation Uncertainties
)

4) Sizing errors

WFCax i | MAX SNP-hard | (1 - 7T/7)bmes
1) False positives
Binary Partition Cut* (BPC) P — 2) False negatives
3) Good/spurious molecule
BPCmaX[&"-r P -
1) False positives
Binary Shift Cut* (BSC) MAX SNP-hard 1-7/6 2) False negatives

BSCmaX I&"T

MAX SNP-hard

(1= 1/6)Lmes

Pmin

3) Missing fragments

Table 1: Computational Problems from Optical Mapping: Problem™ denotes unknown complexity
until this paper and Problem? denotes the best known result for the hardness of this problem was
that it was NP-complete. The Binary Partition €ut (BPC) problem has been modified (slightly)
to admit a polynomial time solution. py,;, = min;p;, and py,., = max; p; are defined by the
given problem. (T denotes the upper bound on the polynomial time approximation factor of the
well-known max cut problem.)



2. BFChaxx [12]: The total number of consensus cut columns, K, which is at least mpy in
each consensus cut column, is maximized. This has been formalized by Anantharaman et
al (problem 1 in [12]) and shown to be NP-Complete. We will show at the end of this
section that this problem is MAX SNP-hard and give an upper bound on the polynomial
time approximation factor of the problem.

3. dM Problem [13]: This is an alternate view to the problem modeling the same errors as

BFC and is discussed at the end of this section (in Section 4.3).

We show a simple example, in Figure 1, that shows BFC and BFC.x xk problems give rise to
different optimal alignments and maps.

Input Problem BFC BFCiax K
110 0 0 0 110 0 0 0 110 0 0 0
1101 00 1101 00 110 1 0 0
1101 00 1101 0 0 00101 1™
000011 110 0 0 0]~ 0000 11

1 1010 0|5 1100 1 1|5

Figure 1: An example to show different optimal configurations for the two different cost functions,
BFC and BFCpax . It is assumed that p; = 1/2 for all j. The optimal cost for the BFC problem
is 10 (number of 1’s in the consensus cut columns) with 3 consensus cut columns. The optimal
cost for BFCpax i is 4 (the number of consensus cut columns). Note that the maps corresponding
to the optimal configurations are different. The rows/molecules that are flipped are marked by
asterisks.

Let us associate indicator variables X;, 1 = 1,2, ..., m, with every row which takes a value 1 if the
molecule is flipped and 0 otherwise. Let Y;, 7 = 1,2,...,n, be an indicator variable associated
with every column that takes on a value of 1 if it is a consensus cut and 0 otherwise.

Define conjugate of column j as j =n —j + 1.
BFC can be modeled as the following optimization problem:
max {ZYJ (Z (Mij(l - Xi)+ MZ';XZ') - mpj) } : (1)
7=1 =1

Note that the term mp; is used to ensure that the number of 1’s along a consensus cut site j (with
the rows flipped, if required) is at least mp;. In other words, for a given alignment (which is an
assignment of boolean values to X;, 1 =1,2,...,m,and Y}, j =1,2,...,n) we count the number
of 1’s in every column j, that has Y; = 1, less mp;.



4.1 The Weighted Flip Cut (WFC) Problem

The WFC problem as formalized in [10], takes the following errors into account: (1) false positives,
(2) false negatives (3) orientations and (4) sizing errors.

The WFC problem: Given m molecules with n sites each, p; as the digestion rate, and, with §; as
the “sizing error” for column j, obtain an alignment of the molecules such that the total number
of 1’s in the consensus cut columns and its neighborhood defined by 4;, which is at least mp; in
each, is maximized [10].

The WFC problem is modeled by modifying the BFC model so that an observation of a cut in
one location supports a cut in a nearby location. For this we modify the binary matrix [M;;] as

follows:
)

Mij = Mij + Y o (My(pp) + Mig_py).- (2)
k=1
& denotes the neighborhood in which the 1 is likely to be seen and o denotes the weight of
the nearby cuts. The matrix, [M;;], is no longer binary and this new problem, which is the
optimization problem of equation (1) on M;; instead of M;;, is termed the Weighted Flip Cut
(WFC) Problem [10].

4.2 The EBFC Problem

Formally, the exclusive BFC problem is as follows. Given m binary molecules of length n each,
determine the flip for each molecule and an assignment of either j or j as a cut (but not both)
for 7, 1, < j < n/2, such that the total number of 1’s in the cut sites is maximized. Note that we
can assume without loss of generality that n is even since otherwise, we can remove the middle
site, that is, the site (n + 1)/2, and the problem remains unchanged.

EBFC is another view of the BFC problem: notice that by flipping a molecule, a cut (or a no-cut)
at position j can only move to its conjugate position given by j = n + 1 — j. Thus we can view
the problem as efficiently distributing the cuts along a column j and its conjugate j.

We prove the following lemma about the EBFC problem.
Lemma 1 FBFC is a special case of the BFC' problem.

Proof: Let

S; = {ilMi; = 1 AND M = 1},
S; = [{ilM;; = 1 XOR Mz = 1},



where 7 = n — j + 1. Further, let -

_ S; + 25]" (3)
2m

Note that S; is the count of the number of symmetric cuts and S; is the total number of
non-symmetric cuts in columns j and j. Irrespective of the assignment of orientations to the
molecules/rows, j and j will always have at least S; 1’s. The 1’s corresponding to S;, will get
distributed between j and j depending on the alignment. We claim that under this definition of
p; for the BFC problem, it is the same as the EBFC problem. It can be verified that under these
conditions that Y; + Y]— =1 holds for all j, since the the definition of p; ensures that only one of

b; =Dp7

j or j is a consensus cut in the optimal alignment (and that is the one with the higher number of
1’s). If the number of 1’s is equal in both, we can arbitrarily pick only one without changing the
cost. a

4.2.1 EBFC is MAX SNP-hard

For the sake of completeness we give the following definitions.

Max Cut (MC) problem: Given a graph, find a partition of the vertices into disjoint sets, Sy
and Sy, such that the number of edges with one vertex in 57 and the other in S is maximized.

Bipartite Max Cut (BMC) problem: Given a bi-partite weighted graph with edge weights
€ {41, —1}, find a partition of the vertices into disjoint sets, S; and S9, such that the sum of the
weights of edges with one vertex in 57 and the other in Sy is maximized.

