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Abstract. A BDDC (Balancing Domain Decomposition by Constraints) preconditioner with
a novel scaling, introduced by Dohrmann for problems with more than one variable coefficient and
here denoted as deluxe scaling, is extended to Isogeometric Analysis of scalar elliptic problems. This
new scaling turns out to be more powerful than the standard p- and stiffness scalings considered
in a previous isogeometric BDDC study. Our h-analysis shows that the condition number of the
resulting deluxe BDDC preconditioner is scalable with a quasi-optimal polylogarithmic bound which
is also independent of coefficient discontinuities across subdomain interfaces. Extensive numerical
experiments support the theory and show that the deluxe scaling yields a remarkable improvement
over the older scalings, in particular, for large isogeometric polynomial degree and high regularity.
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1. Introduction. The design of efficient and scalable iterative solvers for Isoge-
ometric Analysis (IGA, see e.g. [18, 2, 10]) is a far from routine due to the integration
of Finite Element Analysis and Computer Aided Design techniques which are re-
quired to build smooth and high-order discretizations based on nonuniform rational
B-splines (NURBS) representations for both the domain geometry and finite element
basis functions. In particular, there are complications arising from the fact that the
basis functions are not nodal, which leads to wide (fat) interfaces.

The main goal of this paper is to design, analyze, and test a BDDC (Balancing
Domain Decomposition by Constraints, see [13, 28]), preconditioner for Isogeometric
Analysis based on a novel type of interface averaging, which we will denote by deluze
scaling. This variant was recently introduced by Dohrmann and Widlund in a study
of H(curl) problems, see [15] and also [31] for its application to problems in H (div)
and [24] for Reissner—-Mindlin plates. In our previous work on isogeometric BDDC [5],
standard BDDC scalings were employed with weights for the averaging built directly
from the values of the elliptic coefficients in each subdomain (p-scaling) or from the
values of the diagonal elements of local and global stiffness matrices (stiffness scaling).
The novel deluxe scaling, originally developed to deal with elliptic problems with more
than one variable coefficient, is instead based on solving local problems built from local
Schur complements associated with sets of what are known as the dual variables. This
new scaling turns out to be much more powerful than the standard p- and stiffness
scaling even for scalar elliptic problems with one variable coefficient. The main result
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of our h-analysis shows that the condition number of the resulting deluxe BDDC
preconditioner satisfies the same quasi-optimal polylogarithmic bound in the ratio
H/h of subdomain to element diameters, as in [5], and that it is independent of the
number of subdomains and jumps of the coefficients of the elliptic problem across
subdomain interfaces. Moreover, our numerical experiments with deluxe scaling show
a remarkable improvement, in particular, for increasing polynomial degree p of the
isogeometric elements, regardless of the element regularity . In particular, for 2D
problems, the convergence rate of deluxe BDDC appears to be independent of p, while
for 3D problems, it depends only mildly on p and provides results which are several
orders of magnitude better than what has been obtained with stiffness and p-scaling.

Recent work on IGA preconditioners have focused on overlapping Schwarz pre-
conditioners, [4, 6, 8], multigrid methods, [17], and nonoverlapping preconditioners,
[5, 21]. Among the recent extensions of BDDC methods, we mention the work on mor-
tar discretizations, [19, 20], discontinuous Galerkin methods, [12], advection-diffusion
and indefinite problems, [35, 27], inexact solvers, [14, 26], Reissner—Mindlin plates,
[3, 23], spectral elements, [32], and multilevel algorithms, [34, 30].

We remark that we could also consider FETI-DP algorithms, see, e.g., [16, 22]
defined with the same set of primal constraints as our BDDC algorithm, since it is
known that then the BDDC and FETI-DP operators have the same eigenvalues with
the exception of at most two; see [29, 25, 9].

The rest of this paper is organized as follows. We recall the basics on IGA
discretizations of elliptic problems in Sec. 2. In Sec. 3, we introduce the domain
and space decompositions in the isogeometric context, the required restriction and
interpolation operators, the deluxe scaling, and construct the BDDC preconditioner.
In Sec. 4, we prove a condition number bound for the deluxe BDDC preconditioned
operator. In Sec. 5, the results of serial and parallel numerical tests in two and three
dimensions are presented, confirming our theoretical estimates.

2. Isogeometric discretization of scalar elliptic problems. We consider
the model elliptic problem on a bounded and connected CAD domain Q C R4, d = 2, 3,

=V (pVu)=fin Q, u=0on9dQ, (2.1)

where p is a scalar field satisfying 0 < ppin < p(2) < pmaz, V2 € Q.

We discretize (2.1) with IGA based on B-splines and NURBS basis functions; see,
e.g., [10]. When we describe our problem and the iterative method, we will confine
our discussion, for simplicity, mostly to the two-dimensional single-patch case but we
will also comment on extensions to three dimensions and multi-patch domains.

The bivariate B-spline discrete space is defined by

Sy i=span{B{!(&,n), i=1,...,n,j=1,...,m}, (2.2)

where the bivariate B-spline basis functions B/(¢,1) = N/ (§) M (n) are defined by
tensor products of one-dimensional B-splines functions N/ (£) and M (n) of degree p
and g, respectively (in our numerical experiments, we will only consider the case of
p = q). Analogously, the NURBS space is the span of NURBS basis functions defined
in one dimension by

R e @ NI
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with the weight function w(§) := Y1 | NP (&w; € Sy, and in two dimensions by a
tensor product

By (& mwi,j Bﬁ’jq(fan)wi,j
Yim 25 B (€ ey w(€,n)

where w(&,n) is the weight function and w; ; = (Cf]) 3 the positive weights associated
with a n x m net of control points C; ;. The discrete space of NURBS functions on the
domain ) is defined as the span of the push-forward of the NURBS basis functions
(2.4) (see, e.g., [18, 10])

RYH(Em) = ; (2.4)

Ny, = span{R}"] o F~ Uwithi=1,...,n;5=1,...,m}, (2.5)

with F: Q — Q, the geometrical map between parameter and physical spaces

n) =3 Y RVI&n)C ;. (2.6)

i=1 j=1
For simplicity, we will consider the case with a Dirichlet boundary condition
imposed on all of 9 and can then define the spline space in the parameter space by
Vi, =[S, N HY{Q)]? = = [span{B}/(&,n), i=2,...,n—1,j=2,...,m— 132
and the NURBS space in physical space as
Up =[Ny Hy(Q)]? = [span{Rf”jq oF ! withi=2,....n—1; j=2,...,m—1}]%

The IGA formulation of problem (2.1) then reads:

{Find up, € Up such that: @7)

a(up,vp) =< f,vp > Yo € Uy,

with the bilinear form a(up,vp) = fQ pVupVupde.

