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Aty ..., Ay and the matrix W are poorly determined, yet for most polyno-
mials p, the Frobenius norm of p(A) is well-determined. From formula (7)
it follows that the quantities p*Wp are well-determined. For matrices that
are close to nondiagonalizable matrices, the Frobenius norm of p(A) could
probably be determined from some fixed set of quantities of this form, that
would be less sensitive to small changes in A than the eigenvalues and the
matrix W itself.

In this paper we have concentrated on the Frobenius norm, because that
is a norm for which we could give an explicit expression for the ratio

sup [pP(AN/llp(A)]- (24)

In applications, it is more often the 2-norm that is of interest, and while
these norms differ by no more than a factor of \/n, this factor can be sig-
nificant for large matrices. Additionally, it means that these results cannot
be applied to general linear operators. It is an open question whether an
explicit expression can be given for the quantity in (24), when the norm
there is the 2-norm, and whether the minimal 2-norm condition number
miny £2(V) is close to this optimal constant, when n is large. Based on the
analysis here, we can state that

sup [[p(A)ll/llp(All2 < minro(V) < n’l? sup |[p(A)llz/[lP(A)]]2,

since

A A
m‘;n IQQ(V) < m‘;n IQF(V) <n ’YF(A) =n sup ”p( )”F 3/2 sup ”p( )”2

Pl = P
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eigenvalue multiplicities |Sg|, £ = 1,...,m, and the row sums of TY2WT/?
are the eigenvalue multiplicities |T;|, & = 1,...,m, it follows that |S;| =

|Tk|, k=1,...,myand W=W. O

Corollary. The eigenvalues of a diagonalizable matrix A and their multi-
plicities, together with the strict lower triangle of the matrix W defined in
(6), are necessary and sufficient information to determine ||p(A)||#, for any
polynomial p.

Proof: Since W can be determined from its strict lower triangle and the
eigenvalue multiplicities, it follows that the information in the corollary is
equivalent to that in (21). O

If A has n distinct eigenvalues, the preceding corollary lists @
bers — the eigenvalues of A and the strict lower triangle of W — that com-

nuIn-

pletely determine ||p(A)||z for all polynomials p and that must be known
in order to determine ||p(A)||#. This is in contrast to a Schur form of A,
@ pieces of information, but is not necessary in or-

der to determine ||p(A)||#. (The fact that the Schur form is not necessary

which also contains

can be seen, for example, from our construction of example 1 in Section
2.1. There we specified the matrix V*V and hence were able to determine
W. But there were many choices for the eigenvector matrix V', not all of
which gave rise to matrices A that were unitarily similar to each other.) An
interesting open question is whether the information in the corollary can
be determined from some smaller set of numbers. Not all sets of numbers
are possible as the strict lower triangle of a matrix of the form of W; i1.e.; a
matrix of the form C'oC~7, where C is Hermitian positive definite. It is not
known whether a smaller set of numbers might provide the same informa-
tion. An alternative set of necessary and sufficient information is described
in [4], where it is shown that the set of resolvent norms ||(zI — A)™!||F,
for all complex numbers z, provide necessary and sufficient information to
determine ||p(A)||r for all p.

The preceding theorem and corollary apply only to diagonalizable ma-
trices. The set of diagonalizable matrices is dense in the set of all square
matrices, but as the matrix A approaches a nondiagonalizable matrix, some
elements of the matrix W become infinite. In this case, the eigenvalues
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Wie = |Te| VAT S0 S Wy, ke l=1,...,q.

€Ty, j€T,

A necessary and sufficient condition to ensure ||p(A)|lr = ||p(B)||r for all
polynomials p is that

m=gq, s, = ;\Tk and [Sp| =|Tx|, k=1,...,m, and W=W, (21)

Proof: Sufliciency is clear, since it follows from (7) that

lp(AF = e Wo,  [p(B)lIF = 8Ws, (22)
where
p(/\sl) p(;\Tl)
o=S""1 1 |, =T :
p(As,.) p(Ar,)
S = diag(|S1],...,|Sm|), and T = diag(|Th],...,|T;|). If (21) holds then the

two expressions in (22) are identical.

To prove necessity, first note that if the distinct eigenvalues of A and
B are different; i.e., if A has an eigenvalue that is not an eigenvalue of
B or vice versa, then the minimal polynomial of one of these matrices
will map that matrix to zero but not the other one, and so A and B will
not satisfy ||p(A4)||r = ||p(B)||r for this minimal polynomial p. Hence if
lp(A)|lr = |lp(B)||r for all p, then m = ¢ and As, = Ap,, k = 1,...,m.
Equations (22) can be written in the form

(Al = o™ (SVWS 2o, (B = #(TPWTY2)7,  (23)

1/2 1/2 4

where 0 = S7/“p and 7 = T7"%5. Since ¢ = 7, equality of the two

expressions in (23) implies
o (SVPWSY? — TVANTY 6 = 0,

for all m-vectors o. Since SY/2WSY2— TY2WT1/? is Hermitian this implies
that S1/2WS1/2 = TV2WT2, Since the row sums of SY?*WS'/? are the
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to the Frobenius norm of that function of the eigenvalues. We have also
pointed out cases in which this simple bound cannot provide a reasonable
estimate. In such cases more or different information is needed.

