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Abstract

Scalability is a key challenge in static program analyses based on solvers for Sat-

isfiability Modulo Theories (SMT). For imperative languages like C, the approach

taken for modeling memory can play a significant role in scalability. The main

theme of this thesis is using partitioned memory models to divide up memory

based on the alias information derived from a points-to analysis.

First, a general analysis framework based on memory partitioning is presented.

It incorporates a points-to analysis as a preprocessing step to determine a conser-

vative approximation of which areas of memory may alias or overlap and splits the

memory into distinct arrays for each of these areas.

Then we propose a new cell-based field-sensitive points-to analysis, which is an

extension of Steensgaard’s unification-based algorithms. A cell is a unit of access

with scalar or record type. Arrays and dynamically memory allocations are viewed

as a collection of cells. We show how our points-to analysis yields more precise

alias information for programs with complex heap data structures.

Our work is implemented in Cascade, a static analysis framework for C pro-

grams. It replaces the former flat memory model that models the memory as

a single array of bytes. We show that the partitioned memory models achieve

better scalability within Cascade, and the cell-based memory model, in particu-

lar, improves the performance significantly, making Cascade a state-of-the-art C

analyzer.
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Introduction

Solvers for Satisfiability Modulo Theories (SMT) are widely used as back ends

for program analysis and verification tools. In a typical application, portions of a

program’s source code together with one or more desired properties are translated

into formulas which are then checked for satisfiability by an SMT solver. A key

challenge in many of these applications is scalability: for larger programs, the

solver often fails to report an answer within a reasonable amount of time because

the generated formula is too complex. Thus, one key objective in program analysis

and verification research is finding ways to reduce the complexity of SMT formulas

arising from program analysis.

The task is harder for programs written in C-like imperative languages featuring

pointers and pointer arithmetic. The semantics requires an adequate modeling of

the memory states. The theory of arrays is often used for memory modeling, with

the operations read and write modeling the memory loads and stores. A natural

idea is to model the memory as a single array of bytes (the flat model). This

model can accurately capture the low-level constructs and operations of C-like

languages including union types, type casts and pointer arithmetic. This model

implicitly assumes that any two symbolic memory locations can alias or overlap,

even for distinct variables and successive calls to malloc. Disjointness constraints

must be introduced to guarantee the isolation of such non-overlapping locations.

However, with disjointness constraints for every pair of distinct locations, the size

of the generated formula grows quadratically and quickly becomes a bottleneck for

scalability. Another issue affecting scalability is the byte-level reasoning required in

the flat model. All the primitive values are broken into a sequence of bytes, and the

corresponding memory loads or stores are decomposed into repetitive operations
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of array reads or writes. This increase in the number of array accesses makes the

SMT formula even more complex.

The Burstall model has been proposed to improve memory modeling for higher-

level imperative languages such as Java. This model splits the memory into multi-

ple arrays according to types, making the assumption that pointers with different

types will never alias. In addition to the common scalar types, each record field

is also represented as a unique type. This simplifies the verification conditions

by eliminating the need for disjointness constraints between pointers with distinct

types. Another assumption of the model is type-safe memory access: the type

with which data is stored and the type with which it is read back are guaranteed

to be compatible. Based on this assumption, the element type of each memory

array can be modeled using n bytes, where n is the byte size of the corresponding

data type. Every memory load or store can then be represented by a single array

operation, which again reduces the complexity of the resulting SMT formula. Un-

fortunately, this model is only suitable for strongly-typed languages. For C-like

languages, the access types of memory can be easily altered via type casting or

union types, and aliasing or overlapping between distinct memory areas can be

arbitrarily introduced via pointer arithmetic.

One objective of this dissertation is to propose an alternative memory model

for C-like languages that provides much of the efficiency of the Burstall model

without losing the accuracy of the flat model. One thing learned from the Burstall

model is that memory partitioning is an effective way to eliminate “uninteresting”

disjointness constraints by dividing memory areas guaranteed not to be aliased into

distinct memory arrays. In other words, as long as the aliased areas are allocated

into one array, the partitioning should be accurate. The problem of computing the
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exact aliasing relations with the presence of pointers is known to be NP-hard, but a

wide body of work exsits on inferring a conservative approximation. By leveraging

this work, we can effectively partition memory even for C-like languages.

Contribution

The main contributions of the dissertation are to introduce the Cascade verification

framework, to develop a series of partitioned memory models and especially, to

introduce a novel cell-based points-to analysis that is capable of computing more

precise alias information for programs with complex heap data structures, thus

deriving a finer memory partition. In more details, the contributions are as follows.

The Cascade Verification Framework. The work of this thesis is imple-

mented in Cascade, presented in chapter 2. Cascade is a static analysis platform

for C, which uses bounded model checking to generate verification conditions and

checks them using an SMT solver. Within the framework, the memory state is

viewed as a collection of sub-states, one for each distinct alias groups. An alias-

analysis module serves as a preprocessor, performing a points-to analysis on the

whole program in order to discover those alias groups. This framework also pro-

vides a scalable way to analyze safety properties of programs (i.e., the absence of

runtime errors such as null or dangling pointer dereferences).

Partitioned Memory Models. The alias analysis module uses a points-to anal-

ysis that attempts to construct a single points-to graph for the entire program. This

graph provides a compact representation of the alias relationships. The points-to

analyses can be categorized into the unification-based approach and the inclusion-
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based approach. In the former, each alias group points-to at most one other

group; while in the later, multiple points-to edges may exist from one group to

others. When interpretating the pointer dereference in the semantics, if the alias

group of the pointer has multiple points-to edges, it is impossible to determine

the exact points-to alias group. Therefore, we choose the unification-based points-

to algorithms (Steensgaard’s analysis). Both Steensgaard’s original analysis and

Steensgaard’s field-sensitive analysis are utilized to build the field-insensitive par-

titioned memory model and the field-sensitive one, where the second yields more

fine-grained partitions when dealing with record types (e.g. structs in C).

Cell-based Points-to Analysis. For programs with complex heap data struc-

tures, Steensgaard’s field-sensitive algorithm is rather coarse in that it only dis-

tinguishes fields in static variables of record type while collapsing dynamically

allocated data structures and arrays into a single alias group. To address this

issue, a new cell-based points-to analysis is developed in chapter 3. A cell is a

generalization of an alias group that represents a unit of access with either scalar

type or a composite data type (like record or union). Cells for composite types

contain inner cells representing their inner fields. Arrays are handled by merging

all of the cells associated with the array’s elements into a single cell. Note that

if the array elements are records, then this allows arrays of records to be treated

more precisely, with a separate inner cell for each record field. Data structures

allocated on the heap also benefit from more precise reasoning.
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Related Work

In the last decade, a variety of SAT/SMT-based automatic verifiers for C pro-

grams have been developed, such as bounded model checkers (CBMC [24], ES-

BMC [33], LLBMC [17], LAV [41], Corral [28] and Cascade), symbolic execution

tools (KLEE [9]), and modular verifiers (VCC [11], HAVOC, and Frama-C [13]. In

most cases, these tools use either flat memory models (e.g., CBMC, LLBMC, ES-

BMC, LLBMC, LAV, KLEE and early versions of VCC), or Burstall-style memory

models (e.g., Corral). As mentioned above, users for these tools have to choose

between scalability and precision in handling type-unsafe operations. Several al-

ternative models have been proposed to achieve both.

Cohen et al. introduced a typed memory model for the untyped C memory [12].

This model maintains a set of valid pointers with disjoint memory locations and

restricts memory accesses only to them. Special code annotation commands called

split and join are introduced to switch between a typed mode and a flat mode for

type casting and pointer arithmetic operations. The additional disjointness axioms

are introduced for the mode switching. The axiomatization, however, imposes an

extra burden on the SMT solver. Böhme et al. use a variant of the VCC model

but few details are given [7].

Rakamarić et al. propose a variant of the Burstall model [35]. It employs a

type unification strategy for type-unsafe operations. This optimization, however,

is too coarse to handle code with even mild use of pointer casting, as the memory

model will quickly degrade into the flat model.

Frama-C develops several memory models (Hoare, typed, and flat) at various

abstraction levels. As an optimization strategy, Frama-C mixes the Hoare model

and flat model by categorizing variables into two classes: logical variables and
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pointer variables. The Hoare model is used to handle the logical variables and the

flat model manages the pointer variables. This strategy is similar to our partitioned

model. However, our partitioned model provides more fine-grained partitions for

the pointer variables.

CBMC and ESBMC use an object-based memory model. Similar to the par-

titioned model, it uses a static analysis to approximate for each pointer variable

the set of data objects to which it might point at runtime. The data objects are

assigned distinct numbers to mechanize the disjointness. However, this model is

not field-sensitive, nor does it support precise reasoning over complex heap data

structures.

A very large body of work concerns points-to analyses for C. We refer the reader

to the survey by Hind [22]. Field-sensitive pointer analysis is specifically covered

only by a relatively small subset of this work. Yong et al. propose a framework

covering a spectrum of analyses from complete field-insensitivity through various

levels of field-sensitivity [43]. Pearce et al. present an instance of the framework

with a so-called inclusion-based approach [34]. In some sense, our analysis is

also an instance of this framework but with a unification-based approach. The

main difference is that our analysis is further extended to arrays and dynamically

allocated regions which are not addressed in the Yong et al. framework.

Normally, pointer analyses are used to provide pointer information for client

analyses: Mod/Ref analysis, live variable analysis, reaching definitions analysis,

dependence analysis, and conditional constant propagation and unreachable code

identification. Here we explore a new client – memory partitioning, and present

the general analysis framework.
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Outline

This dissertation is split into three parts. Chapter 1 contains background infor-

mation. It reviews SMT-based program verification, symbolic execution, bounded

model checking and pointer analyses. In chapter 2, we present Cascade, our static

analysis platform for C. We provide the design and implementation of Cascade

and the memory-partitioning verification framework. In chapter 3, we describe

the cell-based points-to analysis and give the proof of soundness. In chapter 4,

we provide a family of partitioned memory models over unification-based points-to

analysis and present their performance with experimental results.

7



Chapter 1

Background and Preliminaries

1.1 Symbolic Execution

The key idea behind symbolic execution is to use symbolic values, instead of con-

crete data, as input values, since a single symbolic value can represent a large,

potentially infinite number of concrete values [10]. During the execution, the pro-

gram state is encoded as a pair 〈σ, pc〉, consisting of a symbolic store σ and a path

condition pc. The symbolic store is a mapping from program variables to their

values represented as symbolic expressions over the input symbols. Each symbolic

expression is a first-order term, i.e. a symbol, or a literal number, or an operator

or a function applied to first-order terms. The path condition is a first-order logic

formula that tracks the history of branch decisions, which must hold on the path

being explored. At the beginning of an execution, the store σ is initialized by

mapping each input parameter to a fresh symbolic value, and the path condition

pc is initialized to be true. An evaluation function Eval(σ, e) is introduced to

evaluate an expression e into a symbolic value according the current store σ. For a
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program with heap manipulations, a symbolic heap may be introduced as a state

component that maps from locations to values. The state is updated during the

course of symbolic execution.

At every assignment v = e, the execution updates the value of v in the symbolic

store. Let 〈σ, pc〉 and 〈σ′, pc〉 represent the pre- and post-state, where σ′ := σ[v 7→

Eval(σ, e)]. The conditional statement if (e) then S1 else S2 introduces a

conditional branch. The path-wise execution needs to decide which branch to

select. Let 〈σ, pc〉 be the state at the branch point, and suppose the conditional

expression e is evaluated as Eval(σ, e). If the “then” branch is chosen, then the

path condition is updated to pc ∧Eval(σ, e); otherwise, the path condition of the

“else” branch is updated to pc ∧ ¬Eval(σ, e). In some implementations, at the

branch point, the backend constraint solver is called to check satisfiability of both

path conditions and follows the path whose condition is satisfiable. If both are not

satisfiable, the execution terminates. On the other hand, if both are satisfiable,

again, it needs to choose one of them to continue, leaving the other for a later

round.

Symbolic execution of code containing loops or recursion may result in an

infinite number of paths if the termination condition for the loop or recursion

is symbolic. In practice, one could either introduce loop invariants and method

contracts or put a limit on the number of paths, loop iterations, or exploration

depth.

During the execution, with the constraint solver, we can check if a program

point is reachable by checking the satisfiability of the path condition. We can also

check if a given property p, encoded as first-order formula, holds at a program point

by querying the validity of the formula pc =⇒ p. Therefore, the constraint solver
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is the core module of the whole process. In fact, although the idea of symbolic

execution was introduced more than three decades ago, it became practical only

recently as a result of significant advances in the SAT and SMT solvers.

The key challenge of this technique is path explosion: the number of possible

paths is usually exponential in the number of branches in the code. A standard

solution in static analysis is path merging, which is to introduce a fresh state that

merges all the states corresponding to different branches at the join point [26].

Techniques such as ESP [14] and trace partitioning [30] over-approximate the states

of some branches; however, it is also the source of false positives. A precise alter-

native relies on using ITE-expressions that simply combine the information from

all the incoming branches.

For a conditional statement if (e) then S1 else S2, let 〈σ0, pc0〉 be the state

at the branch point and 〈σ1, pc1〉, 〈σ2, pc2〉 the states of the “then” and “else”

branches, where pc1 = pc ∧ σ0(e) and pc2 = pc ∧ ¬σ0(e). For the merged state

〈σ3, pc3〉 at the join point, the path condition pc3 is pc1∨pc2 which is equivalent to

pc, and ∀v ∈ dom(σ3) . σ3(v) = ite(σ0(e), σ1(v), σ2(v)). In this way, the execution

is no longer path-based, while multiple (not all) of the possible paths of the whole

program are encoded into one first-order formula that is passed directly to the

constraint solver. The problem of path explosion is reduced; however, a huge

number of disjunctions are introduced into the formula, which can be hard to

reason about for SAT and SMT solvers.
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1.2 Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT) aims to check the satisfiability of first order

logical formulas over one or more background theories. Solvers for Satisfiability

Modulo Theories play a central role in program analysis and verification as the

semantics of most program statements are easily modeled using theories supported

by most SMT solvers [16]. Here, we give a brief description of theories referenced

in the later chapters.

1.2.1 Theory of Arrays

The theory of arrays was introduced by John McCarthy [31] in 1962 and is widely

used for modeling memory. It is parameterized by the index sort TI and element

sort TE, with TA a shorthand for TI → TE, i.e., the set of functions that map an

element of TI to an element in TE. There are two operations on arrays: read :

TA × TI → TE and write : TA × TI × TE → TA. The write function is used to store

an element in an array, and the read function is used to retrieve an element from

an array [25]. The main axiom used to defined the meaning of the two operators

is the “read-over-write axiom”: after the value e has been written into array a

at index i, the value of this array at index i is e. The value at any index j 6= i

remaints unchanged after the write operation:

∀a ∈ TA . ∀i, j ∈ TI . ∀e ∈ TE . (i = j =⇒ read(write(a, i, e), j) = e) ∧

(i 6= j =⇒ read(write(a, i, v), j) = read(a, j))
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1.2.2 Theory of Fixed-Size Bit-vectors

The theory of bit-vectors captures the semantics of modular arithmetic and is

capable of discovering bugs caused by overflows. A bit-vector is a sequence of

bits. The size of a bit-vector is the length of this sequence. It could be used

to encode both positive and negative numbers (with signed bit vectors), or just

encode positive numbers (with unsigned bit vectors) [25]. The theory of fixed-size

bit-vectors is made of variables and constants of arbitrary but fixed sizes, and

functions and predicates operating on them. The operators include extraction,

concatenation, bit-wise Boolean operations, and arithmetic operations. For the

result of arithmetic operations, if the number of bits exceeds the given size, the

additional bits are discarded. This is a good match with the modular arithmetic

of machine languages.

1.3 Points-to Analysis

The goal of points-to analysis is to determine the set of locations that a pointer

may point-to at runtime. The result of the analysis is a points-to graph, whose

nodes are sets of program expressions and whose edges represent the may points-to

relation. The graph provides a compact representation of alias information: two

pointers are aliased if they point-to the same node.

The algorithms of points-to analysis can be categorized into the unification-

based approach and the inclusion-based approach. The unification-based approach

was proposed by Steensgaard [40]. The key idea is that for a pointer assignment

p = q, the points-to set of p and the points-to set of q are required be equal. It is

implemented with the union-find algorithm, which is known for its almost linear
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time cost in terms of the program size. The inclusion-based approach was proposed

by Andersen [1], with the worst-time complexity O(n3). For an assignment p = q,

the points-to set of q is required to be a subset of the points-to set of p. Compared

with the equality constraint, this inclusion constraint can yield more precise results.

There are several other dimensions that can be used to classify points-to anal-

yses, such as flow-sensitivity, context-sensitivity and field-sensitivity [22]. A flow-

insensitive analysis ignores the control flow information and computes the points-to

graph of the whole program, whereas a flow-sensitive analysis builds the points-to

graph at each program point. A context-insensitive analysis merges the points-

to relations for all the calling contexts of a method, whereas a context-sensitive

analysis separates them for different calling contexts. The key difference between

field-sensitive and insensitive analyses is whether to distinguish the components

within record types as separate objects or to collapse them into one object. It is

difficult to apply field-sensitive analyses to weakly-typed languages like C/C++.

Note that both Andersen’s and Steensgaard’s analyses are flow-, context- and field-

insensitive.
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Chapter 2

Analysis Framework with

Memory Partitioning

In this chapter, we introduce an analysis framework based on memory partitioning.

This framework is implemented in Cascade, a static analysis tool for C programs.

Section 2.1 reviews the features and workflow of Cascade. Then Section 2.2 gives a

overview of the analysis framework using simple examples. Section 2.3 provides a

formal description of symbolic execution within the framework. Finally, Section 2.4

describes the encoding of memory constraints.

2.1 Cascade

Cascade is an open-source tool developed at New York University for automat-

ically reasoning about C programs. An initial prototype of the system was de-

scribed in [37]. In this chapter, we describe the latest version Cascade 2.0 [42], a

from-scratch reimplementation which provides a number of new features, includ-
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ing support for nearly all of C (with the exception of floating point) and a new

back-end theorem prover interface supporting both CVC4 [2] and Z3 [15].

Cascade supports arbitrary user assertions, including reachability of labels in

the C-code. Furthermore, it can detect bugs related to memory safety, including

invalid memory accesses, invalid memory frees, and memory leaks. As a bounded

model checker, Cascade relies on loop unrolling and function inlining, and thus

only ensures the correctness for programs for which this can be bounded. With

unbounded loops or recursive functions, it does not provide sound results.

Cascade 2.0 is implemented in Java. The overall framework is illustrated in

Figure. 2.1. The C front-end converts a target program into an abstract syntax

tree using a parser built using the xtc parser generator [19]. The core module

uses symbolic execution [6,8,23] to build verification conditions as SMT formulas.

Currently, it takes the approach of simple forward execution.

Figure 2.1: The framework of Cascade

The workflow of the core engine is presented in Fig. 2.2. In the preprocessing

module, a unification-based points-to analysis is performed for each function in the
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C program (before function-inlining or loop-unrolling). All the alias groups and

the points-to relations among them are discovered here. The partitioned memory

model is built based on the alias information generated in the preprocessing step.

After preprocessing, the abstract syntax tree is translated into a loop-free and

call-free control flow graph via function-inlining and loop-unrolling. The symbolic

execution is then performed on the control flow graph to generate the verification

conditions as SMT formulas. For function inlining, Cascade takes a given depth

bound, inlines functions up to that bound, and then continues running if all the

functions are fully inlined, otherwise, it stops and returns UNKNOWN. For loop

unrolling, Cascade uses successively larger unrolls until it reaches a given unroll

limit. After each loop unrolling, it asks the SMT solver if it has unrolled enough,

and stops there if it has. Cascade only ensures the correctness of programs for

which this approach succeeds.

Figure 2.2: The workflow of the core engine
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2.2 Overview of the Analysis Framework

In this section, we try to present an informal overview of our framework for sym-

bolic execution with memory partitioning. Before getting to the details, let us

review the classical framework of symbolic execution (without memory partition-

ing). The program inputs are represented as symbolic values, instead of concrete

values, and the program variables are represented as symbolic expressions over the

symbolic input values [10]. In order to support the address-of (&) operation in C,

a symbolic store ε is kept to map program variables to their left-values (memory

addresses) rather than right-values (symbolic expressions). In C programs, one

can apply this operator to any variable, generating a pointer value that can be

used to update the value of the variable. Note that the left-values in ε are repre-

sented as unique symbolic variables, and ε does not change during the course of

an execution.

Symbolic execution maintains a symbolic state σ = 〈pc,m〉, where pc is a

symbolic path condition (a first-order formula), and m is a memory state mapping

from memory addresses to values. At the beginning of an execution, m is a fresh

array variable and pc is initialized to True. Both can be changed as the program

executes.

The key idea behind the framework with memory partitioning is to use sep-

arated memory states for distinct memory partitions (created for different alias

groups computed at the preprocessing step). Each memory partition has a unique

identifier that is the identifier of the corresponding alias group. Therefore, the

symbolic state contains a symbolic path condition pc, and a memory state map

ρ, which maps the identifiers of memory partitions (alias groups) to their memory

states, denoted as σ = 〈pc, ρ〉. At the beginning of an execution, ρ is initialized as
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an empty map (denoted as ∅). If a new memory partition with identifier k, is en-

countered during the execution, the memory state map ρ is expanded by mapping

k to a fresh memory state mk, a new array variable.

Note that in a field-sensitive points-to analysis, an alias group of a program

expression with record or union type may contain inner alias groups representing

the nested fields, and thus the corresponding memory partition may also contain

inner partitions. In this case, when a new memory partition is added into the

memory state map ρ, its inner partitions are also added with fresh memory states.

For convenience, a few helper functions are introduced to simulate the queries

to the preprocessor for the alias group of a program expression, the points-to alias

group and the inner groups of a given alias group:

• Given an expression e, function partition(e) returns the alias group identifier

of e.

• For an alias group with identifier k, function ptsto(k) returns the identifier of

its points-to alias group. Because the preprocessor is built on a unification-

based points-to analysis, each alias group can point to no more than one alias

group.

• For an alias group with identifier k, function partitions(k) returns the set

of identifiers, consisting of k and the identifiers of its inner groups. For a

field-insensitive points-to analysis, partitions(k) = {k}.

Motivating Example. In the following, we illustrate the symbolic execution

with memory partitioning via the sample code in Fig. 2.3. The function ldv_malloc

is a wrapper function for malloc which ensures that if the input size is not posi-

tive, the returned pointer is 0 (null pointer).
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vo id ∗ l d v ma l l o c ( l ong s i z e ) {
i f ( s i z e <= 0) {

r e t u r n 0 ;
} e l s e {

r e t u r n mal l oc ( s i z e ) ;
}

}

Figure 2.3: A wrapper function for malloc

State Initialization. In the symbolic store ε, all variables are bound with their

left-values. In the sample code, the input parameter size is viewed as a local

variable. Besides, for each function with non-void return type, an auxiliary return

variable is created and any return statement within the function is viewed an

assignment to the return variable. For function ldv_malloc, ret_ldv_malloc is

the return variable. Thus, within the symbolic store ε, we have ε(size) = size and

ε(ret_ldv_malloc) = ret ldv malloc, where the left-values are denoted with sans

serif font. The initial program state is σ0 = (True, ∅).

