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Abstract. BDDC algorithms are constructed and analyzed for the system of almost incom-
pressible elasticity discretized with Gauss-Lobatto-Legendre spectral elements in three dimensions.
Initially mixed spectral elements are employed to discretize the almost incompressible elasticity sys-
tem, but a positive definite reformulation is obtained by eliminating all pressure degrees of freedom
interior to each subdomain into which the spectral elements have been grouped. Appropriate sets
of primal constraints can be associated with the subdomain vertices, edges, and faces so that the
resulting BDDC methods have a fast convergence rate independent of the almost incompressibility of
the material. In particular, the condition number of the BDDC preconditioned operator is shown to
depend only weakly on the polynomial degree n, the ratio H/h of subdomain and element diameters,
and the inverse of the inf-sup constants of the subdomains and the underlying mixed formulation,
while being scalable, i.e., independent of the number of subdomains and robust, i.e., independent of
the Poisson ratio and Young’s modulus of the material considered. These results also apply to the
related FETI-DP algorithms defined by the same set of primal constraints. Numerical experiments
carried out on parallel computing systems confirm these results.
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1. Introduction. The purpose of this paper is to construct and analyze BDDC
algorithms (Balancing Domain Decomposition by Constraints, see [14, 39]) for the
system of almost incompressible elasticity in three dimensions, discretized with Gauss-
Lobatto-Legendre (GLL) spectral elements. Our algorithm builds on earlier work by
Li and Widlund [35] for the Stokes system, but here we can work with a positive
definite reformulation of an underlying mixed formulation of the elasticity system,
obtained by eliminating all displacement and pressure degrees of freedom interior to
each subdomain into which the spectral elements have been grouped. We also adopt
a different overall strategy assuming that the set of primal constraints works well
in the compressible case and, in addition, that a no net flux condition is satisfied
across the boundary of each subdomain. We show that appropriate sets of primal
constraints can be associated with the subdomain vertices, edges, and faces, so that
the resulting BDDC methods have a fast convergence rate independent of the material
being almost incompressible. In particular, we prove that the condition number of the
BDDC preconditioned operator depends only weakly on the polynomial degree n, the
ratio H/h of subdomain to element diameters, and the inverse of the inf-sup constants
of the subdomains and the underlying mixed formulation, while being independent of
the number of subdomains (scalability) and of the Poisson ratio and Young’s modulus
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‡Dipartimento di Matematica, Università di Milano, Via Saldini 50, 20133 Milano, Italy. E-mail:
stefano.zampini@unimi.it. This work was supported by grants of M.I.U.R. (PRIN 200774A7LH 003).

1



2 L. F. Pavarino, O. B. Widlund, S. Zampini

of the material considered (robustness). The results of numerical experiments on
parallel computing systems confirm our theory and illustrate the effects of the choice
of the primal constraints. A preliminary study in two dimensions and without proofs
can be found in [45].

We remark that our results also apply to the related FETI-DP algorithms (see
e.g. [20, 32]) defined by the same set of primal constraints, since it is known that the
BDDC and FETI-DP operators have the same eigenvalues with the exception of at
most two; see [39, 36, 8].

BDDC methods can be regarded as an evolution of balancing Neumann-Neumann
methods where all local and coarse problems are treated additively and a proper set
of primal continuity constraints across the interface of the subdomains is selected,
just as in FETI-DP methods. These primal constraints can be point constraints and
averages and moments over edges and/or faces of the subdomains. Several choices
will be considered in Sections 6 and 8.

Earlier works on domain decomposition algorithms for mixed elasticity and Stokes
systems have focused on Wirebasket and Balancing Neumann-Neumann methods [43,
44, 22], [5], on FETI-DP and BDDC methods for the incompressible limit [15], [34, 35],
[31] and on overlapping Schwarz and hybrid methods [26, 17, 18]. Previous works on
BDDC and FETI-DP algorithms for GLL spectral elements have focused on the scalar
elliptic case only, see [42, 27]. The BDDC algorithm has been extended to a variety of
cases, including mortar discretizations [23, 24, 25], discontinuous Galerkin methods
[19], Stokes–Darcy coupling [21], advection-diffusion and indefinite problems [49, 38],
inexact solvers [16, 37], Reissner–Mindlin plates [4], multilevel algorithms [47, 48, 41],
see also [40].

We refer to the monograph by Toselli and Widlund [46] for an introduction to
domain decomposition methods, and to those by Deville, Fischer, and Mund [12] and
by Canuto, Hussaini, Quarteroni, and Zang [10] for introductions to spectral element
methods.

The rest of the paper is organized as follows. In Section 2, we introduce the
almost incompressible elasticity system, discretize it with a mixed spectral element
method based on GLL quadrature and reformulate it as a positive definite system by
eliminating all pressure variables; this is followed by eliminating the displacements
interior to each subdomain. The resulting interface problem and interface space are
further decomposed in Section 3, where we also define the required restriction and
interpolation operators, Schur complements, and certain interface norms. We also
formulate a lemma which highlights the importance of a no net flux condition. The
BDDC preconditioner is introduced in Section 4. The main BDDC convergence rate
estimate and auxiliary results are presented in Section 5. Several choices of sets of
primal constraints are considered in Section 6 and associated transformations of basis
functions in Section 7. The paper concludes by Section 8 with the results of several
numerical experiments in three dimensions on parallel computer systems.

2. Almost incompressible elasticity and spectral elements.

2.1. The continuous problem. We consider a domain Ω ⊂ R3, decomposed
into N nonoverlapping subdomains Ωi of diameter Hi, and forming a coarse finite
element partition of Ω,

Ω =

N⋃

i=1

Ωi. (2.1)
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Let H = maxi Hi be the characteristic diameter of the subdomains and ∂ΩD a
nonempty subset of ∂Ω. We consider a mixed formulation of linear elasticity for
almost incompressible materials as, e.g., in [9]: find (u, p) ∈ V × U such that





2

∫

Ω

µ ǫ(u) : ǫ(v) dx −
∫

Ω

div v p dx = 〈F,v〉 ∀v ∈ V,

−
∫

Ω

div u q dx −
∫

Ω

1/λ pq dx = 0 ∀q ∈ U.

(2.2)

The functional spaces are

V := {v ∈ H1(Ω)3 : v|∂ΩD
= 0}, U := L2(Ω) (or L2

0(Ω) if ∂ΩD = ∂Ω).

F represents the applied forces and µ(x) and λ(x) are the Lamé parameters of the
material that, for simplicity, we assume constant in each subdomain Ωi; they can be
expressed in terms of the local Poisson ratio νi and Young’s modulus Ei as

µi :=
Ei

2(1 + νi)
, λi :=

Eiνi

(1 + νi)(1 − 2νi)
. (2.3)

The material of a subdomain approaches the incompressible limit when νi → 1/2.
Factoring out the constants µi and 1

λi
, we can define local bilinear forms by

N∑

i=1

µiai(u,v) := 2

N∑

i=1

µi

∫

Ωi

ε(u) : ε(v) dx,

N∑

i=1

1

λi
ci(p, q) :=

N∑

i=1

1

λi

∫

Ωi

p q dx,

(2.4)
and also by

N∑

i=1

bi(v, q) := −
N∑

i=1

∫

Ωi

divv q dx. (2.5)

The global problem (2.2) is obtained by assembling contributions to the bilinear forms
from the different subdomains. Our convergence rate analysis will be reduced to devel-
oping bounds for individual subdomains. The resulting estimates will be independent
of the values of the Lamé parameters.

