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Abstract

Iterative methods for linear systems of algebraic equations arising from
the finite element discretization of nonsymmetric and indefinite elliptic
problems are considered. Methods previously known to work well for pos-
itive definite, symmetric problems are extended to certain nonsymmetric
problems, which can also have some eigenvalues in the left half plane.

We first consider an additive Schwarz method applied to linear, sec-
ond order, symmetric or nonsymmetric, indefinite elliptic boundary value
problems in two and three dimensions. An alternative linear system, which
has the same solution as the original problem, is derived and this system
is then solved by using GMRES, an iterative method of conjugate gradient
type. In each iteration step, a coarse mesh finite element problem and a
number of local problems are solved on small, overlapping subregions into
which the original region is subdivided. We show that the rate of conver-
gence is independent of the number of degrees of freedom and the number
of local problems if the coarse mesh is fine enough. The performance of
the method in two dimensions is illustrated by results of several numerical
experiments.

We also consider two other iterative method for solving the same class
of elliptic problems in two dimensions. Using an observation of Dryja and
Widlund, we show that the rate of convergence of certain iterative sub-
structuring methods deteriorates only quite slowly when the local problems
increase in size. A similar result is established for Yserentant’s hierarchical
basis method.
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1 Introduction

Domain decomposition techniques are powerful iterative methods for solving
linear systems of equations that arise from finite element problems. In each
iteration step, a coarse mesh finite element problem and a number of smaller
linear systems, which correspond to the restriction of the original problem to
subregions, are solved instead of the large original system. These algorithms can
be regarded as divide and conquer methods. The number of subproblems can be
large and these methods are therefore promising for parallel computation. The
central mathematical question is to obtain estimates on the rate of convergence
of the iteration by deriving bounds on the spectrum of the iteration operator.
We are able to establish quite satisfactory bounds if the coarse mesh is fine
enough.

We work with two triangulations of the region: 1) partitioning the region
into subregions, also called substructures, which define a coarse, global model;
2) partitioning the region into elements of a finite element model. As in the
positive definite case considered previously, see Cai [3],[4], Dryja [6] and Dryja
and Widlund [7],[8], the coarse problem provides interchange of information
among the different parts of the region; it is known that without such a coarse
subproblem the rate of convergence is considerably slower; cf [24]. This part
of the approximate solver plays an additional role in the indefinite case. We
can interpret the main results of this paper by saying that if the eigenfunctions
corresponding to the eigenvalues in the left half plane are approximated well
enough on the coarse mesh, then the spectrum of the preconditioned linear sys-
tem of equations lies in a fixed bounded subset of the right half plane. This is
important for the rate of convergence of the iterative method. The least favor-
able situation for iterative methods of conjugate gradient type is the case where
the origin of the complex plane is surrounded by eigenvalues of the iteration
operator. Here we are able to avoid such a situation.

The additive Schwarz algorithms, introduced in [7], cf. also [6],[8],[9],[18],
provide a means of constructing preconditioners for many problems in terms of
a partition of a given finite element space into a sum of subspaces. The use of
such a preconditioner involves solving, exactly or approximately, the restriction
of the original problem to the different subspaces. The residual, which plays a
central role in the iteration, is computed as a sum of terms from the different
subspaces. These terms can be computed in parallel. We note that it has been



shown in Dryja and Widlund [9] that many domain decomposition methods can
be viewed as additive Schwarz methods. For recent work on the case of more
than two levels of triangulation, see Dryja and Widlund [10] and Xu [25].

In the symmetric, positive definite case, the iterative method most com-
monly used to solve the transformed (preconditioned) equations is the conjugate
gradient method. For the cases considered here symmetry is always lost. In our
experiments, we have used a generalized conjugate residual method GMRES;
see [22]. Since the spectrum of the operator is confined to the right half plane,
Manteuffel’s Chebyshev algorithm would also be successful; cf. [17]. Since we
can show that the symmetric part of the operator is uniformly positive definite,
with respect to a suitable inner product, and that the spectrum is uniformly
bounded, we can guarantee a rate of convergence, which is independent of the
mesh size and the number of subregions.

Other methods for indefinite, elliptic problems are discussed in [2],[14],[16],
[27],[28].