An interesting open question is how much information must one know
about an n by n matrix A in order to precisely determine the norm of
p(A) for any given polynomial p. For normal matrices, the n eigenvalues
are sufficient to determine ||p(A)|| for any unitarily invariant norm, since
lp(A)|| = ||lp(A)||. For general matrices, the ﬂg—“l

angular form are sufficient to determine ||p(A)|| for any unitarily invariant

entries of a Schur tri-

norm, but they are not necessary in order to determine the Frobenius norm
of p(A), as we will show. If the matrix A is diagonalizable, then it is clear
from equality (7) that knowledge of the distinct eigenvalues of A, their mul-

tiplicities, and the matrix W is sufficient to determine ||p(A)||r for any poly-
1/2)T

nomial p. Since W is Hermitian and maps the vector (|S;]'/%,...,|S,.
into itself, W is completely determined by its strict lower triangle and the
multiplicities of the eigenvalues. Hence, if A has n distinct eigenvalues,
then the n eigenvalues of A together with the n(nz_l)
lower triangle of W provide sufficient information to determine |[p(A)||r for

entries of the strict

all p. The following theorem and corollary show that this information is
also necessary.

Theorem. Let A and B be n by n diagonalizable matrices with eigende-
compositions A = VAV~ and B = VAV ™!, Define W and W by

W={VV)o(VV)T, W=WVV)o(VV)?

where o denotes the Hadamard product. Assume that A has m distinct
eigenvalues Ag,, ..., Ag,, , where S; denotes the set of indices of eigenvalues
equal to Ag, and |Si| denotes the number of indices in Si. Assume that B
has ¢ distinct eigenvalues ;\Tl, ey ;\Tq, where T}, and || are defined anal-
ogously and where /A\T17 e /A\Tq are ordered in the same way as Ag,,... Ag,,;
say, in increasing order by absolute value, with eigenvalues of the same ab-
solute value ordered in increasing order of imaginary parts. Define W and

Wby

Wi = |Sk|_1/2|5£|_1/2 Z Z Wi, kl=1,...,m,

1€SK JES,
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k=1 k=2
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O1 2 3 4 5

Figure 1: Minimum Frobenius Norm Polynomials P,SF) (solid lines) and

GMRES Polynomials P]YO) for a random initial residual r® (dashed lines).

Note that in both of these examples the matrix V of eigenvectors of A
is highly ill-conditioned, but it has only one small singular value and one
small eigenvalue. The difference in the two examples cannot be explained
in terms of the singular values or eigenvalues of V', but it is accounted for
by the difference in the eigenvalues (which are the singular values) of W.
In the first example W has only one large eigenvalue, while in the second
example all of the eigenvalues of W (except the eigenvalue 1) are large.

4 Conclusions and Further Remarks

We have shown how the Frobenius norm of a function of a matrix A can
often be estimated in terms of the eigenvalues of A and the sharp bound
vr(A) on the ratio of the Frobenius norm of any analytic function of A

18



where ¢; is the vector with a 1 in position ¢ and zeros elsewhere. In this
case, the only large element (in fact, the only nonzero element) in the strict
lower triangle of W is the (n,1) element, which is —1/6%. The polynomials
PISF), k =1,2,..., essentially minimize ||p(A)||r subject to the constraint
that p(A1) = p(\,). This means that PI(F) will be almost identically equal
to 1, and that the higher degree polynomials P,SF), k > 1, will be as small
as possible on the set of eigenvalues of A, subject to the constraint that
PlgF)(l) = ]gF)(5). Figure 1 shows the polynomials PI(F) through P4(F)
(solid lines) and the GMRES polynomials PI(TO) through P4(TO) for a random
initial residual r (dashed lines), using a matrix A of order n = 9. The
circles mark the values of the polynomials at the eigenvalues of A. The
polynomial that minimizes ||p(A)||r subject to the constraint that p(A;) =
p(A,) is also plotted, but it is indistinguishable from P}". While the GMRES
polynomials differ from the minimum Frobenius norm polynomials, they
are of the same order of magnitude, and each polynomial has nearly equal
values at * = 1 and © = 5. (It is not entirely clear why the GMRES
polynomials should satisfy this constraint, but they appear to do so for a
variety of random initial residuals, and this phenomenon is currently being
investigated.)