2.2. Mixed GLL spectral elements. Let Tref be the reference cube (−1, 1)3,
and let Qn(Tref) be the set of polynomials on Tref of degree n ≥ 1 in each variable. We
assume that the domain Ω can be decomposed into Ne nonoverlapping finite elements
Tk of diameter hk,

Ω =

Ne⋃

k=1

T k, (2.6)

each of which is an affine image of the reference cube, i.e., Tk = φk(Tref), where
φk is an affine mapping. Let h = maxk hk be the characteristic diameter of the
elements. We assume that this finite element partition, (2.6), is a refinement of the
coarse subdomain partition {Ωi}N

i=1 defined previously in (2.1), with finite element
nodes matching across the interfaces between neighboring subdomains. Hence each
Ωi is the union of a subset of the closure of elements Tk.
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The space of displacements V is discretized, component by component, by con-
tinuous, piecewise tensor product polynomials of degree n:

Vn := {v ∈ V : vk|Ti
◦ φi ∈ Qn(Tref), i = 1, 2, . . . , Ne, k = 1, 2, 3} .

The pressure space U is discretized by discontinuous, piecewise tensor product poly-
nomials of degree n − 2:

Un := {q ∈ U : q|Ti
◦ φi ∈ Qn−2(Tref), i = 1, 2, . . . , Ne} .

We use Gauss-Lobatto-Legendre (GLL(n)) quadrature, which also allows for the
construction of very convenient nodal tensor-product bases for Vn and Un, using for
the latter only the interior GLL nodes of each element. We denote by {ξi}n

i=0 the
set of GLL(n) points of [−1, 1], by σi the quadrature weight associated with ξi, and
by li(x) the Lagrange interpolating polynomial of degree n that vanishes at all the
GLL(n) nodes except at ξi, where it equals 1. Each element of Qn(Tref) is expanded
in this GLL(n) basis, and any L2−inner product of two scalar components u and v is
replaced by

(u, v)n,Ω =

Ne∑

s=1

n∑

i,j,k=0

(u ◦ φs)(ξi, ξj , ξk)(v ◦ φs)(ξi, ξj , ξk)|Js|σiσjσk , (2.7)

where |Js| is the determinant of the Jacobian of φs. Similarly, a very convenient basis
for Un consists of the tensor-product Lagrangian nodal basis functions associated with
the internal GLL(n) nodes, i.e., the endpoints −1 and +1 are excluded. The mass
matrix based on these basis elements and GLL(n) quadrature is then diagonal for the
displacement field but not for the pressure field.

The Qn − Qn−2 method satisfies a nonuniform inf-sup condition

sup
v∈Vn

(divv, q)

‖v‖H1

≥ βn‖q‖L2 ∀q ∈ Un , (2.8)

where βn ≥ Cn−1 and the constant C > 0 is independent of n. It is also known that
βn decays slower for small n than indicated by the theoretical bound; for example,
βn ≥ 0.43 for n ≤ 16 according to Maday et al. [6]. (We note however, that the
inf-sup coefficient will decrease with an increase in the aspect ratio of a domain, see
Dobrowolski [13].) An alternative mixed spectral element method, with a bound on
the inf-sup constant which does not depend on n, is provided by the Qn − Pn−1

method; see Bernardi and Maday [7].

2.3. The discrete system and its positive definite reformulation. The
discrete system, obtained from the GLL spectral elements, is assembled from the
saddle point matrices of individual subdomains Ωi :

[
µiA

(i) B(i)T

B(i) −1/λi C(i)

]
,

where µiA
(i), B(i), and 1/λi C(i) are the local matrices associated with the local

components of the bilinear forms as in (2.4), (2.5).
Since we are using discontinuous pressures, all pressure degrees of freedom can be

eliminated, element by element, to obtain reduced positive definite stiffness matrices

K(i) := µiA
(i) + λiB

(i)T C(i)−1B(i), (2.9)
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that can be subassembled into a global positive definite stiffness matrix K.
The load vector of the full system can similarly be assembled from contributions

from the elements.

3. Subspace decomposition and operators. We recall that the computa-
tional domain Ω ⊂ R3 has been decomposed in (2.1) into N nonoverlapping subdo-
mains Ωi of characteristic size H . In our experiments, they each consist of (H/h)3

spectral elements Tk of characteristic size h while in our theory, we can allow less
regular subdomains. The subdomain interface is designated by Γ :=

⋃
i6=j ∂Ωi ∩ ∂Ωj .

We assume matching finite element nodes on the boundaries of adjacent subdomains
across the interface.

We split the set of basis functions into interior functions, with the subscript I,
and the remaining interface basis functions, with the subscript Γ.

3.1. Subspaces. We will use the framework of [36]. Let V
(i) be the local space of

spectral element displacements defined on Ωi and that vanish on ∂Ωi∩∂ΩD. We split

this space into a direct sum of its interior and interface subspaces V
(i) = V

(i)
I

⊕
V

(i)
Γ

and we define the associated product spaces by

VI :=
N∏

i=1

V
(i)

I , VΓ :=
N∏

i=1

V
(i)
Γ .

The functions in VΓ are generally discontinuous across Γ, while our spectral element
approximations of the displacements are not. Therefore, we also define the subspace

V̂Γ := {functions of VΓ that are continuous across Γ}.
We will also need an intermediate subspace ṼΓ defined by further splitting the interface
degrees of freedom into primal (with the subscript Π) and dual (with the subscript
∆) degrees of freedom:

ṼΓ := V∆

⊕
V̂Π.

Here:
a) V̂Π is a global subspace consisting of selected continuous functions, the primal

variables; these can be the subdomain vertex basis functions of V̂ and/or edge/face
basis functions with a constant value at the nodes of the associated edge/face. We will
assume that, after a change of basis, each primal variable correspond to an explicit
degree of freedom; cf. [36, Sect. 3.3] and Subsection 7. This simplifies the presentation
and also adds to the robustness of the algorithms; see [28].

b) V∆ =
∏N

i=1 V
(i)
∆ is the product space of the subspaces V

(i)
∆ of dual interface

functions that vanish at the primal degrees of freedom.

3.2. Restriction and scaling operators. In order to define our precondition-
ers, we need certain restriction and interpolation operators represented by matrices
with elements in the set {0, 1}:

RΓ∆ : ṼΓ −→ V∆, RΓΠ : ṼΓ −→ V̂Π, RΓ : ṼΓ −→ VΓ

R
(i)
Γ : V̂Γ −→ V

(i)
Γ , R

(i)
∆ : V∆ −→ V

(i)
∆ , R

(i)
Π : V̂Π −→ V

(i)
Π .

(3.1)

With these operators, we build the following operators:

RΓ : V̂Γ −→ VΓ, the direct sum of the R
(i)
Γ ;

R̃Γ : V̂Γ −→ ṼΓ, the direct sum RΓΠ ⊕ R
(i)
∆ RΓ∆.
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We will also need the standard counting functions of the Neumann-Neumann methods
and in particular their pseudoinverses δ†i (x), defined at each node x on the interface
Γi := ∂Γi ∩ Γ of subdomain Ωi by

δ†i (x) := µi(x)/(
∑

j∈Nx

µj(x)), (3.2)

where µi is the value of the first Lamé parameter on Ωi and Nx is the set of indices of
the subdomains having the node x on their boundaries; see also [46, Sect. 6.2.1] for al-

ternatives. We define scaled local restriction operators R
(i)
D,Γ and R

(i)
D,∆ by multiplying

the sole nonzero element of each row of R
(i)
Γ and R

(i)
∆ by δ†i (x). Then, let

RD,Γ := the direct sum of R
(i)
D,Γ, R̃D,Γ := the direct sum RΓΠ ⊕ R

(i)
D,∆RΓ∆.