The paper is organized as follows. In Section 2, we introduce a class of
indefinite, elliptic boundary value problem, the two triangulations of the domain
and a Galerkin finite element method. We briefly review the GMRES method in
Section 3. In Section 4, we present two variants of the additive Schwarz method
and a detailed analysis of their rates of convergence. Our analysis is based on
previous work on the positive definite case, see [3],[4],[6],[7],[8], and a result due
to Schatz [23]. Schatz’s work, in turn, is based on Garding’s inequality and the
Aubin-Nitsche trick; see Ciarlet [5] or Nitsche [21]. In Section 5, we discuss
some numerical results. Finally, in Section 6, we show that, for problems in the
plane, our result can be extended to iterative substructuring and hierarchical
basis algorithms discussed in Dryja and Widlund [8],[9] and Yserentant [26],
respectively.

2 The Elliptic Problems

Let © be an open, bounded polygonal region in R? d = 2 or 3, with boundary
09). Consider the homogeneous Dirichlet boundary value problem:

Lu = f in €,
{ u = 0 on 0N0. (1)
The elliptic operator L has the form
19 ou(z), & Ou(x)
Lu(z) = — ”ZZ:I a—rl(a”("c) or, )+ 2; bi(x) oz, + c(z)u(x).

All the coefficients are, by assumption, sufficiently smooth and the matrix
{a;;(xz)} is symmetric and uniformly positive definite for Vo € Q. The right
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hand side f € L*(£2). We also assume that the equation has a unique solution
in H}(Q).

Let (-, -) denote the usual L? inner product and [|-|| or ||-||z2 the corresponding
norm. The weak form of equation (1) is: Find u € Hj(Q2) such that

Bu,v) = (fv).  Woe HIQ) @)
The bilinear form B(u,v) is defined by

Z/ a”%gj ZZ/Z) vd:p—l—/ cuvdzx
z; Ox;

7,7=1

or

abrz) vdz —I—/ cuvdz.

Ou Ov
Z/ a”@ 612

2,7=1

Here, &(z) = c(z) — XL, 9bi(x)/0x;.

We also use two other bilinear forms

Z / Ou 81}
| i Oz 5@2

i,j=

and
O(b;u)

Z/ b 8@2 ox; vdz ,

which correspond to the second order terms and the skew-symmetric part of L,

respectively. The bilinear form A defines a norm, which we denote by || - || 4.
Under the assumptions on the coefficients a;;, this norm is equivalent to the H}
norm. It is also easy to verify that

S(u,v) = —=S(v,u), Yu,v € Hy(Q).

Throughout this paper, ¢ and C, with or without subscripts, denote generic,
strictly positive constants. They are independent of the mesh parameters b and

H, which will be introduced later in this section.

Using elementary, standard tools, it is easy to establish the following in-
equalities:
(i) | B(u,v) |< Cllullallvlla; Yu,v e Hg(€).
(ii) Garding’s inequality: There exists a constant C, such that
[ulls = Cllullz@) < Blu,u), Yue Hg(Q) .
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(iii) There exists a constant C, such that
| S(u,v) [< Cllullallvllzegy, Yu,v € Hy(Q),

| S(u,v) |< Cllvlallullzz@), Vu,v € Hi(R).

We note that the bounds for B(:,-) and S(-,-) are different, since each of
the terms in S(-,-) contains a factor, which is of zero order. This enables us to
control the skew-symmetric term and makes our analysis possible.

We also use the following regularity result; ¢f. Grisvard [13] and Necas [19].

(iv) The solution w of the adjoint equation

B(¢,w) = (9,9), Vo€ Hy(Q)

satisfies
[wl[gr+@) < Cllgllzze)

where 7 depends on the interior angles of 012, is independent of ¢ and is at least
1/2.

We approximate equation (2) by a Galerkin conforming finite element method.
For simplicity, we consider only continuous, piecewise linear, triangular elements
in R? and tetrahedral elements in R®.

To define the additive Schwarz algorithms, we need two levels of triangula-
tion that have already been introduced in [3],[4],[6],[7],[8],[9]. We first partition
Q into substructures {£2;},2 = 1,---, N, which provide a regular finite element
triangulation of 2. The §2; are non-overlapping, d-dimensional simplices. They
satisfy all the standard rules of finite elements; c¢f. Ciarlet [5]. This is the coarse
mesh and it defines a mesh parameter H = max{Hy, -+, Hy}. The triangu-
lation is assumed to be shape regular, i.e. H;, the diameter of €2; is bounded
uniformly in terms of the diameter of the largest inscribed ball in €Q;.

