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Abstract

The concept of a resolvent of a prime ideal was originally intro-
duced by J.F. Ritt along with the notion of a characteristic set. The
motivation for studying resolvents comes from its connections with
the birational isomorphisms that describe structures of irreducible
algebraic varieties by means of an equivalent hypersurface and a
one-to-one rational map. As a result, these ideas have a wide range
of applications in such areas as solid modeling, computer aided de-
sign and manufacturing. An algorithm to compute the resolvent
by means of characteristic sets was first proposed by Ritt. This
and some related algorithms have resurfaced as interest in resolvent
structures have grown, spurred by its applicability.

Unfortunately, the algebraic complexity of the resolvent and the
computational complexity of the associated algorithms have never
been satisfactorily explored. In this paper, we give single exponen-
tial upper and lower bounds for the degrees of the resolvent and
its associated parametrizing polynomials. We also show that the
resolvent can be computed deterministically in single exponential
sequential and polynomial parallel time complexity. All previous
algorithms for resolvent had relied on a random choice of certain
extraneous parameters.
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1 Introduction

We begin with a self-contained exposition of the theory of resolvents for a system
of algebraic equations in n unknowns and over an algebraically closed field &
of characteristic zero. Ritt describes this theory in his books ([9,10]) both for
systems of purely algebraic and of differential algebraic equations and we follow
his presentation closely.

The motivation for studying resolvents comes from its connections with the
birational isomorphisms that describe structures of irreducible algebraic vari-
eties by means of an equivalent hypersurface and a one-to-one rational map.
This connection will be elaborated further below. Furthermore, the structure
provided by resolvents can also be fruitfully exploited in many applications in-
volving description of and operations on algebraic surfaces.

Definition 1.1 (Rational Maps and Birational Isomorphisms) A ratio-
nal map ¢ : X — Y C A" is a collection of n rational functions ¢4, ...,
én € k(X), the field of rational functions over the variety X, such that (¢1(z),
. ¢n(2)) €Y for every point # € X at which all the functions ¢; are regular.
A rational map ¢ : X — Y is called a birational isomorphism if there is a
rational map ¢ : Y — X such that i is the inverse of ¢. In this case X and Y
are birationally isomorphic or equivalent. O

A birational map between varieties is, set-theoretically, a one-to-one corre-
spondence between open sets (in the sense of Zariski topology) of one variety
with another.

This definition leads naturally to a classification, modulo birational maps,
of all the irreducible varieties: Two varieties are in the same class if they are
birationally equivalent. Such classification is quite rough. For example, it does
not preserve the singularities of a variety, while instead it preserves the genus
and the dimension of a variety. In fact it is a fundamental problem in algebraic
geometry to look, inside a birational class of varieties, for representatives (also
called models) with some special properties, for example smoothness (see [12]
pp- 105-108, for a summary of the known results about the existence of non-
singular models).

It is sometimes important for applications in graphics and solid modeling to
find a birational model of a given variety that can be described with a minimal
number of indeterminates. This model may be easier to parametrize; its points
may be easier to construct, thus allowing it to be used, together with the rational
map that gives the birational equivalence, in investigating the original variety
or at least some open subsets of it. The existence of such a rational model is a
consequence of the following basic theorem of Algebraic Geometry:

Theorem 1.1 Every irreducible closed set X 1is birationally isomorphic to a
hypersurface in some affine space A" (see [12] pp. 29). L]



The proof of this result is an application of Abel’s “Primitive Element The-
orem.” It was well known already in the last century (see [2] pp. 28-29) and
relies on the construction of the minimal polynomial for an algebraic element
over a field.

The resolvent construction due to Ritt (but probably known to Kronecker
for the algebraic case), gives another constructive proof of this result. Ritt,
moreover, generalized the above theorem to algebraic systems of differential
equations and it is one of the main tools in the investigation of such systems.