3.3. Schur complements. After reordering the interior displacements first and
then those of the interface, into (uI ,uΓ), the local spectral element stiffness matrix
for subdomain Ωi can be rewritten:

K(i) :=

[
K

(i)
II K

(i)T
ΓI

K
(i)
ΓI K

(i)
ΓΓ

]
.

By eliminating the interior displacement variables, we obtain the local Schur comple-

ment S
(i)
Γ , of the subdomain Ωi, as

S
(i)
Γ := K

(i)
ΓΓ − K

(i)
ΓI K

(i)−1
II K

(i)T
ΓI .

We note that while the pressures have been explicitly eliminated in (2.9) in order to
obtain a positive definite reformulation, the interior displacements are only eliminated
implicitly. Indeed, as is standard practice in iterative substructuring methods, only

the actions of S
(i)
Γ on given vectors will be required by the preconditioned conjugate

gradient (PCG) method employed, and these actions will be computed by solving
local Dirichlet problems on each Ωi. The BDDC preconditioner will also require the
solution of additional local problems with natural boundary conditions except with
vanishing primal displacement components.

We will consider three Schur complements corresponding to the spaces VΓ, V̂Γ,
and ṼΓ : a) the Schur complement SΓ defined on the space VΓ is the direct sum of

the local Schur complements S
(i)
Γ :

SΓ :=




S
(1)
Γ 0 · · · 0

0 S
(2)
Γ

...
...

. . . 0

0 · · · 0 S
(N)
Γ




. (3.3)

By subassembling all the degrees of freedom of the local Schur complements, we
obtain: b) the classical Schur complement ŜΓ, defined on the continuous subspace

V̂Γ :

ŜΓ :=

N∑

i=1

R
(i)T

Γ S
(i)
Γ R

(i)
Γ = RT

ΓSΓRΓ,
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with SΓ defined in (3.3).

And finally: c) the intermediate Schur complement S̃Γ, defined over the partially

assembled interface space ṼΓ, obtained by assembling only the primal variables of

the S
(i)
Γ :

S̃Γ := R
T

ΓSΓRΓ,

with RΓ : ṼΓ −→ VΓ defined in (3.1) and SΓ in (3.3). The classical Schur complement

ŜΓ can be also obtained from S̃Γ by further assembling the dual variables, i.e., as

ŜΓ := R̃T
Γ S̃ΓR̃Γ. (3.4)

3.4. Interface norms and seminorms. We define the following S
(i)
Γ - and SΓ-

seminorms by

|w(i)
Γ |2

S
(i)
Γ

:= w
(i)T
Γ S

(i)
Γ w

(i)
Γ ∀w(i)

Γ ∈ V
(i)
Γ , (3.5)

|wΓ|2SΓ
:= wT

ΓSΓwΓ =
N∑

i=1

|w(i)
Γ |2

S
(i)
Γ

∀wΓ ∈ VΓ, (3.6)

the ŜΓ- and S̃Γ-norms by

‖wΓ‖2
bSΓ

:= wT
Γ RT

ΓSΓRΓwΓ = |RΓwΓ|2SΓ
∀wΓ ∈ V̂Γ, (3.7)

‖wΓ‖2
eSΓ

:= wT
ΓR

T

ΓSΓRΓwΓ = |RΓwΓ|2SΓ
∀wΓ ∈ ṼΓ, (3.8)

and the | · |E(Γi)- and | · |E(Γ)-seminorms by

|w(i)
Γ |E(Γi) := inf

v(i) ∈ (H1(Ωi))
3

v(i)|Γi
= w

(i)
Γ

‖ǫ(v(i))‖L2(Ωi), (3.9)

|wΓ|2E(Γ) :=

N∑

i=1

µi|w(i)
Γ |2E(Γi)

∀wΓ ∈ VΓ. (3.10)

We note that the | · |E(Γi)-seminorm can also be written in terms of the local stiffness

matrix A(i) since ‖ǫ(v(i))‖2
L2(Ωi)

= v(i)T A(i)v(i).
The following Lemma, which is a consequence of Lemma 3.3 in Dohrmann and

Widlund [18], will allow us to reduce our analysis in Section 5 from the almost in-
compressible to the compressible case.

Lemma 3.1. If w
(i)
Γ has zero net flux across a subdomain boundary, i.e.,

∫

∂Ωi

(w
(i)
Γ ) · nidA = 0,

with ni the unit outward normal to the subdomain boundary and βn,i the inf-sup
parameter of Ωi, then

µi|w(i)
Γ |2E(Γi)

≤ |w(i)
Γ |2

S
(i)
Γ

≤ 4

(
1 +

3/2

µi/λi + β2
n,i

)
µi|w(i)

Γ |2E(Γi)
.
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4. The BDDC preconditioner. The splitting of the interface displacements
into dual (with subscript ∆) and primal (with subscript Π) interface displacements,
induces the following partition of the local stiffness matrices:

K(i) :=




K
(i)
II K

(i)T
∆I K

(i)
ΠI

K
(i)
∆I K

(i)
∆∆ K

(i)T
Π∆

K
(i)
ΠI K

(i)
Π∆ K

(i)
ΠΠ


 .

The BDDC preconditioner for the Schur complement ŜΓ is defined by

M−1 := R̃T
D,ΓS̃−1

Γ R̃D,Γ, (4.1)

where

S̃−1
Γ := RT

Γ∆




N∑

i=1

[
0 R

(i)T

∆

] [
K

(i)
II K

(i)T

∆I

K
(i)
∆I K

(i)
∆∆

]−1 [
0

R
(i)
∆

]
RΓ∆ + ΦS−1

ΠΠΦT .

(4.2)
This formula can be obtained by a block-Cholesky factorization of a partially sub-
assembled problem; see [36]. The first term in (4.2) represents local Neumann solves
on individual subdomain Ωi with the primal variables constrained to vanish. The
second term involves a coarse, global solve for the primal variables, with the coarse
matrix

SΠΠ =

N∑

i=1

R
(i)T

Π


K

(i)
ΠΠ −

[
K

(i)
ΠI K

(i)
Π∆

] [
K

(i)
II K

(i)T

∆I

K
(i)
∆I K

(i)
∆∆

]−1 [
K

(i)T

ΠI

K
(i)T

Π∆

]
R

(i)
Π

and a matrix Φ representing a change from discontinuous interface variables to primal
degree of freedoms. It is formed by the coarse basis functions defined on ṼΓ and as
the minimum energy extension into the subdomains, subject to the set of primal
constraints, and is given by

Φ = RT
ΓΠ − RT

Γ∆

N∑

i=1

[
0 R

(i)T

∆

] [
K

(i)
II K

(i)T

∆I

K
(i)
∆I K

(i)
∆∆

]−1 [
K

(i)T

ΠI

K
(i)T

Π∆

]
R

(i)
Π .