Variable Declaration. When entering a function, its input parameters and re-

turn variable are treated as newly declared variables. For each variable declaration,

a fresh memory state is created for its memory partition if it is not included in the

current memory map. In the sample code, two variables size and ret_ldv_malloc

are declared. Let k1 = partition(size), k2 = partition(ret_ldv_malloc), where

partitions(k1) = {k1}, partitions(k2) = {k2}. Then two fresh memory states mk1

and mk2 are created. The program state is then updated as

σ1 = (True, {k1 7→ mk1 , k2 7→ mk2})

The value of variable size is a dereference of the memory mk1 via its left-value,

represented as read(mk1 , size). Because mk1 is a fresh array variable, the value of
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size is non-deterministic, representing all possible concrete input values.

State Branching. The function body of ldv_malloc consists of a single con-

ditional statement. After entering this function, the execution is split into two

branches with the condition expression size <= 0. In σ1, the condition expres-

sion is evaluated as read(mk1 , size) ≤ 0. The path condition pc is updated to

read(mk1 , size) ≤ 0 (“then” branch), and read(mk1 , size) > 0 (“else” branch). Cor-

respondingly, the program state is updated as σ2 (“then” branch) and σ3 (“else”

branch):

σ2 = (read(mk1 , size) ≤ 0, {k1 7→ mk1 , k2 7→ mk2})

σ3 = (read(mk1 , size) > 0, {k1 7→ mk1 , k2 7→ mk2})

Assignment. Both “then” and “else” branches have a return statement. As dis-

cussed earlier, the return statement is viewed as assignment to the return variable

ret_ldv_malloc. In the “then” branch, ret_ldv_malloc is assigned to 0 and σ2

is updated as

σ21 = (read(mk1 , size) ≤ 0, {k1 7→ mk1 , k2 7→ write(mk2 , ret ldv malloc, 0)})

Memory Allocation. For memory allocation, a fresh memory region is gen-

erated, and a fresh address variable is created to represent the base address of

the newly-allocated region. In the function ldv_malloc, a fresh memory region

with size size is allocated in the “else” branch, whose base address is repre-

sented by a fresh address variable region. The variable region is then assigned

to the return variable ret_ldv_malloc. So the memory state mk2 is updated to
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write(mk2 , ret ldv malloc, region).

Moreover, a fresh memory state is created for the newly allocated region. Since

the region is pointed to by ret_ldv_malloc, the alias group of the region must

be pointed to by the alias group of ret_ldv_malloc. Let k3 = ptsto(k2), i.e.,

partitions(k3) = {k3}. Suppose k3 6= k2 and k3 6= k1, state σ3 is updated as

σ31 =

 read(mk1 , size) > 0,


k1 7→ mk1 ,

k2 7→ write(mk2 , ret ldv malloc, region),

k3 7→ mk3




State Merging. At the join point of both branches, a fresh state σ4 is created

to merge the branch states σ21 and σ31. In σ4, the merged path condition is a

disjunction of the path conditions in the branch states, where read(mk1 , size) ≤

0 ∨ read(mk1 , size) > 0 = True.

When merging memory state maps, the memory state are merged using the

ITE-expressions. If there is any memory partition with identifier k not tracked in

some branches, we use the initial memory state mk as a default state without any

written value. In the “then” branch, the memory partition with identifier k3 is

missing and its default memory state mk3 is used. Therefore, σ4 is as

σ4 =


True,



k1 7→ mk1 ,

k2 7→ ite(read(mk1 , size) ≤ 0,

write(mk2 , ret ldv malloc, 0),

write(mk2 , ret ldv malloc, region)),

k3 7→ mk3




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Property Checking. When checking a given property at a given program point,

we first evaluate the property into a symbolic formula according to the current pro-

gram state and then check if the formula is implied by the conjunction of the path

condition and the disjointness constraint. Note that the disjointness constraint

of the current program state is a conjunction of the disjointness constraints of all

memory partitions.

One desired property that must hold at the exit point of function ldv_malloc

is that the returned pointer must be 0 if size is not positive, represented as:

size ≤ 0 =⇒ ret_ldv_malloc = 0

According to the exit state σ4, the above formula is evaluated as:

read(mk1 , size) ≤ 0 =⇒

read

ite


read(mk1 , size) ≤ 0,

write(mk2 , ret ldv malloc, 0),

write(mk2 , ret ldv malloc, region)

 , ret ldv malloc

 = 0

which can be further simplified to True, so the property holds. Note that the path

condition of σ4 is True, and the disjointness constraint is also True, because the

memory partitions k1, k2 and k3 each contain only one memory region or variable.

2.3 Formalization

In this section, we formalize the static symbolic execution with memory partition-

ing. The formalization is motivated by the work of Schwartz et al. [36]. It provides
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f ::= f1 | . . . | fm fields

t ::= uint8 | int8 | . . . | int64 | ptr scalar types

| struct{ t1f1; . . . tnfn; } S record types

| union{ t1f1; . . . tnfn; } U union types

s ::= declare x | e1 =t e2 t is scalar

| e1 = malloc(e2) | free e

| assume e | assert e

| if (e) s1 else s2 | s1; s2

e ::= n constant

| x variable

| e.f field selection

| &x address of

| ∗ e dereference

| (t) e cast, t is scalar

| opu e opu ∈ {−, !,∼}
| e1 opb e2 opb ∈ {+,−, ∗, . . .}

Figure 2.4: Language syntax

a concise and precise way to define the analysis framework. Section 2.3.1 presents

a simple C-like language that serves as the target of our analysis. Section 2.3.2

defines the program state and the sub-state of memory partitions. Section 2.3.3

gives the semantics of expressions and statements.

2.3.1 Syntax

Fig. 2.4 lists the types and syntax of a simple C-like language that captures the

core features including pointer arithmetic, structs and heap manipulations. We

assume the C program has been processed into a sequence of statements. These

statements do not include iterations and function calls (i.e., the program has been

preprocessed into a loop-free and call-free fragment.

In the type system, all pointers use a single type denoted by ptr. Pointers

and integer types are viewed as scalar types, distinguished from composite types

(structs, unions and arrays). Function types and floating point types are not

considered, since functions are inlined and floating points are not supported here.

For a given type t, |t| is the byte-size of t.

For brevity, the type inference process is omitted. We assume each expression

is already tagged with a type. For a given expression e, function typeof(e) returns
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the associated type, and function sizeof(e) returns the byte-size of typeof(e). Given

a struct or union type t and a field identifier f, function offsetof(t, f) returns the

offset value in bytes of the field f within t.

Let X denote a fixed set of variables, and let V denote the set of values. For

any type t, Vt ⊆ V is the set of values with type t, for example, Vptr is the set of

addresses. For type casting, we introduce a function convert : type× V→ V. For

a ∈ V, convert(t, a) is the result of casting the value a to type t.

2.3.2 Program State

Let us denote by P the set of memory partition identifiers, then function partition,

ptsto and partitions are formalized as:

• partition : expr→ P gives the memory partition of an expression;

• ptsto : P→ P gives points-to partition of a given partition;

• partitions : P → P(P) gives a set of contained memory partitions of a given

partition, which includes the given partition and its inner partitions. In the

field-insensitive points-to analysis, ∀k ∈ P . partitions(k) = {k}.

State of Memory Partition. Recall that the memory state map maps partition

identifiers to states of memory partitions. A state of memory partition is a pair of

memory state and memory constraint. We let M denote the set of memory states.

The memory read/write takes a size k as a parameter that reads/writes exactly k

bytes:

• read : M× Vptr × N→ V;
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• write : M× Vptr × N× V→M.

Let Φ denote the set of memory constraints describing memory-related properties.

The encoding and transition of memory constraints are discussed in the section 2.4.

The state of memory partition is (m,φ), where m ∈M is the current memory state

and φ ∈ Φ is the associated memory constraint. The set of memory partition states

is denoted as M× Φ.

Program State. The state of the program is required as a tuple σ = 〈ε, ρ, µ, pc〉:

• ε : X→ Vptr is a partial function from variable identifiers to left-values;

• ρ : P → M × Φ is a partial function from memory partition identifiers to

their states;

• µ is a formula capturing any assumptions made by assume statements;

• pc is the path condition.

In the following, we use the components of specific states by using the appropriate

letter subscripted by the state. Thus ρσ represents the memory partition state

mapping for state σ. The notation σ[ρ := ρ′] represents the state that is identical

to σ except that the component ρ has been replaced with a new value ρ′. The

initial state is σ0 = 〈ε, ∅,True,True〉.

2.3.3 Operational Semantics

The semantics is specified using natural semantics, also known as big-step opera-

tional semantics, rather small-step semantics. This choice simplifies our work by
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Non-Scalar
typeof(e) is not scalar

〈σ, e, loc〉 loc

Scalar
typeof(e) is scalar partition(e) = k ρσ(k) = 〈mk, φk〉

〈σ, e, loc〉 read(mk, loc, sizeof(e))

Figure 2.5: Right-value evaluation

avoiding modeling the non-determinism of the semantics of C. The semantics is

defined by three judgements:

• 〈σ, e〉 ⇓l loc, left-value evaluation of expression, where loc is the left-value of

expression e evaluated in state σ;

• 〈σ, e〉 ⇓v a, right-value evaluation of expression, where a is the value of

expression e evaluated in state σ;

• 〈σ, s〉 ⇓ σ′, σ′ is the updated state of σ after statement s.

In many contexts, left-values to become right-values for a given expression. For

such cases, we introduce the notation 〈σ, loc, e〉 a, where σ is the current state,

loc is the left-value, e is the given expression and a is the right-value. The definition

of  is given in Fig. 2.5. If the type of e is not scalar, as shown in the rule Non-

Scalar, the right-value is the left-value. Otherwise, as shown in the rule Scalar,

let the memory partition of e have identifier k and memory state mk. Then the

right-value is the value read from mk at address loc with byte-size sizeof(e).

2.3.3.1 Expression Evaluation

Given an expression e and a state σ, we can determine the value of the expression

in σ via the evaluation rules presented in Fig. 2.6. These expressions are free of

side-effects and the program state is not changed during the evaluation.
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Const
〈σ, c〉 ⇓v c

Varl
εσ(v) = loc

〈σ, v〉 ⇓l loc
Varv

〈σ, v〉 ⇓l loc 〈σ, v, loc〉 a

〈σ, v〉 ⇓v a

FieldSell
〈σ, e〉 ⇓l loc

〈σ, e.f〉 ⇓l loc+ offsetof(typeof(e), f)

FieldSelv
〈σ, e.f〉 ⇓l loc 〈σ, e.f, loc〉 a

〈σ, e.f〉 ⇓v a
Addr

εσ(v) = a

〈σ,&v〉 ⇓v a

Derefl
〈σ, e〉 ⇓v loc 〈σ, ∗e, loc〉 a

〈σ, ∗e〉 ⇓l a
Derefv

〈σ, ∗e〉 ⇓l a
〈σ, ∗e〉 ⇓v a

Cast
〈σ, e〉 ⇓v a

〈σ, (t) e〉 ⇓v convert(t, a)
Unary-Op

〈σ, e〉 ⇓v a
〈σ, opu e〉 ⇓v opu a

Binary-Op
〈σ, e1〉 ⇓v a1 〈σ, e2〉 ⇓v a2

〈σ, e1 opb e2〉 ⇓v a1 opb a2

Figure 2.6: Expression evaluation

2.3.3.2 Statement Semantics

The semantics of statements affects the transition of program states, denoted via

the judgement 〈σ, s〉 ⇓ σ′. Note that details related to the initialization and

transition of memory constraint φ, the second component of states, are omitted

here, but are presented in section 2.4.

I Variable Declaration

〈σ, declare v〉 ⇓ σ[ρ := ρ′]

Let kv = partition(v), then for any k ∈ partitions(kv),

• if k ∈ dom(ρ) and ρ(k) = 〈mk, φk〉, then ρ′(k) = 〈mk, φ
′
k〉, where the memory

constraint is updated to φ′k;

• otherwise, ρ′(k) = 〈mk, φk〉, where mk is a fresh array variable and φk is a
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fresh memory constraint.

I Assignment

〈σ, e1〉 ⇓l loc 〈σ, e2〉 ⇓v a partition(e1) ∈ dom(ρ)

〈σ, e1 =t e2〉 ⇓ σ[ρ := ρ′]

Let k = partition(e1) and ρ(k) = 〈mk, φk〉, then ρ′(k) = 〈m′k, φk〉 where

m′k = write(mk, loc, |t|, a)

I Memory Allocation

〈σ, e1〉 ⇓l loc 〈σ, e2〉 ⇓v a region is fresh partition(e1) ∈ dom(ρ)

〈σ, e1 = malloc(e2)〉 ⇓ σ[ρ := ρ′, µ := µ′]

For each allocation statement, a fresh variable region ∈ Vptr is created to represent

the base address of the newly-allocated region. Assumptions are made over region

in order to ensure the memory allocation is valid: (1) the base address is not

null pointer, and (2) the allocated region is within the bound of address space.

Therefore,

µ′ ≡ µ ∧ region 6= 0 ∧ region ≤ region +|ptr| a

where +|ptr| is modular addition with modulus 2|ptr|.

Let k = partition(e1) and ρ(k) = 〈mk, φk〉, then ρ′(k) = 〈m′k, φk〉 where

m′k = write(mk, loc, |ptr|, region)

28



Let k∗ = ptsto(k), the memory partition identifier of the newly allocated memory

region with base address region and size a. Then for any k′ ∈ partitions(k∗),

• if k′ ∈ dom(ρ) and ρ(k′) = 〈mk′ , φk′〉, then ρ′(k′) = 〈mk′ , φ
′
k′〉, where the

memory constraint is updated to φ′k′ ;

• otherwise, ρ′(k′) = 〈mk′ , φk′〉, where mk′ is a fresh array variable and φk′ is a

fresh memory constraint.

I Memory Deallocation

〈σ, e〉 ⇓v loc

〈σ, free e〉 ⇓ σ[ρ := ρ′]

Let k = ptsto(partition(e)), the memory partition identifier of the memory region

pointed by e. For any k′ ∈ partitions(k) and ρ(k′) = 〈mk′ , φk′〉, then ρ′(k′) =

〈mk′ , φ
′
k′〉, where the memory constraint is updated to φ′k′ .

I Assumption

〈σ, e〉 ⇓v a

〈σ, assume e〉 ⇓ σ[µ := µ ∧ a]

For the assume statement, the assumption component of the current state σ is

updated as a conjunction of µ and the result of evaluating e.
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I Assertion

〈σ, e〉 ⇓v a disjoint(ρσ) ∧ µσ ∧ φσ =⇒ a

〈σ, assert e〉 ⇓ σ

For each assert statement, we check that its boolean expression is implied by the

current path condition φ, the assumption formula µ, and the disjointness constraint

disjoint(ρσ) whose definition is given in (2.22) in section 2.4. If the check succeeds,

the execution continues; otherwise, the execution aborts.

I Sequence

〈σ, s1〉 ⇓ σ1 〈σ1, s2〉 ⇓ σ2

〈σ, s1; s2〉 ⇓ σ2

I Conditional

〈σ, e〉 ⇓v a 〈σ, s1〉 ⇓ σ1 〈σ, s2〉 ⇓ σ2

〈σ, if (e) s1 else s2〉 ⇓ σ[µ := ite(a, µσ1 , µσ2), ρ := ρ′]

For any memory partition k ∈ dom(ρσ1) ∪ dom(ρσ2), we consider the semantics it

by following three cases:

• if k ∈ dom(ρσ1)∩dom(ρσ2), where ρσ1(k) = 〈mk1 , φk1〉 and ρσ2(k) = 〈mk2 , φk2〉,

ρ′(k) = 〈ite(a,mk1 ,mk2), φk1 ta φk2〉

where φk1 ta φk2 denotes the join of memory constraints under condition a
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whose definition is given in (2.23) in section 2.4;

• if k ∈ dom(ρσ1) \ dom(ρσ2), let ρσ1(k) = 〈mk1 , φk1〉 and

ρ′(k) = 〈ite(a,mk1 ,mk), φk1 ta φk〉

where mk is a fresh array variable and φk is a fresh memory constraint;

• if k ∈ dom(ρσ2) \ dom(ρσ1), let ρσ2(k) = 〈mk2 , φk2〉 and

ρ′(k) = 〈ite(a,mk,mk2), φk ta φk2〉

where mk is a fresh array variable and φk is a fresh memory constraint.

2.4 Memory Constraints Encoding

In this section, we discuss the encoding of memory constraints, including the con-

straint of disjointness, denoting the non-overlapping of valid memory regions gener-

ated either via variable declaration or memory allocation. We also discuss memory

safety checks such as valid memory access, valid frees and no memory leaks. These

constraints are associated with memory partitions as a state component φ, and get

updated during the program execution.

2.4.1 Disjointness

The disjointness constraint specifies that all memory blocks (generated either via

variable declaration or memory allocation) are non-overlapping. In our semantics,

the disjointness is applied to both allocated and de-allocated blocks, which means
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1 typede f s t r u c t S {
2 i n t x ;
3 s t r u c t S ∗ l ;
4 s t r u c t S ∗ r ;
5 } S ;
6
7 S ∗ bar ( i n t arg ) {
8 S ∗p ;
9 p = ma l l o c ( s i z e o f (S ) ) ;

10 p−>x = 5 ;
11 i f ( a rg > 0)
12 p−> l = ma l l o c ( s i z e o f (S ) ) ;
13 e l s e
14 p−>r = ma l l o c ( s i z e o f (S ) ) ;
15 r e t u r n p ;
16 }

Figure 2.7: Sample Code
with conditional statements

s8B8 = {}

s9B9 = {(l1, s)}

s10B9 = {(l1, s)}

s12B12 = {(l1, s), (l2, s)} s14 B14 = {(l1, s), (l3, s)}

s15B15 = {(l1, s), (l2, s), (l3, s)}

Figure 2.8: The blocks collected during the
execution, si represents the state at line i and
Bi represents the memory blocks collected at
state si. s = sizeof(S)

that any de-allocated block must not overlap any other allocated block. We assume

that we have enough memory space, and once a memory block is de-allocated, it

cannot be reused. The predicate non− overlap is defined as a shortcut:

non-overlap(l1, s1, l2, s2) ≡ l1 +|ptr| s1 ≤ l2 ∨ l2 +|ptr| s2 ≤ l1

where (l1, s1) represents a memory block with base address l1 and size s1, and

(l2, s2) is another block. This predicate specifies the non-overlapping of the two

blocks.

One naive approach is to collect the memory blocks generated during the exe-

cution and apply non− overlap on each pair of them. Let B denote the collection

of blocks. Then the disjointness can be expressed as

∀(li, si), (lj, sj) ∈ B .
∧
i 6=j

non-overlap(li, si, lj, sj)

This approach, however, cannot support conditional statements.
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Consider the sample code in Fig. 2.7. At the join point of “then” and “else”

branches, the memory blocks B12 and B14 are merged into B15. Then, the disjoint-

ness constraint at program state s15 would be encoded as

non-overlap(l1, s, l2, s) ∧ non-overlap(l1, s, l3, s) ∧ non-overlap(l2, s, l3, s)

which is not correct. Because (l2, s2) and (l3, s3) cannot co-exist, it is incorrect to

specify they are disjoint, and their disjointness with (l1, s1) must be guarded by

the condition expression.

Sinz et al. proposed an alternative approach built on the memory modification

graph in [38]. The memory modification graph is a transition graph over memory

states. The vertices of the graph are memory states m ∈ M, and a transition

edge, denoted as (m,m′), represents the memory modification on the source state

m which results in the target state m′. The modification includes operations

like memory write, allocation and deallocation. Given a memory state m, the

disjointness constraint is encoded as

disjoint(m) ≡
∧

m1 � m2 � m

m1 : allocate(l1, s1)

m2 : allocate(l2, s2)

(pcm1 ∧ pcm2 =⇒ non-overlap(l1, s1, l2, s2)) (2.1)

where m1 � m2 means there is a path from m1 to m2 in the graph; m : allocate(l, s)

denotes the memory block (l, s) is allocated at the memory state m; and pcm1 and

pcm2 are the path conditions associated with memory states m1 and m2.

Fig. 2.9 is the memory modification graph built for the code in Fig. 2.7. Ac-
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m8

m9
allocate(l1, s)
pc = true

m10
write(p− > x, 5)

pc = True

m12

allocate(l2, s)
write(p− > l, l2)
pc = arg > 0

m14

allocate(l3, s)
write(p− > r, l3)
pc = ¬(arg > 0)

m15

Figure 2.9: Memory modification graph

cording to (2.1), the disjointness constraint at memory state m15 is encoded as

disjoint(m15) ≡
∧ arg > 0 =⇒ non-overlap(l1, s, l2, s),

¬arg > 0 =⇒ non-overlap(l1, s, l3, s)


This approach is precise but rather inefficient. The memory modification graph

must be maintained during the program execution. When encoding the disjointness

constraint, we must search over the graph to find all the reachable states from the

current memory state. Such an approach is known as state-dependent.

To address these issues, we propose a novel state-independent approach that can

build the constraint automatically during the program execution without tracking

the previously allocated blocks. To achieve it, we introduce

• predicate disjoint, denoting that all the allocated blocks are disjoint;

• function fun-disjoint : Vptr × N → {True,False}, where fun-disjoint(x, y) de-

notes that memory block (x, y) is non-overlapping with previously allocated

blocks.

They are components of the memory constraint φ. In a fresh memory constraint
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s8
disjoint8 = True

fun-disjoint8(x, y) = True

s9
disjoint9 = True

fun-disjoint9(x, y) = non-overlap(l1, s, x, y)

s10

disjoint10 = True

fun-disjoint10(x, y) = non-overlap(l1, s, x, y)

s12disjoint12 = fun-disjoint10(l2, s)

fun-disjoint12(x, y) =

fun-disjoint10(x, y) ∧
non-overlap(l2, s, x, y)

s14 disjoint14 = fun-disjoint10(l3, s)

fun-disjoint14(x, y) =

fun-disjoint10(x, y) ∧
non-overlap(l3, s, x, y)

s15

disjoint15 = ite(arg > 0, disjoint12, disjoint14)

fun-disjoint15(x, y) = ite(arg > 0, fun-disjoint12(x, y), fun-disjoint14(x, y))

Figure 2.10: Disjointness constraints

φ0, they are initialized as

disjoint0 = True, fun-disjoint0(x, y) = True (2.2)

When a new block (l, s) is allocated, they are updated as

disjoint′ = disjoint ∧ fun-disjoint(l, s) (2.3)

fun-disjoint′(x, y) = fun-disjoint(x, y) ∧ non-overlap(l, s, x, y) (2.4)

When encoding φ1 ta φ2 at a join point of branches, they are encoded as

disjoint′ = ite(a, disjoint1, disjoint2) (2.5)

fun-disjoint′(x, y) = ite(a, fun-disjoint1(x, y), fun-disjoint2(x, y)) (2.6)
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Looking again at the code in Fig. 2.7, the update of disjoint and fun-disjoint

along the program execution is shown in Fig. 2.11. The disjointness constraint at

the state s15 is encoded as

disjoint15 ≡ ite(arg > 0, non-overlap(l1, s, l2, s), non-overlap(l1, s, l3, s))

2.4.2 Memory Safety

The constraints related to memory safety are: (1) valid memory access (i.e. the

memory read/write operations affect only allocated memory); (2) valid frees (i.e.

the pointer given as a parameter to a free instruction points to the base address of

an allocated memory block that has not yet been de-allocated); and (3) no memory

leaks (i.e. all allocated heap memory is de-allocated when the program ends).