The resolvent computation relies on an elimination procedure: Ritt used
his ‘characteristic sets,” but it is easily seen that other techniques, for example
Grobner bases, can be used as well. Here we will use characteristic sets, and
the bounds on their complexity in [3] and [4], to get bounds on the complexity
of the resolvent.

For the definition of characteristic sets and algorithms to compute them the

reader may refer to [4], [5], [8], [9] or [13].

2 The Resolvent

Through out this paper, I = (f1, ..., fm) denotes a prime ideal generated by the
polynomials fi, ..., fm, in the ring of k[z1, ..., z,], where k is an algebraically
closed field of characteristic zero.

Let uy, ..., uy be a maximal set of algebraically independent variables, with
respect to I, and let the other p = (n — ¢) variables be renamed as y1, ..., yp.

Notice that it is possible to compute such a maximal set of independent
variables using O(mo(l)do(”2)) time on a sequential computer or O(n* log®(m+
d + 1)) time on a parallel computer ([1,7]). Following Ritt, we shall call this
maximal set of algebraically independent variables a parametric set, since, in
fact, they allow a rational parametrization of the variety, as shown below.

Consider the following ordering on the variables:
U <up <o <uy <y <y2 << Yp.

A characteristic set for I, with respect to this ordering will be of the form
g1, -..,9p where g; is a polynomial in kfu1, ..., ug,y1,...,y;]. Moreover, since I
is prime, I = (g1,...,9p).

Lemma 2.1 If h € k[z1, ..., z,] is a polynomial not in I, then J, the ideal
generated by (g1, ..., gp, h), contains a polynomial only in the u;’s.
PROOF.

Since I is prime, the variety V(I) defined by the ideal

I:(gla"'agp)



is irreducible. Further, this variety V() is not contained in the hypersurface
defined by h, since, otherwise, this would imply A € I. Thus each irreducible
component of the variety defined by J has dimension at most ¢ — 1 and ug,

.., ug must be algebraically dependent with respect to J, i.e., there must be a
polynomial in J only in the u;’s. This polynomial can be effectively computed
using an elimination procedure. [

The resolvent computation requires existence (but not direct construction)
of an open subset (in the sense of Zariski topology) of the variety defined by
I where there is a one-to-one correspondence between the values taken by the
parameters and the values of some linear function in the y;’s. The existence of
such an open set is proved in the following lemma (see [9] pp. 26-31), and is

defined by h # 0.

Lemma 2.2 Let I be a prime ideal generated by its characteristic set (g1, ...,

gp) constructed as above. Then there exist a polynomial h only in the u;’s and

a polynomial ¢ = ary1 + asy2 + - - + apyp, with a;’s constant, such that if
(m;"';qaylla"'ay;) and (u_la"wW;y/lla"';y;ol)

are two points of the variety defined by I then

h(ar,...,ug) #0 and (y1,...,9,) # (W Y,)
implies that

C(u_1>~~'7u_q;ylla"'ay1l;)#C(u_la"'amayllla"'ayg)'

PROOF.
Introduce new variables z;, ..., z, and consider the polynomials si, ..., s,
obtained by substituting the y;’s with corresponding z;’s in the polynomials g1,
..., gp. Now, consider the variety V' defined in a ¢ 4+ 2p dimensional affine space
by the ideal J generated by (g1,...,9p,51,...,5p).

It is then easy to verify that V has still dimension ¢ and that uy, ..., u, form
a maximal set of algebraically independent variables with respect to J. Let

V=Viul,u.---uV;

be an irreducible decomposition of V. For each irreducible component V; of V|
one of the following three cases holds:

1. V; is of dimension lower than q. Thus, the prime ideal associated with this
component in the irreducible decomposition of J must contain a polyno-
mial only in the u;’s. Call this polynomial h;.

2. V; is of dimension ¢ and it is contained in the ¢-dimensional linear subspace
determined by the equations

Z21=WY, Z2=VY2, -, Zp =VYp-

In this case, put h; = 1.