In contrast, consider a matrix A with the same eigenvalues equally
spaced between 1 and 5, but with eigenvectors

n—1

€1yevrCpt, Z e; + be,, 6=107".

=1

In this case, every entry of the n'* row of the strict lower triangle of W
is equal to —1/6%. This forces the polynomials P,gF) to have nearly equal
values at all the eigenvalues of A, and consequently these polynomials are
all almost identically equal to 1, for £ = 1,...,n — 1. The polynomials
P, that minimize the 2-norm of p(A) display similar behavior, and the
GMRES polynomials P,gTO) associated with a random initial vector r° also
show little deviation from 1 until the degree k is equal to n. This means
that the GMRES algorithm (or any algorithm for which the k' residual
vector r* is of the form p(A4)r®, where p € P;) makes almost no progress
toward solving a linear system with this coefficient matrix, until step n,
when the exact solution is obtained.
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3.1 Examples

In some cases the constraints described in (18) take on a particularly simple
form. For ease of notation we will assume that the matrix A has n distinct
eigenvalues so that equality (2) applies, but the modifications for multiple
eigenvalues are straightforward. If the matrix W happens to have all real
entries then equality (2) can be written in the form

n

o0 = Dop(h) D ph)

= S OE + X0 LWy ) —p(h)
= I + ;émfm (b(0) —p)) +
> ;p(&) V[/ij](p(/\j) = p(Ai))
= Wl + 5 X100 - p0F (W) 0

If the elements of the strict lower triangle of W happen to be nonpositive
— which would be the case, for instance, if V*V or (V*V)~! were a Stieltjes
matrix — then (20) shows that the squared Frobenius norm of p(A) is equal
to the squared Frobenius norm of p(A) plus a weighted sum of squares of
differences of the values of p at different eigenvalues of A. If just a few
of the elements —W;;, j < 1, are large, then PlgF) will essentially minimize
|Ip(A)|| over the set of polynomials p in Py such that p(A;) = p();) for
all 2,7 such that —W;; is large. If many elements —W;;, 7 < ¢, are large,
then PlgF) will be forced to have nearly equal values at all or many of the
eigenvalues of A and since its value at the origin is 1, P,SF) will be almost
identically equal to 1 until the degree k is close to n.

As a simple example of the first situation, let A have real eigenvalues

equally distributed between A; = 1 and A, = 5, and let the eigenvectors of
A be

€1y...€n 1, €1 +06,, 6=1077,
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where wyq, ..., w, are the eigenvectors of W corresponding to the large
eigenvalues. Usually this means that the polynomials that minimize
lp(A)||F over the set Piyq+, containing polynomials of degree k + ¢
plus or minus a few, will achieve approximately the same minimum
as the polynomials that minimize ||p(A)||r over Py:

PI (A A mi MN|F.

IPEy s ()l ~ min ()

o If the matrix W has many eigenvalues ranging over many orders of
magnitude, then more information about W, or different informa-
tion about the matrix A, is needed to describe the behavior of the
polynomials P,SF).

Let Py, be the polynomial in Py, that minimizes ||p(A4)||2 over all polyno-
mials p in Pj. Then the 2-norm of Py(A) can be related to the Frobenius

norm of P,gF) (A) as follows:
n V2| PV (A e < 07V Py(A)lr < |PU(A)]2 < P2 < 1P (A)]|r

Since || Px(A)||2 differs from ||P,§F)(A)||F by no more than a factor of \/n, the
previous qualitative statements about ||Pf'(A)||r apply also to ||Py(A4)]2,
provided y/n is not too large.

In solving a system of linear equations Az = b, the GMRES algorithm
generates approximate solutions z*, k& = 1,2,..., such that the residual
vectors ¥ = b — Az* satisfy

where P,gro) minimizes ||p(A)r®||z over all polynomials p in Pg. It follows
that the 2-norm of r* is less than or equal to that of P,(A4)r®, where Py is
the polynomial that minimizes ||p(A4)||2:

[Pz < NP(A]2 < [1Pe(A)]l2 - [17°]]2- (19)
It is believed (but not proved) [2,3,7] that for each k there is an initial
residual r® for which equality holds in (19). If this is the case, then the
qualitative statements about the norms of the polynomials P,SF) and P can

also be thought of as describing the norms of the GMRES residuals at step
k, assuming the worst possible initial residual of norm one.
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varied only between 3.4e+5 and 1.3e+6, while, as before, vp(A) = 3.5¢+6.