In a second step, we divide each substructure €2; into smaller simplices,
denoted by { =1, }. They form a shape regular, fine mesh (h-level)
finite element triangulation of Q with the mesh parameter h = maxivj{hf:}.
Here h? is the diameter of 7.

We can now define the piecewise linear finite element spaces over the H-level
and the h-level triangulations of €.

VH = {v" | continuous on Q, v |, linear , v" =0 on 90}

and

V" = {v" | continuous on Q, v" | ; linear , v" =0 on 9Q} .
k2
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The Galerkin approximation of equation (2) is defined by: Find u"* € V"
such that
B(u",v") = (f,o"), Yo" e Vh (3)
If the mesh size h is small enough, it follows from a result by Schatz [23]
that this problem has a unique solution. By using nodal basis functions to
span the finite element space, equation (3) is transformed into a linear system
of algebraic equations, which is large, sparse, nonsymmetric, indefinite and
relatively ill-conditioned.

3 A Brief Discussion of the GMRES Method

Among the possible iterative methods to solve the linear system, we have only
used one, the GMRES method; ¢f. Saad and Schultz [22] and Eisenstat, Elman
and Schultz [11]. This is a generalized minimum residual method, which in
practice has proven quite powerful for a large class of nonsymmetric problems.
The GMRES method is described in [22] and the theory developed in L*(2)
can be found in [11]. Both the algorithm and the theory can easily be extended
to an arbitrary Hilbert space; see Cai [3]. In developing our theory and in the
numerical results that are discussed in Section 5, we have exclusively used the
A-norm introduced in Section 2. Here we briefly describe the GMRES algorithm
and state a theorem without proof.

Let P be a linear operator in the finite dimensional space R" with an inner
product [+, -], and a corresponding norm || - ||, chosen to take advantage of the
special properties of P. (In our applications, P is the preconditioned stiffness
matrix and the A-norm is used.) P is not symmetric but is positive definite
with respect to [-,:]. The GMRES method is used to solve the linear system of
equations

Px = b

?

where b € R" is given. We begin from an initial approximation zg € R" and
the initial residual 7 = b — Pxg. In the m!" iteration, a correction vector z,,
is computed from the Krylov subspace

Kn(ro) = span{rg, Pro,--- ,Pm_lro},
which minimizes the norm of the residual. In other words, z,, solves

min |0 — Plxg+ 2)| .
i [lb = P(eo+2)]
The mt" iterate is z,, = o+ Zu-

The exact solution would be reached in no more than n iterations if we use
exact arithmetic.



Following Eisenstat, Elman and Schultz [11], the rate of convergence of the
GMRES method can be characterized in terms of the minimal eigenvalue of the
symmetric part of the operator and the norm of the operator. They are defined
by
i

. .|z, Px]
¢, = inf = sup .
0 |||

##0 [, 2]

and C,

By considering the decrease of the norm of the residual in a single step, the
following theorem can be established.
Theorem(Eisenstat, Elman and Schultz). If ¢, > 0, then, the GMRES

method converges and after m steps, the norm of the residual 1s bounded by

2 m/2

C
<=2 lnl
P

7

4 Algorithms on Overlapping Subregions

In this section, we introduce two variants of an additive Schwarz algorithm
and provide bounds on their convergence rates; see Theorem 1 in the following
discussion. The analysis is valid for both two and three dimensions.

We first form a basic decomposition of the domain {2 into overlapping sub-
regions and then introduce the projections which define our algorithms.

We use the H-level subdivision {€;} of Q. Each subregion ©; is extended to
a larger region ;, i.e. Q; C Q.. The overlap is generous in the sense that there
exists a constant a > 0, such that

distance(@Q; NQ,00,NQ) > aH;, Vi

We assume that 98, does not cut through any h-level elements. We use the
same construction for the subregions that intersect the boundary 02 except
that we cut off the part that is outside 2.

We also use the notation Q, = Q.

We note that the larger « is, the fewer iterations can be expected. However,
if we increase the overlap, the size, and hence the cost of the subproblems
increases. It is an important practical issue to balance the total number of
iterations and the cost of solving the subproblems.