3. V; is of dimension ¢ and it is not contained in the g-dimensional linear
subspace determined by the equations

21 =Y, Z2=Y2, ..y, Zp =VYp-

In this case V; will not be contained in the hyperplane z; = y; for some
index j. Hence, the ideal generated by the prime ideal associated with V;
and by the polynomial z; — y; must contain, by the preceding lemma, a
polynomial only in the u;’s. Call this polynomial ;.

Let now € be the hyperplane of the linear equation
a1(y1 — z1) +az(y2 — 22) + -+ ap(yp — %)

For a generic choice of a;’s, ¢ intersects each irreducible component of V' of
dimension ¢ in a lower dimensional variety, if the component is not completely
contained in the diagonal

Z21=Y, Z2=Y2, -, Zp =1Yp-

Then, by the preceding lemma, the ideal generated by ¢ and by the prime ideals
associated with these irreducible components of V' must contain a polynomial
only in u;’s, say hY.

Define h to be the product of all of the h;’s, the h}’s and the h{’s. It is now
simple to verify that the polynomials

c=a1y1 +ay2+ -+ apYp

and h, by construction, have the properties desired in the statement of the
lemma; in fact,  is never zero in the open subset of V where h # 0. [

Now, we are ready to define a resolvent:

Definition 2.1 (Resolvent) Let I be a prime ideal and let ¢4, ..., g, a char-
acteristic set for I with respect to an ordering of the variables in which the
independent variables precede the dependent variables:

U < U < ... < U <Y1 < Y2 << Yp,

u;’s form a maximal set of independent variables.
Let w be a new variable and

W—C = W—0a1Yy1 — - — ApYp,

a linear polynomial with the choices of a;’s as in the preceding lemma.
Let I, {1, ..., I, be a characteristic set of L C k[z1, ..., 2, w], generated by
(91, - - 9p, w—c), computed with respect to the following ordering;:

U <z < .. <y, <w<y1 <yp<...<yY.

The first polynomial (i.e. of the smallest rank) of the characteristic set, { = I(uq,
Uz, ..., Uy, W), is called a resolvent of I. O



The following theorem is the main result for the theory of the resolvent:

Theorem 2.3 Let I be a prime ideal with a characteristic set, g1, ..., gp, as in
the preceding definition. Let w be a new indeterminate and let h and ¢ be two
polynomaals satisfying the properties of lemma 2.2.

Consider the ideal L C k[z1, ..., z,,w],

L={(g1,...,9p,w—c).

1. L s prime.

2. Letl, Iy, ..., 1, be a characteristic set of L, computed as in the preceding
definition. Then | = resolvent of I is only in the variables u;’s and in w,
and each l; is of degree 1 in y;, i.e. is of the form

li = linyi + lia,
where I3, ’s are polynomials free from y; ’s

PROOF.

(1) Assume to the contrary, that is L is not prime. Consider two polynomials,
f and g, such that fg € L while neither f nor g belongs to L. Next, observe
that L Nk[z1, ..., 2,] = I and that using the polynomial w — ¢, it is possible to
eliminate w from a polynomlal f to obtain a polynomial f € /{7[]31, ... Zp] such
that f € L if and only if f € I. Now, using the polynomials f and g, resulting
from the elimination process, it is easﬂy seen that

F¢l, G¢I, but fgel

But this contradicts our original assumption that [ is prime.

(2) Since L is prime it is easy to verify that the dimension of the variety it
determines is still ¢ and that its characteristic sets contain p 4+ 1 polynomials.
Since the assumed ordering is

U <o <uy <w< oy << Yy,

[, the polynomial of the lowest rank is free from y;’s. Moreover it has to be
irreducible as L is prime.

To prove that each [; is of degree 1 in y;, we begin by showing that [; is
linear in y;. Suppose the contrary holds and let (@, W) be a solution to the
resolvent equation [ = 0.