Valid Memory Access. Let (x, y) denote a memory region to access where x

is the memory address of dereference and y is the size of the access range. We say

the region is valid to access, if there is an allocated (not yet de-allocated) memory

block (l, s) containing (x, y). First, a predicate contains is defined as a shortcut

contains(l, s, x, y) ≡ l ≤ x < x+|ptr| y ≤ l +|ptr| s

The encoding of a valid memory access constraint involves two elements:

• size, an array to track the size of allocated blocks, mapping from their base

addresses to their sizes, where read(size, 0) = 0;
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• function valid-deref : Vptr×N→ {True,False}, where valid-deref(x, y) denotes

x, . . . , x+ y − 1 is a valid sequence of addresses to access.

They are components of the memory constraint φ. In a fresh memory constraint

φ0, size is a fresh array variable and

valid-deref0(x, y) = False (2.7)

When a new block (l, s) is allocated, they are updated as

valid-deref ′(x, y) = valid-deref(x, y) ∨ (s 6= 0 ∧ contains(l, s, x, y)) (2.8)

size′ = write(size, l, s) (2.9)

valid-deref ′(x, y) ensures that any later access with address sequence x, . . . , x+y−1

is valid if within the block (l, s).

When a block with base address l is de-allocated, they are updated as

valid-deref ′(x, y) = valid-deref(x, y) ∧ ¬contains(l, read(size, l), x, y) (2.10)

size′ = write(size, l, 0) (2.11)

Here, valid-deref ′(x, y) ensures that any later access with address sequence x, . . . , x+

y − 1 is invalid if within the de-allocated block.

When encoding φ1 ta φ2 at a join point of branches, they are encoded as

valid-deref ′(x, y) = ite(a, valid-deref1(x, y), valid-deref2(x, y)) (2.12)

size′ = ite(a, size1, size2) (2.13)
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s8
size8 = size

valid-deref8(x, y) = False

s9

size9 = write(size, l1, s)

valid-deref9(x, y) =

s 6= 0 ∧ contains(l1, s, x, y)

s10

size10 = write(size, l1, s)

valid-deref10(x, y) =

s 6= 0 ∧ contains(l1, s, x, y)

s12size12 = write(size10, l2, s)

valid-deref12(x, y) =

valid-deref10(x, y) ∨
s 6= 0 ∧ contains(l2, s, x, y)

s14 size14 = write(size10, l3, s)

valid-deref14(x, y) =

valid-deref10(x, y) ∨
s 6= 0 ∧ contains(l3, s, x, y)

s15

size15 = ite(arg > 0, size12, size14)

valid-deref15(x, y) = ite(arg > 0, valid-deref12(x, y), valid-deref14(x, y))

Figure 2.11: Valid memory access constraints

For the code in Fig. 2.7, the update of valid-deref and size along the program

execution is shown in Fig. 2.11. The constraint of valid memory access at the state

s15 is encoded as

valid-deref15(x, y) =

s 6= 0 ∧

 contains(l1, s, x, y) ∨

ite(arg > 0, contains(l2, s, x, y), contains(l3, s, x, y))


Valid-Free. The violation of valid-free includes invalid-free and double-free. Invalid-

free happens if the address to be freed is not the base address of an allocated

memory region. Double-free happens if the address to be freed is the base address

of a memory region freed already.

In order to detect these bugs, an array mark : Vptr → {True,False} is intro-

duced to track the state of memory blocks allocated on the heap, which is also a
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component of memory constraints φ. In the fresh memory constraints φ0, mark

is a fresh array variable. It is updated when a new block is allocated on the heap

and an address l is de-allocated, as follows:

mark′ = write(mark, l,True), (l, s) is allocated (2.14)

mark′ = write(mark, l, False), l is de-allocated (2.15)

When encoding φ1 ta φ2 at a join point of branches, it is encoded as

mark′ = ite(a,mark1,mark2) (2.16)

Then the constraint of valid free is encoded as

valid-free(x) ≡ read(mark, x) (2.17)

For a free statement free e, where l is the result of evaluating e, it is double-free

if read(mark, l) = False; if it is invalid-free, read(mark, l) can take any arbitrary

value (either False or True). Thus we can check whether free e is valid by checking

whether read(mark, l) = False is unsatisfiable.

Valid-Memtrack. The check of memory leak can also depend on the array

mark. At the beginning of the execution, mark can be initialized as a constant

array containing all False. At the end of the program, we could check if the final

mark still contains all False with quantifiers reasoning, however, this is notori-

ously difficult for most SMT solvers. To avoid quantifiers, we introduce a variable

memsize ∈ N, denoting the total size of allocated memory blocks, which is a com-
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ponent of the memory constraint φ. In a fresh memory constraint φ0, we have

memsize0 = 0. It is updated when a block (l, s) is allocated on the heap or an

address l is de-allocated, as following:

memsize′ = memsize + s, (l, s) is allocated (2.18)

memsize′ = memsize− read(size, l), l is de-allocated (2.19)

Note that memsize can also be used to check whether a given memory limit is

exceeded.

When encoding φ1 ta φ2 at a join point of branches, it is encoded as

memsize′ = ite(a,memsize1,memsize2) (2.20)

At the end of the execution, the constraint of no memory leak is encoded as

no-memory-leak ≡ memsize = 0 (2.21)

There is a memory leak if memsize is positive. On the other hand, if memsize

is negative, then there is an invalid-free, since memsize− read(size, l) can take an

any arbitrary value considering read(size, l) could be anything if l is not the base

address of any allocated memory blocks.
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2.4.3 Memory Constraints

Based on the encoding of memory constraints, we now are able to fill in the missing

parts of statement semantics: a memory constraint φ is a tuple

φ = 〈disjoint, fun-disjoint, valid-deref, size,mark,memsize〉

The initial value of φ is

〈True, λx, y.True, λx, y.False, size,mark, 0〉

where size and mark are fresh array variables. In the following, we use the judge-

ment 〈ρ, s〉 ⇓ ρ′ to denote the transition of the state of memory partitions tracked

in ρ. Given a memory partition identifier k, let ρ(k) = 〈mk, φk〉 where φk is the

memory constraint associated with the memory partition. We use the notation

φk[x 7→ y] to specify that the constraint component x is updated to y.

I Variable Declaration

〈ρ, declare v〉 ⇓ ρ′

Let kv = partition(v) and ∀k ∈ partitions(kv)

• if k ∈ dom(ρ) and ρ(k) = 〈mk, φk〉, then ρ′(k) = 〈mk, φ
′
k〉, where

φ′k = φk


disjoint 7→ disjointk ∧ fun-disjointk(ε(v), sizeof(v))

fun-disjoint 7→ fun-disjoint′k

valid-deref 7→ valid-deref ′k


fun-disjoint′k(x, y) = fun-disjointk(x, y) ∧ non-overlap(ε(v), sizeof(v), x, y)

valid-deref ′k(x, y) = valid-derefk(x, y) ∨ contains(ε(v), sizeof(v), x, y)
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• otherwise ρ′(k) = 〈mk, φk〉 where

φk = 〈True, fun-disjointk, valid-derefk, sizek,markk, 0〉

fun-disjointk(x, y) = non-overlap(ε(v), sizeof(v), x, y)

valid-derefk(x, y) = contains(ε(v), sizeof(v), x, y)

with sizek and markk fresh array variables.

I Memory Allocation

〈ρ, e1 = malloc(e2)〉 ⇓ ρ′

Let k = partition(e1) and k∗ = ptsto(k), the memory partition identifier of the

newly allocated memory region with base address region and size a (the evaluation

result of e2). Then ∀k′ ∈ partitions(k∗),

• if k′ ∈ dom(ρ) and ρ(k′) = 〈mk′ , φk′〉, then ρ′(k′) = 〈mk′ , φ
′
k′〉, in which the

memory constraint is updated to φ′k′ where

φ′k′ = φk′



disjoint 7→ disjointk′ ∧ fun-disjointk′(region, a)

fun-disjoint 7→ fun-disjoint′k′

valid-deref 7→ valid-deref ′k′

size 7→ write(sizek′ , region, a)

mark 7→ write(markk′ , region,True)

memsize 7→ memsizek′ + a


fun-disjoint′k′(x, y) = fun-disjointk′(x, y) ∧ non-overlap(region, a, x, y)

valid-deref ′k′(x, y) = valid-derefk′(x, y) ∨ (a 6= 0 ∧ contains(region, a, x, y))
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• otherwise, ρ′(k′) = 〈mk′ , φk′〉,

φk′ =

〈
True, fun-disjointk′ , valid-derefk′ ,

write(sizek′ , region, a),write(markk′ , region,True), a

〉

fun-disjointk′(x, y) = non-overlap(region, a, x, y)

valid-derefk′(x, y) = a 6= 0 ∧ contains(region, a, x, y)

where sizek′ and markk′ are fresh array variables.

I Memory Deallocation

〈ρ, free e〉 ⇓ ρ′

Let k = ptsto(partition(e)), the memory partition identifier of the memory

region pointed by e. Then ∀k′ ∈ partitions(k), ρ(k′) = 〈mk′ , φk′〉 and ρ′(k′) =

〈mk′ , φ
′
k′〉, in which the memory constraint is updated to φ′k′ where

φ′k′ = φk′



valid-deref 7→ valid-deref ′k′

size 7→ write(sizek′ , region, 0)

mark 7→ write(markk′ , region,False)

memsize 7→ memsizek′ − read(sizek′ , region)


valid-deref ′k′(x, y) = valid-derefk′(x, y) ∧ ¬contains(region, read(sizek′ , region), x, y)

I Assertion

〈ρ, assert e〉 ⇓ ρ

The disjointness constraint disjoint(ρ) is defined as

disjoint(ρ) ≡
∧

k∈dom(ρ)

disjointk (2.22)
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I Conditional

〈ρ, if(e) s1 else s2〉 ⇓ ρ′

The join of memory constraints φk1 ta φk2 (a is the evaluation result of condi-

tional expression e), is defined as

φk1 ta φk2 ≡



disjoint 7→ ite(a, disjointk1
, disjointk2

)

fun-disjoint(x, y) 7→ ite(a, fun-disjointk1
(x, y), fun-disjointk2

(x, y)

valid-deref(x, y) 7→ ite(a, valid-derefk1
(x, y), valid-derefk2

(x, y)

size 7→ ite(a, sizek1
, sizek2

)

mark 7→ ite(a,markk1 ,markk2)

memsize 7→ ite(a,memsizek1 ,memsizek2)


(2.23)
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Chapter 3

Cell-based Points-to Analysis

In this chapter, we present the cell-based points-to analysis, which is an extension

of Steensgaard’s field-sensitive points-to analysis. It yields more precise results for

arrays of records and heap allocated records. Section 3.1 introduces the analysis

with motivating examples. Section 3.2 gives a formal presentation. Section 3.3

provides the soundness proof.

3.1 Overview

While Steensgaard’s field-sensitive algorithm does improve the precision of points-

to analysis when dealing with records that are allocated statically, it cannot do the

same for dynamically allocated records. Furthermore, it always collapses arrays

into a single alias group, meaning that the points-to analysis cannot distinguish

fields that occur inside array elements. To address these issues, we developed a

novel cell-based points-to analysis, which is fully field-sensitive. It can precisely

capture field overlapping (field aliasing) induced by union types, pointer casts and

pointer arithmetic. The analysis is built on the application binary interface (ABI).
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In this section, we describe this analysis at a high level and give several examples.

A cell1 is a generalization of an alias group. Initially, each program expression

that corresponds to a memory location at runtime (i.e. an l-value) is associated

with a unique cell whose size is a positive integer denoting the size (in bytes) of

the values that expression can have. In addition, each cell has a type, which is

scalar unless its associated program expression is of record or union type (in which

case the cell type is record or union respectively). Under certain conditions, the

analysis may merge cells. If two cells of two different sizes are merged, then the

result is a cell whose size is >. The graph maintains an invariant that the locations

associated with any two scalar cells are always disjoint, which makes the memory

partition using the graph possible.

Our analysis creates a points-to graph whose vertices are cells. The graph has

two kinds of edges. A points-to edge α ⇀ β denotes that dereferencing some

expression associated with cell α yields an address that must be in one of the

locations associated with cell β. Unlike traditional field-sensitive analyses, inner

cells may be nested in more than one outer cell. Thus, we use additional graph

edges to represent containment relations. A contains edge α ↪→i,j β denotes that

cell α is of record type and that β is associated with a field of the record whose

location is at an offset of i from the record start and whose size in bytes is j − i.

Fig. 3.1 shows a simple example. On the left is the memory layout of a singly-

linked list with one element. The element is a record with two fields, a data

value and a next pointer (which points back to the element in this case). The

graph, shown on the right, contains three cells. The square cell is associated with

the entire record element and the round cells with the inner fields (here and in

1We borrowed this term from Mine [32].
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0x...

100
4

12

0

(0,4)

(4,12)

100

0x..

Figure 3.1: Concrete memory state and its graph representation

the other points-to graphs below, we follow the convention that square cells are

of record or union type and round cells are of scalar type). The dashed edge is

a points-to edge from the next field to the record cell, and the solid edges are

contains edges from the record cell to the field cells. These edges are labeled with

their corresponding starting and ending offsets within the record.

Arrays. Arrays are handled by merging all of the cells associated with the array’s

elements into a single cell. Note that if the array elements are records, then this pre-

serves the cell type and size, allowing arrays of records to be treated more precisely,

with a separate inner cell for each record field. Thus, identical fields in different

array elements do share the same cell, but different fields in any two elements will

be assigned different cells. This is a key innovation as even when the array size is

unknown, the cell size is known. For example, suppose an array is dynamically allo-

cated as uint32_t* p = (uint32_t *) malloc(sizeof(uint32_t) * m).2 The

data size of the allocated array is not known statically, but each element is 4 bytes

long. Knowing this, we can model the cell using a memory array whose elements

are 4 bytes long. This further improves the precision and performance of the

2Function malloc returns a void pointer, and such a pointer must be cast to a non-void
pointer for further access to the allocated region. The cell size of the region is initialized to the
byte-size of the non-void type.
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typede f s t r u c t SL i s t 1 {
s t r u c t SL i s t 1 ∗ next ;
u i n t 32 data1 ;

} SL i s t 1 ;
typede f s t r u c t SL i s t 2 {

s t r u c t SL i s t 2 ∗ next ;
u i n t 16 data2 ;

} SL i s t 2 ;
typede f union SL i s t {

union SL i s t ∗ next ;
SL i s t 1 s l 1 ;
SL i s t 2 s l 2 ;

} SL i s t ;
S L i s t l ;

l sl1

(0,8)

(0,12)

sl2

(0,10)

(0,8)

(8,12)

(8,10)

(0,8)

l.sl1.next
l.s2.next
l.next

l.sl1.data1
l.sl2.data2

Figure 3.2: Points-to graph with union type

s t r u c t {
i n t 3 2 c ;
s t r u c t { i n t 3 2 a ; i n t 6 4 b ;} t ;

} s ;
. . .
∗(& s . t . a + i ) = 0 ;

(0,4)

(4,8)

s, 
s.c

s.t.a
s.t.b

&s.t.a

(8,16)

&s.t.a + i

Figure 3.3: Points-to graph with pointer arithmetic

memory model.

Union Types. Consider the code in Fig. 3.2. The union type SList has a

pointer field and two record fields, each of which offers a different view of the same

memory region. The corresponding graph representation is shown on the right.

Contains edges link the union cell with cells for each of its fields. Note that a

single cell represents the expressions l.next, l.sl1.next and l.sl2.next. This

is because we can determine based on the contains edges that these all refer to the

same memory location. Another cell (in gray) represents both l.sl1.data1 and

l.sl2.data2 for the same reason. In this case, however, because these fields are

of different sizes, the cell size is >.

48



typede f s t r u c t DLi s t {
s t r u c t DLi s t ∗ l e f t ;
s t r u c t DLi s t ∗ r i g h t ;

} DLi s t ;
typede f s t r u c t SL i s t {

DLi s t d l ;
s t r u c t SL i s t ∗ next ;

} SL i s t ;
S L i s t l ;
( ( DL i s t ∗) &l . d l . r i g h t )−> r i g h t = NULL ;

l

dl

(0,16)

p

(8,24)

(0,8)

(8,16)

(8,16)

(0,8)

(16,24)

&l.dl.right

l.dl.left

l.dl.right
p.left

l.next
p.right

(DList*) &l.dl.right

Figure 3.4: Points-to graph with pointer cast

Pointer Arithmetic. Consider next the code in Fig. 3.3. Any field in the record

t (and even in the outer record s) can be modified by the assignment &s.t.a + i,

since the value of i is unknown. In this case, we merge all of the record (and inner

field) cells into a single scalar cell. The resulting points-to graph is shown on the

right.

Pointer Casts. Casting creates an alternative view of a memory region. In this

sense, it is similar to a union. To model this, a fresh cell is added to the points-

to graph representing the new view. Consider the code in Fig. 3.4. The field

l.dl.right is cast to be of type DList. As shown in the graph on the right, a

new cell p is created whose inner cells overlap with the original fields l.dl.right

and l.next.

3.2 Constraint-based Analysis

In this section, we formalize the cell-based field-sensitive points-to analysis de-

scribed above using a constraint framework. Our constraint-based program analy-

sis is divided into two phases: constraint generation and constraint resolution. The
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t ::= uint8 | int8 | . . . | int64 integer types

| ptr pointer types

| struct{ t1f1; . . . tnfn; } S record types

| union{ t1f1; . . . tnfn; } U union types

opb ::= + | − | ∗ | / operators

e ::= n constant

| x variable

| ∗ e dereference

| &e address of

| (t∗) e cast

| e.f field selection

| (t∗) malloc(e) heap allocation

| e1 opb e2 binary operation

| e1 =t e2 assignment, t is scalar

| e1, e2 sequencing

Figure 3.5: Language syntax

constraint generation phase produces constraints from the program source code in

a syntax-directed manner. The constraint resolution phase then computes a solu-

tion of the constraints in the form of a cell-based field-sensitive points-to graph.

The resulting graph describes a safe partitioning of the memory for all reachable

states of the program.

3.2.1 Language and Constraints

For the formal treatment of our analysis, we consider the idealized C-like language

shown in Fig. 3.5. To simplify the presentation, complex assignments are broken

down to simpler assignments between expressions of scalar types, static arrays are

represented as pointers to dynamically allocated regions, and a single type ptr

is used to represent all pointer types. Function definitions, function calls, and

function pointers are omitted. 3

Let C be an infinite set of cell variables (denoted τ or τi). We will use cell

variables to assign program expressions to cells in the resulting points-to graph.

To do so, we assume that each subexpression e′ occurring in an expression e is

labeled with a unique cell variable τ , with the exception that program variables

3They can be handled using a straightforward adaptation of Steensgaard’s approach.
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x are always assigned the same cell variable, τx. Cell variables associated with

program variables are called source variables. To avoid notational clutter, we do

not make cell variables explicit in our grammar definition. Instead, we write e : τ

to indicate that the expression e is labeled by τ .

3.2.1.1 Constraints.

The syntax of our constraint language is defined as follows:

η ::= i | > | size(τ) i ∈ N

φ ::= i < η | η1 = η2 | τ1 = τ2 | τ1 ⇀ τ2 | τ1 ↪→i,j τ2 | τ1 E τ2

| source(τ) | scalar(τ) | cast(i, τ1, τ2) | collapsed(τ) | φ1 ∧ φ2 | φ1 ∨ φ2

Here, a term η denotes a cell size. The constant > indicates an unknown cell size.

A constraint φ is a positive Boolean combination of cell size constraints, equalities

on cell variables, points-to edges τ1 ⇀ τ2, contains edges τ1 ↪→i,j τ2 and special

predicates whose semantics we describe in detail below. We additionally introduce

syntactic short-hands for certain constraints. Namely, we write i v η to stand for

the constraint i = η ∨ η = >, i ≤ η to stand for i < η ∨ i = η, and i � η to stand

for i ≤ η ∨ η = >.

Constraints are interpreted in cell-based field-sensitive points-to graphs (CF-

PGs). A CFPG is a tuple G = (C, cell , size, source, scalar , contains , ptsto) where

• C is a finite set of cells,

• cell : C→ C is an assignment from cell variables to cells,

• size : C → N ∪ {>} is an assignment from cells to cell sizes,
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• source ⊆ C is a set of source cells,

• scalar ⊆ C is a set of scalar cells,

• contains ⊆ C × N× N× C is a containment relation on cells, and

• ptsto : C → C is a points-to map on cells.

For c1, c2 ∈ C, and i, j ∈ N, we write c1
G
↪→i,j c2 as notational sugar for (c1, i, j, c2) ∈

contains , and similarly c1
G
⇀ c2 for ptsto(c1) = c2. Let contains ′ be the projection

of contains onto C × C: contains ′(c1, c2) ≡ ∃ i, j. contains(c1, i, j, c2).

The functions and relations of G must satisfy the following consistency proper-

ties. These properties formalize the intuition of the containment relation and the

roles played by source and scalar cells:

• the contains ′ relation is reflexive (for cells of known size).

∀ c ∈ C. size(c) 6= > =⇒ c
G
↪→0,size(c) c (3.1)

• the contains ′ relation is transitive.

∀

 c1, c2, c3 ∈ C,

i1, i2, j1, j2 ∈ N

 . c1
G
↪→i1,j1 c2 ∧ c2

G
↪→i2,j2 c3 =⇒ c1

G
↪→i1+i2,i1+j2 c3 (3.2)

• the contains ′ relation is anti-symmetric.

∀
(
c1, c2 ∈ Ci1, i2, j1, j2 ∈ N

)
. c1

G
↪→i1,j1 c2 ∧ c1

G
↪→i2,j2 c2 =⇒ c1 = c2 (3.3)
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• the contains relation must satisfy the following linearity property:

∀

 c1, c2, c3 ∈ C,

i1, i2, j1, j2 ∈ N

 .


i1 ≤ i2 < j2 ≤ j1 ∧

c1
G
↪→i1,j1 c2 ∧

c1
G
↪→i2,j2 c3

 =⇒ c2
G
↪→i2−i1,j2−i1 c3

(3.4)

• cells that are of unknown size or that point to other cells must be scalar:

∀ c ∈ C. size(c) = > =⇒ c ∈ scalar (3.5)

∀ c, c′ ∈ C. c G
⇀ c′ =⇒ c ∈ scalar (3.6)

• source cells are not contained in and scalar cells do not contain other cells:

∀ c, c′ ∈ C, i, j ∈ N. c G
↪→i,j c

′ ∧ c′ ∈ source =⇒ c = c′ (3.7)

∀ c, c′ ∈ C, i, j ∈ N. c ∈ scalar ∧ c G
↪→i,j c

′ =⇒ c = c′ (3.8)

• cell sizes must be consistent with the contains relation:

∀

 c1, c2 ∈ C,

i, j ∈ N

 . c1
G
↪→i,j c2 =⇒

 0 ≤ i < j ∧

j � size(c1) ∧ j − i v size(c2)


(3.9)

• two scalar cells must be equivalent if they are overlapped. First, We first

express the notion of overlap overlapG(c1, c2) formally:

∃

 c ∈ C,

i1, i2, j1, j2 ∈ N

 .

 c
G
↪→i1,j1 c1 ∧

c
G
↪→i2,j2 c2

 ∧
 i1 ≤ i2 < j1 ∨

i2 ≤ i1 < j2

 (3.10)
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Then

∀ c1, c2 ∈ C. overlapG(c1, c2) ∧ c1 ∈ scalar ∧ c2 ∈ scalar =⇒ c1 = c2 (3.11)

Semantics of Constraints. Let G be a CFPG with components as above. For

a cell variable τ ∈ C, we define τG = cell(τ) and for a size term η we define

ηG = size(τG) if η = size(τ) and ηG = η otherwise. The semantics of a constraint

φ is given by a satisfaction relation G |= φ, which is defined recursively on the

structure of φ in the expected way. Size and equality constraints are interpreted in

the obvious way using the term interpretation defined above. Though, note that

we define G 6|= i < > and G 6|= i = >.