In Section 6, we will present several choices of primal constraints and their im-
plementation using a proper changes of basis will be discussed in Section 7. These
choices are motivated by the requirements of our theoretical analysis that the ele-
ments in the range of an average operator should have a divergence-free extension
into the subdomains and that the algorithm should perform well for compressible
elasticity problems. One experimentally successful recipe involves using primal vertex
constraints for all subdomain vertices, augmenting them with a primal constraint on
the average of the normal displacement component over each subdomain face, and the
averages, over the subdomain edges, of the two displacement components orthogonal
to each edge. This set of primal constraints does not fully meet the requirement of
existing theory. The set of primal constraints also has to be be enriched by additional
edge averages and, for certain sets of Lamé parameters {µi}, first order moments to
enable us to give a full theoretical justification.



BDDC Preconditioners for Almost Incompressible Elasticity 9

5. Convergence rate estimates. We now prove a bound on the BDDC con-
vergence rate given a sufficiently rich sets of primal constraints as just outlined. More
details on the choice of primal constraints will be provided in the next section. We
make the following two assumptions concerning the operator ED = R̃ΓR̃T

D,Γ that
returns a weighted average of the interface displacements across the interface Γ.

Assumption 1. The primal constraints are chosen such that ED satisfies the no
net flux condition

∫

∂Ωi

(RΓ(EDuΓ)) · nidA = 0 ∀uΓ ∈ V∆,

for all subdomains. Here, RΓ, defined in (3.1), maps ṼΓ into the product space VΓ

and ni is the unit outward normal of ∂Ωi.
Assumption 2. There exists a positive constant C, which is independent of n, H, h,

and N , such that

|RΓ(EDuΓ)|E(Γ) ≤ C

(
1 + log

(
n2 H

h

))
|RΓuΓ|E(Γ) ∀uΓ ∈ ṼΓ,

where the | · |E(Γ) - seminorm has been defined in (3.10).
We note that Assumption 2 essentially means that the BDDC algorithm converges

well for problems of compressible elasticity. We next turn to our main result.
Theorem 5.1. Let Assumptions 1 and 2 hold. Then, the BDDC preconditioned

operator M−1ŜΓ and the associated FETI-DP operator, using the same set of primal
variables, have condition numbers bounded by

κ2(M
−1ŜΓ) ≤ C max

i=1,...,N
4

(
1 +

3/2

µi/λi + β2
n,i

)(
1 + log

(
n2 H

h

))2

.

Here C is the constant of Assumption 2 and independent of n, N, H, h and the values
of the Lamé parameters. The parameter βn,i is the inf-sup parameter of the mixed
Qn − Qn−2 spectral element method and the subdomain Ωi.

Proof. We will use the ŜΓ inner product, associated with the ŜΓ-norm (3.7), to

prove the necessary bounds for the eigenvalues of the preconditioned operator M−1ŜΓ,
namely a lower bound

〈uΓ,uΓ〉bSΓ
≤ 〈uΓ, M−1ŜΓuΓ〉bSΓ

and an upper bound

〈uΓ, M−1ŜΓuΓ〉bSΓ
≤ C max

i=1,...,N
4

(
1 +

3/2

µi/λi + β2
n,i

)(
1 + log

(
n2 H

h

))2

〈uΓ,uΓ〉bSΓ
.

Lower bound. Since R̃T
Γ R̃DΓ = R̃T

DΓR̃Γ = I, we have

〈uΓ,uΓ〉bSΓ
= uT

Γ ŜΓR̃T
DΓR̃ΓuΓ = uT

Γ ŜΓR̃T
DΓS̃−1

Γ S̃ΓR̃ΓuΓ = 〈wΓ, R̃ΓuΓ〉eSΓ
,

where wT
Γ := uT

Γ ŜΓR̃T
DΓS̃−1

Γ . By the Cauchy–Schwarz inequality, it then follows

〈uΓ,uΓ〉bSΓ
≤ 〈wΓ,wΓ〉1/2

eSΓ
〈R̃ΓuΓ, R̃ΓuΓ〉1/2

eSΓ
= 〈wΓ,wΓ〉1/2

eSΓ
〈uΓ,uΓ〉1/2

bSΓ
,
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since ŜΓ = R̃T
Γ S̃ΓR̃Γ. Therefore, by squaring and cancelling a common factor,

〈uΓ,uΓ〉bSΓ
≤ 〈wΓ,wΓ〉eSΓ

= uT
Γ ŜΓR̃T

DΓS̃−1
Γ R̃DΓŜΓuΓ = 〈uΓ, M−1ŜΓuΓ〉bSΓ

. (5.1)

Upper bound. If uΓ ∈ ṼΓ, then R̃T
DΓuΓ ∈ V̂Γ, and with EDuΓ = R̃ΓR̃T

DΓuΓ,

‖EDuΓ‖2
eSΓ

= |RΓ(EDuΓ)|2SΓ
=

N∑

i=1

|RΓ(EDuΓ)|2
S

(i)
Γ

. (5.2)

We now note that the operator ED maps any continuous function, e.g., those of V̂Π,
into itself. Therefore when bounding EDuΓ, we can confine ourselves to elements
of V∆. By Assumption 1, RΓ(EDuΓ) then has zero net flux across the subdomain
boundaries and we can apply the right inequality of Lemma 3.1 to each local term in
the sum on the right, to obtain

|RΓ(EDuΓ)|2
S

(i)
Γ

≤ 4

(
1 +

3/2

µi/λi + β2
n,i

)
µi|RΓ(EDuΓ)|2E(Γi)

. (5.3)

By summing over the subdomains and using (5.2) and (3.10), we find

‖EDuΓ‖2
eSΓ

≤ max
i

4

(
1 +

3/2

µi/λi + β2
n,i

)
|RΓ(EDuΓ)|2E(Γ). (5.4)

By Assumption 2, we can bound the last factor on the right in terms of |RΓuΓ|E(Γ)

and then return to S̃Γ-norm by summing the left inequalities of Lemma 3.1 over the
subdomains and by using (3.8). We obtain,

‖EDuΓ‖2
eSΓ

≤ C max
i

4

(
1 +

3/2

µi/λi + β2
n,i

)(
1 + log

(
n2 H

h

))2

‖uΓ‖2
eSΓ

. (5.5)

Given uΓ ∈ V̂Γ, we now use wΓ := S̃−1
Γ R̃DΓŜΓuΓ, as in the proof of the lower bound.

Then, R̃T
DΓwΓ = M−1ŜΓuΓ and

〈M−1ŜΓuΓ, M−1ŜΓuΓ〉bSΓ
= 〈R̃T

DΓwΓ, R̃T
DΓwΓ〉bSΓ

= 〈R̃ΓR̃T
DΓwΓ, R̃ΓR̃T

DΓwΓ〉eSΓ
= ‖EDwΓ‖2

eSΓ
,

because ŜΓ = R̃T
Γ S̃ΓR̃Γ and the definition of ED. From (5.5), it follows that

‖EDwΓ‖2
eSΓ

≤ C max
i=1,...,N

4

(
1 +

3/2

µi/λi + β2
n,i

)(
1 + log

(
n2 H

h

))2

‖wΓ‖2
eSΓ

.