3. BDDC preconditioners for the Schur complement system. When us-
ing iterative substructuring methods, such as BDDC, we first reduce the problem to
one on the interface by implicitly eliminating the interior degrees of freedom, a process
known as static condensation; see, e.g., Toselli and Widlund [33, Ch. 4].

3.1. Knots and subdomain decomposition. A decomposition is first built
for the underlying space of spline functions in the parametric space, and is then easily
extended to the NURBS space in the physical domain. From the full set of knots,
{& =0,....&4pt1 = 1}, we select a subset {&,,k =1,..., N + 1} of non-repeated
knots with &, = 0,&;,.,, = 1. The interface knots are given by ¢;, for k =2,.., N and
they define a decomposition of the closure of the reference interval into subdomains

6 = [0, 1] = ma with fk = (gik7€ik+l)7

k=1,.,N

that we assume to have similar lengths Hy, := diam(fk) ~ H. In more dimensions, we
just use tensor products. Thus, in two dimension, we define the subdomains by

fk:(é-ik7§ik+1)7 fl=(77j“77j1+1), Qu=TixI;, 1<k<N, 1<I<Ny. (3.1)
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For simplicity, we reindex the subdomains using only one index to obtain the decom-
position of our domain

0= U o,
k=1,..K

into K = N; Ny subdomains; analogously, into K = N;No N3 subdomains in three
dimensions. Throughout this paper, we assume that both the subdomains and ele-
ments defined by the coarse and full sets of knot vectors are shape regular and with
quasi-uniform characteristic diameters H and h, respectively.

3.2. The Schur complement system. As in classical iterative substructuring,
we reduce the problem to one on the interface

Ii= ( 6 aﬁk)\aﬁ (3.2)

k=1

by static condensation, i.e., by eliminating the interior degrees of freedom associ-

ated with the basis functions with support in each subdomain. The resulting Schur

complement for €, and its local interface T'y, := 0, \ 9Q will be denoted by S*).
In the sequel, we will use the following sets of indices:

O0={(,j) eN?: 2<i<n—-1,2<j<m—1},
Or = {(i,5) € O : supp(B}}) NT # 0},

We note that Or consists of indices associated with a ”fat” interface that typically
consists of several layers of knots associated with the basis functions with support
intersecting two or more subdomains, see e.g. Fig. 3.1. Later we will split this fat
interface into fat vertices, edges (and faces in 3D). The discrete interface and local
spaces are defined as

Vi := span{BP?, (i, 7) € O}, V" =V, 0 HE Q). (3.3)

9,5 0
The space ‘7h can be decomposed as
ol VP 4 H(V), (3.4)

where H : Vp — IA/h, is the piece-wise discrete spline harmonic extension operator,
which provides the minimal energy extension of values given in Vp.
The interface component of the discrete solution satisfies the reduced system

S(UF,’UF) =< ]?,vr >, Yor € ‘71“, (3.5)
with a suitable right-hand side f and a Schur complement bilinear form defined by
s(wr,vr) := a(H(wr), H(vr)). (3.6)

For simplicity, in the sequel, we will drop the subscript I' for functions in ‘7}.
In matrix form, (3.5) is the Schur complement system

Srw = f, (3.7)
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where §r‘ = Arr — AUAl_IlAH, f: fr— AHAl_IlfI, are obtained from the original
discrete problem by Gaussian elimination after reordering the spline basis functions
into sets of interior (subscript I) and interface (subscript I') basis functions

(o ey () = (1), .

The Schur complement system (3.7) is solved by a Preconditioned Conjugate
Gradient (PCG) iteration, where only the action of Sr on a vector is needed and
§]_“ is never explicitly formed. In fact, this action can be assembled from actions of
the subdomain Schur complements S*) on subvectors. The preconditioned Schur
complement system solved by PCG is then

ME?DlDC‘/g\Fw - Ml;alncfa (3'9)

where ML . is the BDDC preconditioner, defined in (3.15) below using some restric-
tion and scaling operators associated with the following subspace decompositions.

3.3. Subspace decompositions. Analogously to the space splitting (3.4), we
split the local space V(*) defined in (3.3) into a direct sum of its interior (I) and

interface (T') subspaces V(¥) = Vl(k) éh Vék), where
Vit = span{BL (i.j) € 0]}, €} = {(i,j) € Oa : supp(BL}) D},

VF = span{BP4, (i, j) € 0}, 0 .= {(i,5) € Or : supp(B)N(92NTy) # 0},

0,5
and we define the associated product spaces by

K

K
vie= v, ve= W,
k=1 k=1

The functions in Vr are generally discontinuous (multi-valued) across I', while our
isogeometric approximations belong to ‘71", the subspace of V1 of functions continuous
(single-valued) across I'. We will select some interface basis functions as primal (sub-
script IT), that will be made continuous across the interface and will be subassembled
between their supporting elements, and we will call dual (subscript A) the remaining
interface degrees of freedom that can be discontinuous across the interface and which
vanish at the primal degrees of freedom. This splitting allows us to decompose each
local interface space into primal and dual subspaces Vr(k) = Vék) ) VXC), and we can
define the associated product spaces by

K K
Va = H VA(k), V= H Vék).
k=1 k=1

We also need an intermediate subspace YN/F C Vr of partially continuous basis functions
Vi = Va @V,

where the product space Va has been defined above and ‘A/H is a global subspace of
the selected primal variables. Particular choices of primal set are given in Sec. 3.4
below.
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F1G. 3.1. Schematic illustration in index space of interface equivalence classes in 2D (left) and
3D (right) parametric space with p = 3,k = 2: fat vertices, consisting of (k + 1)2 knots in 2D and
(k + 1)3 in 3D; fat edges (without vertices), consisting of (k + 1) “slim” edges in 2D and (x + 1)?
in 3D; fat faces (without vertices and edges), consisting of k + 1 slim faces in 3D.

In order to define our preconditioners, we will need the following restriction and
interpolation operators represented by matrices with elements in the set {0, 1}:

Rra : Vo — Va, Rrn : Vo — Vo, Ry: Vo — Vo 1
IR 1 I I R 71 NS O S (3.10)
A VA A - VI I A - VD A

For any edge/face F, we also define R as the restriction matrix to F.