Theorem 1 EBFC is NP-hard. Further, there exists a constant € > 0 such that approximating
EBFC within a factor of 1 — € is NP-hard.

Proof. To prove the inapproximability of the EBFC problem, we use the recent technique of
giving a gap-preserving reduction of a Max SNP-hard problem, the MC problem, to our problem

[7, 18].

Outline of the Proof: The proof has four steps. Let C'% denote the cost of the optimal solution and
C'x denote the cost of any solution of the problem X.

Step 1 . We show the reduction of an instance of the MC problem with e edges to an instance of
the BMC problem with



(1.1) correspondence between the two solutions,
(1.3) the number of negative edges in the BMC is Ge.

Step 2 . We show the reduction of an instance of the BMC problem to an instance of the EBFC
problem with
(2.1) correspondence between the two solutions, and,
(2.2) Cgrc — ¢~ = CBumo,
where e™ is the number of edges with negative weights in BMC.

Step 3 . We relate the solution of the EBFC and a BMC that was constructed from an MC.

Step 4 . Finally, we show that the reduction is gap-preserving.

For some ¢ > 0, let C* denote the optimal solution and C' denote an approximate solution
with Cgprc > (1 — G)CEBFC‘

Cyue > 632% (using Step 1.2

= W (using steps 1.3 & 2.2
(1-€)CLppo—6e

)
)
)
)

> ) (by defn of éEBFC
(1_6)(OB%C+66)_66 (using Step 2.2 (4)
(1-€)C% 1 pc—6ee
2,
= (1—¢)—Buc BMC — 3ee
> (1- e)CMC (36)2C5sc (since Cipe > €/2)
=

1-70)C3c

This shows that given a PTAS for EBFC, we can construct a PTAS for MC, which is a
contradiction, hence EBFC does not have a PTAS.

Now, we prove each of the steps from 1 to 3.

Step 1. MC to BMC reduction (see Figure 2).
Consider an MC problem with vertices and edges (V, F),n = |V|,e = |E|. Let a solution be of
size K, and, the partition of the vertices induced by this solution be S; and 55.

Reduction: Construct an instance of BMC with (V, ~) as follows For each v; € V, with degree d;,

construct 2(d; + 1) vertices, Vyaager, = {Vig, Vi1s - - -3 Vig,s Vfos Vi1s - - -5 Uiy, }- Further, wi(vj;, vf7) =
wt(viy, vf;) = wt(v);,vlg) = —1,j = 1,2,...,d;. Thus, v; gives rise to 3d; edges with negative

weight. Also if vjvg € I then wit(viyvly) = wt(vhyvly) = +1. It can be seen that this construction
gives a bipartite graph with V' =V’ U V" where v, € V' v € V".

10
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Figure 2: An example to show the reduction of an MC instance to a BMC instance. The bipartite
graph is shown on the right: the solid edges have +1 weight and the dashed edges have weight
—1. The “gadgets” corresponding to each vertex v;, + = 1...4 of the original graph, is shown
enclosed in a dotted box.

11



Thus the BMC has 2n + 6e vertices, and, 2e edges with weights +1, and, 6e edges with negative
weights. Recall for any graph )", d; = 2e.

Observations: We make the following observations.

1.1 In a solution of the BMC, the two sets 51, 5'2, are such that Vjqqger, C 51 or 5'2, V.

If this does not hold, that is Vj4qger; 5'1 then the solution can be modified as follows that
only improves the solution. By the construction, |Vj,44er,| = 2(d; + 1). Thus |Vjadge; N 5'1|
or |Vyadget; N 5'2| > d; + 1. Without loss of generality, let, |V q4er; N 5'2| > d; +1. If
vgi € S1,k # 0, then by including wvg; in S the cost increases by 2. If v;p € Sy, then it
has ezactly d; negative edges incident on it with the other ends being in Sy while at most
d; positive edges incident on it with the other ends in S3. Hence by including v;p in S5 the
“cut” will not suffer a loss.

1.2 All the edges that contribute to a solution to the BMC have positive weights, since, by
observation 1.1, all the negative weight edges must be either in Sy or in S;.

1.3 In a solution to the BMC, if v{v¥ is in the cut, so must v{'v} (called the image of v{vY). This
follows from observation 1.1, as Vjyqdger, and Vjq44es, are in the sets S; and Sy respectively
(without loss of generality).

1.4 Given a solution to the BMC, the solution to the corresponding MC is constructed as follows:
if v{vy (and its image) is in the solution to the BMC, then v;v; is in the solution to the MC.

Claim (C1.1): MC has solution of size K iff BMC has solution of size 2K.

Proof: Let the MC have a solution of size K. Assume the BMC has a solution of 2(K +
z), for some z > 0. Let the z edges be v] ov} o, v},00% g, -, v} ovi o and their images (see
observations 1.2 and 1.3). Then the solution to MC can be the edges corresponding to K,
augmented by v;,v;, i, Vjy, .- ., Vi, Vj,, thus giving a solution of size K + z to the MC problem,
which is a contradiction.

Let the BMC have a solution of size 2K. Assume the MC has a solution of size K + z, for some
x > 0. Let the z edges be v;, v;,,vi,v;,, ..., v;,v;, in the solution of the MC. Now, the solution of
the BMC, can be augmented by v} qv} o, v, 0V% 0, - - -, Vi o] o and their images (see observation

1.3), giving a solution of size 2(K + z) for the BMC, which is a contradiction. o

Step 2. BMC to EBFC reduction (see Figure 3).

Consider a BMC ((V1,V3), E), Vi = {vi,vd,...,vL}, Vo = {v¥, v2 ... v}, and, number of edges
with negative weights be e™. Let a solution be of size K and partition of vertices, V; UV3, induced
by this solution be S and ;.