Points-to constraints τ1 ⇀ τ2 are interpreted by the points-to map τG1
G
⇀ τG2 ;

contains constraints τ1 ↪→i,j τ2 are interpreted by the containment relation τG1
G
↪→i,j

τG2 ; and source and scalar are similarly interpreted by source and scalar .

Intuitively, a cast predicate cast(k, τ1, τ2) states that cell τ2 is of size k and is

obtained by a pointer cast from cell τ1. Thus, any source cell that contains τ1 at

offset i must also contain τ2 at that offset. That is, G |= cast(k, τ1, τ2) iff:

∀ c ∈ C, i, j ∈ N. c ∈ source ∧ c G
↪→i,j τ

G
1 =⇒ c

G
↪→i,i+k τ

G
2 (3.12)

The predicate collapsed(τ) indicates that τ points to a cell c that may be ac-

cessed in a type-unsafe manner, e.g., due to pointer arithmetic. All cells that

contain a cell overlapping c should be collapsed. Then, G |= collapsed(τ) iff

∀ c, c1, c2 ∈ C, i, j ∈ N. τG G
⇀ c ∧ c1

G
↪→i,j c2 ∧ overlapG(c, c2) =⇒ c = c1 (3.13)
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The predicate τ1 E τ2 (taken from [39]) is used to state the equivalence of the

points-to content of τ1 and τ2. Formally, G |= τ1 E τ2 iff

∀ c ∈ C. τG1
G
⇀ c =⇒ τG2

G
⇀ c (3.14)

3.2.2 Constraint Generation

The first phase of our analysis generates constraints from the target program in

a syntax-directed bottom-up fashion. The constraint generation is described by

the inference rules in Fig. 3.6. Recall that each program expression e is labeled

with a cell variable τ . The judgment form e : τ |φ means that for the expression e

labeled by the cell variable τ , we infer the constraint φ over the cell variables of e

(including τ).

For simplicity, we assume the target program is well-typed. Our analysis re-

lies on the type system to infer the byte-sizes of expressions and the field-layout

within records and unions. To this end, we assume a type environment T that as-

signs C types to program variables. Moreover, we assume the following functions:

typeof (T , e) infers the type of an expression following the standard type inference

rules in the C language; |t| returns the byte-size of the type t; and offset(t, f)

returns the offset of a field f from the beginning of its enclosing record type t.

Finally, isScalar(t) returns true iff the type t is an integer or pointer type.

The inference rules are inspired by the formulation of Steensgaard’s field-

insensitive analysis due to Forster and Aiken [18]. We adapt them to our cell-

based field-sensitive analysis. Note that implications of the form isScalar(t) =⇒

scalar(τ), which we use in some of the rules, are directly resolved during the rule

application and do not yield disjunctions in the generated constraints.
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Const
τ = τ φ

n : τ | φ
Seq

e1 : τ1 | φ1 e2 : τ2 | φ2

τ = τ2
φ

e1, e2 : τ | φ1 ∧ φ2 ∧ φ

Assg

e1 : τ1 | φ1 e2 : τ2 | φ2

τ2 E τ1 τ = τ2
φ

e1 = e2 : τ | φ1 ∧ φ2 ∧ φ
Var

t = typeof (T , x) source(τ)
isScalar(t) =⇒ scalar(τ)

τ ↪→0,|t| τ

φ

x : τ | φ

Addr

e : τ | φ1

source(τ ′)
τ ′ ⇀ τ τ ′ ↪→0,|ptr| τ

′

φ

&e : τ ′ | φ1 ∧ φ
Deref

e : τ | φ1

t = typeof (T , ∗e)
isScalar(t) =⇒ scalar(τ ′)

τ ⇀ τ ′ τ ′ ↪→0,|t| τ
′

φ

∗e : τ ′ | φ1 ∧ φ

Malloc

mallocl : τ

isScalar(t) =⇒ scalar(τ)
source(τ) source(τ ′)

τ ′ ⇀ τ τ ′ ↪→0,|ptr| τ
′ τ ↪→0,|t| τ

φ

(t∗)mallocl(e) : τ ′ | φ

Dir-Sel

e : τ | φ1

t = typeof (T , e)
o = offset(t, f)

isScalar(t.f) =⇒ scalar(τf )
τ ↪→o,o+|t.f| τf τf ↪→0,|t.f| τf

φ

e.f : τf | φ1 ∧ φ
Cast

e : τ1 | φ1 (t∗)l : τ ′2
isScalar(t) =⇒ scalar(τ ′2)

τ1 ⇀ τ ′1 τ2 ⇀ τ ′2
τ2 ↪→0,|ptr| τ2 τ ′2 ↪→0,|t| τ

′
2

cast(|t|, τ ′1, τ ′2)

φ

(t∗)le : τ2 | φ1 ∧ φ

Arith-Op

e1 : τ1 | φ1 e2 : τ2 | φ2

t = typeof (T , e1 opb e2) isScalar(t) =⇒ scalar(τ3)
τ1 E τ3 τ2 E τ3 τ3 ↪→0,|t| τ3 collapsed(τ3)

φ

e1 opb e2 : τ3 | φ1 ∧ φ2 ∧ φ

Figure 3.6: Constraint generation rules

We only discuss some of the rules in detail. The rule Malloc generates the

constraints for a malloc operation. We assume that each occurrence of malloc

in the program is tagged with a unique identifier l and labeled with a unique cell

variable τ representing the memory allocated by that malloc. The return value of

malloc is a pointer with associated cell variable τ ′. Thus, τ ′ points to τ .

The rules Dir-Sel, Arith-Op, and Cast are critical for the field-sensitive
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analysis. In particular, Dir-Sel generates constraints for field selections. A field

f within a record or union expression e is associated with a cell variable τf . The rule

states that there must be a contains-edge from the cell variable τ associated with

e to τf with the appropriate offsets. Rule Arith-Op is for arithmetic operations,

which may involve pointer arithmetic. The cell variables τ1, τ2 and τ are associated

with e1, e2, and e1 opb e2, respectively. Any cells pointed to by τ1 and τ2 must

be equal, which is expressed by the constraints τ1 E τ and τ2 E τ . Moreover,

if τ points to another cell τ ′, then pointer arithmetic collapses all relevant cells

containing τ ′, since we can no longer guarantee structured access to the memory

represented by τ ′. Rule Cast handles pointer cast operations. A pointer cast

can change the points-to range of a pointer. In the rule, τ1 and τ2 represent

the operand pointer and the result pointer, respectively. τ ′1 and τ ′2 represent their

points-to contents. Similar to malloc, each pointer cast (t∗) has a unique identifier

l and is labeled with a unique cell variable τ ′2 that represents the points-to content

of the result pointer. The constraint cast(s, τ ′1, τ
′
2) specifies that both τ ′1 and τ ′2 are

within the same source containers with the same offsets. In particular, the size of

τ ′2 must be consistent with the size s of the type t.

3.2.3 Constraint Resolution

We next explain the constraint resolution step that computes a CFPG G from the

generated constraint φ such that G |= φ.

The resolution procedure must be able to reason about containment between

cells, which is a transitive relation. Inspired by a decision procedure for the reach-

ability relation in function graphs [27], we propose a rule-based procedure for this

purpose.
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The procedure is defined by a set of inference rules that infer new constraints

from given constraints. The rules are shown in Figure 3.7. They are derived

directly from the semantics of the constraints and the consistency properties of

CFPGs. Some of the rules make use of the following syntactic short-hand

overlap(τ, τ1, i1, j1, τ2, i2, j2) ≡ τ ↪→i1,j1 τ1 ∧ τ ↪→i2,j2 τ2 ∧ i1 ≤ i2 ∧ i2 < j1 (3.15)

We omit the rules for reasoning about equality and inequality constraints, as they

are straightforward. We also omit the rules for detecting conflicts. The only pos-

sible conflicts are inconsistent equality constraints such as i = > and inconsistent

inequality constraints such as i < >.

Our procedure maintains a context of constraints currently asserted to be true.

The initial context is the set of constraints collected in the first phase. At each

step, the rewrite rules are applied on the current context. For each rule, if the

antecedent formulas are matched with formulas in the context, the consequent

formula is added back to the context. The rules are applied until a conflict-free

saturated context is obtained. The rule Split branches on disjunctions. Note

that the rules do not generate new disjunctions. All disjunctions come from the

constraints of the form i � η and i v η in the initial context. Each disjunction

in the initial context has at least one satisfiable branch. Our procedure uses a

greedy heuristic that first chooses for each disjunction the branch that preserves

more information and then backtracks on a conflict to choose the other branch.

For example, for a disjunct i v η, we first try i = η before we choose η = >.

Once a conflict-free saturated context has been derived, we construct the CFPG

by using the equivalence classes of cell variables induced by the derived equality
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constraints as the cells of the graph. The other components of the graph can be

constructed directly from the derived constraints.

Termination. To see that the procedure terminates, note that none of the rules

introduce new cell variables τ . Moreover, the only rules that can increase the offsets

i, j in containment constraints τ1 ↪→i,j τ2 are Cast and Trans. The application

of these rules can be restricted in such a way that the offsets in the generated

constraints do not exceed the maximal byte size of any of the types in the input

program. With this restriction, the rules will only generated a bounded number

of containment constraints.

Size1
τ1 ↪→i,j τ2 size(τ1)=k

j ≤ k
Size2

τ1 ↪→i,j τ2 size(τ2)=k

j − i = k

Refl
size(τ) = i

τ ↪→0,i τ
Trans

τ1 ↪→i1,j1 τ2 τ2 ↪→i2,j2 τ3

τ1 ↪→i1+i2,i1+j2 τ3

Source
τ1 ↪→i,j τ2 source(τ2)

τ1 = τ2

AntiSym
τ1 ↪→i1,j1 τ2 τ2 ↪→i2,j2 τ1

τ1 = τ2

Collapse1
τ1 ↪→i,j τ2 scalar(τ1)

τ1 = τ2

Linear

τ ↪→i1,j1 τ1 τ ↪→i2,j2 τ2

i1 ≤ i2 < j2 ≤ j1

τ1 ↪→i2−i1,j2−i1 τ2

Overlap
scalar(τ1) scalar(τ2) overlap(τ, τ1, i1, j1, τ2, i2, j2)

τ1 = τ2

Collapse2

collapsed(τ) τ ⇀ τ1 τ ′ ↪→i,j τ2

overlap(τ ′′, τ1, i1, j1, τ2, i2, j2)

τ ′ = τ1

Cast

cast(k, τ1, τ2) source(τ)
τ ↪→i,j τ1

τ ↪→i,i+k τ2

Collapse3

collapsed(τ) τ ⇀ τ1 τ ′ ↪→i,j τ2

overlap(τ ′′, τ2, i2, j2, τ1, i1, j1)

τ ′ = τ1

Scalar
size(τ) = >

scalar(τ)

Points
τ ⇀ τ1 τ ⇀ τ2

τ1 = τ2

PtrEq
τ1 E τ2 τ1 ⇀ τ

τ2 ⇀ τ
Split

φ1 ∨ φ2

φ1 φ2

Figure 3.7: Constraint resolution rules
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3.3 Soundness

The soundness proof of the analysis is split into three steps. First, we prove that

the CFPG resulting from the constraint resolution indeed satisfies the original con-

straints that are generated from the program. The proof shows that the inference

rules are all consequences of the semantics of the constraints and the consistency

properties of CFPGs. The second step defines an abstract semantics of programs

in terms of abstract stores. These abstract stores only keep track of the partition

of the byte-level memory into alias groups according to the computed CFPG. We

then prove that the computed CFPG is a safe inductive invariant of the abstract

semantics. The safety of the abstract semantics is defined in such a way that it

guarantees that the computed CFPG describes a valid partition of the reachable

program states into alias groups. Finally, we prove that the abstract semantics

simulates the concrete byte-level semantics of programs.

3.3.1 Proof of Inference Rules

The proof of the inference rules in Fig. 3.7 are presented in this section. First, the

rule [Split] is standard following from the logical meaning of ∨.

Rules [Refl], [Trans] and [AntiSym] state that contains′ is a reflexive,

transitive and anti-symmetric relation. Their conclusions are obviously drawn

from (3.1), (3.2) and (3.3). Rule [Linear] conforms to the linearity property of

contains in (3.4).

Rule [Scalar] states that cells with unknown size must be scalar, following

from (3.5). Rules [Source] and [Collapse1] conform to the property of source

cells and scalar cells in the contains relation. The conclusions are drawn from
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(3.7) and (3.8). Rule [Overlap] conforms to the property that two scalar cells

are equivalent if they are overlapped stated in (3.11).

Rules [Size1] and [Size2] conform to the consistency of the contains relation.

From G |= τ1 ↪→i,j τ2, we have τG1
G
↪→i,j τ

G
2 . From (3.9), we have j � size(τG1 )∧ j−

i v size(τG2 ). In [Size1], G |= size(τ1) = k, we have size(τ1)G = size(τG1 ) = k ∈ N.

Then, size(τG1 ) 6= > and j ≤ k. In [Size2], G |= size(τ2) =k, we have size(τ2)G =

size(τG2 )=k ∈ N. Then, size(τG2 ) 6= > and j − i = k.

Rule [Cast] conforms to the semantics of predicate cast(k, τ1, τ2) defined in

(3.12). Rules [Collapse2] and [Collapse3] conform to the semantics of predi-

cate collapsed(τ) defined in (3.13). Consider the predicate overlapG is symmetric

binary relation defined in (3.15), [Collapse2] draws the conclusion in one direc-

tion and [Collapse3] draws in the other direction.

Rule [Points] states the fact of points-to relation that two cells are equivalent

if they are pointed by the same cell. Rule [PtrEq] states the equivalence of the

points-to content according to the semantics of the predicate τ1 E τ2 defined in

(3.14).

3.3.2 Abstract Semantics

In this section, we introduce a abstract semantics of program in the language in

Fig. 3.5, and prove that the CFPG computed in the constraints resolution is a safe

inductive invariant.

3.3.2.1 Abstract States.

Recall that each program expression is assigned with a unique cell variable τ and

program variables x are always assigned the same cell variable τx, where τ, τx ∈ C.
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The abstract semantics is defined in terms of the cell variables. Let Γ denote the

environment mapping expressions to cell variables and G denote the computed

CFPG graph. An abstract state G] is a points-to graph built over a finite set of

cell variables C bound with program expressions where C ⊆ C, denoted as a tuple

G] = (contains], ptsto], eqs]).

• contains ] ⊆ C × N× N× C is a containment relation on cell variables,

• ptsto] : C → C is a abstract store tracking the points-to relation,

• eqs] : C × C is a equivalent relation on cell variables.

We use the notation ptsto][τ 7→ τ ′] to represent the updated points-to relation is

identical to ptsto] except that the points-to cell variable of τ is τ ′. The notation

G][x := y] is used to represent the updated state is identical to G] except the

component x is updated to y.

The initial state is G]
0 = (contains]0, ptsto]0, eqs

]
0). The state component is

subscripted by the subscript of the state to which it belongs, so ptsto]0 represents

the points-to relation of state G]
0. ptsto]0 is an empty store, and both contains]0

and eqs]0 are empty sets.

Given an abstract state G] = (contains], ptsto], eqs]), G]+ is the saturated state

derived from G], according to the inference rules in Fig. 3.7

G]+ def
= (contains]

+
, ptsto], eqs]

+
)

where contains ]
+

and eqs]
+

are saturated sets of containment and equivalence

relations, contains ] ⊆ contains]
+

and eqs] ⊆ eqs]
+

.

Lemma 1. Given a program state G] and a CFPG G, if G] v] G, then G]+ v] G.
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Proof. This lemma holds with respect to the soundness of those inference rules.

3.3.2.2 Expression Semantics.

The abstract semantics of an expression e is denoted as the state transition 〈G]
1, e〉 ⇓]

G]
2. There are two shortcut functions are referred in the semantics:

• cast](contains], τ1, τ2, t) is used for the cast expression, deriving a set of

containment relations:

cast](contains], τ1, τ2, t) ≡

{(τ, i, i+ |t|, τ1) | (τ, i, j, τ2) ∈ contains], source(τ)}
(3.16)

where τ1, τ2 ∈ C and t is the type to cast. For any τ , if source(τ) and

τ ↪→i,j τ2 ∈ contains], we can derive τ ↪→i,i+|t| τ1.

• collapse](contains ], τ) is used for the pointer arithmetic operations, deriving

a set of equivalence relations:

collapse](contains], τ) ≡(τ, τ ′c)

∣∣∣∣∣∣∣
(τc, i1, i2, τ), (τc, j1, j2, τ

′), (τ ′c, k1, k2, τ
′) ∈ contains],

i1 ≤ j1 < i2 ∨ j1 ≤ i1 < j2


(3.17)

where τ ∈ C. If τ and τ ′ are overlapping within cell variable τc, we can derive

that τ is equivalent with any cell variable τ ′c that contains τ ′.

I Constant

Const
〈G], c〉 ⇓] G]
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I Variable

Var
〈G], x〉 ⇓] G]

I Sequence

Seq
〈G], e1〉 ⇓] G]

1 〈G]
1, e2〉 ⇓] G

]
2

〈G], e1, e2〉 ⇓] G]
2

I Address of

Addr
〈G], e〉 ⇓] G]

1

〈G],&e〉 ⇓] G]
2

where τ = Γ(&e), τ ′ = Γ(e), G]
2 = G]

1[ptsto] := ptsto]
1[τ 7→ τ ′]]

+
.

I Dereference

Deref
〈G], e〉 ⇓] G]

1

〈G], ∗e〉 ⇓] G]
2

where τ = Γ(e), τ ′ = Γ(∗e), G]
2 = G]

1[ptsto] := ptsto]
1[τ 7→ τ ′]]

+
.
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I Field selection

FieldSel
〈G], e〉 ⇓] G]

1

〈G], e.f〉 ⇓] G]
2

where τ = Γ(e), τf = Γ(e.f), o = offset(t, f),

G]
2 = G]

1[contains] := contains]1 ∪ {(τ, o, o+ |t.f|, τf )}]
+
.

I Malloc

Malloc
〈G], e〉 ⇓] G]

1

〈G], (t∗)mallocl(e)〉 ⇓] G]
2

where τ1 = Γ((t∗)mallocl(e)), τ2 = Γ(mallocl), G
]
2 = G]

1[ptsto] := ptsto]
1[τ1 7→ τ2]]

+
.

I Cast

Cast
〈G], e〉 ⇓] G]

1

〈G], (t∗)le〉 ⇓] G]
2

where τ1 = Γ((t∗)l e), τ2 = Γ(l), τ ′1 = Γ(e), τ ′2 = ptsto]
1(τ ′1),

G]
2 = G]

1

 ptsto] := ptsto]
1[τ1 7→ τ2]

contains] := contains]1 ∪ cast](contains]1, τ2, τ
′
2, t)

+

.
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I Assignment

Assg1

〈G], e1〉 ⇓] G]
1 〈G]

1, e2〉 ⇓] G
]
2 τ2 6∈ dom(ptsto]

2)

〈G], e1 = e2〉 ⇓] G]
3

where τ = Γ(e1 = e2), τ2 = Γ(e2), G]
3 = G]

2[eqs] := eqs]2 ∪ {(τ, τ2)}]
+
.

Assg2

〈G], e1〉 ⇓] G]
1 〈G]

1, e2〉 ⇓] G
]
2 τ2 ∈ dom(ptsto]

2)

〈G], e1 = e2〉 ⇓] G]
3

where τ = Γ(e1 = e2), τ1 = Γ(e1), τ2 = Γ(e2), τ ′2 = ptsto]
2(τ2),

G]
3 = G]

2

 ptsto] := ptsto]
2[τ1 7→ τ ′2, τ 7→ τ ′2]

eqs] := eqs]2 ∪ {(τ, τ2)}

+

.

I Binary Operation

Arith-Op1

〈G], e1〉 ⇓] G]
1 〈G]

1, e2〉 ⇓] G
]
2

τ1 = Γ(e1) τ2 = Γ(e2) τ1, τ2 6∈ dom(ptsto]
2)

〈G], e1 opb e2〉 ⇓] G]
2

66



Arith-Op2

〈G], e1〉 ⇓] G]
1 〈G]

1, e2〉 ⇓] G
]
2 τ1 ∈ dom(ptsto]

2) τ2 6∈ dom(ptsto]
2)

〈G], e1 opb e2〉 ⇓] G]
3

where τ1 = Γ(e1), τ2 = Γ(e2), τ = Γ(e1 opb e2), τ ′1 = ptsto]
2(τ1),

G]
3 = G]

2

 eqs] := eqs]2 ∪ collapse](contains]2, τ
′
1)

ptsto] := ptsto]
2[τ 7→ τ ′1]

+

Arith-Op3

〈G], e1〉 ⇓] G]
1 〈G]

1, e2〉 ⇓] G
]
2 τ1 6∈ dom(ptsto]

2) τ2 ∈ dom(ptsto]
2)

〈G], e1 opb e2〉 ⇓] G]
3

where τ1 = Γ(e1), τ2 = Γ(e2), τ = Γ(e1 opb e2), τ ′2 = ptsto]
2(τ2),

G]
3 = G]

2

 eqs] := eqs]2 ∪ collapse](contains]2, τ
′
2)

ptsto] := ptsto]
2[τ 7→ τ ′2]

+

Arith-Op4

〈G], e1〉 ⇓] G]
1 〈G]

1, e2〉 ⇓] G
]
2 τ1 ∈ dom(ptsto]

2) τ2 ∈ dom(ptsto]
2)

〈G], e1 opb e2〉 ⇓] G]
3

where τ1 = Γ(e1), τ2 = Γ(e2), τ = Γ(e1 opb e2), τ ′1 = ptsto]
2(τ1), τ ′2 = ptsto]

2(τ2),

G]
3 = G]

2


ptsto] := ptsto]

2[τ 7→ τ ′1]

eqs] := eqs]2 ∪ {(τ ′1, τ ′2)} ∪

collapse](contains]2, τ
′
1) ∪ collapse](contains]2, τ

′
2)


+
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3.3.2.3 Invariant

Given a state graphG] and a computed CFPGG, we define a partial orderG] v] G.

Recall that within G, there is a component cell mapping cell variables to cells,

where given τ ∈ C, cell(τ) = τG ∈ C. This partial order requires cell is a

homomorphism mapping that the points-to, containment and equivalent relations

in G] are preserved in G.

Definition 1. Given a state G] = (contains], ptsto], eqs]) and a CFPG graph G,

we say G] v] G if (1) ∀τ ∈ dom(ptsto]) . τG
G
⇀ ptsto](τ)G; (2) ∀(τ1, i, j, τ2) ∈

contains ] =⇒ τG1
G
↪→i,j τ

G
2 ; (3) ∀(τ1, τ2) ∈ eqs] =⇒ τG1 = τG2 .

Theorem 1. Given a program e, if 〈G]
0, e〉 ⇓] G]

n, then the computed CFPG graph

G is an inductive invariant of the program such that G]
0 v] G and G]

n v] G.

3.3.3 Concrete Semantics

In this section, we define the concrete semantics of the program, and setup a

correspondence between the concrete and abstract semantics ensuring the aliasing

and overlapping between memory areas in the concrete semantics are captured in

the abstract semantics.