Then (@, w, y1) has the same degree in y; as the polynomial {;(u, w,
Y1), since [ does not divide the initials of any of the ;’s. If l;(w, W, y1) is of
degree more than one, then the system of equations defining L has at least two
distinct solutions, (u, w, ¥) and (u, w, ¥') with ¥ # ¥'. The polynomial h



(as in lemma 2.2) is not in L, because the u;’s are algebraically independent
with respect to L. Hence, h(u) # 0. But, then as a direct consequence of the
lemma 2.2, we have

c(¥) # (@),

and that not both @ — ¢(y) = 0 and W — ¢(7’) = 0. But then this contradicts

our initial assumption that the system of equations defining L has at least two
distinct solutions and that [; is of degree more than 1.

Since the polynomial /; is linear in y; it can be used to eliminate y; from s,

. Ip. And the arguments of the earlier paragraph can be repeatedly used to

show that [ and the successive polynomials are all linear in the corresponding

yi’s.

Note that the resolvent defines a hypersurface H in the ¢ + 1-dimensional
space which is birational to the variety V' defined by I. The equations of the

rational map from H to V' are obtained by resolving the polynomials {1, ..., I,
for the y;’s.
_lll(ul,...,uq,w) y _lpl(ul,...,uq,w)
1 — 3 ceey - 3
lis(ug, ..., ug, w) P Lo(ur, .oy ug, w)
where (u1, ..., uy, w) € H ranges over the solutions of the resolvent I(uq, ...,

ug, w). Thus, the rational map from V' to H is given by the projection on the
u;’s of the points (u, y) of V and by the equation w = ¢(y). As a result, we shall
also say that the equations [y, ..., [, provide a parametrization of the variety V'

defined by I.

The above results lead to a very straightforward algorithm to compute the
resolvent of an irreducible variety defined by a prime ideal I via characteristic set
computations. However, a direct implementation of the constructions given in
the proof leads to the computation of characteristic sets twice and consequently,
fails to provide a tight upper bound for the degree of the resolvent and the
parametrization. A sketch of the algorithm may be as follows:

Algorithm RESOLVENT:  (first version)

e Input: A set of generators for the prime ideal I: fi, fo, ..., fim.

e Output: Resolvent, ! and arational parametrization defined by: 1;,13,...,1,.
1. Compute a maximal set of independent variables uy, ..., u, with respect to
I. Rename the other variables as y1, ..., yp.



2. Compute a characteristic set gi, ..., g, for I with respect to the ordering

U < ... <Uug <y <...<Yp.

3. repeat the following steps

stepl. Choose at random ay, ..., a, elements in k.
step2. Compute a characteristic set I, I3, ..., [, for the ideal generated by
g1, -+ gp, W— a1y — - - - — apYp With respect to the ordering

up < ... <y <w<y <...<y.

step3. If the polynomials /y, ..., [, are linear in the variables y;, ..., y,

then output [ as the resolvent and the [;’s as a rational parametriza-
tion of an open set of the original variety and terminate.

end{REsoLvenT.} [

There is no need to compute a characteristic set twice. It is straightforward
to verify that the following algorithm correctly computes the resolvent. It will
be used in the next section to provide a better upper bounds for the degree of
the resolvent.

Algorithm RESOLVENT:  (second version)

e Input: A set of generators for the prime ideal I: fi, fo, ..., fn-

e Output: Resolvent, ! and arational parametrization defined by: 1;,13,...,1,.
1. Compute a maximal set of independent variables uy, ..., u, with respect to
I. Rename the other variables as y1, ..., yp.