Since by (5.1), ‖wΓ‖2
eSΓ

= 〈uΓ, M−1ŜΓuΓ〉bSΓ
, we have

〈M−1ŜΓuΓ, M−1ŜΓuΓ〉bSΓ
≤

C max
i=1,...,N

4

(
1 +

3/2

µi/λi + β2
n,i

)(
1 + log

(
n2 H

h

))2

〈uΓ, M−1ŜΓuΓ〉bSΓ
. (5.6)
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From the Cauchy–Schwarz inequality and (5.6), we then have

〈uΓ, M−1ŜΓuΓ〉2bSΓ
≤ 〈uΓ,uΓ〉bSΓ

〈M−1ŜΓuΓ, M−1ŜΓuΓ〉bSΓ

≤ C max
i=1,...,N

4

(
1 +

3/2

µi/λi + β2
n,i

)(
1 + log

(
n2 H

h

))2

〈uΓ,uΓ〉bSΓ
〈uΓ, M−1ŜΓuΓ〉bSΓ

,

and the upper bound follows by cancelling a common factor.

6. Choice of primal constraints and Assumptions 1 and 2. We will now
show how Assumptions 1 and 2 can be satisfied with a proper choice of primal con-
straints. We will consider the following subsets of primal variables:

• V : the displacements at the subdomain vertices;
• E2

a: the averages of the normal displacements over each subdomain edge (2
averages per edge);

• E3
a: the averages of the displacements over each subdomain edge (3 averages

per edge, one per displacement component);
• E2

m: the first order moments of the normal displacements over each subdo-
main edge (2 moments per edge);

• F 1
a : the average of the normal displacements over the interior of each subdo-

main face (1 average per face);
• F 3

a : the averages of the displacements over each subdomain face (3 averages
per face, one per displacement component).

Our discussion will be based on results of [35], as far as Assumption 1 is concerned,
and on [32] for Assumption 2. As in all two-level domain decomposition algorithms,
we have to observe the null space condition. The null space of the elasticity operator
in three dimension is spanned by the six rigid body motions, which are vector valued
functions with components which are linear functions; see, e.g., [32, Section 2].

The averages, which define our primal constraints, can be viewed in terms of
weights given by the restrictions of the rigid body motions to edges and faces. We
note that for a straight edge, we can use no more than five primal constraints since
the restrictions to an edge of the six rigid body modes are linearly dependent; see [32,
pages 1540 and 1560].

We will use an additive notation to denote the union of sets of constraints. While
in our theory, we need to include at least V +E3

a +F 1
a , the numerical results of Section

8 indicate, that in many cases, we obtain good convergence rates also with the smaller
set of primal constraints V +E2

a +F 1
a . That latter choice is perfect for Assumption 1.

Lemma 6.1. Assumption 1 holds when the set of primal constraints contains the
set V + E2

a + F 1
a .

Proof. We need to show that
∫

∂Ωi
v(i) · ni = 0, where v(i) is the component of

RΓEDuΓ associated with Ωi and uΓ ∈ V∆. We consider each face F ij , shared by Ωi

and Ωj , of ∂Ωi separately. Since the subdomain vertices are primal, we can decompose
the integral over F ij into face and edge components

∫

F ij

v(i) · nij =

∫

F ij

In,h(θF ijv(i)) · nij +
∑

Ek⊂∂F ij

∫

F ij

In,h(θEkv(i)) · nij , (6.1)

where In,h is the interpolation operator onto the spectral element space and θF ij and
θEk are the standard partition-of-unity functions with the value 1 at the nodes on the
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face F ij and the edge Ek, respectively, and which vanish at all other interface nodes.
Since each element is a nondegenerate affine image of the reference cube, our mapped
elements are polytopes with faces that are parallelograms, and, in particular, with
parallel mesh lines on the faces.

By using GLL quadrature, the first, the face term of (6.1), reduces to a sum over
the GLL nodes interior to F ij . Our choice of the primal constraints includes face
averages of the normal displacements and after a change of basis, described in the
next section, these averages will all vanish. Therefore the first term on the right hand
side of (6.1) will vanish.

Since the edge function wE = In,h(θEku
(i)
∆ ) · nij vanishes at all the GLL nodes

on the interface, except at the nodes on Ek, we find, by using GLL quadrature over
F ij and with Ek located at x = ξ0, that

∫

F ij

wEds =

n+1∑

i1=0

n+1∑

i2=0

σi1σi2wE(ξi1 , ξi2) = σ0

n+1∑

i2=0

σi2wE(ξ0, ξi2) = σ0

∫

Ek

wEdξ.

These edge averages all vanish after the change of basis, of the next section, and so
does all the integrals of (6.1).

Lemma 6.2. Assumption 2 holds when the set of primal constraints is acceptable
in the sense of [32, Definition 5.8]. This is guaranteed, for any selection of the Lamé
parameters µi, by using the primal set V + E3

a + E2
m + F 1

a .
Proof. In the recipe developed in [32, Section 5], fully primal faces and edges play

an important role. A fully primal face is associated with at least six primal constraints,
which provide a full six-dimensional dual basis for the space of rigid body motions.
They cannot be based on vertex constraints since there is an additional requirement
that all the functionals can be bounded by a logarithmic factor in the dimension of
the local problems; vertex constraints are associated with operators which have norms
which, in our context, would be linear in n2H/h.

It is shown in [34, Section 7] that a third tangential edge constraint, as in E3
a,

will be required for at least one edge of a face of the interface to make it fully primal.
This makes it necessary to use at least a substantial subset of the tangential edge
averages of E3

a in our set of primal constraints. Should no tangential edge constraints
be included, then all faces of the interface would fail to be primal. We note that an
examination of the theory shows that, to assure success, there must exist relatively
many fully primal faces in all parts of the domain.

The requirement that the set of primal constraints be acceptable will also at times
make it necessary to make some edges of the interface fully primal; all edges will be
fully primal by including E3

a + E2
m in the set of primal constraints. Such a set of

five constraints for an individual edge can be needed in developing our bounds if the
coefficients of the subdomains that have the edge in common have Lamé parameters
µi that differ by orders of magnitude. An example can be given, in the case of four
such subdomains, by selecting two very different values of µi in an alternating pattern
when we move around the edge. Without patterns of such a nature, constraints based
on the first order moment over edges are not required to establish strong bounds as
in Theorem 5.1.

A full proof of the bound of Assumption 2 also requires the extension to the
spectral element case of the finite element bound given in Klawonn and Widlund
[32, Condition 8.1]. We note that the PD operator of that work and ED of the
BDDC algorithm are complementary projectors with ED+PD = I. The modifications
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necessary are routine since the extension of the technical tools necessary from the finite
element to the spectral element case can be carried out essentially as in Toselli and
Widlund [46, Subsect. 7.4.1]. There these tools are presented in the special case of
subdomains with one single element (H/h = 1). However, they can be easily extended
to multielement subdomains by using the same technique of refining the GLL mesh
inside each spectral element into a quasi-uniform mesh with mesh size equal to the
smallest distance between GLL points, i.e.,, O(1/n2) on the reference element. The
number of refined mesh points along a subdomain edge then becomes O(n2H/h) and
we can obtain counterparts of [46, Lemmas 7.11 - 7.15] with factors 1 + log(n2H/h)
instead of 1 + log(n). We finally note that the auxiliary results Lemmas 7.1 - 7.5 of
[32, Sect. 7], which also involves first order moments, pose no new challenges.