3.4. Choice of primal constraints. The choice of primal degrees of freedom
is fundamental for the construction of efficient BDDC preconditioners. In three di-
mensions, we split the interface I' (see 3.2) into certain equivalence classes, associated
with subdomain vertices (C), edges (E), and faces (F), defined by the set of indices of
the subdomains the boundaries of which the degrees of freedom belong to. We define
the following index sets associated with fat vertices, edges, and faces (see Fig. 3.1)

Oc = {(i,j, k) € Or : supp(BP47) N C # 0},

4,4,k
Or = {(i,j,k) € Or/O¢c : supp(B}/}) NE # 0},
Or = {(i,4,k) € Or/(©c UOE) : supp(B}/}') NF # 0}.

We consider the following three choices of primal variables (the last being used only
in the three dimensional case).

i) ‘A/n = ‘A/r? : set of vertex basis functions with indices belonging to ©¢. This
choice is not always sufficient to obtain scalable and fast preconditioners, in particular
for problems in three dimensions, and this has motivated the search for richer primal
sets that may yield faster rates of convergence.

i) Vip = VHC +E : the previous set augmented with the subdomain edge averages,
each computed over the knots of a fat edge £ € Og. We can also decompose the fat
edge & into (p in 2D or p? in 3D) slim edges parallel to the subdomain edge and use
the edge average for each such edge as a primal variable.

iil) Vi = VHC +TEFTE . the previous set augmented with the subdomain face averages,
each computed over the knots of a fat face F € Op. We can also decompose the fat
face F into p slim faces parallel to the subdomain face and use a face average for each
such face as a primal variable.
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When working with the primal sets \A/l-f +E and XA/I-? +EHE employing edge and/or
face averages, we will assume that, after a change of basis, each primal variable
corresponds to an explicit degree of freedom, see [25], and Sec. 5 for implementation
details. Our theoretical analysis in Sec. 4 will focus on the simplest primal set 171? in
two dimensions, but in our numerical experiments we will also study the two other
richer choices in three dimensions.

3.5. Deluxe scaling (see Dohrmann and Widlund [15]). Let €} be any
subdomain in the partition, £k = 1,2, ..., K. We will indicate by Zj the index set of
all the Q;, j # k, that share an edge F with €. For regular quadrilateral subdo-
main partitions in two dimensions, the cardinality of Ej is 4 (or less for boundary
subdomains).

In BDDC, the average w := Epw of an element in w € 1713 is computed separately
for the sets of interface degrees of freedom of edge and face equivalence classes.

We define the deluxe scaling for the class of F with only two elements, k, j, as for
an edge in two dimensions or a face in three dimensions; see Subsec. 4.2 for cases of
equivalence classes of dual unknowns associated with more than two subdomains. We
define two principal minors, Sgc) and S §£), obtained from S*) and SU) by removing
all rows and columns which do not belong to the degrees of freedom which are common
to the (fat) boundary of Q and ;.

Let wgf) := Rrw®; the deluxe average across F is then defined as
o\ -1 N
oy = (S8 +59) (sPul + sPwd). (3.11)

If the Schur complements of an equivalence class have small dimensions, they can

o\ -1
be computed explicitly, otherwise the action of (S;k) + S;Z)) can be computed by

solving a Dirichlet problem on the union of the relevant subdomains with a zero right
hand side in the interiors of the subdomains. See the implementation details in Sec.
5 and also Remark 3.1 at the end of this section.

Each of the relevant equivalence classes, which involve the subdomain {2, will
contribute to the values of w. Each of these contributions will belong to V., after
being extended by zero to I' \ F; the resulting element is given by RJTwa. We then
add the contributions from the different equivalence classes to obtain

W= Epw =wn + »_ Rwr. (3.12)
f

FEp is a projection and its complementary projection is given by

Ppw:= (I — Ep)w := Ppw =wa — »_ Ry (3.13)
f

We remark that, with a small abuse of notation, we will, in what follows, consider

Epw € Vi also as an element of V-, by the obvious embedding Vi C Vr. In order to
rewrite Ep in matrix form, for each subdomain 0, we define the scaling matrix

(k)

D]-'jl *)
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where ji,jo2,...,Jr € Zf and the diagonal blocks are given by the deluxe scaling
N -1
Dgfk) = <S¥€) —l—S;f)) S’gﬂ), with F a 2D edge or 3D face of the class associated with

the subdomains ), and ;. For equivalence classes with more than two subdomains,
see Sec. 4.2. _
We can now define the scaled local operators by Rg}r = D(k)Rl(ﬂk)7 R(Dk,)A =

Rl(“]f)ARS:])C,)F and the global scaled operator

ED,F := the direct sum ﬁn @sz1 ﬁ(Dk’)A, (3.14)
so that the averaging operator is
Ep = Erég,r,

where Rp := Ry Sy R(Ak).

REMARK 3.1. If we use a conventional averaging procedure, we start with a
piece-wise discrete harmonic function which is discontinuous across the interface and
which is the result of solving a system with the Schur complement S associated with the
space V. By averaging point-wise across the interface, we introduce nonzero residuals
next to the interface. We then remove them by solving a Dirichlet problem on each
subdomain, thereby improving the performance. If we use the new delure averaging,
we obtain one contribution from each subdomain edge/face and in other applications
additional contributions, e.g., associated with the subdomain vertices. Each of them
will be discrete harmonic in the subdomains and therefore the local Dirchlet solves no
longer will be necessary.

3.6. The BDDC preconditioner. We denote by A®) the local stiffness matrix
restricted to subdomain . By partitioning the local degrees of freedom into those
interior (I) and those interface (I'), as before, and by further partitioning the latter
into dual (A) and primal (IT) degrees of freedom, then A®*) can be written as

A AL A
-| Ay A Al

Al Al A
Using the scaled restriction matrices, defined in (3.10) and (3.14), the BDDC precon-
ditioner can be written as

(k) (k)T
Apf Ary

AR —
k k
Al AR

M. = RE 1Sr'Rprr, (3.15)

BDDC

where

K
St =Ria (Y [0 rRY ]
k=1

-1

0 ~
[ } Rra + @S5 @7,

k k)T
AL ) 0
Rx

k k
AL AR

(3.16)
The first term in (3.16) is the sum of local solvers on each subdomain ﬁk, with a
Neumann condition on the local A edges and with the coarse degrees of freedom
constrained to vanish. The second term is a coarse solver for the primal variables,
that we have implemented as in [25, 3] by using the coarse matrix

o [ w g 1] AR Al AR )
SHH = ZRH AHH - |: AHI AHA :| A(k) A(k) A(k)T RH
=1 AT AA A
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and a matrix ® mapping primal degrees of freedom to interface variables, given by

K )) )7 )"
Sror N A ®
e=Rfn R [o RO R (yr |
= AAI AAA AHA

The columns of ® represent the coarse basis functions defined as the minimum energy
extension, with respect to the original bilinear form, into the subdomains and subject
to the chosen set of primal constraints.