12
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Figure 4: A schematic representation of the BMC to EBFC reduction: The left shows the BMC

problem and the right shows the EBFC problem. See the text on the reduction for other details.
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Reduction: Construct an instance of EBFC [M;;]
wt(v}v?) =1, then M;; =1, Mz=0.1If wt(v}v?) =

/
Vig

with m rows and 2n columns as follows. If

—1, then M;; =0, Mz;

L)

= 1. If v!v? is not an

edge in the BMC, then M;; = M- = 0.
ot vl vg, vl vl vs. vy vl
ATATATAT [ CYCT | CTCFCT [ CTCFCY | C-C~C~ | C~C~C~ [ C~C~ | ATATA A~
ATATAYAY | ot | ctetret | ctetet | ettt | CTCTCT | CTCT | ATATAT AT
ATATAYAY | et | ctetet | ctetet | ettt | CTCTCT | CTCT | ATATAT AT
ATATAYAY | Ccrot | ctetret | crtetet | c-CmCT | CTCCT | CTCT | ATATAT AT
Bt*BtBt*B*T | D*D*t | DYDtDt | D*D*DY || D-D-D- | D-D-D~ | DD~ | BT BB~ B~
BT*BtBt*Bt | D*Dt | DtDtDY | DYDt*DY | D-D~-D- | D-D~D~ | D™D~ | B-B~B™ B~
BT¥BYBTBT | DYDY | D¥DtDY | DYDTDY || D-D-D- D™D~ | DD~ | BB~ B~ B~
BT*BtBT*B*T | D*Dt | D¥DtDt | DYDT*Dt | D-D- D~ DD~ | DD~ | BT BB~ B~
BT*BtBT*B*T | D*Dt | D¥DtDt | DYDT*Dt | D-D- D~ D=D- | DD~ | BT BB~ B~
BT¥Bt¥BTBT | DYDY | DtDtDT | DYDTDT || D-D-D- D=D- | DD~ | BT BB~ B~
BtB*Bt*Bt | D*DT | D*Dt*Dt | DYD*DT | DD~ D~ D~D™ | DOD™ | BTB™B™ B~
BT*BtBt*Bt | D*Dt | D¥DtDt | DYD*Dt | DD~ D~ D=D- | DD~ | BT BB~ B~

00g 00 0o DO

A edges
(empty AT &
dashed edges in A7)

00° go° 1°

Grouping of the matrix elements.

B edges
(empty B~ &
solid edges in BY)

00° 00° 1° o070

Do 00g Og 00D

C edges
(empty C~ &
solid edges in C)

Corresponding grouping of the (BMC) graph edges.

(solid edges in Dt &
dashed edges in D7)

Figure 5: The grouping of the elements of the EBFC matrix, and its corresponding edges, due to
a solution (not necessarily optimal) shown in Figure 3.

Observations: We make the following observations.

2.1 In a given alignment of the EBFC, the elements of M;; can be grouped into the following
sets, as shown in Figure 4:

AT ={(4,7)|i has been flipped, j is a cut, j < n}, Ay = {(s
Bf = {(i,7)]i has not been flipped, j is a cut, j < n}, By = {(i

14

3
Y

DG, 5) € AT},
(i, 5) € BY},




2.2

2.3

2.4

Cf = {(i,)]i has been flipped, j is not a cut, j < n},Cy = {(3,)(i, ) € C},

D3 = {(i,7)|i has not been flipped, j is not a cut, j < n}, D7 = {(,7)|(i,5) € DI }.

Let " AT = Z(z’,j)eA,j M;;. Similarly define >~ A7, "B, By, > CF, SC5, > DF,
> D5 . Figure 5 shows an illustrative example.

Recall that the cost in the EBFC is the number of 1’s in the cut columns with the rows
flipped appropriately. Thus the cost is 35 A, +3° B; + ZC’;’ + > D5 (corresponding to
the shaded rectangular region shown in Figure 4).

ZA;+ZB;+ZC{+ZD‘:§: i M =e. (5)

=1 7=n+1

Given an alignment for the EBFC with cost Cgprc as

CeBro=Y_ A7 +>_ Bf +Y CH+> Dy, (6)

(see observation 2.1), a solution for the BMC is constructed as follows. Define the sets as
below:

AT = {vjvfIMi; #0,(i,) € AT}, AT = {vlvf|M7 £ 0, (i, j) € A7 },
B = {vjv]|M;; #0, (i, j) € By }, By = {vjv]|Mz#0,(i,j) € By },
CY = {vjv]|My #0,(i,j) € CF},CF = {vlvf|M; £ 0, (i,j) € C3 },
Df = {vjvi|M;; # 0, (i, 5) € Df}, Dy = {v;vj|Mz #0,(i,j) € D3 }.

Let Ay = Af UAT, By=Bf UB;,C, =C}UCy, Dy = Df UD;y. Then Sy and Sy, the
partition of the vertices, are defined as follows:
S1 = {vf|vfv? € By, for some j} U {v}|vjv} € Cy, for some i} U{v}, vi|vfv} € D1}, (7)

Sy = {v}|viv? € By, for some i} U {v{|vjv} € C, for some j} U {v}, vi|vfv} € A1}, (8)

Notice that |AT| = 3> AF, |[A]| = 32 A5 and so on. Also notice that Bj is the set of edges
with positive weights and Bj is the set of edges with negative weights. Similarly for the
other sets. Thus the corresponding cost, Cpare for the BMC is,

Cemc = |Bf| — |By |+ |CT| = |CT]. 9)

It can be seen from the above that given a partition of the vertices in the BMC, an alignment
(assignments of flips/no-flips to rows and cuts/no-cuts to columns) can be obtained for the
EBFC, and, vice-versa.
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2.5 If Cgprc denotes the cost for an alignment in the EBFC problem, and, if Cparc denotes
the cost for the corresponding alignment in the BMC problem, the following holds (using
equations (5), (6), (9)):

CeBrc — e~ =CBuc. (10)

Recall that e~ is the number of edges with negative weights in the BMC problem.

Claim (C2.1): BMC has an optimal solution of size K iff EBFC has an optimal solution of size
K+e .

Proof: It can be verified from the above construction that, improving the solution for the EBFC
by z > 0, results in improving the BMC by z and vice-versa. Hence using equation (10) we have
the required result. O

Figure 6: The solution to the BMC problem obtained from Figure 5 using equations (7), (8) and
the corresponding solution in the MC problem, introduced in Figure 2. S; and S3 are the partition
of the vertices in the graphs.

Step 3. (Arguments about MC to EBFC):
We make the following observations about the solution to an EBFC, that has been constructed
from a BMC that was in turn constructed from an MC problem.

3.1 The EBFC matrix is of size L x 2L where I. = v+ 2e. Recall that v is the number of vertices
and e the number of edges for the MC problem.