2. repeat the following steps

stepl. Choose at random ay, ..., a, elements in k.
step2. Compute a characteristic set I, I;, ..., [, for the ideal generated by
fiy oo fmy w— a1y — -+ - — apy, with respect to the ordering

U < ... <y <w<y <...<y.



step3. If the polynomials {y, ..., [, are linear in the variables y;, ..., y,

then output [ as the resolvent and the [;’s as a rational parametriza-
tion of an open set of the original variety and terminate.

end{REsoLvenT.} [

As stated in the proof of the previous theorem the probability that the
condition in step 3 of the previous algorithm will be satisfied approaches 1 if
the choice of the a; is done over a sufficiently large subset of k. To prove this
observe that, if one treats the a;’s as variables in the computation of Step 4 each
polynomial /; is of the form l;; (a, u, w)y; + li2(a, u, w), where I;; is a polynomial
in u;’s and a;’s whose degree can be bounded a priori, knowing the degree of
the fi’s. The ‘good’ @;’s hence should not be such that they make the I;;’s
identically zeros. We shall show how using the techniques similar to the ones in
[11], it is possible to devise deterministic algorithms for resolvent computation
without any additional complexity penalty.

3 Bounds on the Degree of the Resolvent
In this section we will present upper and lower bounds on the degree of the

resolvent for a prime ideal I C k[z1, ..., z,] generated by m polynomials fi,
., fm each of degree at most d in the z;’s.

3.1 Lower bound

Example 3.1 In the ring of polynomials k[uy, ..., un, Y1, - . ., Yn] consider the
ideal I generated by the polynomials
yf — Uy, yg — Uy, ..., yg — Up.
I is prime. The variables uy, ..., u, are independent with respect to I. Thus

the variety V' defined by I in a 2n-dimensional affine space is irreducible and of
dimension n.
The above set of generators is a characteristic set for I with respect to the
ordering
U <Us < - < Up <Y1 < Y2 < - < Yp.

From the results in the previous section, V is birational to a hypersurface
in a n + 1-dimensional affine space. This is equivalent to saying that the
field of rational functions over V, k(V'), obtained by taking the quotient field

of kuy,...,un,y1,...,Yn]/I is isomorphic to the field of rational functions
k(ui,ua,..., u,, W) where u;’s are algebraically independent over k£ and W is
algebraic over k(u1, ua, ..., up).



It is clear, then, that the degree in w of the resolvent cannot be less than
the degree of the minimal polynomial g for W over k(u1,us, ..., u,). From field
theory the degree of g is equal to the dimension of k(uy,us, ..., u,, W) as a
vector space over k(uy, us, ..., up). This is of course equal to the dimension of
k(V) as a vector space over k(uy, ua, ..., up). Now it is easy to observe that
k(V') is generated, as a vector space over k(ui, us, ..., u,) by the monomials
in y;’s with degree in each y; less than d. Since there are d” of such monomials
the degree of the resolvent must be at least of degree d*. [l

Observe that the degree of the resolvent depends on the particular ordering
chosen for the variables. In fact V' is a rational variety and with the choice of
y;’s as parameters, it is immediately seen that V' is birational to a hyperplane
in the n + 1-dimensional affine space. This phenomenon was already known to

Ritt (see [9] pp. 44).

In the example above we were concerned only with the degree of the re-
solvent. The following (rather classical) example shows that the degree of the
expressions involved in the rational map from the variety to its birationally
equivalent surface may necessarily be of high degree also.

Example 3.2 In the ring k[u, y1, ..., Yn—1], consider the ideal I generated by

the polynomials

d d d
yl_yQ; y2_y3; ey Yn—1 — U

The variety V described by 7 is irreducible and it is a rational curve, parametrized
by u. The resolvent is then w = 0. However, the parametric equations for the
curve are . -

yl—ud s y2—ud g ey yn_l—ud. |:[

3.2 Upper bound

We begin by looking at the degree bounds for the resolvent and its associated
parametrizing polynomials (i.e. ;’s). For a polynomial f € k[u1, ..., uqy, w, y1,
-, Yp, we define deg, (f) (degree of f with respect to u;) as the maximum
degree of the variable u; appearing in f. We define deg, (f) and deg,, (f)
analogously. We also use the notations degy (f) and degy (f) to imply

q P
degy (f) = deg,,(f), and degy(f) = deg, (f).
i=1 i=1

Finally, we write deg(f) to mean

deg(f) = degy (f) + deg,, (f) + degy (f).

The following theorem follows from the bounds on the degrees of the poly-
nomials of a characteristic set given in [4].