4. Condition number bounds. The condition number of the BDDC precon-
ditioned operator can be bounded by estimating the Sp norm of the average operator

defined by EFp = RPRD r- We recall that MBBDC = R;g St RD r and S = RF SrRr.
The following two lemmas hold in general for any BDDC operator.
LEMMA 4.1. (Lower bound)

W Mgppou < uT Spu, Yu € Vr. (4.1)

Proof. Let w = Mgppcu. Since, as is easy to show, E%ED’F = I, we have
uTMBDDCu < uTw = UTE%:ED Tw = uTﬁTgpgilé[) Tw
(Rp’u Rpu)l/Z(S 1RD rw, S RD [‘w)l/
= (UTRLTSFRFU)UQ(?UTR%)FSF 1SFSF RD’FU))U2

= (UTS\FU)UQ(UTMBDDCu)l/Q.

LEMMA 4.2. (Upper bound) If |EDU|2§ < CE|U|% Vo € Vi, then
r r

’LLT§FU < CEUTMBDDCu Yu € ‘7[‘. (42)

Proof. UT§1“U = uTﬁggpﬁpu = uTﬁgngng}chMBDDCu
=u” RESr Ry RY, 1St Rp rw
<(Rru, Rru)Y (EDS '"Rp.rw, EpSy'Rp pw)s/2
<(u TRTSFRFu)1/2c”2(S "Rp,rw, Sp ' Rp,rw) Y
:C]l;/z(uTS’pu)l/2 (uTMBDDCu)l/Q,
where the last step follows as in the proof of Lemma 4.1. O

4.1. The two-dimensional case. We will make use of the following preliminary
result, that is an immediate combination of Theorems 6.1 and 6.2 in [5], re-written in
the present notation.

THEOREM 4.3. Let the dimension of the problem be equal to 2. Then for all

subdomains Qy, it exists a boundary seminorm | - |Wk such that for all w*®) € Vr(k)

Wy, = > [Rro® (43)
Feo

WP, < O (w)TSu®), (4.4)



10 L. Beirao da Veiga, L. F. Pavarino, S. Scacchi, O. B. Widlund, S. Zampini

with the positive constant C' independent of h, H and where |w|WJr i a seminorm on
the space of discrete functions associated with the edge F. Moreover, for all w®) €
Vr(k) that vanish at the subdomain primal (corner) degrees of freedom, it holds

(wM)TSEw® < (1 +log?(H/h)) [w™ 2 | (4.5)

with the positive constant C independent of h, H.
For a proof and an explicit form of this seminorm, see [5].
With these two lemmas, we can prove our main theoretical result.
THEOREM 4.4. Consider equation (2.1) in two dimensions and let the primal set

be given by the subdomain corner set ‘A/r? Then it holds
conds (Mngcgr) < C(1 +log(H/R))?,
with the positive constant C' independent of h, H and the jumps of the coefficient p.
Proof. Lemma 4.1 provides the lower bound A, (MgEDC§p> > 1. Lemma

4.2 provides the upper bound A4z (MEEDCS’\F) < Cg if we can prove the bound

on Ep required in the hypothesis of Lemma 4.2. We will prove the equivalent
bound for the complementary operator Pp defined in (3.13), and since |EDw|2§ =
I

Zszl |RpEpw|%,, we will focus on proving a bound for |RpPpw|%,. Recalling
that the deluxe average wx across an edge/face F shared by two subdomains has
been defined in (3.11) and that by adding the relevant contributions from the dif-
ferent edges/faces, the Fp and Pp operators can be written as in (3.12) and (3.13),
respectively, we have

5 —_ k _
|BrPowl3 < 2kl > [RFwS — 073w, (4.6)
FEEL

where |Z;| = 4 in our special two dimensional case; in the general case, we will use
that the number of neighbors is finite.

Still focusing, for simplicity, on the case where F is shared by two subdomains
(an edge in two dimensions or a face in three), we find, by simple algebra, that

wyf) —WF = (ng) + Sgg))ilsg)(w%) - wg)), so that

BE(w) — 0§ = [FRSE + 521 () —wf)w. (@1)

By adding and subtracting a suitable function w € ‘71‘ (a specific choice will be given
below), we have

w¥ —w =l — R — (W — Red) = wl — Rrpo™® — () — Rri). (4.8)
Inserting (4.8) into (4.7) and noting that RzS™ RL = S%) we then find that
IRF(wS) —07) 20 = (RE(wS — o))" S (RE(w) — w5))
= (i) —wf) TSP (S + 52 TSP (5 + 5P TS (wi —w))
< 2w® — Rpa®) TP (5% 4 §9)~15® (%) 1 50 ~15D () — Rpp®)
2wl — Rra@)T S (5P 4 §9)Lg®(SE) 4 §0Y189) () — Rri),
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We can simplify this expression by using the two inequalities

S.(g)(s(k) S(j))fls‘;{f)(sgﬁ) +S§_j))fls§_j) SS;.?),
S.(g)(s(k) +S(])) 15556)(5;5) +S§?))’1S§?) SS;Z)’

which follow easily by considering the action of these operators on any eigenvector of

the generalized eigenvalue problem S;k)(b = )\Sfr_j)¢ and just using that all eigenvalues
are strictly positive. Hence, we obtain

[RFWE —w7) i < 20wl — Rro®)T S8 () — Rri®) +
2w — Rpd™ )Ts;@(w(;) — Rpi ). (4.9)

What remains, and this is where analysis rather than linear algebra enters the picture,
is to establish an edge lemma which is a direct analog to the face lemmas of [33,
Subsection 4.6.3]:

(W — Rp™) TSP (P — Red®) < C(1 4 log(H/h))*(w®™)T5®w®) | (4.10)

where w®) shares the values on F with wff) but is otherwise arbitrary. Note that
this is where the logarithmic factors enters; the energy of a minimal extension will be
smaller than that of the extension by zero.