3 Polynomials that Minimize ||p(A)]|

As an example of a class of polynomials for which the vectors p can be
expected to be orthogonal to the eigenvectors of W corresponding to the
largest eigenvalues, consider the sequence of polynomials P,gF), k=1,2,...,
where PIEF) minimizes ||p(A)||r over all polynomials p in Py, = {k'" degree
polynomials with value one at the origin}. Based on equality (16), we
can make the following qualitative statements about the behavior of the
lynomials P, k=1,2,...
polynomials P,"/, k=1,2,...:

o If all eigenvalues of W are close to 1 then P,gF) is essentially like the

polynomial that minimizes ||p(A)||r and
F F :
1P () ~ 12 ()] = mip [1p(A)] -
PEP

o If all eigenvalues of W are very large (except the eigenvalue 1), then,
until the degree k is great enough so that P contains a polynomial
that is correspondingly small at all the eigenvalues of A (that is,
until ||o||2 can be chosen to be on the order of ||VV||2_1/2 or smaller),
the vectors p will be almost orthogonal to the eigenvectors of W
corresponding to large eigenvalues, which means they will be almost
parallel to the vector w,,. This means the polynomial P,SF) will be

approximately equal to 1 and ||P,£F)(A)|| ~ ||I].

o If W has just a few very large eigenvalues of roughly the same order
of magnitude, and the other eigenvalues are of moderate size, then
the polynomials PIEF) will be such that the corresponding vectors p
are almost orthogonal to the eigenvectors of W corresponding to the
large eigenvalues. That is, the polynomials P,SF) will essentially solve
the constrained least squares problem

. F
min Ip(M)]e = |1 () (18)
p € Py
oL wi,...,w
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k[ A*[# /1A ] r
1 9.4e40
2 8.7e+1
3 7.9e+2
4 T7.1e+3
5
6
7
8

6.le+4
5.0e+5
3.5e+6
1.0e+0

Table 1: Ratios of norms of powers of A and powers of A

o0 in (7) is parallel to the eigenvector of W corresponding to the eigenvalue
one. In fact, it turns out that for this matrix the vectors p obtained from
the powers of A are almost equal to the eigenvectors of W! The numbers
in Table 1 are the square roots of the corresponding eigenvalues of W.

This is an example for which the eigenvalues of A, together with a single
number bounding the ratio between the norm of a function of A and the
norm of that function of A, cannot provide reasonable estimates of the
norms of powers of A. More information about the matrix W or different
information about A is needed to obtain such estimates. Equality (16)
shows why this is so. It is because the eigenvalues of W vary over orders of
magnitude and because the vectors p associated with the powers of A are
highly correlated with the eigenvectors of W.

Ezample 3. In this example, we consider a matrix with the same eigen-
vectors as the matrix in example 2, but with slightly different eigenvalues.
Instead of the eigenvalues of example 2, which are uniformly distributed
around the circle of radius .1 about the origin, we chose the eigenvalues
to be randomly distributed on this same circle. This small change to the
eigenvalues resulted in a much larger change to the matrix A, whose Frobe-
nius norm was now on the order of vp(A) times the Frobenius norm of
A. Changing the eigenvalues in this way destroyed the high correlation
between the vectors p and eigenvectors of the matrix W. In this case the
upper bound in (11) provides a much better estimate of the ratios of the
norms of the powers of A to the norms of the powers of A. Now these ratios
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of the columns of V' (which are the square roots of the diagonal elements
of V*V') are all equal and the 2-norms of the columns of V=* (which are
the square roots of the diagonal elements of (V*V)™!) are all equal, the
inequality (14) is also an equality for this problem, and so the first upper
bound in (13) is met. In this case, then, the bound (1) becomes

oAl < VEn 1= — [pW)llr < V2 )],

while the sharp bound (11) shows

lo(A)llr < 2= — IpWlle < VE oAl

Taking n = 40, choosing V to be the upper triangular Cholesky factor
of (17), and taking the eigenvalues of A to be randomly distributed in the
unit circle, with the largest eigenvalue on the unit circle, we computed the
powers AF and A* for &k = 1,...,n. In this case, the parameter yp(A)
in (11) was 1.41, and the ratios ||A*||z / ||A*||F ranged from 1.39 to 1.41,

showing very close agreement with the upper bound in (11).

Ezample 2. As an example in which the simple bound (11) is not adequate
to explain the behavior of powers of a matrix, we chose A to be a slightly
perturbed Jordan block:

01 0

0 01 0

A= Do o
00 1

00 ... 0

The eigenvalues of this matrix are the n'® roots of e €'/ - exp(27il/n),
¢ =0,1,...,n — 1. Taking n = 8 and € = 107®, the parameter yp(A)
was found to be 3.5¢ + 6. For comparison, the bound miny kp(V) of (1)
was computed using formula (12) and found to be 1.0e + 7. The ratios
| A*|| / ||A*®|| are given in Table 1, for k =1,...,n.

Note that for £ = 7, the bound (11) is met. Yet for k = 8, the ratio is 1.