3.2 See Figure (7) which shows the rows and columns associated with a vertex v; of
the MC problem in the EBFC matrix. Let X, denote the variable associated
with the row that corresponds to the vertex vl,, and, Y, denote the variable as-
sociated with the column that corresponds to the vertex v, of the BMC. Similarly
Xoior Xviry Xvigy oy Koy Yo, Yooy oo Yo
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Vip Vi1 Uiz Vs vz vis v g

0 0 0 O 0 0 0 0

1 0 0 O 0 0 0 0

0 0 0 O 0 0 0 0

0 0 0 O 0 0 0 0

1 0 0 O 0 0 0 0

0 0 0 O 0 0 0 0
viol|l-..010...010... 0 0 0 O ...010...[...0... 1 1 1 0 0...0
vi|l--.000...000... 0 0 0O O ...000...[...0... 1 0 1 0 0...0
Vig|[...000...000... 0 0 0O O ...000...[...0... 1 1 0 0 0...0
vigl|...000...000... 0 0 0 O 000 ......0... 1 0 0 0 0...0

0 0 0 O 0 0 0 0

1 0 0 O 0 0 0 0

0 0 0 O 0 0 0 0

Figure 7: For clarity of exposition, let d; = 3 in the MC problem. Abusing notation, let the
conjugates of the columns corresponding to vl v}, vi, vih be T”, vi”, via", Uiz respectively.
The above table shows the rows and the columns corresponding to v; of the MC. Note that the
number of 1’s in the column v}, is 3 and the number of 1’s in the row vl; is 3 + 3, where, half
of the 1’s are due to positive weight edges (left half of matrix) and the other half due to the
negative weight edges (right half of matrix). The 1’s shown in bold correspond to the negative
weight edges on the vertices of the gadget corresponding to v; of the MC problem. Notice that
Uiy, Uly, vl will have the same flip as v}, without any conflict with other vertices. Also, since the

column due to v}, has no 1’s at all, vl is a cut if v}, is flipped and is not a cut if v}, is not flipped.
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The reader can verify (see Figure (7)) that one can always obtain a solution for which the
following holds: X,;; = Xy, = X, = ... = X, =Y, =Y, = ... =Yy, . Thisis
important since it implies that in the BMC, f/gadgeti C 51 or 5'2. Thus the corresponding
solution of size 2K in the BMC corresponds directly to a solution of size K of the MC. Thus
for any solution of the EBFC, all the 1’s corresponding to the negative edges are counted in
the solution. If not, the solution can be altered, in linear time, without reducing the cost so
that this condition holds. Thus

Vi2

CEBFc > 6e, (11)
where e is the number of edges of the MC.

This concludes the proof of the inapproximability of the EBFC problem. a
Corollary 1 Achieving an approzimation ratio 1 — /7 for EBFC is NP-hard.

Proof: Since it is known that achieving an approximation ration of T for the MC problem is
NP-hard, our results follow from our reduction (see Step 4 of the proof) presented in the theorem.
O

We prove the following theorem about the hardness of the BFC problem.

Theorem 2 BFC is NP-hard. Further, there exists a constant ¢ > 0 such that approximating
BFC within a factor of 1 — € is NP-hard.

Proof. Using Lemma 1 and Theorem 1 we conclude that BFC is MAX SNP-hard. O

As a direct consequence of Theorem 2 we have the following hardness result for the WFC problem.

Theorem 3 WFC is NP-hard. Further, there exists a constant € > 0 such that approximating
WEFC within a factor of 1 — € is NP-hard.

Corollary 2 Achieving an approzimation ratio 1 — /7 for WFC is NP-hard.

Theorem 4 BFCyaxx [12] is NP-hard. Further, there exists a constant € > 0 such that approz-
imating BFChax k within a factor of 1 — ¢ is NP-hard.

Proof. Under the definition of p;’s as in equation (3) the BFCp,axx is the same as the EBFC
problem (the number of consensus cuts is always n/2, when the molecules have n sites), hence
BFChax x 18 NP-hard.
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Next, we will show that if we have a PTAS for BFC.x k', we will have a PTAS for BFC, which
would be a contradiction. Given a BFC let py,;, = min; p;, and ppq, = max; p;. Let X denote
an approximate solution and X™ denote the optimal solution. Then if BFCpax x has a PTAS let
]i,v* > ¢ for some 0 < ¢ < 1. Note that N* is the number of consensus cuts. Let C' > Npmm, then

C* < N*ppqz. Hence we have

Npmzn > 6pmin

- > > .
N pmaz‘ pmdl‘

Q‘QI

(12)

a

Corollary 3 Achieving an approzimation ratio (1 — T/?)g:ﬁ for BFChax x is NP-hard.

4.3 d-wise Match (dM) Problem

The d-wise Match problem has been identified in [13] which takes the following errors into account:
(1) false positives, (2) false negatives and (3) orientations.

d-wise Match (dM) problem: Given m molecules with n sites each, with false positive and negative
errors and orientation uncertainties, and a fixed 1 < d < m, 5 > 0, find an alignment to the

molecules so that it has the maximum d-wise match. Given a set of d molecules, 11,19, ..., 14,
d-wise match, AX (i1, 14y, ...,1q), is defined as
AX(z'l, ig,...,14) = 7 of cut sites that are within & of each other in all the mols, given X,

where X denotes and alignment 3 and the match is made respecting this alignment. In principle,
this alignment could model other errors such as spurious molecules and others. Thus it is the
following optimization problem:

max Z Z Z E AX (11,49, .00y ds) (13)
(over all alignments) | [ 21 i0i, inmin igmig_

where alignment refers to an assignment of orientation to each molecule. Informally, we are
looking for d simultaneous agreements between molecules. In particular if d = 2, then the task is
to maximize the pairwise match.

Theorem 5 ([13]) The matching with d-wise agreement is equivalent to the following optimiza-
tion problem.

max 7
(over all alignments) “T* \ @

where 17 represents the number of cuts in the position [ in that alignment.

®In the case where the alignment involves only the orientation uncertainty, X is one of the 297! possibilities.
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Weighted Consistency Graph (WCG) problem. This is the d-wise match problem when
d = 2. We will first define some related concepts. Given a 2-wise match problem, a corresponding
graph G is constructed with every vertex v; corresponding to a molecule 7. Let X = S denote
an alignment where both the molecules ¢ and j are taken as-is, and X = O denote the alignment

where one of them is flipped. Every edge e;; = v;v; is labeled and weighted as follows. Label
L(v;v;) is defined as:

L(e) — Same AS(Z7J) Z Ao(i7j)7
771 Opposite otherwise.
Vertices v;, v;, vy are consistent if the following holds: either all the three or exactly one edge is
labeled Same. Note that this implies that all the three molecules corresponding to the three edges
can be uniquely aligned with the maximum match cost. A labeled graph G is said to be consistent

if every three vertices v;, v;, vy is consistent.
Weight Wt(e;;) is defined as:

Wi(e) = min(A%(i,5), A%, j)) — max(A%(i, ), A%, 7)) (14
= —]AS(,4) - A°(i,5)

The weight corresponds to the “loss” suffered if the relative alignment is forced to change.