To obtain the estimate (4.10), we select the function @ introduced in (4.8) as the
function of ‘71“ with the same primal values as w and with values on the edges of each
Q. which minimizes the discrete seminorm |w(*) |y, introduced in Theorem 4.3; see
also [5, eq. (6.13)]s. We note that, since the square of the norm |- |57, is the sum
of contributions from individual edges, see (4.3), and the values at the corners, the
primal degrees of freedom, are assigned, it follows immediately that this minimization
problem corresponds to an edge-by-edge minimization of the seminorms | - |W}" for
all edges F of the subdomain partition. Therefore, w™*) will be continuous across the
edges, i.e. w € Vp. This definition guarantees that

0P, < 0P, (4.11)
Let z(;) = wg_@ — Rrw™®). The left-hand side of (4.10) can then be bounded by
2T SE L = (REENTS® (RE-L)) < C1(1+ log(H/h))2 [ RE=P 2, (4.12)
where we have used (4.5). Since RZz¥ = RZ(w' — Rp®)) = RERx(w® — w(*))
is nonzero only on the edge F and the discrete seminorm | - |Wk is defined edge-by-
edge as a sum of four terms, only that associated with the common edge F is nonzero.
Hence, by using (4.11), we have
IREP R, < o® -0 ® R < 2wy + oM, < 4o,
By (4.4), we can then return to the local Schur bilinear form
k)2 BT k), (k
! )|Wk < Cw®)" §H) gy (k)

and obtain the edge lemma (4.10).
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We can also compute, in exactly the same way, the contribution of the other
subdomain (2, as well as contributions from other relevant subdomain edges or faces.
Summing over the edges of {1, we obtain from (4.6), (4.9), and (4.10),

|RrPpw|}u, < C(1+1log(H/R)? Y [wh %),
jeErU{k}

and hence the same bound on |RrE Dw@m, and summing over the subdomains, we
have

|Epwlf < C(1+ log(H/h))2|w|2§F, (4.13)

i.e. the Ep bound required by Lemma 4.2 with Cp = C(1+1log(H/h))?, which proves
the theorem. O

REMARK 4.5. In isogeometric analysis the domain of interest is often not de-
scribed by a single mapped patch, but is built by gluing together (with C° or Ct regu-
larity) multiple NURBS patches. The case of multipatch domains fits very naturally
and automatically into the present description and theory. Indeed, if each single patch
is treated as a single subdomain, this is equivalent to the case with C° (or C*) regular-
ity across the interface I'. If the patches are subdivided into more than one subdomain,
then some interface edges will be C°/C* and others may have any C* regularity.

4.2. The case of more than two subspaces. We have shown above how to
reduce an estimate of the norm of w(}]f) — wx for the case of an equivalence class
associated with just two subdomains. In many cases, we also need to work with
equivalence classes with three or more subdomains; this is, e.g., the case if some of
the degrees of freedom associated with the set {2c are not primal, as for the reduced
primal set Vl-f * described below. This is also necessary for three dimensional problems
unless we make the many degrees of freedom associated with all fat subdomain edges
primal.

We will first show that the same algebraic ideas can be used to take care of the
case of three subdomains, Q,,Q,, and Q, and an edge &.

Letting S (k122) S(kl) + S (k2) Séks), our averaging operator now has the form
f(kl) (S(k123)) (S(kl (k1) + S(k2 k2) + S(ks ‘(€k3)>7

As before, the required Schur complements can be computed explicitly if they have
small dimensions, otherwise their action can be computed by solving Dirichlet prob-
lems on the union of the relevant subdomains. We find that

W) — ) = (51 (5 4 U 0n) _ glh ) _ glks)y b))

Since Re Sk RL = S‘(Skl), then the analog of (4.7) for three subdomains becomes

k1 k123)\— k2 k: k1 k2 ka2) ka k3
IR (we™ —e) [y = IS (SE +8E hwg™ —SE wg™ =S58 ™) .

This norm can be bounded from above by the sum of the three terms:
(kl)T(S(kz + S(ks))(st(jhm)) S(kl)(S(km))*l(S(k?) + Séka))wgfl)
+ 3w (k2 S(k'z) (S(klzs))—lsgfl)(Sgﬂzs)) 1S(k2) k2) (4.14)
+ 3w (ks S(ks.) (S k123))_15§‘k1)(5§‘k123)) ls(ks ks)
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The first term can be bounded by 3w(k1)TS(k1) (kl) by using the same argument
as in the case of two subdomains and by working Wlth S(kl) and Sékz) + Sg%).

The second expression can also be reduced to an argument with the two matrices,
S ‘(ng) and Sékl) + S‘(gk‘q’), after first bounding it from above by

Swékz)TSéb)(Sékmg))—l(séh)+S§k3))(5§k123)) 1S(k2 kz)

A bound of 3w(k2)TS(k2) (k2) results.

The third expression can be bounded by Sw(k")TS (ks) 5k3) in the same way. Sub-

tracting a common element of the primal space from wgﬁ) g”) and w (ks)

case of two subdomains, we then obtain the analog of (4.9)

, as in the

|RT( (k1) )|S(k1) < 3( é 1) ng(kl))Tsé]fl)(wékl) _ng(kl)) +
3(wl™ — Rew ™ )T ¢ (Wl — Rew*2)) +
3(w(gk3) _ ng(ks))Tngs)(wéka) _ ng(kg)) (415)

Each of these terms can then be bounded by a counter part of the edge lemma (4.10).
Turning to the four subdomain case, we have

wgﬁ — (S(k1234 ) (S(kl) (k1) +S(k2 kz) _|_Sg€3 w(ka) _|_S(k4) (k4))
where §¢129) .= ) glk2) 4 glhs) L g0) " and we find that w(™ — ol equals
(Sék1234))71((52(jk2)+Sék3)+sék4))w§jkl) S(kz) k‘z) S(k3) ks) Sék4)wék4)).

The norm |RE (wg (ka) _ We)| %,y can then be bounded, by using the same arguments
as for three subdomains, by the sum of four terms, each with a coefficient 4.

4.3. A reduced primal set. In case of maximal regularity x = p — 1 of the
isogeometric basis functions, the fat interface leads to a rich primal set Vr? with p?
primal degrees of freedom for each subdomain vertex in 2D. We can then consider a
reduced primal set Vl-f * where out of these p? degrees of freedom per vertex only the
4 corner degrees of freedom are retained as primal and the other p? — 4 are considered
dual. For this reduced primal set, we expect the same scalable convergence bound
of Theorem 4.4, since the presence of two primal corners per edge still allow us to
prove an edge lemma (see the proof of Theorem 4.3 that can be found in [5]) and the
additional p? — 4 dual variables per vertex are now shared by 4 subdomains and can
the treated with the techniques of Sec. 4.2. The numerical results presented in Sec. 5
confirm this scalable bound but also show that the BDDC convergence rate with the
primal set VHC * deteriorates rapidly with an increasing p.