This is because A® has all equal diagonal elements, 1.0e — 8, so the vector
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W, or some other kind of information about A, it is impossible to say where,
between the upper and lower bound in (11), the actual norm of p(A) will
lie. Unfortunately, this type of example arises very often in practice. If A
has elements of size O(1) and is very close to a nondiagonalizable matrix,
then the matrix W associated with A will have very large norm, and the
vector of eigenvalues of A will be nearly orthogonal to the eigenvectors of
W corresponding to the largest eigenvalues.

2.1 Examples

Ezample 1. An example in which the upper bounds (11) and (1) differ by
the largest possible factor, given in (13), is the following. Let A be an n
by n matrix with n distinct eigenvalues and assume that an eigenvector
matrix V of A satisfies

V*V =1+ uu* (17)

where v is the n-vector of all ones. (Note that we need not specify an
eigenvector matrix V explicitly. It could be the symmetric square root of
the positive definite matrix in (17) or it could be the Cholesky factor, for
example.) Then, from the Sherman-Morrison formula, we have

1
V VY l=T— —— wu*.
( ) 1+ u*u ut

A simple computation shows that x%(V) = 2n*(1 — #) ~ 2n?, for large n,
and, because the diagonal elements of both V*V and (V*V)~! are constant,
it can also be seen that this is the minimum over all diagonal matrices D of
k4(VD) = tr(DV*V D) - tr(D~Y(V*V)~1D71). Thus, this is the minimum
Frobenius norm condition number for any eigenvector matrix of A. The
matrix W is given by

W=<2— L )I— L uu”,
n-+1 n-+1

and all of the eigenvalues of this matrix, except the eigenvalue 1 correspond-
ing to the eigenvector u, are equal to 2 — nl? Consequently, the inequality
in (15) is an equality for this problem. Additionally, since the 2-norms
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large. In this case, one can use equality (7) to characterize those matrices
A and classes of polynomials p for which the upper bound in (11) will also
be a reasonable estimate of ||p(A)||r and those for which it might be a large
overestimate. Let wy,...,w,, denote the normalized eigenvectors of W and
let @y > ... 2 a1 > @, = 1 denote the corresponding eigenvalues.
Equality (7) can be written in the form

lp(A)lz = oo+ 0" (W —1I)o

()l (1 + S0 |

wj*-g
2|l

) RS

If all eigenvalues of W (except the eigenvalue 1) are very large, then the
upper bound in (11) is a realistic estimate of ||p(A)||r for any polynomial p
such that a significant component of the vector p is orthogonal to the vector
wm = (|S1)"%,...,1Sm|"*)T. Unless p has very nearly equal values at the
eigenvalues of A, which means p(A) is approximately equal to a multiple of
the identity, the vector p will have such a component. In this case, then,
for most interesting classes of polynomials p, the upper bound in (11) will
provide a reasonable estimate of ||p(A)||#.

Suppose W has some very large eigenvalues and some eigenvalues on
the order of 1. If the class of polynomials under consideration is such that
the vectors p have nonnegligible components in the direction of the largest
eigenvector of W, then the upper bound in (11) will provide a reasonable
estimate of ||p(A)||r. In contrast, if the vectors p are almost orthogonal
to the eigenvectors of W corresponding to the largest eigenvalues, then the
upper bound in (11) will be a large overestimate of the actual norm of p(A).
For example, suppose that the polynomials being considered are of fairly
low degree and that the Frobenius norm of the matrix A is much less than
vr(A) times the Frobenius norm of A. Then the vector ()g,,...,As,, )T
must be nearly orthogonal to the eigenvectors of W corresponding to the
largest eigenvalues. Similarly, if the Frobenius norms of A% ..., AF are
much less than y7(A) times the Frobenius norms of A2 ..., A*, then the
vectors p corresponding to any polynomial of degree k or less will also be
almost orthogonal to the eigenvectors of W corresponding to the largest
eigenvalues. In this case, without additional information about the matrix

10



matrix of A [12, p. 89]. Let vq,...,v, denote the columns of an eigenvector

matrix V, and let yy,...,y, denote the columns of V™*. Then v,...,v,

are right eigenvectors and vy, ..., y, are left eigenvectors of A, and we have
minsr(7) = 3 1ol sl (12)

where the minimum is over all eigenvector matrices V and KJF( )= ||V||F

|V=1|r. Using this expression we prove the following theorem relating

vr(A) and ming HLF(V)

Theorem 2. For any n by n matrix A with n distinct eigenvalues,

yr(A) < minkp(V) < /n((n = 1D12(4) +1) < nye(4),  (13)

‘/'
where the minimum is over all eigenvector matrices V of A, and F(f/) =

Ve Ve

Proof: The first inequality in (13) follows immediately from Theorem 1
and inequality (1). To obtain the second inequality in (13), first note from
expression (12) that