For each Q;,7 > 0, a regular finite element subdivision is inherited from the
h-level subdivision of €). The corresponding finite element space is defined by

V= HY Q) NV

K3
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The elements of this subspace of V" can be extended continuously by zero to
the complement of ;. We also use the subspace

‘/Oh — VH

It is easy to see that our finite element function space V" can be represented
as the sum of the N 4 1 subspaces,

Vh — V'Oh + V'lh N V]{Lf

We can now define the projection operators, which are the main building
blocks of our algorithms. These operators map the finite element space V"
onto the subspaces V* and are defined in terms of the bilinear forms B(-, ) and
Ay,

Definition: For:=0,---,N:

For any w" € V', Q.w" € V" is the solution of the finite element equation

B(Qiw" vl) = B(w" o}, Yol e VI

For any w" € V', Paw" € VI is the solution of the finite element equation

A(Pwh vl = B(w", o), Yol € VI

)

We now introduce the two operators which define our transformed equations

QY = Qo+ Qi+ + Qn

and

Q¥ = Qo+ P +--- + Pv.

Our main effort goes into the study of the spectra of these two operators. The
only difference between Q) and Q) is that, for ¢ > 0, we replace the projection
Q;, corresponding to 2, by P;. The coarse mesh projection is not changed.
The computation of Quw" or Paw", for ¢+ > 0 and for an arbitrary func-
tion w" € V*, involves the solution of a standard finite element linear system
of algebraic equations on the small subregion ;. The former gives rise to a
nonsymmetric linear system of equations and the latter to a positive definite,
symmetric problem. For : = 0, the problem is a standard finite element equa-
tion on the H-level, coarse space. One can view P; as a preconditioner of (); in
the subspace Vi*; cf. the discussion in Dryja and Widlund [8],[9]. The cost of the
computation can often be decreased by simplifying the local problems further.
We can replace the given second order elliptic operator by the Laplacian. If it
is possible to choose some of the ; to be rectangular and the corresponding
mesh to be uniform, a Fast Poisson solver can then be used to compute the



contribution from V/*. It is an easy exercise to modify our theory to cover such
a case.
We will consider two additive Schwarz algorithms:

Algorithm 1: Obtain the solution of equation (3) by solving the equation
QU = 1, (@

and

Algorithm 2: Obtain the solution of equation (3) by solving the equation
QW = b, (5)

In order for equations (4) and (5) to have unique solutions, the operators
QW and Q® must be invertible. This follows from Theorem 1 given in the
following discussion. To obtain the same solution as equation (3), the right
hand sides () and ) must be chosen correctly. The crucial observation is
that these right hand sides can be computed without knowledge of the solution
of equation (3). The following formulas are valid:

N
p) — Q(l)uh — ZQi'Uh
=0

and v
b2 = QW = Qouh—{—Zth.
=1

Each of these terms can be computed by solving a problem in a subspace since,
by equation (3) and the definitions of @); and P;,

B(Qiu",v}) = B(u",vf) = (f,v]), Yol eV}
and
A(Piuhvvzh) = B(uhfvzh) = (f,‘l)zh), szhe ‘/ih'

The main result of this study is Theorem 1. By combining it with the
Theorem given in Section 3, we establish that the two algorithms converge at a
rate which is independent of the mesh parameters h and H, if the coarse mesh
is fine enough.

Theorem 1 There exist constants Hy > 0, ¢(Hg) > 0 and C(Hy) > 0, such
that of H < Hy, then, for 1 =1,2

C(]-{0)6*0_214_(,”’17 uh) S th(uh7 Q(z)uh)

and

AQU, Q) < CO(Hy)A(u", ).



The special constant Cj is introduced in Lemma 1.

Remarks:

(a) The operator @ is very important, since it provides global transporta-
tion of information. All the other projections are local mappings. Without
using (), information would travel only from one subregion to its neighbors
in each iteration and it would take O(1/H) iterations for the information to
propagate across the region. For further details, see [24].

Without such a global mechanism, it would also be impossible to confine
the spectrum to the right half plane. To see this, we consider a symmetric,
indefinite case. If the subregions are small enough, all the local elliptic prob-
lems are positive definite, symmetric and, in the absence of a global part, the
preconditioner defined by the Schwarz algorithm is positive definite symmetric.
Therefore, by Sylvester’s inertia theorem, the operator P has as many negative
eigenvalues as the original discrete elliptic problem.