Weighted Consistency Graph problem (WCG): Given the match problem with the corresponding
graph G, the problem is to obtain a set of edges S with new labels L(e;;) such that

1. G is consistent under the new labels L(), and,

2. the sum of the weights on the edges with new labels is minimum.

Consistency Graph problem (CG): The Consistency Graph problem is defined as follows: given
a labeled graph G, find the minimum number of changes to the labels (Same to Opposite or
vice-versa) required to get a consistent graph. This is the WCG problem under the assumption
that all the edges are of equal weight.

Theorem 6 The CG problem is NP-hard. Further, there exists a constant ¢ > 0 such that
approzimating CG within a factor of 1 + ¢ is NP-hard.

Proof: We give the proof in two steps. In step 1 we give the MC to CG reduction and show that
Cryc = e — Cog where Cy is a solution to the problem X and e is the number of edges in the
MC problem. In step 2 we show that the reduction is gap-preserving.

Step 1
Construction: Given an MC with n vertices and e edges, we construct an instance of CG by
simply labeling every edge as Opposite.
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Figure 8: A consistent graph: the solid edges are labeled Opposite and the dashed edges are
labeled Same. The vertices are partitioned into sets S; and S as shown (all edges on vertices
only in Sy or Sy are labeled Same; all edges with one end in Sy and the other in S5 are labeled

Opposite). The only two kinds of triangles are: (1) vivivl, where all edges are labeled Same,

and, (2) vivivi, where exactly one edge is labeled Same.

We make the following observations:

1. A consistent graph is such that the vertices can be partitioned into two sets Sy and S, such
that Vv;,v; € Sy (or Sq) , L(e;;) = Same, and, Yv; € S1,v; € Sa, L(e;;) = Opposite.
There are only two kinds of consistent triangles: (1) all labels are Same or (2) exactly one

label is Same. It can be verified that only these two kinds of triangles (and no other) exist
for the consistent graph whose vertices are given by S; U S3. See Figure 8 for an example.

2. Given a solution of size €’ to the CG, which is the number of changes from label Opposite
to Same (since there was no edge with label Same), we can show that the solution to MC is
of size e — €’. It can also be verified that decreasing the solution to CG by x > 0, increases
the solution to the MC by z.

Step 2
Let Cc denote an approximate solution and Ct. denote the optimal solution. Then Coa <
(14 6)Cfq.

Cuc = e—Ceq (using observation 2)
> e— (14 ¢Chqg (by defn of Carc)
> e—(1+¢)(e—Cie) (by observation 2) (15)
= (14 ¢Cjc — ec
> (1-¢Cxe (since Cyye > €/2).
This concludes the proof. O

21



Corollary 4 Achieving an approzimation ratio 1 — Y for CG is NP-hard.

Theorem 7 WCG problem is NP-hard. Further, there exists a constant € > 0 such that approz-
imating WCG within a factor of 1 + € is NP-hard.

Corollary 5 Achieving an approzimation ratio 1 — Y for WCG is NP-hard.

Theorem 8 dM problem is NP-hard. Further, there exists a constant ¢ > 0 such that approxi-
mating dM within a factor of 1+ ¢ is NP-hard.

Corollary 6 Achieving an approximation ratio 1 — T for dM is NP-hard.

5 The Binary Partition Cut Problem

The main error the Binary Partition Cut (BPC) problem takes into account is the presence of
spurious or bad molecules (along with false positive and negative errors).

We are given m molecules with n sites each, and, p; as the digestion rate for column j, obtain an
alignment of the molecules such that the following holds.

1. BPC problem: In the optimal solution, the number of 1’s in the consensus cut columns, .J,
which is at least mp; in each, is maximized.

We get a rather surprising result that this indeed has a polynomial time algorithm.
2. BPChax x: In the optimal solution the number of consesnsus cut columns, K, is maximized.

Anantharaman et al [12] shows a variation of this problem, where the information that the
number of bad molecules is known ezactly, is NP-complete.

Let the input binary m X n matrix be [M;;]. Let us associate indicator variables X;, 7 =1,2,...,m,
with every row which takes a value 1 if the molecule is good and 0 if it is spurious. Let Yj,
7=1,2,...,n, be an indicator variable associated with every column that takes on a value of 1
if it is a consensus cut and 0 otherwise. Let the digestion rate be p; for column 7, 7 =1,2,...,n.
BPC problem can then be modeled as the following optimization problem:

max {Zn:Y] (i XiM;; — pjm) } . (16)

i=1
We prove the following theorem for the above problem.
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Theorem 9 The BPC problem has a polynomial time solution.

Proof: Consider the corresponding minimization problem (equation 16)

min {ZZ—MZ'inYj +Zmijj} (17)
7=1

i=1j7=1

which is a submodular function [15], hence has a polynomial time solution. a
Corollary 7 The BPCh.x x problem has a polynomial time solution.

Proof: It can be verified that the following never occurs: if n, is the number of consensus cuts
in the optimal solution then there is a sub-optimal solution with n > n,. This is because the new
optimal alignment can be obtained from this sub-optimal giving a larger n,. Thus the solution to
the BPC problem gives a solution to this problem. O

6 The Binary Shift Cut (BSC) Problem

In this problem it is assumed that apart from the false positive and negative errors, the only error
present is that some fragments of the molecules are missing. It is assumed that all the orientations
are known correctly.

Given m molecules with at most n sites each, and, p; as the digestion rate for column j, obtain an
alignment (which identifies the missing fragment of each molecule with respect to the map with
a total on n sites) of the molecules such that the following holds.

1. Binary Shift Cut problem (BSC): The total number of 1’s in the consensus cut sites is
maximized, where each cut site has at least mp; number of 1’s. In Dancik et al [11], this
problem has p; = p=m/2, Vj.

2. BSChaxk [12]: This is the missing fragments problem in [12]. The total number of consensus
cut sites is maximized, where each cut site has at least mp; number of 1’s. Anantharaman
et al [12] have shown BSC.x x to be NP-Complete, we will show that this problem is MAX
SNP-hard, and, give an upper bound on the polynomial time approximation factor of the
problem.