4.4. The three-dimensional case. We conjecture that a scalable convergence
bound as in Theorem 4.4 holds also in 3D, but a complete proof is beyond the scope of
this paper. We only note that the basic tools required are isogeometric edge and face
lemmas in 3D, which we believe can be obtained by extending the 2D isogeometric
techniques of our previous work [5], and the deluxe estimates in the case of more than
two subdomains considered in Sec. 4.2.
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K 22 3% 4 5 6 T 83

problems | 18 90 252 540 990 1638 2520

colors 6 18 18 19 18 20 19
TABLE 5.1

Number of deluze subproblems and colors needed as a function of the number of subdomains
K=nxnxn.

5. Numerical results. In this section, we report on numerical experiments with
the isogeometric BDDC deluxe preconditioner for two and three dimensional elliptic
model problems (2.1) on both the parametric (reference square or cube) and physical
domains, discretized with isogeometric NURBS spaces with a mesh size h, polynomial
degree p and regularity x. The domain is decomposed into K nonoverlapping subdo-
mains of characteristic size H, as described in Sec. 3. In the following, we will denote
by kr < k the regularity at the subdomain interfaces. The discrete Schur-complement
problems are solved by the PCG method with the isogeometric BDDC preconditioner,
with a zero initial guess and and a stopping criterion of a 10~% reduction of the Eu-
clidean norm of the PCG residual. In the tests, we study how the convergence rate
of the BDDC preconditioner depends on h, K, p, k, kr, and jumps in the coefficient
of the elliptic problem. In all tests, the BDDC condition number is essentially the
maximum eigenvalue of the preconditioned operator, since its minimum eigenvalue
is always very close to 1. The 2D tests have been performed with a MATLAB code
based on the GeoPDEs library [11], while the 3D tests have been performed using
the PETSc library [1] and its PCBDDC preconditioner (contributed to the PETSC
library by Zampini), and run on the BlueGene/Q cluster of the CINECA Laboratory
(http://www.hpc.cineca.it /hardware /ibm-bgg-fermi).

An efficient implementation of the Deluxe operator in a parallel environment re-
quires the construction of a face-centered adjacency graph of the interface equivalence
classes. In this graph, a vertex correspond to an edge or a face of the interface and two
vertices are connected if and only if they belong to the same subdomain. Each local
problem required by the application of the deluxe operator is associated with a vertex
of the graph. We color this graph with a distance-one coloring, where two adjacent
vertices do not have the same color. Then the application of the deluxe operator can
be efficiently solved in parallel on subcommunicators associated with different colors.
The number of steps required to solve all deluxe subproblems equals the number of
colors, whereas the number of deluxe subproblems increases as the number of subdo-
mains increases. Table 5.1 reports on the number of colors and deluxe subproblems
for 3D parallelepipedal domains 2 decomposed into K = n x n X n subdomains: the
minimum number of colors needed to color a graph when n > 2 is 18, with 6 faces
and 12 edges of the subdomains, which do not touch 9. In order to color the ad-
jacency graph of deluxe subproblems in our code we have used the Colpack library
(http://cscapes.cs.purdue.edu/coloringpage/index.htm), written in C++ and based
on the Standard Template Library.

‘We first report on results of 2D experiments with deluxe BDDC with the primal
set Vl-? for all the subdomain vertices. In the 3D experiments, we will consider the
primal sets defined in Sec. 3.4, consisting of subdomain vertices (IA/I-? ), or subdomain
vertices and edge averages (‘A/Hc +B ), or subdomain vertices and edge and face averages
(?HC TETEY  We consider the richer sets where each fat edge/face is decomposed into
slim edges/faces parallel to the subdomain edge/face and one average is computed
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a) homogeneous

b) central jump

¢) checkerboard
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Fic. 5.1. 2D quarter-ring domains used in the numerical tests. Examples with 4 X 4 subdomains

h=1/16 h=1/32 h=1/64 h=1/128
K conds mnj | conds ny | conds ny | conds  ny
2 %2 1.24 5 1.42 6 1.65 6 1.92 6
p=3 4 x4 2.02 8 2.68 10 | 3.46 11
K =2 8 X8 2.39 10 3.29 12
16 x 16 2.64 11
2x2 1.19 5 1.35 6 1.55 6 1.78 6
p=>5 4 x4 1.62 8 2.19 9 2.86 10
k=4 8x8 1.77 8 2.55 10
16 x 16 1.87 8

TABLE 5.2

BDDC deluze preconditioner for a 2D quarter-ring domain: condition number conda and iter-
ation counts ny as a function of the number of subdomains K and mesh size h. Fized p =3,k =2
(top), p =5,k =4 (bottom).

over each such edge/face.

5.1. Scalability in K and quasi-optimality in H/h in 2D. The condition
number in the 2-norm, conds, and iteration counts, n;;, of the BDDC deluxe precon-
ditioner are reported in Table 5.2 for a quarter-ring domain (see 5.1a), as a function
of the number of subdomains K and mesh size h, for fixed p = 3,k = 2 (top) or
p = 5,k = 4 (bottom). The results show that the proposed preconditioner is scal-
able, since moving along the diagonals of each table the condition number appears
to be bounded from above by a constant independent of K. The results for higher
degree p = 5 and regularity x = 4 are even better than those for the lower degree
case. In contrast to the scalings proposed in our previous work [5], the BDDC deluxe
preconditioner appears to retain a very good performance in spite of the increase of
the polynomial degree p. To better understand this issue, we next study the BDDC
performance for increasing values of p.