(b) The constant Hy determines the minimal size of the coarse mesh problem

and it depends on the operator L. In general, Hy decreases if we increase
the coefficients of the skew-symmetric terms, it decreases as ¢ becomes more
negative, while it increases if we increase the overlap. Hj also depends on the
shape of the domain 2. If the domain is not convex, the estimate of Hy, implicit
in our proof of Lemma 5, depends on the parameter v in (iv). We do not have an
explicit formula for Hy but we know from experience that it can be determined
by numerical experiments.

If the operator L is positive definite, symmetric, there is no restriction on
the coarse mesh size H, i.e. Hy = o0.

The proof of Theorem 1 is based on the following results.

Lemma 1 There exists a constant Cy, which s independent of h and H, such
that, for all u" € V%, there exist ut € V* with

N
u = Zulh
=0
and
N
S A ) < CRAGA
=0

This lemma is also central in the theory previously developed for positive
definite, symmetric problems. For a proof see Dryja and Widlund [8]; cf. also
Lions [15] or Nepomnyaschikh [20]. Note that this lemma is independent of the
skew-symmetric and zero order terms of the elliptic operator. In the symmetric,
positive definite case, Lemma 1 is combined with an abstract argument to give
a lower bound for the spectrum of the iteration operator.
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The next lemma is a variation of a result by Schatz; cf. [23]. In his proof,
Garding’s inequality, (ii), and the regularity result, (iv), are used. The proof
of Lemma 2 follows directly from Schatz’s work by replacing the approximate
solution by the coarse mesh solution and the exact solution of the continuous
problem by the finite element solution in V.

Lemma 2 There exist constants Hy > 0 and C(Hy) > 0, such that if H < H,,
then,

1Qou" |4 < C(Ho)[u"]|a

and

1Qou" — u"||2 < C(Ho)H"[|Qou" — u"|4.

Lemma 3 The restriction of the quadratic form B(-,-) to the subspaces V",

v > 0, s strictly positive definite for H sufficiently small, 1.e. there exists a
constant ¢ > 0 such that

cA(u",u") < B(u", u"),Yu" € VI .

Proof of Lemma 3: We have to prove that the second order terms domi-
nate the other symmetric term; the contribution from the skewsymmetric term
vanishes. This follows from the fact that the smallest eigenvalue for the Dirich-
let problem for —A on the region €; is on the order of H; 2.

Lemma 4 Let v = Y vt | where vt € V', Then there exists a constant C > 0,
such that

1> ot A < €3 [l

Proof of Lemma 4: The proof follows from the observation that for each
x € (), the number of terms in the sum, which differ from zero, is uniformly

bounded.

Lemma 5 There exist constants Hy > 0, ¢(Hy) > 0 and C(Hy) > 0, such that
if H < Hy, then,

N
c(HO)C(;?A('uh,'uh) < ZA(Qiuh, Qiuh) < C’(HO)A(uh,uh)

and

C(HO)C’O_QA(uh, uh) < A(Qouh, Qouh) + vazl A(Pz-uh, Pz-uh)

IN

C(Hp)A(u", um).
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Proof of Lemma 5: An upper bound for A(Qou”", Qou") is given in Lemma
2. To obtain an upper bound for the sum of the other terms, we use Lemma 3
and the formula

B(Qu", Qiu") = B(u", Q")
to show that

N N
c Z: A(Quu", Q) < B(u", X_: Qiu").

The right hand side can be estimated by using inequality (i) and Lemma 4.
The other upper bound is established in a similar way.

To prove the lower bounds, we begin by using Lemma 2 and the triangle
inequality to obtain

lu"|17: < COH A(u", u") +[|Qou"||72).