We show a simple example, in Figure 9, that shows BSC and BSC.xx problems give rise to
different optimal alignments and maps.

We show that BSC is MAX SNP-hard in the following theorem.
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Input Problem BSC BSCmax K

01 010 01010 01010
1 010 1 010 1 010
01 010 01010 01010
1 010 1 01 0 1 010
01 0 1 05 1111085

Figure 9: An example to show different optimal configurations for the two different cost functions,
BSC and BSCpax . It is assumed that p; = 1/2 for all j. The optimal cost for the BSC problem
is 8 (number of 1’s in the consensus cut columns) with 2 consensus cut columns. The optimal cost
for BSCpax i is 4 (the number of consensus cut columns). Note that the maps corresponding to
the optimal configurations are different.

Theorem 10 BSC problem is NP-hard. Further, there exists a constant € > 0 such that approz-
imating it within a factor of 1 — ¢ is NP-hard.

Proof We will prove the result for a special case of the BSC problem where every molecule is such
that either the left or the right fragment (not both) is missing; the missing fragment is exactly one
unit in all the molecules. In the aligned configuration, a column j is in a cut only if the number
of cuts is at least p;m, which is defined in the proof of step 2.

Outline of the Proof: The proof has four steps. Let C'% denote the cost of the optimal solution and
C'x denote the cost of any solution of the problem X.

Step 1 . We show a reduction of an instance of the MC problem with n vertices and e edges to an
instance of the BMC problem with
(1.1) correspondence between the two solutions,
(1.2) 4C5;0 = Chape — 4e — 3n, 4Cye > Cmc — 4€ — 3n, and,
(1.3) the number of edges with positive weights in the BMC is 8e + 2n.

Step 2 . We show the reduction of an instance of the BMC problem to an instance of the BSC
problem with
(2.1) correspondence between the two solutions, and,

(2.2) 2CBsc — c= Cuc,
where ¢ is the number of 1’s in the BSC matrix.

Step 3 . We relate the solution of the BSC and a BMC that was constructed from an MC.
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Step 4 . Finally, we show that the reduction is gap-preserving.
For some ¢ > 0, let C* denote the optimal solution and C' denote an approximate solution
with Cgsc > (1 — G)CESC'

éBMC—éle—Sn

Cue > Crpmee=dn (using Step 1.2)
M (using Steps 1.3 & 2.2)
> (1- 5)203540—126_5” (by defn of Csc)
_ (-9( BMc+ie+2n> 12e=5n (using Step 2.2) (18)
_ (=) Ohpyc—4e=3n  (8et2n)e
= 4 3
> (1-¢€)Cire — 2.5ee (using Step 1.2)
> (1-¢)Cle — (2.56)2C5¢ (since C3rc > €/2)
= (1 — GG)CMO

This shows that given a PTAS for BSC, we can construct a PTAS for MC, which is a
contradiction, hence BSC does not have a PTAS.

Now, we prove each of the steps from 1 to 3.

Step 1. MC to BMC reduction (see Figure 10).
Consider an MC problem with vertices and edges (V, F),n = |V|,e = |E|. Let a solution be of
size K inducing a partition of the vertices.

Reduction: Construct an instance of BMC with (V,E) as follows For each v; € V, with degree
d;, construct 3d; + 6 vertices, v}, v, vl vé"’, v(l) , vé"’, vo, ul, ul, [=1,2,...,d;. Thus the total
number of vertices are 6e + 6n.

The edges have +1 or —1 weights which are constructed as shown in the table (Again see Fig-
ure 10).

Edges with weights +1 Edges with weights —1
edges count total edges count total
(l=1,2,...,d;) | per vertex | count || (I =1,2,...,d;) | per vertex | count
uov(l), uévo d; 2e uov(l)*, uévo d; 2e
uov;+ d; 2e uovl d; 2e
vt d; 2e vy Uz d; 2e
ulv;+ d; 2e ulvl d; 2e
uhvst 2 2n uyvy~ 2 2n

Thus the number of edges with weight 41 is the same as the number with weight —1 which is
8¢ + 2n. Further, it can be seen that this construction gives a bipartite graph with V = V' uv”
where v¥ € V', u¥ € V.
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‘ Y S PO SN i Sy U S o
Yo Yo . Yo Yo Yp Vo Uy Uy Uy Uy U

S Ty e

Figure 10: The MC to BMC reduction: Let the degree of the vertex numbered 7 in the MC be 2;
its neighbors are the vertices numbered j and k. Here we show the “gadget” that is constructed
for the vertex numbered ¢ (in the dotted rectangle). The hollow circles correspond to the two
copies of the vertex ¢ of the MC problem, u? and v?. The solid lines denote edges with weight +1
and the dotted lines denote edges with weight —1.

Observations: We make the following observations. Let

1.1

1.2

1.3

1.4

n__ i— 4 i— 1 — 1 1 1 7
‘/z - {UO »Ups Uy 5 Vg 7"'7vdi7u07u17u27"-7ud¢}7
out  __ i+ i+ i+ i+
‘/z - {U07U1 7v2 7"'7,Udi ’
any [E I R
Vi = {vg", vo, up}-

It can be verified that in a solution of the BMC, the two sets Sy, Sy, are such that if Vi* C Sy,
then V24" C Sy (or vice-versa). Further, if this does not hold, the solution can be modified,
without decreasing the cost, so that the above condition holds.

Thus, we get a partition, that contains both v§ and u; we use this to construct the solution
for the MC. The partition corresponding to the MC is the one that of the BMC, where we
replace the set V'™ by v; (and, removing V% and {v§*}). Thus if u)v) is a cut, then so is
vub. Thus if K is the solution to the MC, then the solution to the BMC is at least 2K .

The cost due to the vertices V™ UVt — {v, ub} in a gadget is 3d; + 2, for every vertex, as
can be verified from the construction. Notice that we are able to make such a claim since
these vertices have only “local” connectivity.

Thus the total cost due to the gadgets in all the vertices is Cjyqq4er = 6€ + 2.