2
H%}H/ffv(v) = (Z [[vil2 - ||‘yj||2) <n Y lvillz - sl (14)
7=1 7=1

The sum on the right in (14) is just the trace of W, and since the trace is
equal to the sum of the eigenvalues and we know that W has one eigenvalue
equal to 1, we can write

2 lwsllz - llysllz < (n = 1) vE(4) +1 (15)
7=1
Combining (14) and (15) gives the desired result (13). O
If v#(A) is not much greater than one, then expression (11) gives fairly

tight upper and lower bounds on ||p(A4)||r. If y#(A) is very large, however,
then there are polynomials p for which the ratio ||[p(A4)||#/|p(A)||F is very



multiple of the identity), while the upper bound is attained for polynomi-
als p for which the corresponding vector p is parallel to the eigenvector of
W corresponding to the largest eigenvalue.

For an arbitrary square matrix A, define yx(A) by

VV||1/2 if A is diagonalizable
I ’
(4) { +00 otherwise (10)
We then have the following theorem:
Theorem 1. For any square matrix A with eigenvalue matrix A,

lp(Mlr < llp(Allr = 3e(A) - [[p(A)]F, (11)

for all polynomials p, and yp(A) is the smallest number v, depending only
on A, such that ||p(A)||lr < v||p(A)]|# for all p.

Proof: If A is diagonalizable, then (11) is just a restatement of (9), which
we have already proved. If A is not diagonalizable, then the minimal poly-
nomial of A has a nonlinear factor while that of A does not. If p is the
minimal polynomial of A, then p(A) = 0 but p(A) # 0, so no finite number
can bound the ratio ||p(A)||#/||[p(A)||r. O

Note that vz(A), and hence the ratio |p(A)|#/||p(A)||F, can be large
even when the departure from normality based on the Schur form is small.
For example, if A is given by

1 €
A_(O 1—|—62)

then yr(A) = /14 2/€*, andif p(z) = x—(1+€*/2) then |[p(A)||#/|p(A)]lF =
vr(A). Yet the departure from normality in the Frobenius norm is only e.
Bounds based on the departure from normality are usually absolute bounds

on ||[p(A)||* — ||p(A)||*, whereas v(A) — 1 and (V) — 1 bound the relative
difference (|p(4)] — [p(A))/lp(A)]|

To see how the sharp bound in (11) compares with the bound in (1), we
first note that if A has n distinct eigenvalues, then an explicit expression is
known for the minimum Frobenius norm condition number of an eigenvector



corresponding to the eigenvector (]S1]'/%,...,[S,.|"*). Finally note that
the matrix W is independent of the scaling of the eigenvectors and of the
basis chosen to represent the subspace corresponding to a multiple eigen-
value. To see this, assume that the equal eigenvalues of A are ordered
consecutively in A, and suppose the eigenvector matrix V is replaced by
V B, where B is an invertible block diagonal matrix with m blocks of size
|S1l, ..., |Sm|. Then for ¢ € Sy and j € Sy, the (¢,7) element of the matrix
W in (3) becomes

Wy = (BVVB)y - (BT(VV) BT

= (E > BL(VV), m) (Z > Bl VVtslB‘*)

qESE TES, SESE tES,

Substituting this into expression (6) for Wy, and changing the order of
summation we find

Wie = IS8 3 3 3 (v (VV)Lt

qESEL TESy SESE tES,

(> Bi™Bi,) (X BiBj). (8)

1€ Sk JESe

Since the product of the last two factors in (8) is zero unless s = ¢ and
t = r, in which case these factors are one, the expression (8) is equal to
that in (6). It is now easily seen from (6) and (3) that if A is normal then
W is the identity, since we can take the eigenvector matrix V' to be unitary.

It follows from (7) that for any polynomial p, the Frobenius norm of
p(A) can be bounded in terms of the 2-norm of p, which is the Frobenius
norm of p(A), and the square root of the 2-norm of W:

lp(M)e < e A)e < W - [pA)]le (9)

Again, both the lower and upper bounds in (9) are attainable for certain
polynomials p (with p(A) # 0). The lower bound is attained for any poly-
nomial p with equal values at all the eigenvalues of A (i.e., for p(A) a



(M) e < IpA)le < W pA)]F. (4)

Note that both bounds in (4) are sharp, in the sense that there are poly-
nomials p (with p(A) # 0) for which these bounds are met. If p has equal
values at all eigenvalues of A (in which case p(A) is just a multiple of the
identity), then the lower bound is met. If p is such that the vector p of
values of p at the eigenvalues of A is parallel to the largest eigenvector of
W, then the upper bound is attained.