Since the eigenvalues of the Dirichlet problem for —A are bounded from below
and Lemma 2 holds, the last term can be replaced by C|Qou"||a|u"||4. By
using Garding’s inequality, (ii), it follows that

(1— CH?)A(",u") < B(u",u") + | Quu|allu"ll -

By the definition of the operators (); and Lemma 1, we find that
N N
B(u",u") =) B(u",ul) =Y B(Qiu",uf).
=0 =0

The boundedness of B(-,-), (i), can now be used to obtain
N N
B(Qiu",ui) < C_N|Qiu" alluf|a,

K3

which by Lemma 1 and the Cauchy-Schwarz inequality can be bounded above
by
N
CCo(_ Qi 2) " u"[|a -
=0

We finally obtain

N
A(uh7uh) < ch ZA(QiuhaQiuh)7
=0
for sufficiently small H.
The proof of the other lower bound is quite similar.
Proof of Theorem 1: The upper bounds on the norms of the operators
follow immediately from Lemmas 4 and 5.
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To obtain the lower bounds, we first consider

A(u”, QMul) ZA

Using Lemma 5, we see that it suffices to show that

| f;uuuh, Qu) — A(Qu" Q)
can be bounded from above by
CHA(u" u").
By the definition of the quadratic forms

A(uh - Qiuh7 Qiuh) = B(u - QZ 7Q )
— S(u" = Qiu", Qiu") - (e(u" = Qiu"), Qiul).
By using the definition of @);, the first term of the right hand side is seen to

vanish.
For : = 0, the absolute value of the second term can be bounded above by

CH*A(u", u") using inequality (iii) and Lemma 2. We note that S(Q,u", Q;u") =
0. There remains to consider S(u”, >N Q;u"). By using the inequality (iii),

N
A|| ZQN}LHL?-
=1

N
1> S — Qin”, Q)| < Clu”

Since, for each z € Q, the number of terms Qu” that differ from zero is uni-
formly bounded, the second factor on the right hand side can be bounded by
C(XN, |Q:u"||2.)"/%. By an elementary estimate, which shows that the smallest
eigenvalue of the Dirichlet problem for —A on Q; is on the order of H; 2, and
Lemma 5, the required inequality is established.

The thud term is written as the difference of two expressions, which can be
handled by exactly the same tools.

The estimate for the operator Q) is obtained similarly.

5 Numerical Results

In this section, we present some numerical results to demonstrate the behavior
of our additive Schwarz algorithms for both symmetric and nonsymmetric in-
definite boundary value problems in R*. Numerical results for positive definite
problems, both symmetric and nonsymmetric, have previously been given in

[3],[4,[12].
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Figure 1: An extended subregion

We consider the problem

Lu = f in Q = [0,1] x [0,1],
u = 0 on Of.

The right hand side f is always chosen so that the exact solution is u =
zeVsin(mwa)sin(my). The coeflicients of L are specified later for each problem.

We use a two-level subdivision of {2 as described in section 2. The subregion
Q, is obtained by enlarging the triangle €; as in Figure 1. In this extension, the
same number ovlp of h-level triangles are added in all directions.

In our experiments all the subproblems are solved exactly by using a band
solver from LINPACK. We stop the GMRES method as soon as ||ri]|4/]|7o]|4 <
1073. We work with the A-norm, since our theory so far has not been developed
for any other norms. However, in our experience, the performance of the algo-
rithm is quite comparable if we replace that norm with the 2-norm. We have
found that the overall error is not substantially reduced by a more stringent
stopping criterion. In our tables, the error denotes the difference between the
computed solution and the exact solution of the continuous problem measured
in the norms indicated. The programs have been run in single precision on the
Multiflow computer at Yale University.
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Iteration | A — norm; residual | L? norm; error | L* norm; error

1 2.50722 0.318660 0.719067

2 1.44028 0.182950 0.405074

3 0.971708 1.63224E-02 4.73967E-02
4 0.218693 7.38034E-03 2.46119E-02
5) 5.54836E-02 6.13811E-03 1.94588E-02
6 3.40790E-02 5.16731E-03 1.53261E-02
7 2.60738E-02 3.71766E-03 9.73493E-03
8 1.87841E-02 2.19535E-03 6.23578E-03
9 1.03642E-02 1.67804E-03 4.90165E-03
10 6.81844E-03 1.36607E-03 4.00215E-03
11 5.02644E-03 8.28570E-04 2.39784E-03

Table 1: Convergence history for Algorithm 1 and Example 1. Here h™' = 75,
H=!' =15, ovlp = 2 and § = 16.07*

Example 1. We consider the symmetric and indefinite Helmholtz equation

—Au—déu = f in
{ u = 0 on 09, (6)

6 is a constant. The eigenvalues of the operator in (6) are (i* 4 j*)r? — §, where
t,) are positive integers. The numerical results are given in Tables 1 and 2.
Algorithms 1 and 2 given in (4) and (5), respectively, are used.