Once we have a solution, and condition of observation 1.1 is satisfied, we can modify it to
move the vertex v{* around as follows. Using observation 1.2, the neighbors of every vertex
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v; (of the MC) can be partitioned into two sets. Let V™ € Sy. Let C; denote the neighbors
of v; in the MC that are in Sy, and ¢; = |C;|. Then d; — ¢; < ¢;, where d; is the degree of the
vertex v; in the MC problem. If not, V/” can be moved to S,, that can only increase the
cost. Thus the cost due to the vertex vy* is 1 — (d; — ¢;) (recall that there is a positive edge
between uf and vy, hence the 1). If K is the solution to the maxcut, note that 2K = )", ¢;.

Thus the total contribution due to v, = 1,2,...,n,is 33, (1 — (d; — ¢))) = n — 2e + 2K.

Note that the cost for any solution K > €/2, and the cost excluding the gadgets, C——— Jadger 18
as follows:
Cradgar = N —2e+2K+2K
= n-—2e+4K (19)
> 0
1.4 Thus, noting that K = Cys¢, we have,
C(BMC’ - Cgadget + Cgadget
= (6e+2n)— (n—2e+4K) (20)
= K = Cuce

CBMc—46—3n

using observations 1.2, 1.3 and 1.4.

Claim (C1.1): MC has solution K iff BMC has solution 4K + 4e + 3n.
Proof: It can be verified from the above construction that, improving the solution for the BMC
by z > 0, results in improving the MC by z and vice-versa. a

Step 2. BMC to BSC reduction (see Appendix for an example).

Let the incidence matrix of the BMC be [M;;]. Define the matrix [M;;] for the BSC problem
satisfying the invariance MZ] = M;; — M;(;_1y,7 > 1.

Observations: We make the following observations.

2.1 In a given alignment of the BSC, the elements of AM;; can be grouped into the following sets:

AT ={(i,7)|i is right aligned, j is a cut}, A; = {(i,5 — 1)|(3,5) € AT,j > 1},

BY = {(i,7)|iis left aligned, j is a cut}, By = {(i,5 — 1)|(4,5) € B ,j > 1},

CF = {(i,7)|i is right aligned, j is not a cut},Cy = {(i,5 — 1)|(3,5) € ,j > 1},
DI = {(i,7)|i is left aligned, j is not a cut}, D; = {(i,5 — 1)|(i,5) € DF,j > 1},

Note that A] = Cy, Ay = Cf, Bf = Dy, By = Df. Let Y AT = Y pyear Mij-
Similarly define 3> A5, "B, "By, S C5, > C;, S Df, > D;.
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| | v vyt vl v6+ 'ué_ v b vé"’ vé_ vé"’ vg_ vg+ vél vlg_ vh* ok vé"’ |
(BMC)

ué -1+1-141... 0-141 0 O O O O O... 0O O O O...

uhl... 0 —-1+41 0... 141 -1 +1 -1 41 =1 +1 0... 0 —-14+1 0.

ul 0 0 0 O 6o 0-141 -1 41 0O O O... O O O ©O.

u, 0 0 0 O 0 0-14+41 0 O -1 41 0 0 0 0 ©0.

ubl... 0 0 0 O0... 0-1+41 0 0 0 0 0 O0... =141 -1 +1...
(BSC)

ul 10 1 0 6o 10 0 O O O 0O 0 0 0 O

up 0 1 0 O 10 1 0 1 0 1 00 0 1 0 O

uf 0 0 0 O 0 1 0 1 0 0 0 0 0 0 O

uh 0 0 0 O 6 0 1 0 0 O 1 0O 0 0 0 O

ug 0 0 0 O 6o 10 0 O O O 0O 10 1 0

Figure 11: Portions of incidence matrix of the BMC and the corresponding BSC matrix, for the
graph shown in Figure 10.
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2.3

2.4

2.5

We define the p;’s as follows:
Pyit = Py = 2/m,pv5_ = 1/m,pvé+ = di/m,pvé* =Py = (di+1)/2m. (21)

where [ = 1,2,...,d;, Vi. This definition of p;’s ensures that for any two consecutive
columns j and j + 1, if by the alignment, the number of 1’s in column j + 1 is larger than
in column j, then Y;;; = 1, that is column j + 1 is a consensus cut. This is similar to the
EBFC problem where if column j = n — j 4+ 1 has larger number of 1’s in the alignment
than j then Y]— =1 and vice-versa.

Given an alignment for the BSC problem, with cost Cpsc as
CBS(,*:B;—FCQ_, (22)

a solution for the BMC is constructed as follows (see Figure 12). Define the sets as below:

AT = {ojvi|My; # 0, (i, 5) € AT}, AT = {vjv}](i, (j + 1)) € AT},
By ={vjv}|M;; #0,(4,4) € Bf }, Bf ={vjv}|(4,(j+ 1)) € By },
CT =A{vjv}IM;; #0,(i,5) € CF}, CF = {v}v}|(, (G + 1)) € CT 3,
Dy = {v}v}|Mi; #0,(i,5) € Df}, DY = {v}v?| (i, (i + 1)) € Dy },

Let Ay = Af UAT, By=Bf UB;,C, =C{UCy, Dy = Df UD;{. Then Sy and Sy, the

partition of the vertices, are defined as follows:

|U G Dl},
|’U E Al}

S1 = {v21|v21v]2 € By, for some j} U {v]z|v 2 ¢ O, for some i} U {v},v v;

Sy = {vi|viv? € By, for some i} U {v{|vjv} € Cy, for some j} U {v}, v}

Notice that |AT| = 3> A5, |[A7| = 32 A and so on. Also notice that By is the set of edges
with positive weights and Bj is the set of edges with negative weights. Similarly for the
other sets. Thus the corresponding cost, Cpare for the BMC is,

Cpuc = |Br | = |Bf [ +|Cr| = |Cf| = CF ] = [CF. (23)
since |Bf"| = | By | by the construction.

It can be seen from the above that given a partition of the vertices in the BMC, an alignment
(assignments of left/right-aligns to rows and cuts/no-cuts to columns) can be obtained for
the BSC, and, vice-versa.

Let Cpsc denote the cost for an alignment in the BSC problem, and, let Cpao de-
note the cost for the corresponding alignment in the BMC problem. Further let L =
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[{(7,7)]7 is left aligned}| and R = |{(4, j)|7 is right aligned}|. Then,

20gsc — (L+ R) = (2B — L)+ (2C; — R) using eqn(22)
= Bf -B; +C; - Cf (24)
= C; -Cf
Thus,
2Cpsc — ¢ =Cpumc- (25)

where ¢ (= L + R = 8¢ + 2n) is the number of 1’s in the BSC matrix.