Let X denote a set of variables and V denote a set of values. Vt is a set of

values with scalar type t. Pointer values is defined as a set of memory locations:

Vptr = {(a, i) | a ∈ A, i ∈ N} ∪ {NULL}, where A is a set of base addresses.

Each pointer is either a pair of a base address and a byte offset or a null pointer

NULL. Let B = Vptr × N denote a set of memory blocks, and each memory block

is represented by a pair of a starting location and a size. A few predicates over

memory blocks are introduced here:
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• overlap(b1, b2), indicating that b1 and b2 are overlapping

∃

 a ∈ A,

i1, i2, s1, s2 ∈ N

 .

 b1 = ((a, i1), s1) ∧

b2 = ((a, i2), s2)

 ∧
 i1 < i2 < i1 + s1 ∨

i2 < i1 < i2 + s2


• icontains(b1, i, j, b2), indicating b1 contains b2 within interval [i, j)

∃

 a ∈ A,

i1, i2, s1, s2 ∈ N

 .

 b1 = ((a, i1), s1) ∧

b2 = ((a, i2), s2)

∧
 i = i2 − i1 ∧

j = i+ s2 ≤ i1 + s1


• contains(b1, b2), indicating that b1 contains b2

∃i, j ∈ N . icontains(b1, i, j, b2)

3.3.3.1 Concrete State.

We let M denote the set of memory states. The memory read/write should take

a memory block as a parameter that either read or write a value exactly into the

memory block, which are defined as: read : M×B→ V and write : M×B×V→M.

The concrete state G\ is denoted as a tuple

G\ = (ε, ptsto\, src, type, part, valid,m,B)

• ε : X→ A, a mapping variables to distinct base addresses;

• ptsto\ : B→ B, tracking the points-to relation between memory blocks;

• src : B→ B, mapping a memory block to its source block;
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• type : B→ type, mapping a memory block to its C type;

• part : C→ P(B), mapping a cell variable to a set of memory blocks;

• valid : B→ type, mapping a valid memory block to its scalar access type;

• m ∈M, a concrete store simulating the memory;

• B ⊆ B, a collection of memory blocks;

We use the notation f [x 7→ y] to represent the updated map f ′ is identical to

f except that f(x) = y. The notation part[τ ⇐ b] is used to represent part is

updated by adding block b to the block set of τ . This notation is equivalent to

part[τ 7→ part(τ)∪ {b}]. The notation G\[x := y] is used to represent the updated

state is identical to G\ except the component x is updated to y.

Given a concrete state G\, function isValid(G\, b) is introduced to tell if b ∈ B

is contained within a valid block in dom(valid):

isValid(G\, b) ≡ ∃b′ ∈ dom(valid) . contains(b′, b)

The initial state is

G\
0 = (ε, ptsto\0, src0, type0, part0, valid0,m0,B0)

where each state component is subscripted by the subscript of the state to which

it belongs, so m0 represents the memory state of state G\
0. In the initial state,

for x ∈ X, let ax = ε(x), tx = typeof (T , x), bx = (ax, |tx|) and τx = Γ(x). Then

src0(bx) = bx, type0(bx) = tx, part0(τx) = {bx}, valid0(bx) = tx, and B0 = {bx |

x ∈ X}. m0 is a fresh array variable and ptsto\0 is empty.
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Non-Scalar
〈G\

1, e〉 ⇓
\
l 〈loc, G

\
2〉 t = typeof (T , e) t is not scalar

〈G\
1, e〉 ⇓\r 〈loc, G

\
2〉

Scalar
〈G\

1, e〉 ⇓
\
l 〈loc, G

\
2〉 t = typeof (T , e) t is scalar

〈G\
1, e〉 ⇓\r 〈read(m2, loc, |t|), G\

2〉

Figure 3.8: Right-value evaluation in concrete semantics

3.3.3.2 Concrete Semantics.

The evaluation of expression is defined by two judgements:

• 〈G\
1, e〉 ⇓

\
l 〈loc, G

\
2〉 left-value evaluation of expression, where loc is the left-

value of expression e;

• 〈G\
1, e〉 ⇓\r 〈v,G

\
2〉 right-value evaluation of expression, where v is the right-

value of expression e.

In many contexts, the semantics requires left-values to become right-values of a

given expression. The right-value evaluation can be inferred from the left-value as

in Fig. 3.8.

I Constant

Const
〈G\, c〉 ⇓\r 〈c,G\〉

I Variable

Var
〈G\, x〉 ⇓\l 〈(ε(x), 0), G\〉
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I Dereference

Deref

〈G\, e〉 ⇓\l 〈loc,G
\
1〉 〈G\, e〉 ⇓\r 〈v,G

\
1〉 v ∈ Vptr

t = typeof (T , ∗e) b = (loc, |ptr|) b∗ = (v, |t|) ptsto\1(b) = b∗

〈G\, ∗e〉 ⇓\l 〈v,G
\
1〉

I Address of

Addr
〈G\, e〉 ⇓\l 〈loc,G

\
1〉 loc& = (a, 0) a is fresh

〈G\,&e〉 ⇓\l 〈loc&, G
\
2〉

where t = typeof (T , e), b = (loc, |t|), b& = (loc&, |ptr|), τ = Γ(&e),

G\
2 = G\

1


ptsto\ := ptsto\1[b& 7→ b], src := src1[b& 7→ b&],

type := type1[b& 7→ ptr], part := part1[τ ⇐ b&],

m := write(m1, b&, loc), B := B1 ∪ {b&}

 .

I Sequence

Seq
〈G\, e1〉 ⇓\l 〈loc1, G

\
1〉 〈G

\
1, e2〉 ⇓

\
l 〈loc2, G

\
2〉

〈G\, e1, e2〉 ⇓\l 〈loc2, G
\
2〉
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I Field selection

FieldSel
〈G\, e〉 ⇓\l 〈loc,G

\
1〉

〈G\, e〉 ⇓\l 〈locf , G
\
2〉

where t = typeof (T , e), loc = (a, i), locf = (a, i+ offset(t, f)), τf = Γ(e.f),

b = (loc, |t|), bf = (locf , |t.f|),

G\
2 = G\

1

 src := src1[bf 7→ src1(b)], type := type1[bf 7→ t.f],

part := part1[τf ⇐ bf ], B := B1 ∪ {bf}

 .

I Pointer Arithmetic Operation

Arith-Op2

〈G\, e1〉 ⇓\l 〈loc1, G
\
1〉 〈G\, e1〉 ⇓\r 〈v1, G

\
1〉 〈G

\
1, e2〉 ⇓\r 〈v2, G

\
2〉

v1 = (a, i) ∈ Vptr v2 6∈ Vptr b1 = (loc1, |ptr|) ∈ dom(ptsto\2)

t = typeof (T , ∗(e1 ± e2)) v2%|t| = 0

loc = (a, i± v2) b′∗ = (loc, |t|) isValid(G\
2, b∗) isValid(G\

2, b
′
∗)

loc′ = (a′, 0) a′ is fresh

〈G\, e1 ± e2〉 ⇓\l 〈loc
′, G\

3〉

where b′ = (loc′, |ptr|), b∗ = (v1, |t|) = ptsto\2(b1), τ = Γ(e1 ± e2),

G\
3 = G\

2



src := ite(b′∗ ∈ dom(src2), src2[b′ 7→ b′], src2[b′ 7→ b′, b′∗ 7→ b′∗])

part := part2[τ ⇐ b′, {τ∗ ⇐ b′∗ | b∗ ∈ part2(τ∗)}]

type := type2[b′ 7→ ptr, b′∗ 7→ t] m := write(m2, b
′, loc′)

ptsto\ = ptsto\2[b′ 7→ b′∗] B := B2 ∪ {b′, b′∗}


.
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I Binary Operation

Arith-Op1

〈G\, e1〉 ⇓\r 〈v1, G
\
1〉 〈G

\
1, e2〉 ⇓\r 〈v2, G

\
2〉

v1, v2 6∈ Vptr loc = (a, 0) a is fresh

〈G\, e1 opb e2〉 ⇓\l 〈loc,G
\
3〉

where t = typeof (T , e1 opb e2), b = (loc, |t|), τ = Γ(e1 opb e2),

G\
3 = G\

2

 part := part2[τ ⇐ b] type := type2[b 7→ t]

m := write(m2, b, v1 opb v2) B := B2 ∪ {b}

 .

I Malloc

Malloc

〈G\, e〉 ⇓\r 〈v,G
\
1〉 |t| ≤ v

locl = (al, 0) loc = (a, 0) a, al are fresh

〈G\, (t∗)mallocl(e)〉 ⇓\l 〈locl, G
\
2〉

where bl = (locl, |ptr|), b0 = (loc, |t|), b = (loc, v), τ1 = Γ((t∗)mallocl(e)), τ2 = Γ(mallocl),

G\
2 = G\

1


type = type1[bl 7→ ptr, b0 7→ t] src = src1[bl 7→ bl, b0 7→ b0]

part = part1[τ1 ⇐ bl, τ2 ⇐ b0] ptsto\ = ptsto\1[bl 7→ b0]

m = write(m1, bl, loc) valid = valid1[b0 7→ t] B = B1 ∪ {bl, b0}

 .
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I Cast

Cast1

〈G\, e〉 ⇓\l 〈loc,G
\
1〉 〈G\, e〉 ⇓\r 〈v,G

\
1〉 v ∈ Vptr

al is fresh locl = (al, 0)

b = (loc, |ptr|) b∗ = ptsto\1(b) = (v, s) b′∗ = (v, |t|)

isValid(G\
1, b∗) isValid(G\

1, b
′
∗) contains(src1(b∗), b

′
∗)

〈G\, (t∗)l e〉 ⇓
\
l 〈locl, G

\
2〉

where bl = (locl, |ptr|), τ1 = Γ((t∗)l e), τ2 = Γ(l),

G\
2 = G\

1


src := src1[bl 7→ bl, b

′
∗ 7→ src1(b∗)] ptsto\ := ptsto\1[bl 7→ b′∗]

type := type1[bl 7→ ptr, b′∗ 7→ t] part := part1[τ1 ⇐ bl, τ2 ⇐ b′∗]

m := write(m1, bl, convert(v, t)) B := B1 ∪ {bl, b′∗}

 .

Cast2

〈G\, e〉 ⇓\l 〈loc,G
\
1〉 〈G\, e〉 ⇓\r 〈v,G

\
1〉 v ∈ Vptr

al is fresh locl = (al, 0)

b = (loc, |ptr|) b∗ = ptsto\1(b) = (v, s) b′∗ = (v, |t|)

isValid(G\
1, b∗) isValid(G\

1, b
′
∗) ¬contains(src1(b∗), b

′
∗)

〈G\, (t∗)l e〉 ⇓
\
l 〈locl, G

\
2〉

where bl = (locl, |ptr|), τ1 = Γ((t∗)l e), τ2 = Γ(l),

G\
2 = G\

1



src := ite(b′∗ ∈ dom(src1), src1[bl 7→ bl], src1[bl 7→ bl, b
′
∗ 7→ b′∗])

part := part1[τ1 ⇐ bl, τ2 ⇐ b′∗] ptsto\ := ptsto\1[bl 7→ b′∗]

type := type1[bl 7→ ptr, b′∗ 7→ t] B := B1 ∪ {bl, b′∗}

m := write(m1, bl, convert(v, t))


.
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I Assignment

Assg1

〈G\, e1〉 ⇓\l 〈loc1, G
\
1〉 〈G

\
1, e2〉 ⇓

\
l 〈loc2, G

\
2〉 〈G

\
1, e2〉 ⇓\r 〈v,G

\
2〉

b1 = (loc1, |t|) b2 = (loc2, |t|) b2 6∈ dom(ptsto\2)

〈G\, e1 =t e2〉 ⇓\l 〈loc1, G
\
2[m := write(m2, b1, v)]〉

Assg2

〈G\, e1〉 ⇓\l 〈loc1, G
\
1〉 〈G

\
1, e2〉 ⇓

\
l 〈loc2, G

\
2〉 〈G

\
1, e2〉 ⇓\r 〈v,G

\
2〉

b1 = (loc1, |t|) b2 = (loc2, |t|) b2 ∈ dom(ptsto\2)

〈G\, e1 =t e2〉 ⇓\l 〈loc1, G
\
3〉

where G\
3 = G\

2[ptsto\ := ptsto\2[b1 7→ ptsto\2(b2)],m := write(m2, b1, v)].

3.3.3.3 Correspondence.

The abstract semantics is built over cell variables, while the concrete semantics

is built over memory blocks. Function part connects them by mapping each cell

variable to a collection of memory blocks.

At each step of program execution, there is an abstract state G] and a concrete

state G\, and their correspondence is stated in lemma 2, 3, 4 and 5. We say G\

conforms to G], denoted as G\ v\ G], if these lemmas hold.

Lemma 2. Given a concrete state G\ = (ε, ptsto\, src, type, part, valid,m,B) and

a abstract state G] = (contains], ptsto], eqs]) at a program point, we have (1) the

size of each memory block must be consistent with the cell size of any of its cell

variables; (2) the cell variables associated with the same memory block must be
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equivalent.

∀b ∈ B ∀τ1, τ2 ∈ C . b ∈ part(τ1) ∧ b ∈ part(τ2) =⇒ (τ1, τ2) ∈ eqs] (Eq1)

∀b ∈ B ∀τ ∈ C ∃a ∈ A ∃s ∈ N . b ∈ part(τ) ∧ b = (a, s) =⇒ s v size(τ) (Eq2)

Lemma 3. Given a concrete state G\ = (ε, ptsto\, src, type, part, valid,m,B) and a

abstract state G] = (contains], ptsto], eqs]) at a program point, for any two memory

blocks b1 and b2, if the concrete points-to relation holds between them, then the

abstract points-to relation holds between their cell variables:

∀b1, b2 ∈ B ∃τ1, τ2 ∈ C .

b1 ∈ part(τ1) ∧ b2 ∈ part(τ2) ∧ b1 = ptsto\(b2) =⇒ τ1 = ptsto](τ2)

Lemma 4. Given a concrete state G\ = (ε, ptsto\, src, type, part, valid,m,B) and a

abstract state G] = (contains], ptsto], eqs]) at a program point, for any two memory

blocks b1, b2 ∈ B, if b1 contains b2, we have either the abstract contains relation

holds between their cell variables or their cell variables are equivalent (collapsed

records or unions)

∀τ1, τ2 ∈ C ∃i, j ∈ N . icontains(b1, i, j, b2) ∧

b1 ∈ part(τ1) ∧ b2 ∈ part(τ2)

 =⇒

 (τ1, τ2) ∈ eqs] ∨

(τ1, i, j, τ2) ∈ contains]


Lemma 5. Given a concrete state G\ = (ε, ptsto\, src, type, part, valid,m,B) and

a abstract state G] = (contains ], ptsto], eqs]) at a program point, we have for two

overlapped blocks, if their types are both scalar, then their cell variables must be
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equivalent:

∀b1, b2 ∈ B ∃τ1, τ2 ∈ C . b1 ∈ part(τ1) ∧ b2 ∈ part(τ2) ∧ overlap(b1, b2) ∧

isScalar(type(b1)) ∧ isScalar(type(b2))

 =⇒ (τ1, τ2) ∈ eqs]

As mentioned above, the statement we claim here is that the aliasing between

memory blocks in the concrete semantics is captured by the abstract semantics via

the equivalence relation between the associated cell variables. There are two kinds

of aliasing. The first one is introduced by pointers. Given a memory block, every

block it may point during the program execution are aliased, Another aliasing is

introduced by (partial) overlapping, known as “byte-level aliasing”. Two blocks are

overlapping if they share a segment of bytes. Only the byte-level aliasing between

scalar blocks are taken care of as they are the unit of memory access.

Theorem 2. Given a program e, let G\
0 → · · · → G\

n denote the sequence of state

transition of a program execution,

• for any block b ∈ Bn, if there exists b1, b2 ∈ Bn that b1 = ptsto\i(b) and

b2 = ptsto\j(b), where 0 ≤ i, j ≤ n, then ∀τ1, τ2 ∈ C . b1 ∈ partn(τ1) ∧ b2 ∈

partn(τ2) =⇒ τ1 = τ2;

• for any two blocks b1, b2 ∈ Bn, if overlap(b1, b2) and both typei(b1) and

typei(b2) are scalar where 0 ≤ i ≤ n, then ∀τ1, τ2 ∈ C . b1 ∈ parti(τ1) ∧ b2 ∈

parti(τ2) =⇒ τ1 = τ2.

Proof. The statement holds with lemma 2, 3, 5 and theorem 1.
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3.3.4 Soundness Proof

Proof of Theorem 1

Proof. G]
0 is the initial state. It is obvious that G]

0 v] G, as ptsto]0, contains]0

and eqs]0 are empty. Then we prove G]
n v] G by induction on the derivation of

expression evaluation rules. We assume the pre-state G] v] G, then prove that

the post-state G]′ v] G.

In Const and Var, the post-state is the same as the pre-state and thus the

claim holds. For Seq, we have (a) 〈G], e1〉 ⇓] G]
1 and (b) 〈G]

1, e2〉 ⇓] G]
2. By

induction on (a), we have G]
1 v] G; then by induction on (b), we have G]

2 v] G.

In Addr, by induction on 〈G], e〉 ⇓] G]
1, we have G]

1 v] G. The abstract store

is then updated as ptsto]1′ = ptsto]1[τ 7→ τ ′]. Let G]
1′ = (contains]1, ptsto]1′ , eqs

]
1).

According to the constraint generation rule Addr in Fig. 3.6, G |= τ ⇀ τ ′ and

thus τG
G
⇀ τ ′G. Therefore, G]

1′ v] G. With lemma 1, G]
2 = G]

1′
+ v] G. Similarly,

in Deref and Malloc, we can infer G]
2 v] G.

In FieldSel, by induction on 〈G], e〉 ⇓] G]
1, we have G]

1 v] G. The set of

contains relation is updated as contains]1′ = contains]1 ∪ {(τ, o, o + |t|, τf )}. Let

G]
1′ = (contains ]1′ , ptsto]1, eqs

]
1). We have G |= τ ↪→o,o+|t| τf according to the

constraint generation rule FieldSel. Then, τG
G
↪→o,o+s τ

G
f . Thus G]

1′ v] G. With

lemma 1, G]
2 = G]

1′
+ v] G.

In Cast, by induction on 〈G], e〉 ⇓] G]
1, we have G]

1 v] G. Then in G]
1′ ,

the abstract store is updated as ptsto]1′ = ptsto]1[τ1 7→ τ ′1]. According to the

constraint generation rule Cast, we have G |= τ1 ⇀ τ ′1 and thus τG1
G
⇀ τ ′1

G. Also,

we have contains]1′ = contains]1 ∪ cast](contains]1, τ
′
1, τ
′
2, |t|). For each (τ, i, i +

|t|, τ ′2) ∈ cast](contains]1, τ
′
1, τ
′
2, |t|), with (3.16), we have (τ, i, j, τ ′1) ∈ contains]1
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and source(τ). By induction (2) on G]
1, we have, τG

G
↪→i,j τ

′
1
G and τG ∈ source.

With (3.12), we have τG
G
↪→i,i+|t| τ

′
2
G. Let G]

1′ = (contains]1′ , ptsto]1′ , eqs
]
1), then

G]
1′ v] G. With lemma 1, G]

2 = G]
1′

+ v] G.

In Assg1, we have (a) 〈G], e1〉 ⇓] G]
1 and (b) 〈G]

1, e2〉 ⇓] G]
2. By induction on

(a), we have G]
1 v] G; then by induction on (b), we have G]

2 v] G. Then, the

set of equivalence relation is updated as eqs]2′ = eqs]2 ∪ {(τ, τ2)}. According to the

constraint generation rule Assg, we have G |= τ = τ2 and thus τG = τG2 . Let

G]
2′ = (contains ]2, ptsto]2, eqs

]
2′), then G]

2′ v] G. With lemma 1, G]
3 = G]

2′
+ v] G.

In Assg2, by induction on 〈G], e1〉 ⇓] G]
1 and 〈G]

1, e2〉 ⇓] G]
2, we have G]

2 v]

G. Then, the set of equivalence relation is updated as eqs]2′ = eqs]2 ∪ {(τ, τ2)}.

According to the constraint generation rule Assg, we have G |= τ = τ2 and

thus τG = τG2 . Also, the abstract store is updated as ptsto]2′ = ptsto]2[τ1 7→

ptsto]2(τ2), τ 7→ ptsto]2(τ2)]. With τG = τG2 , then τG
G
⇀ ptsto]2(τ2)G. According

to the rule Assg, we have G |= τ2 E τ1. With (3.14), τG1
G
⇀ ptsto]2(τ2)G. Let

G]
2′ = (contains]2, ptsto]2′ , eqs

]
2′), then G]

2′ v] G. With lemma 1, G]
3 = G]

2′
+ v] G.

In Arith-Op1, by induction on 〈G], e1〉 ⇓] G]
1 and 〈G]

1, e2〉 ⇓] G]
2, we have

G]
2 v] G.

In Arith-Op2, by induction on 〈G], e1〉 ⇓] G]
1 and 〈G]

1, e2〉 ⇓] G]
2, we have

G]
2 v] G. Then, the abstract store is updated as ptsto]2′ = ptsto]2[τ 7→ τ ′1]. From

τ ′1 = ptsto]2(τ1), we have τG1
G
⇀ τ ′1

G. According to the constraint generation rule

Arith-Op, we have G |= τ1 E τ . With (3.14), we can infer τG
G
⇀ τ ′1

G. Then,

the set of equivalence relation is updated as eqs]2′ = eqs]2∪ collapse](contains]2, τ
′
1).

For each (τ ′1, τ
′
c) ∈ collapse](contains]2, τ

′
1), according to (3.17), there is τ ′, such

that overlapG(τ ′1, τ
′) and τ ′c

G G
↪→k1,k2 τ ′G. From the constraint generation rule

Arith-Op, we have G |= collapsed(τ). With (3.13), we have τ ′1
G = τ ′c

G. Let
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G]
2′ = (contains]2, ptsto]2′ , eqs

]
2′). With lemma 1, G]

3 = G]
2′

+ v] G. Similarly, for

Arith-Op3, we can infer G]
3 v] G.

In Arith-Op4, by induction on 〈G], e1〉 ⇓] G]
1 and 〈G]

1, e2〉 ⇓] G]
2, we have

G]
2 v] G. The abstract store is then updated as ptsto]2′ = ptsto]2[τ 7→ τ ′1]. From

τ ′1 = ptsto]2(τ1) and τ ′2 = ptsto]2(τ2), we have τG1
G
⇀ τ ′1

G and τG2
G
⇀ τ ′2

G. Ac-

cording to the constraint generation rule Arith-Op, we have G |= τ1 E τ ∧

τ2 E τ . With (3.14), we can infer τG
G
⇀ τ ′1

G, τG
G
⇀ τ ′2

G and thus τ ′1
G = τ ′2

G.

Besides (τ ′1, τ
′
2), the set of equivalence relation is updated with two more sets

added collapse](contains ]2, τ
′
1) and collapse](contains]2, τ

′
2). Following the proof of

Arith-Op2 and Arith-Op3, these newly added equivalence relations are satisfied

by G. Let G]
2′ = (contains ]2, ptsto]2′ , eqs

]
2′). With lemma 1, G]

3 = G]
2′

+ v] G.

In order to prove the lemmas in section 3.3.3, we first introduce extra lemmas

as follows.