Example 2. We consider a nonsymmetric and indefinite problem

—Au—n(0u/0x+0u/Oy)—6u = f in Q (1)
u = 0 on 09,

The numerical results are given in Tables 3 and 4.

We note that in a few of the experiments, the rate of convergence is unsat-
isfactory, but that the rate of convergence improves considerably by decreasing
H. The rate of convergence varies only marginally with the parameter ovlp.
Normally, the overall cost of the computation is smallest if ovlp = 1. We also
note that, as expected, a smaller H is required when the parameters 6 and 5
are increased to increase the terms that make the operators skewsymimetric and
indefinite.
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Case #£ | 6 |h'| H'|ovlp | Algorithm 1 | Algorithm 2
1 372 | 15 3 2 11 12
2 30 3 4 11 12
3 45 3 6 12 12
4 60 3 8 12 12
) 15 5) 1 10 10
6 30 5) 2 12 12
7 45 5) 3 12 12
8 60 5) 4 12 12
10 1672 | 45 15 1 10 10
11 60 15 1 11 11
12 75 15 2 11 11
13 60 5) 4 44 33
14 60 10 2 17 17
15 60 20 1 8 8
16 3072 | 60 | 20 1 16 16
17 80 20 1 17 18

Table 2: Example 1. The last two columns give the number of GMRES itera-
tions.

16



Iteration | A — norm; residual | L? norm; error | L* norm; error

1 2.99430 0.309833 0.696816

2 1.82397 0.234651 0.529782

3 1.34039 0.136604 0.313758

4 0.905845 7.27307E-02 0.172788

5) 0.585598 4.46239E-02 0.108047

6 0.407054 2.78872E-02 6.71409E-02
7 0.288880 1.37858E-02 3.38832E-02
8 0.180577 8.21095E-03 2.06587E-02
9 0.129736 4.44917E-03 1.15359E-02
10 8.77408E-02 2.19873E-03 6.17071E-03
11 5.48599E-02 1.18357E-03 3.88315E-03
12 3.46359E-02 7.18704E-04 2.24515E-03
13 2.29454E-02 4.35330E-04 1.39198E-03
14 1.35519E-02 2.90249E-04 1.03428E-03
15 8.90639E-03 2.18270E-04 6.67672E-04
16 5.98530E-03 1.90636E-04 5.61312E-04
17 3.89341E-03 1.72248E-04 5.31457E-04

Table 3: Convergence history for Algorithm 1 and Example 2. Here h~! = 120,
H=' =20, ovlp =2, = 16.07 and § = 16.07*
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Case # | parameters | h~! | H™! | ovlp | Algorithm 1 | Algorithm 2
1 n =3 15 ) 1 13 12
2 30 ) 2 17 14
3 6 = 3w 45 ) 3 18 14
4 60 ) 4 18 14
5) 60 6 3 16 14
6 60 10 2 12 11
7 n =167 45 15 1 17 13
8 60 15 1 18 14
9 6 = 1672 75 15 2 25 17
10 60 20 1 13 11
11 80 20 1 14 12
12 100 | 20 2 18 14
13 120 | 20 2 17 14
14 n =307 60 20 1 24 16
15 120 | 20 2 35 19
16 6 = 3072 75 25 1 17 13
17 100 | 25 1 18 14
18 120 | 30 1 15 13

Table 4: Example 2. The last two columns give the number of GMRES itera-
tions.
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6 Two Other Methods

We conclude by outlining how some other results, previously analyzed for the
positive definite, symmetric case, can be extended to the class of elliptic prob-
lems described in Section 2. We confine our discussion to problems in the plane;
both of the algorithms considered here need to be modified considerably in order
to obtain fast methods for problems in three dimensions.

We first consider a basic iterative substructuring method for problems in
two dimensions; cf. Dryja and Widlund [8], [9]. For problems that are nonsym-
metric, but positive definite, the result to be formulated has previously been
obtained by Cai [3],[4].

When iterative substructuring methods are used, the region is divided into
substructures and elements as in Section 2. Though originally derived differ-
ently, it has been demonstrated by Dryja and Widlund [8] that these methods
can be viewed as additive Schwarz methods. Our work depends heavily on this
reinterpretation of the algorithms; see [8] for detailed arguments.