Vi(m = v + 2e) Va(n = 5v + 4e)

left align
S1 B left align
no cut
m
cut right align
S G
right ali e
n [ ¢
| By
] Bf

Figure 12: A schematic representation of the BMC to BSC reduction: The left shows the BMC
problem and the right shows the BSC problem. See the text on the reduction for other details.

Claim (C2.1): BSC has an optimal solution of size K iff BMC has an optimal solution of size
2K —c.

Proof: It can be verified from the above construction that, improving the solution for the BSC
by z > 0, results in improving the BMC by z and vice-versa.

Step 3. (Arguments about MC to BSC).

It can be verified (see Figure 13 and the Appendix for examples) that, given an arbitrary solution
to BSC, it can be modified, without decreasing the cost, so that the following holds (let Y, denote
the indicator variable (cut or no-cut) associated with vertex z of the BMC):

Yo=Yt =Y+, Y =0Y,=Y._ =Y. ,and, Y, #VY,:.
0 Vg 0 Yo v 0 0

Yo Y
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where [ = 1,2,...,d;, V1.

This concludes the proof of the inapproximability of the BSC problem. a
Corollary 8 Achieving an approzimation ratio 1 — Y /6 for BSC is NP-hard.

Theorem 11 BSChax g problem [12] is NP-hard. Further, there exists a constant € > 0 such
that approximating this problem within a factor of 1 — ¢ is NP-hard.

Proof This follows the lines of the proof of theorem 4. |

Corollary 9 Achieving an approzimation ratio (1 — T/G)gmﬂ for BSChax i is NP-hard.

o

i

1010...0100...0100...0100...0000 || A* | -101...0010...0010...0010...00000
0100...1010...0000...0100...0100 * 1 -010...0101...0000...0010...00100
0100...0000...1010...0000...0000 0100...0000...1010...0000...0000-
0100...0100...0000...1010...0000 0100...0100...0000...1010...0000-
0000...0100...0000...0000...1010 0000...0100...0000...0000...1010-

i RwN@Rveleg

mHOoOOQ®

Figure 13: An example of MC to BSC reduction. Note that only the columns corresponding to
vertices vé_, v, vl vé"’ and rows corresponding to u?, for each of the vertex A, B, C, D, E in the
MC, is shown for the sake of clarity (The complete example is described in the appendix). The
rows that are right aligned are marked by asterisk. Notice how the 1’s in the columns align when
the first 2 rows are right aligned.

7 k-Populations problem

Given m molecule sample, the k-Populations problem is the one of finding £ > 1 restriction maps
from the sample, where each sample has at least s; molecules, [ = 1,2,...k.
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VW XY Z
«a[1T 0 0 1 0 oW
b0 1 1 0 0 co ° X
cl0 0 1 0 0 q oY
dl1 0 0 1 1 07

Figure 14: The matrix on the left is the input to the 2-populations problem. The corresponding
bipartite graph for the Cut Classification (CC) problem, which is a min-cut problem, is as shown.
The min-cut is of size 0 with the partitions {b, ¢, W, X } and {a,d, V,Y, Z}. Thus the 2 populations
are {a,d} and {b, c} and the cut classifications are {V,Y, Z} and {W, X }.

The reader may note that all the problem considered up until now may be regarded as 1-population
problem: hence hardness of the k-populations problem follows from the & = 1 case, wherever
applicable.

The problem, whose complexity is of interest is that of the Binary Partition Cut (BPC) (discussed
in Section 5) problem which was shown to have a polynomial time solution.

We will show that for a 2-populations problem using the BPC model, there is a polynomial time
solution.

Cut Classification (CC) problem is defined as follows. Given a map with n (consensus) cuts, and
m molecules with n sites each, the task is to classify each (consensus) cut, and, each molecule as
belonging to k distinct populations, such that the total number of 0’s corresponding to a no-cut
column in a population is minimized.

The CC problem with £ = 2 can be viewed as a min-cut problem, which has a polynomial time
solution [5] under the condition, sy > 0, s > 0.

The corresponding (bi-partite) graph is constructed as follows (see Figure 14): (1) vertex wv;,
i =1,2,...,m corresponding to every molecule 7, (2) vertex u;, j = 1,2,...,n corresponding to
every site 7, and, (3) an edge between v; and u; iff molecule 7 has the cut 7 (or has a 1 in location
j). It is easy to see that the CC problem here corresponds to the min-cut problem.

7.1 Polynomial time algorithm for 2-populations problem

Now, we present a polynomial time algorithm for the 2-populations problem under the BPC model.
This is carried out in two steps:

Step 1: Using the approach described in Section 5, compute all the consensus cuts and discard
the bad molecules in polynomial time.
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Step 2: Using the results of the last step, classify the (consensus) cuts into the 2-populations using
the min-cut formulation stated above in polynomial time.

The min-cut formulation is NP-complete when s; and sy define specific lower bounds of the two
populations [5]. But the relaxation of this condition is general enough to admit real problems.
Thus under the BPC model, 2-populations problem has a polynomial time (exact) algorithm.

Conclusion

The ultimate goal of many efforts in Molecular Biology, including the Human Genome Project, is
to determine the entire sequence of Human DNA and to extract genetic information from it. In
this context an important step is to build restriction maps of portions of the DNA [1]. Various
computational problems have been identified [9], [10], [12], [13]. The study of the complexity of
the problems is important in the context of efficient algorithm design. In this paper, we first
show that (most) of the the computational problems that have been identified in Optical Mapping
[9],[10], [12],[13], are inapproximable and then obtain theoretical upper bounds on the polynomial
time approximation factors of the problems that are hard.

One of the problems, the Binary Partition Cut problem, has been shown to have a polynomial
time algorithm under a reasonable model: this may be of particular interest to the chemists to
provide guidelines for the kinds of errors that do not make the related computational problem
hard or intractable.
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sponding to the 5 vertices of the graph. The solid edges denote weight +1 and the dashed

The BMC graph for the problem in Figure 13. The 5 dotted boxes are the “gadgets” corre-
edges denote weight —1.
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The BSC matrix is constructed from the graph shown above. The rows/molecules that are marked by +/
denote the ones that are shifted to the right by one unit. The consensus map S’ is shown at the bottom with

1 denoting a consensus cut site and 0 its absence. The p; for each column is shown in the bottom line: z

denotes probability z/30.