10



Theorem 3.1 (Resolvent Upper Bound Theorem) Let I = (f1, ..., fm)
be a prime ideal in k[xq, ..., x,] (k is a field of characteristic zero) and deg(f;) <
d. Assume that 1 = uy, ..., ¥y = uy are the independent variables with respect
to I and the remaining p = n — q variables, xyp1 = Y1, ..., Tn = Yp, are
dependent. Let w be the new wvariable introduced as in the definition of the
resolvent.

Let 1 be the resolvent of I and Iy, ..., l,, its associated parametrizing poly-
nomials. Then
deg(l) = O(m dOW)), and
deg(l;y) = O(m d0<P2>), foralli=1,...,p.

PROOF.
The proof follows from the GENERAL UPPER BOoUND THEOREM of [4] and the
algorithm for Resolvent as in the second version. [

In fact a careful examination of the proof of the GENERAL UPPER BOUND
THEOREM of [4] reveals more.

degy(l) < 4(m+ 1)(18p)*rd(d + 1)’

deg, (1) < 2(d+1)"+,

degy(l) = 0, and

degy(l) < 4(m+1)(18p)*d(d + 1)1",

deg, (Ii) < 2(d+1)"*7,

degy(l) = 1, foralli=1,...,p.
Furthermore, | and each of the [;’s can be expressed as a linear combination of
the fi’'sand w—c = w— a1y — - — apy, as follows

I = bo(w—c)+ > bifj,

ji=1
L= aolw—co)+ Y ajf;,
ji=1

where b’s and a’s are polynomials in kfus, ..., ug, w, 41, ..., yp] and
deg(bo), deg(b;f;) < 11(m+ 1)(18p)*d(d +1)***", and
deg(aio), deg(a;jf;) < 11(m+ 1)(18p)*Pd(d + 1)*°7".

These bounds lead to straightforward algorithms to compute the resolvent
and correspondingly, a single exponential sequential time bound and a polyno-
mial parallel time bound. (See [4].)

11



Theorem 3.2 (Randomized Complexity of Resolvent) Let I = (fi, ..

e

fm) be a prime ideal in k[x1, ..., z,] (k is a field of characteristic zero) and
deg(fi) < d. Assume that &1 = uq, ..., &g = uy are the independent variables
with respect to I and the remaining p = n—q variables, Tgp1 = y1, ..., Tn = Yp,

are dependent.
Then assuming a suitable choice of the a;’s, one can compute the resolvent

of I and its associated parameirizing polynomials, in O<mo(")(d + l)o(”a))
sequential time or O(n7log2(m +d+ 1) parallel time. [

Since a random choice of a;’s satisfies the requirements with probability 1,
the above theorem gives a probabilistic complexity analysis for our RESOLVENT
algorithm in its second version.

However, the algorithm can be made deterministic since it is possible to

search for appropriate a;’s over large subsets of k, where the search process is
guaranteed to succeed.

Let
K= {01,02,03,...} g k

be a countably infinite subset of k. For instance, we could have chosen
K={1,2,3,..}

where
1=1, 2=1+41, 3=1+1+1, etc.

Our a;’s will be chosen from some large but finite subsets S; C K.
Let f(ai, ..., ap) € ka1, ..., ap] be a nontrivial multivariate polynomial,
le.

flar, ... ap) 0.

We would like to count the number of elements of S; x Sy x---x S, C K? where
f vanishes, i.e. the cardinality of the set

Z(f) ={(@1, ..., @) : GES,..., a5 € S,k f(@r, ..., q) = 0}.

Let dy = deg,, (f), ..., dp = degap(f).

f = fa(az, .. .,ap)a‘li1 + -+ folaz, ..., ap).
At a point (@1, ..., @p), f(@1, ..., Gp) can vanish for one of two reasons:

1. @7 is a root of the univariate polynomial in a; with coefficients f;(az, ...

@),

2. foreach j (0<j<di), fi(@z, ..., @) =0.