In defining the partition of the finite element space into subspaces, we use the
coarse space V# introduced in Section 4. We also use subspaces corresponding
to the subregions Q;; = ; UT';; U ;. These subregions play the same role as the
Q! in Section 4. Here Q; and Q; are adjacent substructures with the common
edge I';;. We note that an interior substructure is covered by three such regions.
The local subspaces are V; = H}(Qq;) N V"

Compared with the case considered previously, we use less overlap in the
sense that only the elements of V¥ can differ from zero at the vertices of the
substructures. This is reflected in a poorer bound for the constant of Lemma

1

?

C? < const.(1+ log(H/Rh))?;

cf. Dryja and Widlund [8]. Lemma 1 is modified accordingly. The rest of
the proof carries over without change. In Theorem 2, we use the notation

Q=Qo+Y Qi

Theorem 2 For the iterative substructuring method, introduced as an additive

Schwarz method with the subspaces VP and VZ?, there exist constants Hy > 0,

¢(Hy) > 0 and C(Hy) > 0, such that if H < H,
c(Ho)(1+log(H/h))?A(u",u") < A(u*, Qut)

and

AQu, Q) < C(Hy)A(!,ub).

We finally show that the result, obtained by Yserentant [26] for positive
definite symmetric problems, can be extended in the same way. We note that
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Bank and Yserentant [1] have already reported on successful numerical exper-
iments with an accelerated variant of this algorithm for the class of elliptic
problems introduced in Section 2. We also note that our algorithm is differ-
ent from those proposed by Yserentant [27,28] for indefinite and nonsymmetric
problems. Thus in [27] a reduced system obtained by implicitly eliminating the
nodes of the coarest mesh is solved by an iterative method.

We assume that the region  is a plane polygon. A coarse triangulation is
introduced as before. Its triangles are recursively subdivided into four congru-
ent triangles, a total of j times. The characteristic mesh size for the level k
triangulation is h;. As demonstrated in Yserentant [8], more complicated situa-
tions can also be considered, where the final triangulation is highly nonuniform,
but to simplify our discussion, we only consider the regular case in this paper.

As shown in Dryja and Widlund [10], Yserentant’s method can also be
viewed as an additive Schwarz method defined by a set of subspaces. Let
Iyv = I, v be the linear interpolant of v € V" onto the space of finite elements
on the level k triangulation. The following identity holds

v=1Iw+ (Liv—Lyw)+ -+ (Lv—I,_v), Yv e vk

We represent V" as
Vi=VieWao---aV;,

where Vo = V# and, for k > 0, V, = R(I, — I;_,) is the range of the operator
(It — Ix—1). An additive Schwarz method is defined for this set of subspaces. We
obtain Yserentant’s method by replacing , for £ > 0, the resulting problems on
the subspaces by suitable preconditioners.

The following result holds for the family of elliptic problems introduced in
Section 2. Here ) denotes the operator of the transformed equation, which
corresponds to Yserentant’s method.

Theorem 3 For Yserentant’s method there exist constants Hy > 0, ¢(Hgy) > 0
and C(Hy) > 0, such that of H < Hy,

c(Ho)j P A(u" u") < A(u", Qu”)

and

A(Qu, Qu) < C(Hy)A(",u").

We will only outline how this result can be established. We model our proof
on that of Theorem 1. We have to show that the different lemmas hold for the
spaces just introduced. It is shown in Yserentant [26] that Lemma 1 holds with
Co < Cj?% cf. Lemmas 2.4 and 2.5 of [26]. Lemma 2 is still valid since the same

coarse operator is used in all the methods considered in this paper. A counter
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part of Lemma 3 can be obtained as well, by using Lemma 2.4 of [26]. Lemma
4 is modified by using Lemma 2.7 of [26], a result that makes it possible to
obtain a sharp upper bound in Yserentant’s main theorem. Lemma 5 can be
modified in a straightforward manner. One change is required in the proof of
the theorem. The factor || YN, QiuhHLz must be estimated differently, since,
typically, all these terms differ from zero everywhere. By using Yserentant’s
tools, it is however possible to show that

1Qiu" (|2 < Chil|Qiua -

Since the h; decay geometrically, the triangle and Cauchy-Schwarz inequalities
give

N N
IS0tz < CHS @
=1 =1

and the proof can be completed.
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