Lemma 6. Given an expression e and 〈G\
1, e〉 ⇓

\
l 〈loc, G

\
2〉, we have

τ = Γ(e) ∧ t = typeof (T , e) =⇒ (loc, |t|) ∈ part2(τ) ∧ τ ↪→0,|t| τ

Lemma 7. Given a concrete state G\ = (ε, ptsto\, src, type, part, valid,m,B), for

any block b ∈ B, it is contained in its source block: ∀b ∈ B . contains(src(b), b).

Lemma 8. Given a concrete state G\ = (ε, ptsto\, src, type, part, valid,m,B), for

any source block b ∈ range(src), if it shares the same base address as a valid

block b′ ∈ dom(valid), then the associated cell variables of b must be the source cell

variables. Furthermore, let valid(b′) = t, s be the size of b, and i be the offset of

the starting location of b from the base address. If i mod |t| 6= 0 or s 6= |t|, then
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the cell size of the associated cell variables of b must be >.

∀b ∈ range(src) ∀τ ∈ part(b) ∃b′ ∈ dom(valid) ∃a ∈ A ∃i, s1, s2 ∈ N .
b = ((a, i), s1) ∧

b′ = ((a, 0), s2) ∧

valid(b′) = t

 =⇒

 source(τ) ∧

s1 6= |t| ∨ i mod |t| 6= 0 =⇒ size(τ) = >



Lemma 9. Given a concrete state G\ = (ε, ptsto\, src, type, part, valid,m,B) and

a abstract state G] = (contains], ptsto], eqs]) at a program point, for any two source

blocks, if their starting locations share the same base address, their cell variables

must be equivalent:

∀b1, b2 ∈ range(src) ∀τ1, τ2 ∈ C ∃a ∈ A ∃i1, i2, s1, s2 ∈ N .

b1 = ((a, i1), s1) ∈ part(τ1) ∧ b2 = ((a, i2), s2) ∈ part(τ2) =⇒ (τ1, τ2) ∈ eqs]

The proof of each lemma is done in two steps. The first step, is to prove the

given statement for the initial state G\
0. The second step, known as the inductive

step, is to prove that, given a state transition 〈G\, e〉 ⇓\l 〈loc, G\′〉, if lemma 2, 3,

4, 5, 6, 7, 8, 9 hold for the pre-state G\, the given statement also holds for the

post-state G\′.

Proof of Lemma 6.

Proof. This claim can be proved by induction on each rule of the concrete seman-

tics, and the constraint generation rules.

Proof of Lemma 7.

Proof. In the initial state G\
0, src0 = {bx 7→ bx | x ∈ X}. Since each block contains
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itself, so the lemma holds.

In Const, Seq, Var, Deref, Arith-Op1, Assg1, Assg2, src is not updated

and the lemma holds by induction. In Addr, Malloc, Cast2, Arith-Op2, src

is updated with fresh blocks that are mapped to itself. Since each block contains

itself, so the lemma holds.

In FieldSel, by induction of the lemma on G\
1, we know contains(src1(b), b)

and contains(b, bf ), then contains(src1(b), bf ). So the lemma holds.

In Cast1, src2 = src1[bl 7→ bl, b
′
∗ 7→ src1(b∗)] and bl is fresh block. Since

contains(bl, bl) and contains(src1(b∗), b
′
∗), the lemma holds.

Proof of Lemma 8.

Proof. The lemma holds in the initial state G\
0, according to the constraint gener-

ation rule Var.

In Const, Seq, Var, Deref, FieldSel, Arith-Op1, Assg1, Assg2, src is not

updated. In Addr, Cast1, the newly-added source blocks have no corresponding

valid block. So the lemma holds by induction.

In Malloc, we know the newly-added source block b0 sharing the same base

address al with the newly-added valid block b, and τ2 is the cell variable associ-

ated with b0. Considering the offset of the starting location of b0 from the newly

generated base address is 0 and the size of b0 is |t|, then we just need to show
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source(τ2), which holds according to the constraint generation rule Malloc.

In Cast2, src2 = ite(b′∗ ∈ dom(src1), src1[bl 7→ bl], src1[bl 7→ bl, b
′
∗ 7→ b′∗]). bl

is fresh block without corresponding valid block in valid1. If b′∗ ∈ dom(src1), the

lemma holds by induction.

Otherwise, b′∗ is a fresh source block that associated with a single cell variable

associated with τ2 in src2. By induction of the lemma, we first need to show

source(τ2). We know ¬contains(src1(b∗), b
′
∗) and contains(src1(b∗), b∗). Let o ∈

N be the offset of b′∗ from the starting location of src1(b∗), then o+ |t| > ssrc where

ssrc is the size of src1(b∗). By induction on the lemma on G\
1, with isValid(G\

1, b∗),

then

∀τsrc ∈ C . src1(b∗) ∈ part1(τsrc) =⇒ source(τsrc) (3.18)

Together with cast(|t|, τ∗, τ2) (from the constraint generation rule Cast), we know

∀τsrc ∈ C . src1(b∗) ∈ part1(τsrc) =⇒ τsrc ↪→o,o+|t| τ2 (3.19)

Since ssrc v size(τsrc) and o + |t| > ssrc, according to (3.9), size(τsrc) = >. (3.19)

can be rewritten as

∀τsrc ∈ C . src1(b∗) ∈ part1(τsrc) =⇒ τsrc = τ2 ∧ size(τsrc) = > ∧ size(τ2) = >

(3.20)

We can infer source(τ2) from (3.18) and (3.20). Also, we do not need to consider

the offset and size of b′∗, since size(τ2) = >. Thus, the lemma holds.

In rule Arith-Op2, b′ is the newly-added source block without corresponding
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valid block in valid2. b′∗ is another newly-added source block if it is fresh. The cell

variables associated with b′∗ in part3 are C∗ = {τ | b∗ ∈ part2(τ)}. Then we first

need to show all the cell variables in C∗ are source cell variables:

∀τ∗ ∈ C . b∗ ∈ part2(τ∗) =⇒ source(τ∗) (Arith2-Obj1)

Considering isValid(G\
2, b∗), by induction of the lemma on G\

2, we can infer

∀τsrc ∈ C . src2(b∗) ∈ part2(τsrc) =⇒ source(τsrc) (3.21)

By induction of lemma 7 on G\
2, contains(src2(b∗), b∗). According to the relation

between contains and icontains, we know icontains(src2(b∗), i, j, b∗) where

i, j ∈ N. By induction of lemma 4 on G\
2, we know

∀τsrc, τ∗ ∈ C .

 b∗ ∈ part2(τ∗) ∧

src2(b∗) ∈ part2(τsrc)

 =⇒ τsrc ↪→i,j τ∗ ∨ τsrc = τ∗ (3.22)

By induction of lemma 3 on G\
2, τ1 ⇀ τ∗, where τ1 = Γ(e1). With the constraint

generation rule Arith-Op, collapsed(τ) and τ E τ1. With (3.14), τ E τ1 =⇒

τ ⇀ τ∗. With (3.13), from collapsed(τ), (3.22) can be rewritten as

∀τsrc, τ∗ ∈ C . b∗ ∈ part2(τ∗) ∧ src2(b∗) ∈ part2(τsrc) =⇒ τsrc = τ∗ (3.23)

From (3.21) and (3.23), (Arith2-Obj1) holds.

Let us consider the offset and size of b′∗. According to the semantics of Arith-

Op, b∗ = ((a, i), |t|) and b′∗ = ((a, i ± v2), |t|). Considering isValid(G\
2, b∗) and

isValid(G\
2, b
′
∗), there must be bvalid = ((a, 0), s) and valid2(bvalid) = t′. Then we
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just need to show

∀τ∗ ∈ C . b∗ ∈ part2(τ∗) ∧ ((i± v2) mod |t′| 6= 0 ∨ |t′| 6= |t|) =⇒ size(τ∗) = >

(Arith2-Obj2)

If |t′| 6= |t|, from the constraint generation rule Arith-Op, |t| v size(τ∗).

Then, let ssrc be the size of src2(b∗). (1) If ssrc 6= |t′|, by induction of the lemma

on G\
2, we know size(τsrc) = > and thus size(τ∗) = > from (3.23). (2) Otherwise,

ssrc = |t′|. By induction of the lemma 2 on G\
2, |t′| v size(τsrc). Considering

|t| v size(τ∗), with (3.23), we know size(τ∗) = >. Thus (Arith2-Obj2) holds.

Otherwise, |t′| = |t|. We then consider the other case (i ± v2) mod |t′| 6= 0.

We can infer (i mod |t|) 6= 0 from v2 mod |t| = 0. Let ssrc be the size of src2(b∗).

(1) If ssrc = |t′|, since the size of b∗ is |t|, we can infer src2(b∗) = b∗, considering

contains(src2(b∗), b∗) by induction of lemma 7 on G\
2. Thus, i is also the offset of

the starting location of src2(b∗). Since i mod |t′| 6= 0, by induction of the lemma

on G\
2, size(τ∗) = >. (2) Otherwise, ssrc 6= |t′|. From the above discussion, we can

infer size(τ∗) = size(τsrc) = >. Thus, (Arith2-Obj2) holds.

Proof of Lemma 9.

Proof. In the initial state, the source blocks are all disjoint, so the lemma holds.

In Const, Seq, Var, Deref, FieldSel, Arith-Op1, Assg1, Assg2, src is

not updated. In Addr, Cast1, the newly-added source blocks are disjoint with

each other. So the lemma holds by induction. In Malloc, the new source blocks

bl and b0 are disjoint with others and thus the lemma holds.
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In Cast2, src2 = ite(b′∗ ∈ dom(src1), src1[bl 7→ bl], src1[bl 7→ bl, b
′
∗ 7→ b′∗]). bl

is fresh block distinct with other blocks. b′∗ is added if it is fresh. If b′∗ is a fresh

source block, we know the cell variable associated with b′∗ in part2 is τ2. So we just

need to show source(τ2).

We know ¬contains(src1(b∗), b
′
∗) and contains(src1(b∗), b∗). Let o ∈ N be the

offset of b′∗ from the starting location of src1(b∗). We know o + |t| > ssrc, where

ssrc is the size of src1(b∗). By induction on lemma 8 on G\
1, with isValid(G\

1, b∗),

we can infer ∀τsrc ∈ C . src1(b∗) ∈ part1(τsrc) =⇒ source(τsrc). Together with

cast(|t|, τ∗, τ2) (from the constraint generation rule Cast), we can infer

∀τsrc ∈ C . src1(b∗) ∈ part1(τsrc) =⇒ τsrc ↪→o,o+|t| τ2 (3.24)

Since ssrc v size(τsrc) and o + |t| > ssrc, according to (3.9), size(τsrc) = >. (3.24)

can be rewritten as

∀τsrc ∈ C . src1(b∗) ∈ part1(τsrc) =⇒ τsrc = τ2

So the lemma holds.

In Arith-Op2, b′ is the newly-added source block and is disjoint with other blocks.

b′∗ is added if it is fresh. If b′∗ is a fresh source block, we know the cell variables

associated with b′∗ in part3 are C∗ = {τ | b∗ ∈ part2(τ)}. Then we need to show

∀τ∗, τsrc ∈ C . b∗ ∈ part2(τ∗) ∧ src2(b∗) ∈ part2(τsrc) =⇒ τ∗ = τsrc (Arith2-Obj)

By induction of lemma 7 onG\
2, contains(src2(b∗), b∗) and icontains(src2(b∗), i, j, b∗)
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where i, j ∈ N. By induction of lemma 4 on G\
2

∀τsrc, τ∗ ∈ C .

 b∗ ∈ part2(τ∗) ∧

src2(b∗) ∈ part2(τsrc)

 =⇒ τsrc ↪→i,j τ∗ ∨ τsrc = τ∗ (3.25)

By induction on lemma 3 on G\
1, τ1 ⇀ τ∗ where τ1 = Γ(e1). With the constraint

generation rule Arith-Op, we have collapsed(τ) and τ E τ1. With (3.14), τ E

τ1 =⇒ τ ⇀ τ∗. With (3.13), from collapsed(τ), (3.25) can be rewritten as

∀τsrc, τ∗ ∈ C . b∗ ∈ part2(τ∗) ∧ src2(b∗) ∈ part2(τsrc) =⇒ τsrc = τ∗

Then (Arith2-Obj) holds.

Proof of Lemma 2.

Proof. In the initial state G\
0, B0 = {bx | x ∈ X}. For each bx ∈ B0, there is only

one τx ∈ dom(part0) such that bx ∈ part0(τx), so the lemma obviously holds.

In Const, Var, Deref, Seq, Assg1, Assg2, part is not changed and the lemma

holds by induction. In Addr and Malloc, part is updated in the post-state with

newly-added blocks with fresh base address associated with a single cell variable.

In other words, these new blocks are associated with a single cell variable in the

updated part of the post-state. Thus, the lemma holds.

In FieldSel, part2 is updated with block bf is added to part1(τf ) and the size of

bf is |t.f|. We have |t.f| v size(τf ), from the constraint generation rule Dir-Sel.

If bf 6∈ B1, then bf is a fresh block and τf is the single cell variable associated with
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it in part2 of G\
2. Both (Eq1) and (Eq2) hold.

Otherwise, bf ∈ B1. By induction of (Eq1) on part1, we have ∀τ ′f ∈ C . bf ∈

part1(τ ′f ) =⇒ |t.f| v size(τ ′f ). Considering |t.f| v size(τf ), (Eq1) holds on part2.

In order to prove (Eq2) holds, we need to show

∀τ ′f ∈ C . bf ∈ part1(τ ′f ) =⇒ τf = τ ′f (FieldSel-Obj)

Considering icontains(b, of , of + |t.f|, bf ), where of = offset(t, f) is the offset

of bf from the starting location of b, by induction of lemma 4 on part1, with

b ∈ part1(τ), we have

∀τ ′f ∈ C . bf ∈ part1(τ ′f ) =⇒ τ ↪→of ,of+|t.f| τ
′
f ∨ τ = τ ′f

If τ ↪→of ,of+|t.f| τ
′
f , together with τ ↪→of ,of+|t.f| τf (from the constraint gener-

ation rule Dir-Sel), we can infer (FieldSel-Obj) holds, with the resolution rule

Linear and AntiSym.

If τ = τ ′f , we have either (1) size(τ) = > or (2) of = 0, |t.f| = |t| and b = bf .

If (1) size(τ) = >, (FieldSel-Obj) holds according to the resolution rule Scalar

and Collapse1. If (2) b = bf , we have of = 0 and |t.f| = |t|. τ ↪→of ,of+|t.f| τf

can be written as τ ↪→0,|t| τf . From τ ↪→0,|t| τ (with lemma 6), we know τf = τ

and (FieldSel-Obj) holds, according to the resolution rule AntiSym and Linear.

In Cast1, part2 is updated with block bl and b′∗ added, where the size of bl and

b′∗ are |ptr| and |t|. We know |ptr| v size(τ1) and |t| v size(τ2), according to

the constraint generation rule Cast. Considering bl is a newly generated memory

block with a fresh base address, τ1 is the single cell variable associated with it in
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G\
2. So the lemma holds on bl.

The remaining issue is whether b′∗ is a fresh block or not. If it is fresh, b′∗ 6∈ B1,

τ2 is the single cell variable associated with it and the lemma holds. Otherwise,

b′∗ ∈ B1. By induction of (Eq2) on part1, we have ∀τ ′2 ∈ C . b′∗ ∈ part1(τ ′2) =⇒

|t| v size(τ ′2). Thus, (Eq2) holds on part2. We only need to show (Eq1) holds,

which is equivalent to

∀τ ′2 ∈ C . b′∗ ∈ part1(τ ′2) =⇒ τ2 = τ ′2 (Cast1-Obj)

By induction of lemma 8 on G\
1, with isValid(G\

1, b∗), we know ∀τ ∈ C . src1(b∗) ∈

part1(τ) =⇒ source(τ). With the constraint generation rule Cast,

∀τ ∈ C . src1(b∗) ∈ part1(τ) =⇒ τ ↪→o,o+|t| τ2 (3.26)

From contains(src1(b∗), b
′
∗), then icontains(src1(b∗), o, o+|t|, b′∗), where o is also

the offset of b′∗ from the starting location of src1(b∗). By induction of lemma 4 on

G\
1, we have

∀τ, τ ′2 ∈ C . src1(b∗) ∈ part1(τ) ∧ b′∗ ∈ part1(τ ′2) =⇒ τ ↪→o,o+|t| τ
′
2 ∨ τ = τ ′2

If τ ↪→o,o+|t| τ
′
2, together with τ ↪→o,o+|t| τ2, (Cast1-Obj) holds, according to the

resolution rule Linear and AntiSym. Otherwise τ = τ ′2, by induction (Eq2), we

have either (1) size(τ) = >, then (Cast1-Obj) holds; or (2) src1(b∗) = b′∗, the size

of src1(b∗) is |t|. With τ ↪→0,|t| τ (by induction of lemma 6), according to (3.26),

we have τ = τ2 and (Cast1-Obj) holds.

90



In Cast2, if b′∗ 6∈ B1, the lemma holds as in Cast1. If b′∗ ∈ B1, we need to

show

∀τ ′2 ∈ C . b∗ ∈ part1(τ ′2) =⇒ τ2 = τ ′2 (Cast2-Obj)

As the proof of Cast1, we have

∀τsrc ∈ C . src1(b∗) ∈ part1(τsrc) =⇒ τsrc ↪→o,o+|t| τ2 (3.27)

where o is the offset of b′∗ and b∗ from the starting location of src1(b∗). By induction

of lemma 7, contains(src1(b∗), b∗). Together with ¬contains(src1(b∗), b
′
∗), we can

infer o + |t| > ssrc where ssrc is the size of src1(b∗). Thus, size(τsrc) = > from

(3.27). Considering b′∗ ∈ B1, b′∗ ∈ dom(src1) and src1(b′∗) and src1(b∗) share the

same base address. By induction of lemma 9 on G\
1, we know

∀τsrc, τ ′src ∈ C .

 src1(b∗) ∈ part1(τsrc) ∧

src1(b′∗) ∈ part1(τ ′src)

 =⇒ τsrc = τ ′src (3.28)

By induction of lemma 7 on G\
1, contains(src1(b′∗), b

′
∗). According to the relation

between contains and icontains, icontains(src1(b′∗), o
′, o′ + |t|, b′∗) where o′ is

the offset of b′∗ from the starting location of src1(b′∗). By induction of lemma 4 on

G\
1,

∀τ ′src, τ ′2 ∈ C .

 b′∗ ∈ part1(τ ′2) ∧

src1(b′∗) ∈ part1(τ ′src)

 =⇒ τ ′src ↪→o′,o′+|t| τ
′
2∨ τ ′src = τ ′2 (3.29)

Since size(τsrc) = > and thus size(τ ′src) = >, we can infer (Cast2-Obj) from (3.27),

(3.28) and (3.29), with the resolution rule Size and Scalar.
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In Arith-Op1, part3 is updated with block b added. First, we know the size

of b is |ptr|. From the constraint generation rule Cast, |ptr| v size(τ). Consider-

ing b is a newly generated memory block with a fresh base address, τ is the single

cell variable bound with it in G\
3. The lemma holds.

In Arith-Op2, part3 is updated with two blocks added b′ and b′∗. First, we know

the size of b′ is |ptr|. From the constraint generation rule Cast, |ptr| v size(τ).

Considering b′ is a newly generated memory block with a fresh base address, τ is

the single cell variable bound with it in G\
3. The lemma holds on b′. The remaining

issue is b′∗. We know the size of b′∗ and b∗ are |t|, and the cell variables associated

with b′∗ in part3 are C∗ = {τ | b∗ ∈ part2(τ)}.

If b′∗ 6∈ B2, by induction of the lemma on b∗, we have (1) ∀τ1, τ2 ∈ C∗ . τ1 = τ2;

(2) ∀τ ∈ C∗ . |t| v size(τ). Thus the lemma holds. Otherwise, b′∗ ∈ B2, we need

to show that

∀τ∗, τ ′∗ ∈ C . b∗ ∈ part2(τ∗) ∧ b′∗ ∈ part2(τ ′∗) =⇒ τ∗ = τ ′∗ (Arith2-Obj)

b∗ and b′∗ share the same base address, and so are src2(b∗) and src2(b′∗). By

induction of lemma 9 on G\
2,

∀τsrc, τ ′src ∈ C .

 src2(b∗) ∈ part2(τsrc) ∧

src2(b′∗) ∈ part2(τ ′src)

 =⇒ τsrc = τ ′src (3.30)

By induction of lemma 7 on G\
2, contains(src2(b∗), b∗). According to the relation

between contains and icontains, icontains(src2(b∗), o, o+ |t|, b∗) where o ∈ N.
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By induction of lemma 4 on G\
2, we have

∀τ∗, τsrc ∈ C .

 b∗ ∈ part2(τ∗) ∧

src2(b∗) ∈ part2(τsrc)

 =⇒ τsrc ↪→o,o+|t| τ∗ ∨ τsrc = τ∗ (3.31)

Since b∗ = ptsto\2(b1), according to lemma 6, we have b1 ∈ part2(τ1). By induction

of lemma 3 on G\
2, ∃τ∗ ∈ C . b∗ ∈ part2(τ∗) =⇒ τ1 ⇀ τ∗. By induction on (Eq1)

on part2, ∀τ∗ ∈ C . b∗ ∈ part2(τ∗) =⇒ τ1 ⇀ τ∗ According to the constraint

generation rule Arith-Op, we have collapsed(τ) and τ E τ1. With (3.14), from

τ E τ1, we know ∀τ∗ ∈ C . b∗ ∈ part2(τ∗) =⇒ τ ⇀ τ∗. With (3.13), from

collapsed(τ), (3.31) can be rewritten as

∀τsrc, τ∗ ∈ C . src2(b∗) ∈ part2(τsrc) ∧ b∗ ∈ part2(τ∗) =⇒ τsrc = τ∗ (3.32)

Since b′∗ ∈ B2 and thus b′∗ ∈ dom(src2), contains(src2(b′∗), b
′
∗) by induction of

lemma 7 on G\
2. According to the relation between contains and icontains,

icontains(src2(b′∗), o
′, o′ + |t|, b′∗) where o′ ∈ N. By induction of lemma 4 on G\

2,

∀τ ′∗, τ ′src ∈ C .

 b′∗ ∈ part2(τ ′∗) ∧

b′src ∈ part2(τ ′src)

 =⇒ τ ′src ↪→o′,o′+|t| τ
′
∗ ∨ τ ′src = τ ′∗ (3.33)

From (3.33), (1) if τ ′src = τ ′∗, then (Arith2-Obj) holds, from (3.30) and (3.32); (2)

if τ ′src ↪→o′,o′+|t| τ
′
∗, from (3.30) and (3.32), we know

∀τ∗, τ ′∗ ∈ C . b∗ ∈ part2(τ∗) ∧ b′∗ ∈ part2(τ ′∗) =⇒ τ∗ ↪→o′,o′+|t| τ
′
∗

Considering the size of b∗ and b′∗ are both |t|, by induction on (Eq2), we know
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|t| v size(τ∗) and |t| v size(τ ′∗). With the resolution rule Refl, Linear and

AntiSym, we can infer (Arith2-Obj) holds.

Proof of Lemma 3.

Proof. In the initial state G\
0, the points-to store ptsto\0 is empty, so the lemma

holds.

In Const, Var, Seq, Arith-Op1, Assg1, FieldSel, ptsto\ is not updated

and the lemma holds by induction.

In Deref, let τ = Γ(e) and τ∗ = Γ(∗e), and by induction, we have b ∈ part1(τ)

and b∗ ∈ part1(τ∗) and ptsto\1(b) = b∗. Considering ptsto]2(τ) = τ∗, the lemma

holds.