We note that in the previous work on compressible elasticity, as in [32], the use of
vertex constraints is avoided. By themselves, they do not allow for bounds of the same
quality as in Theorem 5.1; see [33, 30, Algorithm A]. Here the situation is different
since we use the vertex constraints in establishing Assumption 1. It is clear from our
experiments, reported in Section 8, that combining the primal constraints of E2

a +F 1
a

with the vertex set V often results in a performance which is virtually identical with
that of the richer set V +E3

a +F 1
a . We note that a bound for the former case, which is

considerably much worse than that of our main result, can be established by relying
on a bound for the compressible case with primal vertex constraints only; see, in
addition to the two papers cited above, [29, Theorem 6.3].

7. Implementation of primal constraints by a change of basis. We now
describe the implementation of the edge and face constraints defined above by using
a linear change of basis for each scalar component of the displacements. This change
of basis will explicitly introduce the new primal degrees of freedom in the basis (for
additional details see [36, 32, 28]). We first consider the case of edge and face averages
and then that of averages and first order moment constraints over the edges in the case
of one element per subdomain, assumed for simplicity to be the reference element.
A generalization to the case of more elements per subdomain is straightforward. We
denote by T (i) the local transformation matrix, associated with Ωi, from the new basis
(denoted with a hat) to the original one,

u = T (i)û.

The local stiffness matrix in the new basis is then

K̂(i) := T (i)T K(i)T (i). (7.1)

Such T (i) can be constructed by grouping together the contributions of each scalar
edge and face components, together with an identity matrix for the interior compo-
nent, see [36]. The new local stiffness matrices are denser than the original ones, but
only the blocks related to the interface nodes are affected by the transformation, which
indeed preserves the sparsity pattern for the interior nodes of the subdomain, since

K̂
(i)
II = K

(i)
II . We will assume that such a transformation of basis has been performed

before the construction of the preconditioner.
We note that the transformation of basis impacts the sparsity pattern much less

than the elimination of the pressure variables. For example, we considered a dis-
cretization with 5 × 3 × 2 spectral elements of degree n = 3 and found that the
number of nonzero entries increased from about 1.24 · 105 to 8.85 · 105 (about a fac-
tor 7.14) when the pressures were eliminated, while the change of variable further
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increased the number of nonzero entries from 8.85 · 105 to 1.08 · 106 (by only a factor
1.22).

Edge averages. Consider a scalar component on an element edge E: it contains
n− 1 GLL nodes since the endpoints are always associated with primal variables and
are therefore not included in the dual part of the edge. In [36], the edge average
change of basis is performed by splitting the dual part of each scalar component of
the edge into the sum of two functions, a constant average function and another with
a zero average,

ûn




1
...
1


+




û2

...
ûn−1

−∑n−1
i=2 ûi


 . (7.2)

ûn can then be selected as a primal degree of freedom associated with the edge average
of the scalar component. In order to get the correct average in our GLL case, the
change of basis over the edge is performed by using the matrix

TE =




1 0 . . . 0 1
. . .

...
1 1

. . .
...

−σ2

σn
. . . . . . −σn−1

σn
1




, (7.3)

where σi are the weights of the one-dimensional GLL quadrature formula.
Face averages. Analogous transformation matrices TF can be defined for the

face constraints. As for the edges, the last element of the dual part of each scalar
component on a face can be chosen as primal, and face averages can be obtained with
the two-dimensional GLL quadrature rule based on tensor product. The transforma-
tion matrix obtained is then structurally similar to (7.3): the elements on the main
diagonal and in the last column equal to 1, while the other matrix elements vanish
except those of the last row, which are associated with the new primal degrees of
freedom, and given by

(
−σ2

2

σ2
n

. . . − σ2σn−1

σ2
n

. . . − σn−1σ2

σ2
n

. . . − σ2
n−1

σ2
n

1

)
. (7.4)

Edge averages and first order moments. In a similar way, writing the trans-
formation matrix by columns into

[t2| . . . |tn], (7.5)

we perform the change of basis by setting the first n − 3 columns to

tj = (0, . . . , 0, 1, αj, βj , 0, . . . , 0)T ,

with the value 1 in the (j − 1)-th position and αj , βj chosen such that tj has zero
average and first moment over the edge. These conditions imply that αj , βj solve the
linear system

{
σj + αjσj+1 + βjσj+2 = 0

ξjσj + ξj+1αjσj+1 + ξj+2βjσj+2 = 0,
(7.6)
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for 2 ≤ j ≤ n − 2, and where ξj are the GLL nodes, yielding

αj = − σj

σj+1

ξj+2 − ξj

ξj+2 − ξj+1
, βj =

σj

σj+2

ξj+1 − ξj

ξj+2 − ξj+1
. (7.7)

The last two columns of the transformation matrix are obtained by making tn−1 a
constant and equal to 1, while tn is a linear function with values −1 and 1 at the edge
endpoints and evaluated at the GLL nodes of the edge.

8. Numerical results. We report in this Section the results of parallel numer-
ical experiments for the positive definite reformulation of the mixed elasticity system
on Ω, a parallelepiped with homogeneous Dirichlet boundary conditions on one face
and homogeneous Neumann boundary conditions on the remainder of the boundary.
This system is discretized with GLL spectral elements and the domain Ω is subdivided
into N = Nx × Ny ×Nz cubic spectral elements, assembled into subdomains Ωi with
(H/h)3 spectral elements each. The reduced interface system with the Schur comple-
ment matrix (3.4) is solved by the preconditioned conjugate gradient algorithm (PCG)
with the BDDC preconditioner (4.1), a zero initial guess, and the stopping criterion
‖rk‖2/‖r0‖2 ≤ 10−6, where rk is the residual of the k−th iterate. The right-hand side
is random and uniformly distributed.

Our code has been implemented in FORTRAN and run on both the small Linux
cluster Ulisse (84 cores) of the University of Milan and the larger IBM SP6/5376
(5376 computing cores subdivided into 168 nodes) of CINECA (www.cineca.it). In
order to assure parallelization and portability of the code, message passing has been
implemented in MPI, while local data structures such as matrices and vectors are
managed through the use of the PETSc library [3, 2]. Each subdomain is assigned
to one core (here one MPI process); the local problems involved in Schur matrix-
vector products and in the application of the BDDC local solvers are solved by the
multifrontal method UMFPACK [11], whereas the BDDC coarse problem is solved by
either the multifrontal solver MUMPS [1] or by PCG run to almost machine precision
(with relative tolerance 10−14).

Effects of the choice of primal constraints. Table 8.1 reports the BDDC
iteration counts (it) and condition numbers κ2 (which is essentially λmax since λmin

is very close to 1), with different choices of primal constraints, ranging from just
the subdomain vertices (V ) to vertices augmented with edge and face averages, and
edge first order moments (V + E3

a + E2
m + F 1

a ). These results are reported for both
compressible (ν = 0.4) and almost incompressible (ν = 0.49999) materials, for tests
with fixed polynomial degree n = 5, number of subdomains (processors) N = 3 ×
3 × 3 and 2 × 2 × 2 elements per subdomain (H/h = 2). The results show that the
strength of the BDDC preconditioner increases when the set of primal constraints
increases, with the minimal vertex choice performing quite poorly even in the easier
compressible case. When the material becomes almost incompressible, all choices of
primal constraints including only vertex and edge constraints lead to ill-conditioned
BDDC operators (with κ2 on the order of 104 − 105). The BDDC operator becomes
robust in the almost incompressible limit when at least the face average constraint for
the normal displacement component (F 1

a ) is added to the vertex and edge constraints,
thus reducing κ2 to about 10 or less.