Suppose now that A is diagonalizable but has multiple eigenvalues; say,
A has m distinct eigenvalues, Ag,, ..., As,,, where Si, £k = 1,...m, denotes
the set of indices of eigenvalues equal to Ag,. Let |Si| denote the number
of indices in the set S;. Equation (2) can be written in the form

(D2 = 33 0 ps) 33 Wi (5)

k=1/¢=1 1€SE JES,

Defining the m by m matrix W by

Wie = [Sel 721872 S5 S Wy, kt=1,...m, (6)

1€SK JES,

and the m-vector ¢ by

512 p(As,)
0= :

?

S0 ['? p(As,)

equation (5) can be written in the form

Ip(A)[F = e We. (7)

The matrix W is also Hermitian, and it follows from (7) that W is positive
definite, since ||p(A)||% is greater than or equal to zero, with equality if and
only if p is zero at the distinct eigenvalues of A, which means the vector p
is zero. Thus, the Frobenius norm of p(A) is the W-norm of o.

It follows further from (7) that the eigenvalues of W are all greater than
or equal to one, since |p(A)]||7 is greater than or equal to |p(A)||%, which is
|lo|l3. Equation (6), together with (3), implies that W has an eigenvalue 1,



where p is the vector of values of the polynomial p at the eigenvalues of A

and W is the Hadamard product of V*V with (V*V)~1:

P(/\l)
p= : . W=V - (VY)Y i =1,...,n.  (3)
p(An)

The matrix W is Hermitian, and it follows from (2) that W is positive
definite, since ||p(A)]|3 is greater than or equal to zero, with equality if and
only if the vector p of values of p at the eigenvalues of A is zero. Thus, the
Frobenius norm of p(A) is the W-norm of p.

Note from definition (3) that if A is normal then W is the identity
matrix. It can also be seen that W is independent of the column scalings
of the eigenvector matrix V, since for any diagonal matrix D, we have

(VD) (VD))i; - (VD) (VD))" = (VV)i; - (VIV)iih.

In addition, W is independent of unitary similarity transformations of A;
that is, if A is replaced by Q*AQ), where () is a unitary matrix, then W
and A are unchanged. Note also from formula (2) that all eigenvalues of
W must be greater than or equal to one, since if W had an eigenvalue «
less than one and if p were equal to the corresponding eigenvector, then
we would have ||p(A)||% = ap™p = a||p(A)||F, « < 1. This is impossible
since the Frobenius norm of p(A) is always greater than or equal to that
of p(A). This can also be proved as in [6, p. 323], where a more general
discussion of matrices of the form C o C~7 is given. It can be seen from (3)
that the row sums of W are all equal to one and so W has an eigenvalue 1,
corresponding to the eigenvector of all ones:

1 1
Wil:l=1:
1 1
Using expression (2), the Frobenius norm of p(A) can be bounded in

terms of the 2-norm of p, which is the Frobenius norm of p(A), and the
square root of the 2-norm of W:



stand for any unitarily invariant norm. The trace of a square matrix A
is written tr(A). A superscript * denotes the Hermitian transpose of a
vector or matrix, while a superscript 7 denotes the ordinary transpose. The
Hadamard, or, elementwise product of two matrices A and B is denoted

Ao B: (AO B)” = A”BU

2 A Sharp Bound on |[p(A)|r/[p(A)]r

Let A be an n by n matrix and let A = diag(\1,..., \,) be a diagonal matrix
of eigenvalues of A. In this section we determine the smallest number ~
such that

(A < ~llp(A)]lF,

for all polynomials p.
Assume first that A has n distinct eigenvalues (and hence a complete
set of eigenvectors). Then we can write

A=VAV!

where V' is a matrix of eigenvectors (unique up to column scalings). For
any polynomial p, we have

p(A) = Vp(A)V,

and the Frobenius norm of p(A) satisfies

Ip(A[E = tr(Vp(MV V(M) V T,

Changing the order of factors inside the trace, this becomes

Ip(A)l[7 = tx((VV) T p(A)(V"V)p(A)),

which can be written in the form

Ip(AIE = p W, (2)



than or equal to the constant (V') in (1), when & is taken to be the Frobe-
nius norm condition number, it is shown that if A has distinct eigenvalues
then miny kx(V) is within a factor of n of vp(A), when the minimum is
taken over all eigenvector matrices V of A and kp denotes the Frobenius
norm condition number. Thus, the well-known bound (1) is almost sharp.
Unlike (1), however, our sharp bound is derived from an equality that en-
ables us to characterize those matrices A and polynomials p for which the
upper bound is also a reasonable estimate of ||p(A)||r and those for which
it might be a large overestimate.