In Addr, ptsto\1 = ptsto\0[b& 7→ b]. Meanwhile, in the abstract semantics, ptsto]1 =

ptsto]0[τ 7→ τ ′] where τ = Γ(&e) and τ ′ = Γ(e). By induction, we know b ∈

part1(τ ′) and thus b ∈ part2(τ ′). Also, b& ∈ part2(τ). So the lemma holds.

In Cast1, Cast2, ptsto\2 = ptsto\1[bl 7→ b′∗]. Meanwhile, in the abstract semantics,

ptsto]2 = ptsto]1[τ1 7→ τ2]. Consider bl ∈ part2(τ1) and b′∗ ∈ part2(τ2), the lemma

holds.

In Malloc, ptsto\2 = ptsto\1[bl 7→ b0]. Meanwhile, in the abstract semantics,

ptsto]2 = ptsto]1[τ1 7→ τ2]. Consider bl ∈ part2(τ1) and b0 ∈ part2(τ2), the lemma

holds.
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In Arith-Op2, ptsto\3 = ptsto\2[b′ 7→ b′∗]. Let τ1 = Γ(e1) and thus τ∗ = ptsto]2(τ1),

We know b′ ∈ part3(τ) and b′∗ ∈ part3(τ∗) where τ = Γ(e1 ± e2). In the abstract

semantics Arith-Op2 and Arith-Op4, ptsto]3 = ptsto]2[τ 7→ τ∗]. So the lemma

holds. By switching the operands, we can infer the lemma holds with abstract

semantics Arith-Op3.

In Assg2, ptsto\3 = ptsto\2[b1 7→ ptsto\2(b2)]. Meanwhile, in the abstract semantics,

ptsto]3 = ptsto]2[τ1 7→ ptsto]2(τ2)], where τ1 = Γ(e1) and τ2 = Γ(e2). By induction

on G\
2 and G]

2, b1 ∈ part2(τ1), b2 ∈ part2(τ2) and ptsto\2(b2) ∈ part2(ptsto]2(τ2)).

Considering part3 = part2, the lemma holds.

Proof of Lemma 4.

Proof. In the initial state G\
0, the memory blocks in B0 are disjoint, so the lemma

holds.

In Const, Var, Deref, Seq, Arith-Op1, Assg1, Assg2, B is not updated

and the lemma holds by induction. In Addr, Malloc, the blocks are newly

generated with fresh base address. They are disjoint with existing memory blocks

an the lemma holds.

In FieldSel, B2 = B1 ∪ {bf}. If bf ∈ B1, the lemma holds by induction. Other-

wise, bf 6∈ B1 and τf is the single cell variable associated with bf in part2. In this
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case, we need to show

∀b1 ∈ B1 ∀τ1 ∈ C ∃i1, j1 ∈ N . (FieldSel-Obj1)

b1 ∈ part1(τ1) ∧ icontains(b1, i1, j1, bf ) =⇒ τ1 ↪→i1,j1 τf ∨ τ1 = τf

∀b2 ∈ B1 ∀τ2 ∈ C ∃i2, j2 ∈ N . (FieldSel-Obj2)

b2 ∈ part1(τ2) ∧ icontains(bf , i2, j2, b2) =⇒ τf ↪→i2,j2 τ2 ∨ τ2 = τf

By induction on lemma 7 on G\
1, contains(src1(b), b). According to the relation

between contains and icontains, icontains(src1(b), i3, j3, b) where i3, j3 ∈ N

and j3 = i3 + |t|. By induction of lemma 6 on G\
1, b ∈ part1(τ). By induction on

this lemma on G\
1,

∀τsrc ∈ C . src1(b) ∈ part1(τsrc) =⇒ τsrc ↪→i3,j3 τ ∨ τsrc = τ (3.34)

According to the constraint generation rule Dir-Sel, τ ↪→of ,of+|t.f| τf where of =

offset(t, f). With resolution rule Trans, from (3.34)

∀τsrc ∈ C . src1(b) ∈ part1(τsrc) =⇒ τsrc ↪→i3+of ,i3+of+|t,f| τf ∨ τsrc = τf (3.35)

Let us first consider (FieldSel-Obj1). For block b1 ∈ B1 that contains(b1, bf ),

we know either (1) contains(src1(b), b1) (b1 is within the source block of b); (2)

¬contains(src1(b), b1) (b1 is not within the source block of b).

From (1) contains(src1(b), b1), then icontains(src1(b), i4, j4, b1) where i4, j4 ∈
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N. By induction of the lemma,

∀τsrc, τ1 ∈ C .

 b1 ∈ part1(τ1) ∧

src1(b) ∈ part1(τsrc)

 =⇒ τsrc ↪→i4,j4 τ1 ∨ τsrc = τ1 (3.36)

From icontains(src1(b), i4, j4, b1) and icontains(src1(b), i3 + of , i3 + of +

|t.f|, bf ), with contains(b1, bf ), we know i4 ≤ i3 + of < i3 + of + |t.f| ≤ j4.

Let k1 = i3 + of − i4 and k2 = i3 + of + |t.f| − i4. According to the resolu-

tion rule Linear, with (3.35) and (3.36), we know τ1 ↪→k1,k2 τf ∨ τ1 = τf . Thus

(FieldSel-Obj1) holds.

From (2) ¬contains(src1(b), b1), we know both b1 and b contains bf , then

overlap(src1(b), b1) and thus overlap(src1(b), src1(b1)). By induction of lemma 9

on G\
1

∀τsrc, τ ′src ∈ C . src1(b) ∈ part1(τsrc) ∧ src1(b1) ∈ part1(τ ′src) =⇒ τsrc = τ ′src

Let bvalid is the valid block of src1(b) and src1(b1), where valid1(bvalid) = t′. Let

s1 and s2 are the size of src1(b) and src1(b1). Let o1 and o2 are the offset of the

starting location of src1(b) and src1(b1) from the starting location of bvalid. From

overlap(src1(b), src1(b1)), we can infer (1) s1 6= |t′|, or (2) s2 6= |t′|, or (3) o1 mod

|t′| 6= 0, or (4) o2 mod |t′| 6= 0. In either case, by induction of lemma 8, we can infer

size(τ ′src) = size(τsrc) = >. With the resolution rule Scalar and Collapse1, from

(3.35) and (3.36), τsrc = τ1, τsrc = τf and thus τ1 = τf . Therefore, (FieldSel-Obj1)

also holds.

Let us then consider (FieldSel-Obj2). For block b2 ∈ B that contains(bf , b2),

we know contains(src1(b), b2) and icontains(src1(b), i5, j5, b2) where i5, j5 ∈ N.
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By induction of the lemma

∀τsrc, τ2 ∈ C .

 b2 ∈ part1(τ2) ∧

src1(b) ∈ part1(τsrc)

 =⇒ τsrc ↪→i5,j5 τ2 ∨ τsrc = τ2 (3.37)

Considering icontains(src1(b), i3 + of , i3 + of + |t.f|, bf ), and contains(bf , b2),

we know i3 + of ≤ i5 < j5 ≤ i3 + of + |t.f|. Let k1 = i5 − i3 − of and

k2 = j5 − i3 − of . From (3.35) and (3.37), from the resolution rule Linear,

we know τ2 ↪→k1,k2 τf ∨ τ2 = τf , and thus (FieldSel-Obj2) holds.

In Cast1, B2 has two blocks added bl and b′∗. bl is disjoint with other blocks,

as its base address is fresh. If b′∗ ∈ B1, the lemma holds by induction. Otherwise,

b′∗ 6∈ B1 and τ2 is the only cell variable associated with it in the updated part2. We

need to show

∀b1 ∈ B1 ∀τ ∈ C∃i1, j1 ∈ N . (Cast1-Obj1)

b1 ∈ part1(τ) ∧ icontains(b1, i1, j1, b
′
∗) =⇒ τ ↪→i1,j1 τ2 ∨ τ = τ2

∀b2 ∈ B1 ∀τ ∈ C∃i2, j2 ∈ N . (Cast1-Obj2)

b2 ∈ part1(τ) ∧ icontains(b′∗, i2, j2, b2) =⇒ τ2 ↪→i2,j2 τ ∨ τ = τ2

By induction of lemma 7 on G\
1, contains(src1(b∗), b∗). Let o ∈ N is the offset

of b∗ from the starting location of src1(b∗), then icontains(src1(b∗), o, o + s, b∗).

By induction of the lemma

∀τsrc, τ∗ ∈ C .

 b∗ ∈ part1(τ∗) ∧

src1(b∗) ∈ part1(τsrc)

 =⇒ τsrc ↪→o,o+s τ∗ ∨ τsrc = τ∗
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Since isValid(G\
1, b∗), with lemma 8, we know ∀τsrc ∈ C . src1(b∗) ∈ part1(τsrc)

=⇒ source(τsrc). From the constraint generation rule Cast, cast(|t|, τ∗, τ2),

∀τsrc ∈ C . src1(b∗) ∈ part1(τsrc) =⇒ τsrc ↪→o,o+|t| τ2

Let us first consider the block b1 ∈ B1 such that contains(b1, b
′
∗), we know

contains(src1(b∗), b1), or ¬contains(src1(b∗), b1). Let us then consider the block

b2 ∈ B1 that contains(b′∗, b2), we know contains(src1(b∗), b2). Similar as the

proof of FieldSel, both (Cast1-Obj1) and (Cast1-Obj2) hold.

In Cast2, we know ¬contains(src1(b∗), b
′
∗) and contains(src1(b∗), b∗). Let o ∈ N

be the offset of b∗ and b′∗ from the starting location of src1(b∗). We know o+ |t| >

ssrc, where ssrc is the size of src1(b∗). By induction of lemma 8 on G\
1, with

isValid(G\
1, b∗), we can infer ∀τsrc ∈ C . src1(b∗) ∈ part1(τsrc) =⇒ source(τsrc).

Together with cast(|t|, τ∗, τ2), as in Cast1, we can infer

∀τsrc ∈ C . src1(b∗) ∈ part1(τsrc) =⇒ τsrc ↪→o,o+|t| τ2 (3.38)

Since ssrc v size(τsrc) and o + |t| > ssrc, according to (3.9), size(τsrc) = >. (3.38)

can be rewritten as

∀τsrc ∈ C . src1(b∗) ∈ part1(τsrc) =⇒ τsrc = τ2 (3.39)

For any block b ∈ B1 that either contains(b′∗, b) or contains(b, b′∗), we know
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src1(b) and src1(b∗) share the same base address. By induction of lemma 9 on G\
1

∀τsrc, τ ′src ∈ C . src1(b) ∈ part1(τ ′src) ∧ src1(b∗) ∈ part1(τsrc) =⇒ τsrc = τ ′src

(3.40)

By induction of lemma 7 on G\
1, contains(src1(b), b). Considering size(τsrc) = >,

by induction of the lemma,

∀τ, τ ′src ∈ C . b ∈ part1(τ) ∧ src1(b) ∈ part1(τ ′src) =⇒ τ ′src = τ (3.41)

From (3.39), (3.40) and (3.41), the lemma holds.

In Arith-Op2, B3 = B2 ∪ {b′, b′∗}. b′ is disjoint with other blocks, as its base

address is fresh. If b′∗ ∈ B2, the lemma holds by induction. Otherwise, b′∗ 6∈ B2. We

know the cell variables associated with b′∗ in part3 are C∗ = {τ | b∗ ∈ part2(τ)}.

Then we need to show

∀b1 ∈ B2 ∀τ1, τ∗ ∈ C ∃i1, j1 ∈ N . b1 ∈ part2(τ1) ∧

b∗ ∈ part2(τ∗)

 ∧ icontains(b1, i1, j1, b
′
∗) =⇒ τ1 ↪→i1,j1 τ∗ ∨ τ1 = τ∗

(Arith2-Obj1)

∀b2 ∈ B2 ∀τ2, τ∗ ∈ C ∃i2, j2 ∈ N . b2 ∈ part2(τ2) ∧

b∗ ∈ part2(τ∗)

 ∧ icontains(b′∗, i2, j2, b2) =⇒ τ∗ ↪→i2,j2 τ2 ∨ τ2 = τ∗

(Arith2-Obj2)

By induction of lemma 7 on G\
2, contains(src2(b∗), b∗). According to the

relation between contains and icontains, icontains(src2(b∗), i3, j3, b∗) where
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i3, j3 ∈ N. By induction of the lemma

∀τsrc, τ∗ ∈ C .

 b∗ ∈ part2(τ∗) ∧

src2(b∗) ∈ part2(τsrc)

 =⇒ τsrc ↪→i3,j3 τ∗ ∨ τsrc = τ∗ (3.42)

By induction of lemma 3 on G\
2, τ1 ⇀ τ∗ where τ1 = Γ(e1). With the constraint

generation rule Arith-Op, we have collapsed(τ) and τ E τ1. With (3.14), τ E

τ1 =⇒ τ ⇀ τ∗. With (3.13), from collapsed(τ), (3.42) can be rewritten as

∀τsrc, τ∗ ∈ C . b∗ ∈ part2(τ∗) ∧ src2(b∗) ∈ part2(τsrc) =⇒ τsrc = τ∗ (3.43)

Let us first consider (Arith2-Obj1). For the block b1 ∈ B2 that contains(b1, b
′
∗),

we know src2(b1) and src2(b∗) share the same base address. By induction of

lemma 9 on G\
2

∀τsrc, τ ′src ∈ C .

 src2(b∗) ∈ part2(τsrc) ∧

src2(b1) ∈ part2(τ ′src)

 =⇒ τsrc = τ ′src (3.44)

By induction of lemma 7 on G\
2, contains(src2(b1), b1). According to the relation

between contains and icontains, icontains(src2(b1), i4, j4, b1) where i4, j4 ∈ N.

By induction of the lemma

∀τ1, τ
′
src ∈ C .

 b1 ∈ part2(τ1) ∧

src2(b1) ∈ part2(τ ′src)

 =⇒ τ ′src ↪→i4,j4 τ1 ∨ τ1 = τ ′src (3.45)
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From (3.43), (3.44) and (3.45), we know

∀τ1, τ∗ ∈ C . b1 ∈ part2(τ1) ∧ b∗ ∈ part2(τ∗) =⇒ τ∗ ↪→i4,j4 τ1 ∨ τ1 = τ∗

If τ1 = τ∗, then (Arith2-Obj1) holds. If τ∗ ↪→i4,j4 τ1, considering contains(b1, b
′
∗),

we have either (1) size(τ∗) = > or (2) b′∗ = b1, i4 = 0 and j4 = |t|. In either case,

τ∗ = τ1 and (Arith2-Obj1) holds.

Let us consider (Arith2-Obj2) then. For block b2 ∈ B2 that contains(b′∗, b2),

icontains(b′∗, i2, j2, b2) where i2, j2 ∈ N.

From b2 ∈ B2, we know b2 ∈ src2(b2) and contains(src2(b2), b2), by induction

of lemma 7 on G\
2. According to the relation between contains and icontains,

icontains(src2(b2), i5, j5, b2) where i5, j5 ∈ N. By induction of lemma 4 on G\
2,

∀τ2, τ
′′
src ∈ C .

 b2 ∈ part2(τ2) ∧

src2(b2) ∈ part2(τ ′′src)

 =⇒ τ ′′src ↪→i5,j5 τ2 ∨ τ2 = τ ′′src (3.46)

By induction of lemma 9 on G\
2,

∀τsrc, τ ′′src ∈ C . src2(b∗) ∈ part2(τsrc) ∧ src2(b2) ∈ part2(τ ′′src) =⇒ τsrc = τ ′′src

(3.47)

From (3.43) and (3.47), we know τ ′′src = τ∗. (3.46) can be rewritten as

∀τ2, τ∗ ∈ C . b2 ∈ part2(τ2) ∧ b∗ ∈ part2(τ∗) =⇒ τ∗ ↪→i5,j5 τ2 ∨ τ2 = τ∗ (3.48)

Let ssrc, s
′′
src are the size of src2(b∗) and src2(b2). Let bvalid is the valid block

of src2(b∗) and src2(b2) where valid2(bvalid) = t′. Then we split the proof into
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following cases.

(1) ssrc 6= |t′| or s′′src 6= |t′|, by induction of lemma 8 on G\
2, according to

(3.47), we can infer size(τsrc) = size(τ ′′src) = >. With the resolution rule Scalar

and Collapse1, we have infer following formula and thus (Arith2-Obj2) holds.

∀τ2, τ∗ ∈ C . b2 ∈ part2(τ2) ∧ b∗ ∈ part2(τ∗) =⇒ τ2 = τ∗

(2) |t′| 6= |t|. With |t| v size(τ∗) (from the constraint generation rule Arith-

Op) and |t′| v size(τsrc) (by induction of the lemma 2 on G\
2), since τsrc = τ∗, we

know size(τsrc) = >. Similarly, we can infer (Arith2-Obj2) holds.

(3) |t′| = |t| = ssrc = s′′src. Since contains(src2(b∗), b∗), and the size of src2(b∗)

is the same as the size of b∗, we then can first infer src2(b∗) = b∗.

Moreover, from icontains(b′∗, i2, j2, b2) and icontains(src2(b2), i5, j5, b2) where

i2, j2, i5, j5 ∈ N, we can infer either b′∗ = src2(b2), or they are overlapping. If

b′∗ = src2(b2), then i2 = i5, j2 = j5, and (Arith2-Obj2) holds according to (3.48).

Otherwise, let o′′src and o′ are the offset of the starting location of src2(b2) and

b′∗ from the starting location of bvalid, then

o′′src < o′ < o′′src + |t| ∨ o′ < o′′src < o′ + |t| (3.49)

since b′∗ and src2(b2) are overlapping. From (3.49), we know either (3.1) o′′src mod

|t| 6= 0 or (3.2) o′ mod |t| 6= 0. For (3.1), by induction of lemma 8, size(τ ′′src) = >.

For (3.2), we have o′ = i ± v2 where i is the offset of b∗ and src2(b∗) (since

src2(b∗) = b∗). Considering v2 mod |t| = 0, then i mod |t| 6= 0. By induction of

lemma 8, size(τsrc) = >. From the above case, (Arith2-Obj2) holds.
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Proof of Lemma 5.

Proof. Before getting to the proof, we first claim that in a concrete state G\ =

(ε, ptsto\, src, type, part, valid,m,B), any block b ∈ B, if type(b) is scalar, then all

the cell variables associated with b is scalar:

∀b ∈ B ∀τ ∈ C . b ∈ part(τ) ∧ isScalar(type(b)) =⇒ scalar(τ) (3.50)

The claim obviously holds according the semantics rules and the constraints gen-

eration rules.

In the initial state G\
0, the memory blocks in B0 are disjoint, so the lemma holds.

In Const, Var, Deref, Seq, Assg1, Assg2, B is not updated and the lemma

holds by induction. In Addr, Malloc, Arith-Op1, the blocks are newly gener-

ated with fresh base address. They are disjoint with existing memory blocks.

In FieldSel, B2 = B1 ∪ {bf}. If t.f is with non-scalar type, then the lemma

holds by induction. If bf ∈ B1, the lemma holds by induction. Otherwise t.f

is scalar, from the constraint generation rule Dir-Sel, we know scalar(τf ) and

τ ↪→of ,of+|t.f| τf where of = offset(t, f). Considering bf is a new scalar block and

associated with a single cell variable τf , we just need to show

∀b′ ∈ B1 ∀τ ′ ∈ C .

b′ ∈ part1(τ ′) ∧ isScalar(type1(b′)) ∧ overlap(b′, bf ) =⇒ τf = τ ′

(FieldSel-Obj)

From isScalar(type1(b′)), with (3.50), ∀τ ′ ∈ C . b′ ∈ part1(τ ′) =⇒ scalar(τ ′). Con-
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sidering contains(b, bf ), from overlap(b′, bf ), we can infer either (1) src1(b′) =

src1(b), or (2) overlap(src1(b′), src1(b)).

If (1) src1(b′) = src1(b), by induction on lemma 7 on G\
1, contains(src1(b), b)

and contains(src1(b), b′). From contains(src1(b), b), icontains(src1(b), i1, j1, b)

where i1, j1 ∈ N. By induction of lemma 4 on G\
1

∀τsrc ∈ C . src1(b) ∈ part1(τsrc) =⇒ τsrc = τ ∨ τsrc ↪→i1,j1 τ (3.51)

With τ ↪→of ,of+|t.f| τf , according to the resolution rule Trans, from (3.51)

∀τsrc ∈ C . src1(b) ∈ part1(τsrc) =⇒ τsrc = τf ∨ τsrc ↪→i1+of ,i1+of+|t.f| τf (3.52)

From contains(src1(b), b′), we know icontains(src1(b), i2, j2, b
′) where i2, j2 ∈ N.

By induction of lemma 4 on G\
1

∀τsrc, τ ′ ∈ C .

 b′ ∈ part1(τ ′) ∧

src1(b) ∈ part1(τsrc)

 =⇒ τsrc = τ ′ ∨ τsrc ↪→i2,j2 τ
′ (3.53)

We know icontains(src1(b), i1 + of , i1 + of + |t.f|, bf ), from icontains(b, of , of +

|t.f, bf ) and icontains(src1(b), i1, j1, b), Considering overlap(b′, bf ), we know i1+

of ≤ i2 < i1 + of + |t.f| ∨ i2 ≤ i1 + of < j2. From scalar(τf ) and ∀τ ′ ∈ C . b′ ∈

part1(τ ′) =⇒ scalar(τ ′), according to the resolution rule Overlap, ∀τ ′ ∈ C . b′ ∈

part1(τ ′) =⇒ τf = τ ′ and thus (FieldSel-Obj) holds.

If (2) overlap(src1(b), src1(b′)), by induction of lemma 9 on G\
1

∀τsrc, τ ′src ∈ C . src1(b) ∈ part1(τsrc) ∧ src1(b′) ∈ part1(τ ′src) =⇒ τsrc = τ ′src

(3.54)
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Let bvalid is the valid block of src1(b) and src1(b′), where valid1(bvalid) = t′. Let

s1 and s2 are the size of src1(b) and src1(b′). Let o1 and o2 are the offset of

the starting location of src1(b) and src1(b′) from the starting location of bvalid.

From overlap(src1(b), src1(b′)), we can infer (1) s1 6= |t′|, or (2) s2 6= |t′|, or (3)

o1 mod |t′| 6= 0, or (4) o2 mod |t′| 6= 0. In either case, by induction of lemma 8,

we can infer size(τ ′src) = size(τsrc) = >.

With contains(src1(b), bf ) and icontains(src1(b), i3, j3, bf ) where i3, j3 ∈ N,

By induction of lemma 7 on G\
1, according to the resolution rule Scalar and

Collapse1, from size(τsrc) = >,

∀τsrc ∈ C . src1(b) ∈ part1(τsrc) =⇒ τsrc = τf (3.55)

With contains(src1(b′), b′) and icontains(src1(b′), i4, j4, b
′) where i4, j4 ∈ N.

Similarly, we can infer

∀τ ′src, τ ′ ∈ C . src1(b′) ∈ part1(τ ′src) ∧ b′ ∈ part1(τ ′) =⇒ τ ′src = τ ′ (3.56)

From (3.54), (3.55) and (3.56), we can infer (FieldSel-Obj) holds.

In Cast1 and Cast2, B2 = B1 ∪ {bl, b′∗}. bl is disjoint with other blocks. If

b′∗ ∈ B1 or its type t is not scalar, the lemma holds. Otherwise, t is scalar, from

the constraint generation rule Cast, we know scalar(τ2). Considering b′∗ is a new

scalar block and associated with a single cell variable τ2, we just need to show

∀b ∈ B1 ∀τ ∈ C . b ∈ part1(τ) ∧ isScalar(type1(b)) ∧ overlap(b, b′∗) =⇒ τ = τ2

(Cast-Obj)

106



From isScalar(type1(b)), with (3.50), ∀τ ∈ C . b ∈ part1(τ) =⇒ scalar(τ).