The iteration counts, on the other hand, indicate a poor performance with vertex
constraints only, while the inclusion of edge constraints seem to improve the iteration
counts considerably. However, this is a misleading effect due to our stopping criterion
which is based on the relative residual: changing primal constraints changes the initial
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primal # primal ν = 0.4 ν = 0.49999 random mix
variables dofs it κ2 it κ2 it κ2

V 132 94 240.65 111 5.3e+5 114 4.1e+7
V + E2

a 324 22 9.69 23 2.3e+4 33 2.0e+6
V + E3

a 420 19 7.98 21 2.1e+4 23 1.7e+6
V + E2

a + E2
m 516 19 7.17 23 2.2e+4 24 1.9e+6

V + E2
a + F 1

a 378 22 9.48 23 10.0 32 27.13
V + E3

a + F 1
a 474 19 7.79 21 9.19 24 12.03

V + E3
a + F 3

a 582 19 7.71 21 9.11 24 11.06
V + E3

a + E2
m + F 1

a 666 14 4.10 16 5.69 20 7.37
Table 8.1

BDDC iteration counts (it) and condition numbers κ2 with different choices of primal con-
straints. Compressible material with ν = 0.4 (left), almost incompressible material with ν = 0.49999
(center), heterogeneous material with discontinuous Lamé parameters (right) given as in Fig. 8.1.
Fixed polynomial degree n = 5, number of subdomains (processors) N = 3 × 3 × 3 and 2 × 2 × 2
elements per subdomain (H/h = 2).

λ µ
0.1 106 18
4 72 106

106 2.5 3

18 2.3 33
3.7 0.2 0.4
0.25 0.4 10

40 0.1 33
0.87 106 30
10 106 20

21 1 3·10−2

2.2 0.01 12
0.55 15 1

106 20 200
200 5 106

1 106 10

0.1 0.3 18
3.7 34 20
1 4 20

Fig. 8.1. Left: domain Ω for the tests of Table 8.1 decomposed into N = 3× 3 × 3 subdomains
with 2 × 2 × 2 elements per subdomain (H/h = 2). Center and right: distribution on each 3 × 3
subdomain layers of the discontinuous Lamé parameters λ and µ for the ”random mix” test of Table
8.1 (last column).

residual, hence it changes the relative residual and the iteration counts. We have also
computed the infinity norm of the error in each run (not reported) and we have found
that indeed these errors are small only for the robust BDDC methods that also include
at least the normal face constraints. The last column of Table 8.1 reports analogous
results for a harder test with discontinuous Lamé parameters λ and µ distributed
randomly among the subdomains as shown in Fig. 8.1. Note that in this test several
almost incompressible subdomains (with large λ/µ ratio) are mixed randomly with
compressible subdomains and different pairs of almost incompressible subdomains
can share a whole face or an edge or a vertex. The results show that also in this
test the BDDC preconditioned operator becomes well conditioned only if at least the
face average constraint for the normal displacement component is added to the vertex
and edge constraints, i.e., if at least V + E2

a + F 1
a is included in the set of primal

constraints.

Dependence on polynomial degree n. Table 8.2 reports the BDDC iteration
counts and condition numbers for increasing polynomial degree n from 2 to 12, for
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ν = 0.4 ν = 0.49999
n V + E2

a + F 1
a V + E3

a + F 1
a V + E2

a + F 1
a V + E3

a + F 1
a

it κ2 it κ2 it κ2 it κ2

2 7 1.66 5 1.27 7 1.66 5 1.26
3 10 2.64 9 2.12 13 3.85 11 3.84
4 14 4.57 12 3.66 15 4.91 15 4.91
5 17 5.65 14 4.87 18 6.80 17 6.80
6 19 7.71 17 6.41 20 8.32 19 7.65
7 21 8.60 18 7.30 22 9.41 22 9.08
8 23 10.54 20 8.69 24 11.60 23 10.84
9 24 11.40 21 9.48 26 12.61 25 12.17
10 26 13.17 22 10.75 28 14.68 26 13.79
11 28 13.99 24 11.47 30 15.69 28 15.06
12 29 15.62 25 12.61 31 17.59 29 16.56

Table 8.2

BDDC dependence on the polynomial degree n: iteration counts (it) and condition numbers κ2

with the first two choices of primal constraints that are robust in the incompressible limit, V +E2
a
+F 1

a

and V + E3
a

+ F 1
a
. Compressible material with ν = 0.4 (left) and almost incompressible material

with ν = 0.49999 (right). Fixed number of subdomains (processors) N = 3× 3× 3, one element per
subdomain (H/h = 1).
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Fig. 8.2. Square root of the BDDC condition number κ2 as a function of n; data from Table
8.2. Compressible materials with ν = 0.4 (left), almost incompressible materials with ν = 0.49999
(right).

both compressible and almost incompressible materials, and for the first two choices
of primal constraints that are robust in the incompressible limit, namely V +E2

a +F 1
a

and V + E3
a + F 1

a ; we obtained almost the same results also for V + E3
a + F 3

a , which
are not reported. In order to check the dependence of κ2 on n, we show in Fig. 8.2
the semilogx plots of

√
κ2, using values from Table 8.2, as a function of n.

In spite of the alternating behavior associated with even and odd values of n, the
results seem to confirm the log2(n) bound of Theorem 5.1, since the semilogx plots well
approximate straight lines when we disregard the first 2-3 points, i.e., those for n ≤ 3.
The values for the smaller set of primal constraints V + E2

a + F 1
a are more irregular

in the compressible case, where they seem to grow slightly faster than the values for
V + E3

a + F 1
a . The slopes of the approximating straight lines in the compressible case
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V + E2
a + F 1

a V + E3
a + F 1

a

N dim(Vn) dim(V̂Γ) dim(V̂Π) it κ2 dim(V̂Π) it κ2

2x2x2 19494 2970 106 17 7.16 132 15 5.33
4x4x2 75924 15336 472 20 7.27 592 17 6.10
6x6x2 169290 36990 1078 20 7.48 1356 18 6.27
8x8x2 299592 67932 1924 20 7.57 2424 18 6.33

10x10x2 466830 108162 3010 20 7.60 3796 18 6.36
12x12x2 671004 157680 4336 20 7.58 5472 18 6.39
14x14x2 912114 216486 5902 19 7.61 7452 17 6.39
16x16x2 1190160 284580 7708 19 7.57 9736 16 6.37

Table 8.3

BDDC scalability: iteration counts (it) and condition numbers κ2 for an increasing number of
subdomains (processors) N . Fixed ν = 0.49999, polynomial degree n = 3, and 3 × 3 × 3 elements
per subdomain (H/h = 3). Number of global, interface, and primal dofs are also shown

8 32 72 128 200 288 392 512
4
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N

κ
2

 

 

V+E2
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a

V+E3
a
+F1

a

Fig. 8.3. BDDC scalability: condition number κ2 for increasing number of subdomains N , cf.
Table 8.3

are 1.48 for V +E3
a +F 1

a and 1.65 for V +E2
a +F 1

a , while in the almost incompressible
case the slopes are 1.67 for V +E3

a +F 1
a and 1.8 for V +E2

a +F 1
a . These slopes of the

n-semilogx plots are about twice the slopes of the analogous (H/h)-semilogx plots of
Fig. 8.4, (see comment below), in agreement with the bound of Theorem 5.1, where
the log argument is quadratic in n and linear in H/h.