If the sharp bound vz (A) - ||p(A)||F is determined to be a large overesti-
mate of ||p(A)||r for some particular class of polynomials p, then different
techniques are needed to estimate ||p(A)||# for this class of functions. One
possible approach is to base estimates on the eigenvalues of A and the de-
parture from normality (sometimes called the defect from normality), which
is defined as the infimum, over all Schur triangularizations of A, of the norm
of the strictly upper triangular part of the Schur form. Bounds based on
this measure of nonnormality are given in [5], for example, but, unless the
departure from normality is very small, they do not generally provide good
estimates of the actual norm of p(A). A variety of related measures of
nonnormality are discussed and compared in [1]. Another idea is to base
estimates of |p(A4)||, not on the eigenvalues and nonnormality of A, but on
completely different quantities associated with A. This idea seems reason-
able, since the eigenvalues of some matrices are highly sensitive to small
perturbations in the matrix, while the norm of p(A) may be much less sen-
sitive. Interesting estimates have been derived in terms of the resolvent
norms |[(z] — A)7!||, where z ranges over all complex numbers [8,10], or,
equivalently, in terms of the e-pseudospectra of A, where, for each posi-
tive number €, the e-pseudospectrum of A is the set of points z such that
|(zI—A)7Y|| > e ! [11]. A discussion of these estimates is beyond the scope
of this paper, but we will point out when the eigenvalues of A, together
with yp(A), provide a good estimate of the Frobenius norm of a function
of A, and when additional, or different, information is needed in order to
obtain such an estimate.

Throughout the paper, || - |2 will denote the 2-norm of a vector or
the corresponding spectral norm of a matrix, and || - || will denote the
Frobenius norm of a matrix. The symbol || - || without any subscript will

3



One would like to be able to determine or estimate the norm of p(A)
using only a small amount of information about A — information that might
be derived from consideration of the physical problem being modeled. For
normal matrices A, the eigenvalues are sufficient to determine ||p(A4)||, for
any unitarily invariant norm. For nonnormal matrices, the eigenvalues
provide a lower bound on the norm of p(A4), but no reasonable upper bound
can be given in terms of eigenvalues alone. One might, however, attempt
to provide an upper bound on the norm of p(A), based on the eigenvalues
of A and a single number bounding the ratio of the norm of any analytic
function of A to the norm of that function of the eigenvalues. Since any
analytic function of an n by n matrix A can be written as a polynomial
of degree n — 1 or less in A [6, p. 412], we need only consider polynomial
functions.

One very simple approach to obtaining such a bound is the following.
Assume that A is diagonalizable and that A = VAV ™! where A is a diagonal
matrix of eigenvalues and V is a matrix of eigenvectors. For any polynomial
p, we can write p(4) = Vp(A)V ™!, and the norm of p(A) satisfies

(A < &(V) [Ip(A)]l; (1)

where k(V) = ||V - ||V is the condition number of V.

There are several difficulties with the simple bound (1). First, the con-
dition number of V' depends on the scaling of the eigenvectors, and, if there
are any multiple eigenvalues, it depends on the basis chosen to represent
the corresponding eigenspace. To obtain the best possible bound in (1) one
must determine the optimal scaling and basis choice. Second, even with
the best conditioned eigenvector matrix V', the bound (1) is not sharp. For
some matrices A, there are no polynomials p, for which equality holds in
(1), as will be illustrated later. Third, there are important classes of poly-
nomials p for which the bound in (1) is a large overestimate of the actual
norm of p(A), and it is difficult to determine for which matrices A and
which polynomials p this is the case.

In this paper we derive a sharp upper bound on the ratio ||p(A)||7/||p(A)| 7,
where || - || denotes the Frobenius norm. The bound is sharp in the sense
that for any matrix A, there are polynomials p for which the bound is at-
tained. We denote this quantity vp(A). While yp(A) is necessarily less
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Abstract

Let A be an n» by n matrix and let A be a diagonal matrix of
eigenvalues of A. An expression is given for the smallest number
v such that [|p(A)||r < 7 -||p(A)||F, for all polynomials p, where
|| - [|# denotes the Frobenius norm. It is shown that if A has distinct
eigenvalues, then the well-known bound — v = miny kg(V'), where kg
denotes the Frobenius norm condition number and the minimum is
taken over all eigenvector matrices V of A —is within a factor of n of
the optimal constant . Classes of matrices A and polynomials p for
which the sharp upper bound is also a reasonable estimate of ||p(A)||r
are described.

1 Introduction

In analyzing differential equations and various numerical algorithms, it is
frequently necessary to determine or estimate the norm of p(A4), where A
is an n by n matrix and p is a given polynomial or analytic function. For
example, the stability of an evolution process governed by A is determined
by the norms of the powers of A4, ||A*||, k = 1,2,..., or by ||e*|| for increas-
ing time ¢ [9]. The convergence rate of the GMRES algorithm for solving
linear systems is determined by the norm of P(A), k = 1,2,..., where P,
is the k** degree polynomial with value one at the origin that minimizes
Ip(A)|| over all such polynomials p [3].
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