12



Proceeding as in [11], we have

P
1Z(H) < dv TTISi+12(fa)] 1541,

j=2
Thus
A d A
Ip (Nl < by Ip(fd1)|
j=115il 1S1] TTj=2 1551
P
d;
< 4
- ;I il
o Zimdi _ deg(f)
= minl|S;| min|S;|
Now choosing
S1=5=--=5=SCK, and |S|=2deg(f),

we are guaranteed to have at least one elment in SP at which f assumes a
nonzero value. Actually, f does not vanish for at least half the points of S?;
that is, if we choose a point uniformly randomly from S?P then, after two draws
on the average, we would have found a point where f does not vanish.

Now going back to our original problem, let us perform our resolvent com-
putation with a;’s as symbolic variables. (In the ordering of the variables, a;’s
are assumed to occur before all other variables.) Then our parametrizing poly-
nomials are of the following form:

L = bi(ar,...,ap,ur, .., ug, w)ph + halar, ... ap,ur, ..., ug, w)
L = La(ar,. .. ap,ur, ... ug, Wyp +lpa(ar, ..., ap,u1,...,uy, w).
Now, we would like to choose (@1, ..., @) such that
lll(a,...,@,ul,...,uq,w) $ 0,
la(ar,...,%,u1, ... ug,w) # 0.

Equivalently, if

P
L(ay,...,ap,u1,...,Ug, w) = H La(a, ... ap,uq, ..., ug, w),
j=1

13



our choice of (a7, ..., @) must satisfy
L(@,...,%,u1,...,uqg, w) £ 0.

Now, using the general upper bound theorem of [4], we see that for all j (1 <
J<p) .
deg 4(1j1) < 4(m + 1)(18p)**d(d + 1)*°F",

and

deg 4 (L) < 4(m + 1)p(18p)*d(d + 1)*".
Thus, if we choose an I C K such that
|S| = 8(m + 1)p(18p)*d(d + 1)'%

then there is an (@, ..., @) € SP for which the resolvent algorithm is guaranteed
to produce appropriate parametrizing polynomials. Since we need to search only
over a space of cardinality

1SP| = 0 (mO(p)dO(pa)) ’

the time complexities of our algorithms (both under sequential as well as parallel
models) remain unaffected. The deterministic version of our algorithm is as
follows:

Algorithm RESOLVENT:  (third version)

e Input: A set of generators for the prime ideal I: f1, fo, ..., fin.

e Output: Resolvent, ! and arational parametrization defined by: 1;,13,...,1,.

1. Compute a maximal set of independent variables uy, ..., u, with respect to
I. Rename the other variables as y1, ..., yp.

2. Let S={e1, ¢a, ..., en}, ¢ € k, ¢;’s distinct.

N = 8(m + 1)p(18p)**d(d + 1)*°7°

3. foreacha; €5, ...,a, €S
repeat the following steps

stepl. Compute a characteristic set I, I3, ..., [, for the ideal generated by
fiy oo fmy w— a1y — - - — apy, with respect to the ordering

U < ... <Yy <w<y <...<yY.

14



step2. If the polynomials {y, ..., [, are linear in the variables y;, ..., 9,

then output [ as the resolvent and the [;’s as a rational parametriza-
tion of an open set of the original variety and terminate.

end{REsoLvenT.} [

Thus, in summary, we have the following;:

Theorem 3.3 (Complexity of Resolvent) Let I = (f1, ..., fm) be a prime
ideal in k[zy, ..., ®,] (k is a field of characteristic zero) and deg(f;) < d.
Assume that &1 = uy, ..., x4 = uy are the independent variables with respect to
I and the remaining p = n—q variables, xg41 = y1, ..., Tn = Yp, are dependent.

Then one can compute the resolvent of I and ils associated parametriz-
ing polynomials, deterministically in O(mo(")(d+ 1)0("3)) sequential time or

O(n"log?(m 4 d + 1) parallel time. [
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