Scalability. Table 8.3 reports the BDDC iteration counts and condition numbers
for increasing number of subdomains N , while keeping all the other parameters fixed
(n = 3, H/h = 3) and considering only almost incompressible materials and the two
primal spaces V + E2

a + F 1
a and V + E3

a + F 1
a . The dimensions of the discrete global

space Vn, the interface space V̂Γ, and primal space V̂Π are also reported, showing
that the number of primal constraints, dim(V̂Π), for the two primal spaces is a small

percentage of that of that of dim(V̂Γ). It decreases from 3.5% to 2.7% for increasing
N for V +E2

a +F 1
a and from 4.4% to 3.4% for V +E3

a +F 1
a . The condition numbers for

both primal sets are then plotted in Fig. 8.3 as a function of N . These results clearly
show the scalability of the BDDC algorithm in the almost incompressible limit. As
expected, the larger primal space V +E3

a +F 1
a has a slightly better performance than

V + E2
a + F 1

a .
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ν = 0.3 ν = 0.49999
V + E2

a + F 1
a V + E3

a + F 1
a V + E2

a + F 1
a V + E3

a + F 1
a

H/h it κ2 it κ2 it κ2 it κ2

1 10 2.64 8 2.10 13 3.86 11 3.84
2 16 5.20 13 4.07 16 5.26 14 4.28
3 19 7.16 16 5.51 19 7.16 17 6.16
4 21 8.77 17 6.65 21 8.76 19 7.56
5 23 10.15 18 7.61 23 10.12 20 8.76
6 24 11.36 19 8.43 25 11.32 22 9.79
7 26 12.45 21 9.17 26 12.39 22 10.69

Table 8.4

BDDC dependence on H/h: iteration counts (it) and condition numbers κ2 for an increasing
ratio H/h for the two choices of primal constraints V + E2

a
+ F 1

a
and V + E3

a
+ F 1

a
. Compressible

material with ν = 0.3 (left) and almost incompressible material with ν = 0.49999 (right). Polynomial
degree n = 3, number of subdomains N = 3 × 3 × 3.
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Fig. 8.4. Square root of BDDC condition number κ2 for increasing subdomain size H/h,
cf. Table 8.4. Compressible materials with ν = 0.3 (left), almost incompressible materials with
ν = 0.49999 (right).

Dependence on the ratio H/h. Table 8.4 reports the BDDC iteration counts
and condition numbers for an increasing ratio H/h. We consider compressible mate-
rials with ν = 0.3 (left), almost incompressible materials with ν = 0.49999 (right) and
the same robust choices of primal constraints of the previous tables, i.e., V +E2

a +F 1
a

and V + E3
a + F 1

a . Fig. 8.4 shows the semilogx plots of
√

κ2 from Table 8.4 as a func-
tion of the ratio H/h. Here no oscillations are present; the plots appear to be straight
lines (disregarding the first point in the almost incompressible case), with slope about
1.01 for V + E2

a + F 1
a and 0.80 for V + E3

a + F 1
a in the compressible case (left panel)

and 0.99 and 0.93 in the almost incompressible case (right panel). These values give
about half the slopes of the analogous n-semilogx plots of Fig. 8.2, in agreement with
the log2

(
n2 H

h

)
bound of Theorem 5.1.

Robustness with respect to discontinuities of material parameters. In
addition to the test of Table 8.1, with a random mix of compressible and almost
incompressible subdomains, we consider here two simpler tests as in Fig. 3 and 5 of
[28]. First we consider a domain decomposed into 3×3×4 subdomains as in Fig. 8.5.
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V+E2
a+F 1

a V+E3
a+F 1

a V+E3
a+E2

m+F 1
a

E1/E2 it κ2 it κ2 it κ2

ν = 0.29
10−6 24 10.23 19 7.22 14 4.23

1 23 10.01 19 7.66 14 4.18
106 31 80.88 23 7.45 18 4.73

ν = 0.49999
10−6 32 12.88 24 10.51 18 6.29

1 23 10.16 22 9.37 17 5.72
106 39 82.76 29 14.53 23 7.52

Fig. 8.5. Jumping coefficients: BDDC iteration counts (it) and condition numbers κ2 with
different choices of primal constraints. Domain with N = 3 × 3 × 4 subdomains (processors), each
with 2× 2× 2 elements (H/h = 2) with polynomial degree n = 5. Fixed Poisson ratio ν = 0.29 (top)
and ν = 0.49999 (bottom), jumping Young modulus E equal to E1 in the two central subdomains,
which share a face and equal to E2 = 210 in the surrounding subdomains.

V+E2
a+F 1

a V+E3
a+F 1

a V+E3
a+E2

m+F 1
a

E1/E2 it κ2 it κ2 it κ2

ν = 0.29
10−6 24 12.29 19 7.40 14 4.18

1 23 10.22 19 7.88 14 4.27
106 28 23.37 23 13.15 16 4.14

ν = 0.49999
10−6 27 14.23 23 10.19 17 5.93

1 23 10.30 22 9.58 16 5.75
106 32 22.80 26 22.36 19 5.99

Fig. 8.6. Jumping coefficients: BDDC iteration counts (it) and condition numbers κ2 with
different choices of primal constraints. Domain with N = 3 × 4 × 4 subdomains (processors), each
with 2× 2× 2 elements (H/h = 2) with polynomial degree n = 5. Fixed Poisson ratio ν = 0.29 (top)
and ν = 0.49999 (bottom), jumping Young modulus E equal to E1 in the two central subdomains,
which share an edge and equal to E2 = 210 in the surrounding subdomains.

All subdomains have Young modulus E2 = 210 except the two interior subdomains
sharing a face, that have Young modulus E1 varying by twelve orders of magnitude
compared with E2. The resulting BDDC iteration counts and condition numbers are
reported in the table in Fig. 8.5 for both ν = 0.29 (top) and ν = 0.49999 (bottom),
for the three primal spaces V + E2

a + F 1
a , V + E3

a + F 1
a , and V + E3

a + E2
m + F 1

a of
increasing size and strength. In the second test of Fig. 8.6 the situation is the same
except that the two interior subdomains now share an edge instead of a face and that
the domain consists of 3 × 4 × 4 subdomains. In both tests, the harder case is when
the surrounding subdomains have smaller stiffness, e.g., when E1/E2 = 106, while in
the reverse case E1/E2 = 10−6 all primal sets have a performance very close to that
of the homogeneous case with E1/E2 = 1. In Fig. 8.5, V + E2

a + F 1
a suffers the most

when E1/E2 increases from 1 to 106, with κ2 increasing from about 10 to more than
80. V + E3

a + F 1
a appears to be robust when ν = 0.29 but less so when ν = 0.49999,

since κ2 increases from 9.37 to 14.53. V + E3
a + E2

m + F 1
a appears to be robust in all

cases, with κ2 ≤ 7.52. This situation is confirmed in Fig. 8.6: both V + E2
a + F 1

a and
V + E3

a + F 1
a suffer when E1/E2 increases from 1 to 106, while V + E3

a + E2
m + F 1

a is
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robust in all cases. Indeed, only with the primal set V + E3
a + E2

m + F 1
a is the edge

fully primal.

We note that the results in [28] are much worse than ours for these two special
problems; we attribute the better performance in our experiments to the primal vertex
constraints which were not used in the older experiments.
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