5.2. Dependence on p in 2D. In this test, we compare the BDDC deluxe
performance as a function of the polynomial degree p and the regularity x. We
recall that our theoretical work in Sec. 4 is only an h-analysis and does not cover
the dependence of the convergence rate on p and x. The domain considered is the
quarter-ring of Fig. 5.1 a) discretized with a mesh size h = 1/64 and K = 4 x 4
subdomains, while the degree p varies from 2 to 10 and the regularity x = p — 1
is maximal everywhere. The results in Table 5.3 show that the condition numbers
and iteration counts are bounded independently of the degree p and actually improve
slightly for increasing p. These remarkable results are a considerable improvement
over the results in p with p and stiffness scaling of our previous work, see Tables
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P 2 3 4 5 6 7 8 9 10

condy | 3.22 2.68 241 2.19 2.04 191 1.80 1.72 1.62

Nyt 10 10 9 9 9 8 8 8 9
TABLE 5.3

BDDC deluxe dependence on p in the 2D quarter-ring domain: condition number conda and
iteration counts ny, as a function of the spline degree p. Fized h =1/64, K =4 x4,k =p — 1.

central jump random mix

1111 1073 ] 102 [107% | 10°
1lplp]1l 10t [ 1071 ] 10° | 10%
1lplp]1l 1072 | 10° | 102 [ 107%
1111 10° [ 10* [ 1073 | 10T

central jump

random mix
p conds ny

107 541 13 cond, i
. 525 11
10 542 13 e e
1 594 13 ¢ ‘;C) e; oare
102 | 7.18 13 511 12 rlli
10° | 7.26 13 :

Fic. 5.2. BDDC deluze robustness with respect to jump discontinuities in the coefficient p of
the elliptic problem. Central jump, random mix and checkerboard tests. Condition number conda
and CG iteration counts ny, Fized h =1/64, K =4 x 4, H/h = 16.

4, 5 of [5], especially taking into account that the latter were obtained only for low
regularity at the subdomain interface, kp = 0,1, while here the regularity k = p — 1
is maximal everywhere.

5.3. Robustness with respect to discontinuous coefficients in 2D. We
next investigate the robustness of the BDDC deluxe preconditioner with respect to
jump discontinuities of the coefficient p of the elliptic problem (2.1). We consider three
different tests, that we call “central jum”, “random mix” and “checkerboard”, on a 2D
quarter-ring domain decomposed into 4 x 4 subdomains, see Fig. 5.1. In the central
jump test, p varies by 8 orders of magnitude (from 10~ to 10%) in the 2 x 2 central
subdomains, while it equals 1 in the surrounding subdomains. In the random mix test,
p has random values varying by 8 orders of magnitude in the different subdomains, see
Fig. 5.2 (upper part) for the values of p in the parametric space. In the checkerboard
test, p = 10* in the black subdomains, while p = 1 in the white subdomains. We fix
h =1/64, H/h = 16, p = 3, k = 2, and the regularity at the subdomain interfaces
kr = 0, since in the presence of jumps in the elliptic coefficient this is the correct
choice for approximation reasons, see e.g. [7]. The condition numbers and iteration
counts reported in the tables of Fig. 5.2 clearly show the robustness of BDDC deluxe,
since condy and n;; are essentially independent of the jumps in p.

5.4. Performance for the reduced primal set ‘A/HC“ in 2D. We study the
optimality, scalabilty and dependence on a growing p of the BDDC deluxe precondi-
tioner with the reduced primal set VHC 4 defined in Sec. 4.3, on the 2D quarter of a ring
domain. The spline regularity x is kept maximal, i.e. kK = p — 1. The results reported
in Table 5.4 show that, in accodance with the theoretical estimate, the BDDC deluxe



Deluxe BDDC Methods for Isogeometric Analysis 17

Quasi-optimality Scalability Dependence on p
p=3, K=2x2 p=3, H/h=28 h=1/64, K =4 x4

H/h | conds nj K conds ny | p condsy ;¢
8 3.67 8| 2x2 3.67 8| 2 16.03 15
16 3.67 8| 4x4 4349 16 | 3 56.70 14
32 3.66 9| 8x38 46.02 27 | 4 967.40 20
64 4.19 9] 16x 16 | 46.58 29 | 5 | 11415.81 22

TABLE 5.4
Optimality, scalability and dependence on p of the BDDC deluze preconditioner with reduced

primal set \71-?4 in the 2D quarter of ring domain: condition number conds and CG iteration counts
njy The spline regularity k is always mazimal, i.e. Kk =p— 1.

K 23 33 43 53 6° 73 83 93 103
Deluxe scaling
%A% condg| 8.96 838 844 838 835 835 835 836 835

nj¢ 20 21 23 24 23 23 24 24 24

VETE condy| 206 2.01  1.98 1.98 198 198 198 1.98 1.98
nj 0 11 11 10 10 10 10 10 10

VEYEFE condy| 142 140 1.41 140 140 140 140 140 140

Lt 8 8 8 8 8 8 8 8 8
Stiffness scaling
%A% conds|20.09 19.24 19.16 19.16 19.16 19.16 19.16 19.16 19.17

D¢ 26 33 38 39 39 39 39 39 39

VIIC+E condy| 6.04 6.08 6.08 6.10 6.09 6.10 6.09 6.10 6.10
Dt 21 22 22 22 22 23 22 23 22

VETETE cond,| 6.04  6.08 6.08 6.10 6.09 610 6.09 6.10 6.10
N 21 22 22 22 22 23 22 23 22
TABLE 5.5
BDDC weak scalability on the unit cube with different coarse spaces. Deluze scaling (top),
stiffness scaling (bottom). Condition number conds and iteration counts nyy as a function of the
number of subdomains K =n X n X n; fited k =2,p=3,H/h = 8.

preconditioner is optimal and scalable also with the reduced primal set ‘A/I? 4. but that
the behavior with respect to increasing p is much worse than with the rich primal set
Ve,

5.5. Scalability in K in 3D. We next report on 3D parallel tests on a Blue-
Gene/Q machine, assigning one subdomain per processor. We start with weak scala-
bility tests on the unit cube: we increase the number of subdomains K = 23,---,103,
keeping the local size H/h = 8 fixed, polynomial degree p = 3 and maximum regular-
ity k = 2. We consider three primal spaces of increasing size consisting of subdomain
vertices (V,§), subdomain vertices and edge averages (Vi 7), or subdomain vertices
and edge and face averages (YA/T? TEHE)  The results reported in Table 5.5 show that
BDDC with both deluxe scaling (top) and stiffness scaling (bottom) of [5] are scalable,
since the condition numbers and iteration counts are bounded from above by constants
independent of the number of subdomains. As expected, larger primal spaces yield
faster convergence rates. Deluxe scaling performs better than stiffness scaling in all
tests, requiring about half the iteration counts. We remark that BDDC deluxe yields
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H/h 4 8 12 16 20 24
Deluxe scaling
V¢ condy | 2.62 6.3 10.10 14.19 17.91 —
nj; 12 18 21 24 27 —
VETE condy | 1.54 1.80 2.03 221 235
nj; 9 10 11 12 12 —
VETETE cond, | 154  1.37 146 162 1.75
nj; 9 8 8 9 9 —
Stiffness scaling
V¢ condy | 7.03 10.59 21.30 34.64 46.97 66.86
nj; 24 26 34 40 46 54
VETE condy | 6.35 6.09 6.13 626 815 10.28
nj; 23 22 22 23 26 29
VETEFE condy | 635  6.09 613 616 619  6.21
nj; 23 22 22 21 22 22
TABLE 5.6

BDDC dependence on H/h, unit cube. Condition number conds and PCG iteration counts nj
Fized p=3,k =2, K =4 x4 x 4. The void columns could not be run due to memory limitations.

» 2 3 4 5 6 7
Deluxe scaling

43 condy | 5.62 471 439 3.92 512 11.15
nj; 12 11 12 14 18 26

Ve condy | 2.10 1.91 2.03 268 4.99 10.92
nj; 0 9 10 12 17 26

VETETE condy | 1.58 145 1.70 2.68 4.99 10.92
nj; 8 8 9 12 17 26

TABLE 5.7

BDDC dependence on p for the 8D unit cube with different coarse spaces and deluze scaling.
Condition number condz and iteration counts nj; as a function of the polynomial degree p. Fized
h=1/24, K =2%x2x2,k=p—1.

quite small condition numbers, being bounded by 9 for the primal space ‘7HC , by 2 for
VHCJFE, and by 1.4 for VHCJFEHD.

5.6. Quasi-optimality in H/h in 3D. Table 5.6 reports the results of parallel
tests with increasing values of H/h =4,8,--- ,24 for fixed p =3, k =2, and 4 x 4 x 4
subdomains. Since the domain and its subdivision are fixed (H = 1/4), here we
are varying the mesh size h. We consider again the primal spaces \A/r? , ‘A/HC TE and
‘75 TEFE and deluxe scaling (top) and stiffness scaling (bottom). The results show a
linear dependence of the condition number on H/h for the primal space ‘7110 , both for
stiffness and deluxe scaling. The addition of edge averages (‘A/HC +tE) seems sufficient
to obtain a quasi-optimal method. Again deluxe scaling requires half (or less) the
iterations of stiffness scaling.

5.7. Dependence on p in 3D. In this test, we study the BDDC convergence
rate for increasing polynomial degree p = 2,3---,7 and maximal regularity x =
p — 1. The domain considered is the unit cube, with mesh size h = 1/24, subdivided
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central jump checkerboard random mix
p conds ny  conds ot conds  njt

1071 [ 117.37 44

1072 | 118.40 44

VHC 1 134.04 48 134.04 48 134.04 48
102 137.15 50 102.11 43 126.53 47

104 | 13740 52 10431 44 123.63 46

1074 5.33 18

102 5.33 18

VErE 1 527 18 527 18 527 18
102 4.92 16 4.19 16 4.83 16

104 4.88 16 4.20 16 4.87 16

1072 1.98 10 1.98 10 — —

1072 1.99 10 1.99 10 — —

yerErr 205 10 205 10 205 10
102 2.05 10 2.05 10 2.00 10

104 2.05 10 2.05 10 2.00 9
TABLE 5.8
BDDC deluze robustness with respect to jump discontinuities in the diffusion coefficient p. Unit
cube with central jump, random mix and checkerboard tests. Condition number conds and PCG
iteration counts ny, Fized h =1/32,p = 3, CY continuity at the interface, 4 X 4 x 4 subdomains.

into K = 2 x 2 x 2 subdomains. The results reported in Table 5.7 show that the
condition numbers and iteration counts using deluxe scaling (top table) are almost
independent of p for p < 5; when p > 5, the convergence rate of deluxe BDDC begins
to degrade but is still orders of magnitude better than that of BDDC with stiffness
scaling (not shown). Interestingly, the condition number of the vertex only coarse
space becomes closer to those of the other coarse spaces when using deluxe scaling
with higher polynomial degrees. The addition of the face averages to the primal space
marginally improves the condition number only when p < 4.

5.8. Robustness with respect to discontinuous coefficients in 3D. The
results of parallel tests with discontinuous coefficient p are reported in Table 5.8, for
a unit cube discretized with H/h = 8, p = 3, kp = 0 continuity at the interface, and
4 x 4 x 4 subdomains. The distribution of values of p is the 3D analog of the 2D
case, i.e. “central jump”, “checkerboard” and “random mix”. The random setting is
somewhat different from the 2D case; given a value of p, a random number r in the
interval (—logy, p,logy p) is generated for each subdomain and the scaling factor for
that subdomain is chosen as 10". In the checkerboard case, the local matrices are
scaled by p on black subdomains and by 1/p on white subdomains. Note that the
rows associated with a value of p < 1 for the checkerboard and random test cases are
void since these cases are already covered by the rows corresponding to the reciprocal
of the p value. The results clearly show the BDDC robustness with respect to jumps
in p. The convergence rate with the primal space Vr? is somewhat unsatisfactory, but
17HC +E and especially ‘A/r? HEE
iteration counts.

yield remarkably small condition numbers and low

5.9. 3D scalability on deformed domains. Finally, Table 5.9 illustrates the
BDDC weak scalability on the deformed domains shown on the left of the table, a
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K 23 33 43 53 63
Deluxe scaling
394 572 687 747 7.83
11 15 20 21 23
1.67 1.81 1.85 1.86 1.92
§§ 9 10 10 10 10
":-‘v;‘: 142 158 1.66 1.72 1.76
Y 8 9 9 9 9
e Stiffness scaling
9.39 11.07 12.97 13.87 14.39
24 29 30 31 33
894 921 927 935 9.38
24 27 28 28 29
894 921 927 935 9.38
24 27 28 28 29

TABLE 5.9

BDDC weak scalability on the twisted bar domains (left) with different coarse spaces. Deluze
scaling (top), stiffness scaling (bottom). Condition number conds and iteration counts ny; as a
function of the number of subdomains K =n X n X n; fited k =2,p=3,H/h = 6.

twisted and bent bar. The table reports conds and ny, for deluxe scaling (top) and
stiffness scaling (bottom) for the same three coarse spaces considered before. In this
weak scaling test, the number of subdomains K increases from 23 to 63 for fixed
k = 2,p = 3,H/h = 6. The results are analogous to the weak scaling test for the
cube of Table 5.5; all three coarse spaces appears to be scalable, with deluxe scaling

performing better than stiffness scaling, and with remarkably small condition numbers

for deluxe scaling with the richer coarse spaces V[

OFE and VEHEHE,
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