In Cast1, we know contains(src1(b∗), b
′
∗) and overlap(b, b′∗), then we have

src1(b) = src1(b∗)∨ overlap(src1(b), src1(b∗)). Similar as FieldSel, we can infer

(Cast-Obj) holds.

In Cast2, we know ¬contains(src1(b∗), b
′
∗) and contains(src1(b∗), b∗). Let

o ∈ N be the offset of b∗ and b′∗ from the starting location of src1(b∗). We know

o+|t| > ssrc, where ssrc is the size of src1(b∗). By induction of lemma 8 on G\
1, with

isValid(G\
1, b∗), we can infer ∀τsrc ∈ C . src1(b∗) ∈ part1(τsrc) =⇒ source(τsrc).

Together with cast(|t|, τ∗, τ2),

∀τsrc ∈ C . src1(b∗) ∈ part1(τsrc) =⇒ τsrc ↪→i,i+|t| τ2 (3.57)

Since ssrc v size(τsrc) and o + |t| > ssrc, according to (3.9), size(τsrc) = >. From

the resolution rule Scalar and Collapse1, (3.57) can be rewritten as

∀τsrc ∈ C . src1(b∗) ∈ part1(τsrc) =⇒ τsrc = τ2 (3.58)

For any block b ∈ B1 such that either overlap(b′∗, b), we know src1(b) and src1(b∗)

share the same base address. By induction of lemma 9 on G\
1, we know

∀τsrc, τ ′src ∈ C .

 src1(b) ∈ part1(τ ′src) ∧

src1(b∗) ∈ part1(τsrc)

 =⇒ τsrc = τ ′src (3.59)

By induction of lemma 7 on G\
1, contains(src1(b), b). Considering size(τsrc) = >,
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by induction of the lemma,

∀τ, τ ′src ∈ C . b ∈ part1(τ) ∧ src1(b) ∈ part1(τ ′src) =⇒ τ ′src = τ (3.60)

From (3.58), (3.59) and (3.60), (Cast-Obj) holds.

In Arith-Op2, B3 = B2 ∪ {b′, b′∗}. b′ is disjoint with other blocks. If b′∗ ∈ B2

or its type t is not scalar, the lemma holds. Otherwise, t is scalar and b′∗ is a

newly added scalar block. With t is scalar, we know scalar(τ∗) and b∗ is a scalar

block. Considering ∀τ∗ ∈ C . b∗ ∈ part2(τ∗) =⇒ b′∗ ∈ part3(τ∗), we need to show

∀

 b ∈ B2,

τ ′∗, τ∗ ∈ C

 .

 b ∈ part2(τ ′∗) ∧

b∗ ∈ part2(τ∗)

 ∧
 overlap(b, b′∗) ∧

isScalar(type2(b))

 =⇒ τ ′∗ = τ∗

(Arith2-Obj)

By induction on lemma 7 on G\
2, contains(src2(b∗), b∗). According to the relation

between contains and icontains, icontains(src2(b∗), i1, j1, b∗) where i1, j1 ∈ N.

By induction of the lemma 4 on G\
2,

∀τsrc, τ∗ ∈ C .

 b∗ ∈ part2(τ∗) ∧

src2(b∗) ∈ part2(τsrc)

 =⇒

 τsrc = τ∗ ∨

τsrc ↪→i1,j1 τ∗

 (3.61)

With lemma 3 and the constraint generation rule [Arith-Op], we have τ ⇀ τ∗

and collapsed(τ). With (3.13), (3.61) can be rewritten as

∀τsrc, τ∗ ∈ C . src2(b∗) ∈ part2(τsrc) ∧ b∗ ∈ part2(τ∗) =⇒ τsrc = τ∗ (3.62)

By induction of lemma 7 on G\
2, contains(src2(b), b). According to the relation
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between contains and icontains, icontains(src2(b), i2, j2, b) where i2, j2 ∈ N,

according to lemma 4,

∀τ ′src, τ ′∗ ∈ C .

 b ∈ part2(τ ′∗) ∧

src2(b) ∈ part2(τ ′src)

 =⇒

 τ ′src = τ ′∗ ∨

τ ′src ↪→i2,j2 τ
′
∗

 (3.63)

From overlap(b, b′∗), we know src2(b) and src2(b∗) share the base address. By

induction of lemma 9 on G\
2,

∀τsrc, τ ′src ∈ C.

 src2(b) ∈ part2(τ ′src) ∧

src2(b∗) ∈ part2(τsrc)

 =⇒ τ ′src = τsrc (3.64)

From (3.62) and (3.65), (3.63) can be rewritten as

∀τ∗, τ ′∗ ∈ C .

 b ∈ part2(τ ′∗) ∧

b∗ ∈ part2(τ∗)

 =⇒ τ∗ = τ ′∗ ∨ τ∗ ↪→i2,j2 τ
′
∗ (3.65)

Considering scalar(τ∗), according to the resolution rule Scalar, (3.65) can be

rewritten as following formula and (Arith2-Obj) holds.

∀τ∗, τ ′∗ ∈ C . b ∈ part2(τ ′∗) ∧ b∗ ∈ part2(τ∗) =⇒ τ∗ = τ ′∗
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Chapter 4

Partitioned Memory Models

With the analysis framework of memory partitioning and the points-to analysis

algorithms, in this chapter, we focus on building our partitioned memory models.

Section 4.1 reviews the different memory models and illustrates the novelties of the

partitioned model. Section 4.2 introduces a family of partitioned memory models

and illustrates their difference via an example. Finally, experimental results are

presented in section 4.3.

4.1 Overview of Memory Models

Consider the C code in Fig. 4.1. We will look at how to model the code using

the flat memory model, the Burstall memory model, and the partitioned memory

model.

Flat model. In the flat model, a single array of bytes is used to track all memory

operations, and each program variable is modeled as the content of some address

in memory. Suppose M is the memory array, a is the location in M which stores
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i n t a ;

vo id f oo ( ) {
i n t ∗b = &a ;
∗b = 0xFFF ;
char ∗c = ( char ∗) b ;
∗c = 0x0 ;
a s s e r t ( a != 0xFFF ) ;

}

Figure 4.1: Sample code with type-
unsafe pointer cast

a τ3

bτ1

cτ2

Figure 4.2: The points-to graph com-
puted by Steensgaard’s algorithm.
Each τi represents a distinct alias
group.

the value of the variable a, and b is the location in M which stores the value of

the variable b. We can then model the first two lines of foo (following SMT-LIB

syntax [3]) as follows:

(assert (= M1 (store M b a)) ; M[b] := a

(assert (= M2 (store M1 (select M1 b) #xfff)) ; M[M[b]] := 0xfff

This is typical of the flat model: each program statement layers another store on

top of the current model of memory. When many statements are modeled, the

depth of nested stores can get very large. Also, note that C guarantees that the

addresses of a and b are not the same. The flat model must explicitly model this

using an assumption on a and b. This can be done with the following disjointness

predicate, where size(p) is the size of the memory region starting at address p:

disjoint(p, q) ≡ p+ size(p) ≤ q ∨ q + size(q) ≤ p.

For the code in Fig. 4.1, the required assumption is: disjoint(a, b) ∧ disjoint(a, c) ∧

disjoint(c, b). Deeply nested stores and the need for such disjointness assertions

severely limit the scalability of the flat model.
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Burstall model. In the Burstall model, memory is split into several arrays based

on the type of the data being stored. In Fig. 4.1, there are four different types of

data, so the model would use four arrays: Mint, Mchar, Mint∗ and Mchar∗. In this

model, a is a location in Mint, b is a location in Mint∗, and c is a location in Mchar∗.

Distinctness is guaranteed implicitly by the distinctness of the arrays. The depth

of nested stores is also limited to the number of stores to locations having the same

type rather than to the number of total stores to memory. Both of these features

greatly improve performance. However, the model fails to prove the assertion in

Fig. 4.1. The reason is that the assumption that pointers to different types never

alias is incorrect for type-unsafe languages like C. In particular, b and c are aliases

and should thus be located in the same array.

Partitioned model. In the partitioned memory model, memory is divided into

regions based on alias information acquired by running a points-to analysis. The

result of a points-to analysis is a points-to graph. The vertices of the graph are

sets of program locations called alias groups. An edge from an alias group τ1 to an

alias group τ2 indicates that dereferencing a location in τ1 gives a location in τ2.

The points-to graph computed by Steensgaard’s algorithm for the code in Fig. 4.1

is shown in Fig. 4.2. There are three alias groups identified: one for each of the

variables a, b, and c. We can thus store the values for these variables in three

different memory arrays (making their disjointness trivial). Note that according

to the points-to graph, a dereference of either b or c must be modeled using the

array containing the location of a, meaning that the model is sufficiently precise

to prove the assertion.

112



typede f s t r u c t {F1 ∗ next ; u i n t 32 i d x ;} F1 ;
typede f s t r u c t
{F2 ∗ next ; u i n t 16 i d x1 ; u i n t 16 i d x2 ;} F2 ;

F1 f1 ; F2 f2 ;

vo id ∗ bar ( i n t f l a g ) {
F1 ∗p1 = &f1 ;
p1−>next = (F1 ∗) ma l l o c ( s i z e o f ( F1 ) ) ;
p1−>i d x = 0 ;
p1−>next−>next = NULL ;
p1−>next−>i d x = 1 ;

F2 ∗p2 = &f2 ;
p2−>next = (F2 ∗) ma l l o c ( s i z e o f ( F2 ) ) ;
p2−>i d x1 = 0 ; p2−>i d x2 = 1 ;
p2−>next−>next = NULL ;
p2−>next−>i d x1 = 1 ;
p2−>next−>i d x2 = 0 ;

vo id ∗p = ( vo id ∗) ( f l a g ? p1 : p2 ) ;
r e t u r n p ;

}

Figure 4.3: Code with dynamic allo-
cation and records

p1τ1 p2τ2 pτ3

f1,f2τ4

m1,m2τ5

Figure 4.4: The field-insensitive
points-to graph

4.2 Partitioned Memory Models

Consider now the code in Fig. 4.3, we use this example to introduce a family

of partitioned memory models, presenting the points-to graphs and the details of

modeling. This family includes the field-insensitive model, the field-sensitive model

and the cell-based model.

Field-insensitive partitioned model. The field-insensitive partitioned model

is based on Steensgaard’s algorithm. We first note that dynamic memory allocation

is modeled by introducing new variables m1 and m2 whose locations correspond to

the results of calls to the first and second occurrences of malloc, respectively.

Fig. 4.3 also includes record variables f1 and f2. Steensgaard’s original points-to

analysis is field-insensitive, meaning that it always collapses all record fields into

a single alias group, as shown in Fig. 4.4.
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p2τ2p1τ1 pτ3

f1,f2τ4

f1.next
f2.next

τ5
f1.idx
f2.idx1
f2.idx2

τ6

m1,m2τ7

Figure 4.5: The field-sensitive points-
to graph

p2τ2p1τ1 pτ3

f1,f2τ4

f1.next
f2.next

τ5
f1.idx
f2.idx1
f2.idx2

τ6

m1,m2τ7

m1.next
m2.next

τ8
m1.idx
m2.idx1
m2.idx2

τ9

Figure 4.6: The cell-based field-
sensitive points-to graph

Field-sensitive partitioned model. The field-sensitive partitioned model uses

Steensgaard’s field-sensitive points-to analysis, which builds the points-to graph

shown in Fig. 4.5. Note that alias group τ4, containing f1 and f2, also contains

two inner alias groups, denoted τ5 and τ6, representing the record fields of f1 and

f2.

Steensgaard’s field-sensitive algorithm does more than just compute alias groups.

It also computes the size of each alias group, which is either a numeric value (in-

dicating the number of bytes occupied by every variable in that alias group) or >,

which indicates that the variables in the alias group have inconsistent or unknown

sizes. This additional information enables further improvements in the memory

model: the memory array for an alias group whose size is > is modeled as an array

of bytes, while the memory array for a group whose size is some numeric value n

can be modeled as an array of n-byte elements. For these latter arrays, it then

becomes possible to read or write n bytes with a single array operation (whereas

with an array of bytes, n operations are needed). Not having to decompose array

accesses into byte-level operations reduces the size and complexity of the resulting
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SMT formulas.

Cell-based partitioned model. Steensgaard’s field-sensitive algorithm only

distinguishes fields in statically allocated structured variables. Dynamically al-

located structured regions are still collapsed into a single alias group. The new

cell-based field-sensitive pointer analysis algorithm described in chapter 3 extends

Steensgaard’s algorithm to handle dynamically allocated regions and arrays more

accurately. Fig. 4.6 shows the points-to graph computed by this analysis. Notice

that τ7 now resembles τ4, with inner groups τ8 and τ9.

Another innovation is that our algorithm tracks the cell size (the size of each

unit of access), rather than the data size of each alias group, making it possible to

extend the approach mentioned above to handle both static and dynamic arrays. In

particular, we can use a memory array whose elements are n bytes long to represent

program arrays whose elements are of size n (bytes). This further improves the

precision and performance of the memory model.

4.3 Evaluation

We implemented the memory models mentioned in this paper in the Cascade pro-

gram verification framework [42]. A points-to analysis is run as a preprocessing

step, and the resulting points-to graph is used during symbolic execution to: (i)

determine the element size of the memory arrays; (ii) select which memory array

to use for each read or write (as well as for each memory safety check); and (iii)

add disjointness assumptions where needed (i.e. for distinct locations assigned to

the same memory array).

To assess the effectiveness of the cell-based model, we conducted two experi-
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ments. In the first experiment, we compared the different memory models imple-

mented in Cascade against each other. In the second experiment, we compared

Cascade (using the cell-based model) with CBMC [24], LLBMC [17], Smack [21],

SeaHorn [20], and CPAChecker [4]. We chose LLBMC, CBMC and Smack be-

cause, like Cascade, they rely on bounded model checking and satisfiability solvers.

We chose SeaHorn because, like Cascade, it uses alias analysis (an invariant of

DSA [29]) to infer disjoint heap regions. We chose CPAChecker because it was the

winner of the memory safety category of the 2015 software verification competition

(SVCOMP) [5]. All experiments were performed on an Intel Core i7 (3.7GHz) with

8GB RAM.

Benchmarks. In both experiments, we used a subset of the SVCOMP’16 bench-

marks. We considered 141 benchmarks in the loops subset of the control flow cate-

gory (Loops), the 81 benchmarks in the heap manipulation category (HeapReach),

the and the 190 benchmarks in the heap memory safety category (HeapMem-

Safety), as these contained many programs with heap-allocated structures. For

Loops and HeapReach, we checked for reachability of the ERROR label in the code.

For HeapMemSafety, we checked for invalid memory dereferences, invalid memory

frees, and memory leaks.

Configuration of Cascade. Like other bounded model checkers, Cascade relies

on function inlining and loop unrolling. Cascade takes as parameters a function-

inline depth d and a loop-unroll bound b. It then repeatedly runs its analysis,

inlining all functions up to depth d, and using a set of successively larger unrolls

until the bound b is reached. There are four possible results: unknown indicates

that no result could be determined (for our experiments this happens only when
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the depth of function calls exceeds d); unsafe indicates that a violation was dis-

covered; safe indicates that no violations exist within the given loop unroll bound ;

and timeout indicates the analysis could not be completed within the time limit

provided. For the reachability benchmarks, we set d = 6 and b = 1024; for the

memory safety benchmarks, we set d = 8 and b = 200. For these experiments, we

used a strategy different from the one used for SVCOMP’16 (designed specifically

for its scoring schema).

Comparison Table 4.1 reports results for the flat model, the partitioned model,

the field-sensitive partitioned model (FS Partition), and the cell-based field-sensitive

partitioned model (CFS Partition). In this table, “solved” means that either a vio-

lation was found or the maximum unroll was reached, and the time reported is the

total for all solved problems. Fig. 4.7 shows scatterplots comparing each successive

refinement. As can be seen, the partitioned model improves over the flat model.

The field-sensitive partitioned model does help in some cases, but does worse on

others. The cell-based model, in contrast, is nearly uniformly superior to both the

partitioned model and the field-sensitive partitioned model.

Loop(141) HeapReach(81) HeapMemSafety(190)
#solved time(s) ptsTo(s) #solved time(s) ptsTo(s) #solved time(s) ptsTo(s)

Flat 56 233 - 44 75.9 - 88 431.4 -
Partition 58 298.6 0.65 51 61.8 0.25 89 562.9 3.03
FS Partition 60 310.7 1.10 51 50.1 0.6 97 433.6 4.4
CFS Partition 59 226 0.87 52 47.5 0.82 112 627.2 9.96

Table 4.1: Comparison of various memory models in Cascade. The timeout is 60
seconds and the memory limit is 15GB. “ptsTo” is the time spent on the points-to
analysis.

Table 4.2 compares the cell-based version of Cascade with LLBMC, CBMC,

Smack, SeaHorn and CPAChecker. Note that Cascade is the only tool that does
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Figure 4.7: Comparison of various memory models on benchmarks of all three
categories.

not produce false positives. For the HeapReach category, Cascade reports unknown

for 20 benchmarks due to an insufficient function inline depth. Cascade performs

best on the HeapMemSafety category and relatively good on the Loop category.

While Cascade, solves more safe benchmarks than CPAChecker and SeaHorn in

these categories, it should be noted that they are not bounded model checker.

They use loop invariants to ensure soundness under certain assumptions.

Loop HeapReach HeapMemSafety
Safe(93) Unsafe(48) Safe(56) Unsafe(25) Safe(105) Unsafe(85)

tool #CA #FP #CA #FN #CA #FP #CA #FN #CA #FP #CA #FN

Cascade 93
49407.8s

- 37
708.6s

11
5605.1s

42
7753.1s

- 19
60s

- 101
44467.5s

- 70
1596.2s

8
6805.7s

CBMC 93
14696.1s

- 38
362.9s

10
957s

56
17742s

- 25
136.7s

- 92
17918.2s

13
568.4s

65
169.7s

20
3880.2s

LLBMC 85
1220.3s

- 40
198.1s

4
1.91s

41
104.8s

- 22
10.68s

- 69
316.9s

2
9.5s

70
106.7s

7
187.1s

Smack 85
40159.7s

- 40
1150.3s

3
2651.3s

52
6383.7s

1
3.41s

25
146.7s

- - - - -

SeaHorn 77
1006.6s

8
13.6s

43
1570.3s

- 44
14.2s

11
4.8s

21
7s

3
1.7s

- - - -

CPAChecker 56
3517.4s

1
456.9s

35
789.20s

- 45
1371.3s

1
4.2s

24
1264.3s

- 46
572.48s

3
10.5s

72
268.2s

-

Table 4.2: Comparison of Cascade (with CFS-Partition model), CBMC (CBMC-
sv-comp-2016), LLBMC (llbmc-svcomp-14), Smack (smack-1.5.2-64), SeaHorn
(SeaHorn v.0.1), CPAChecker (CPAchecker-1.4-svcomp16c-unix). “CA” is cor-
rect answer. “FP” is false positive (tool reports unsafe when it is safe). “FN” is
false negative (tool reports safe when it is unsafe). The timeout is 900 seconds,
and the memory limit is 15GB. For each category, the total number of benchmarks
is shown in the followed parentheses. An entry of “-” means zero. The run time is
shown in seconds under the number of benchmarks.
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Chapter 5

Conclusion

This thesis is motivated by issues related to SMT-based program analysis and

memory modeling in the low-level languages like C. We explore the idea of mem-

ory partitioning based on alias information, and propose a family of partitioned

memory models. Our work is implemented in our static analysis tool Cascade,

improving its scalability and its ability to discover critical memory safety bugs in

benchmarks with complex data structures. In SV-COMP 2015, with the vanilla

version of partitioned memory models, Cascade won the bronze medal in the mem-

ory safety category.

The development involves three components: the analysis framework support-

ing memory partitioning, the points-to analysis algorithms, and the modeling of

memory. In chapter 2, we set up the analysis framework and formalized it with

the approach of symbolic execution. The framework is built on the module of

alias analysis module which can be instantiated with various analysis algorithms.

In chapter 3, we presented a novel cell-based points-to analysis, which improves

on the earlier field-sensitive points-to analysis by more precisely modeling arrays,
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unions, pointer casts, and dynamically allocated memory. The analysis was for-

malized in a constraint-based framework, and the proof of soundness was provided

as part of the chapter. In chapter 4, we introduced a family of partitioned memory

models built on various points-to analyses and showed how to use them to generate

coarser and finer partitions. The experiments suggest that our cell-based memory

model achieves both scalability and precision.

Overall, the partitioned memory model is a promising approach for modeling

memory for program analysis in languages with the presence of pointers and low-

level memory operations. Future work could involve introducing context-sensitivity

and flow-sensitivity in order to obtain more precise partitioning.
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[7] S. Böhme and M. Moskal. Heaps and data structures: A challenge for auto-

mated provers. N. Bjørner and V. Sofronie-Stokkermans, editors, Automated

Deduction, 6803:177–191, 2011.

[8] D. Brand and W. H. Joyner. Verification of protocols using symbolic execu-

tion. Comput. Networks, 2:351, 1978.

[9] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and automatic

generation of high-coverage tests for complex systems programs. Proc. OSDI

2008, pages 209–224, 2008.

[10] Cristian Cadar and Koushik Sen. Symbolic execution for software testing:

Three decades later. Commun. ACM, 56(2):82–90, February 2013.

[11] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,

W. Schulte, and S. Tobies. VCC: A practical system for verifying concurrent

C. 22nd International Conference on Theorem Proving in Higher Order Logics

(TPHOLs ’09), 2009.

[12] E. Cohen, M. Moskal, S. Tobies, and W. Schulte. A precise yet efficient

memory model for c. ENTCS, 254:85–103, 2009.

[13] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and

B. Yakobowski. Frama-C a software analysis perspective. SEFM, 2012.

[14] Manuvir Das, Sorin Lerner, and Mark Seigle. Esp: Path-sensitive program

verification in polynomial time. In Proceedings of the ACM SIGPLAN 2002

Conference on Programming Language Design and Implementation, PLDI ’02,

pages 57–68, New York, NY, USA, 2002. ACM.

122



[15] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. TACAS, pages

337–340, 2008.

[16] Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo theories: In-

troduction and applications. Commun. ACM, 54(9):69–77, September 2011.

[17] S. Falke, F. Merz, and C. Sinz. LLBMC: Improved bounded model checking

of c programs using llvm (competition contribution). TACAS, 7795:623–626,

2013.

[18] J. S. Foster, M. Fähndrich, and A. Aiken. Flow-insensitive points-to analy-

sis with term and set constraints. Technical report, U. OF CALIFORNIA,

BERKELEY, 1997.

[19] R. Grimm. Rats!, a parser generator supporting extensible syntax. 2009.

[20] Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.

The seahorn verification framework. In Proceedings of the 27th International

Conference on Computer Aided Verification, 2015.

[21] Arvind Haran, Montgomery Carter, Michael Emmi, Akash Lal, Shaz Qadeer,

and Zvonimir Rakamaric. Smack+corral: A modular verifier (competition

contribution). In Tools and Algorithms for the Construction and Analysis of

Systems (TACAS). Springer, March 2015.

[22] M. Hind. Pointer analysis: Haven’t we solved this problem yet? PASTE 2001,

pages 54–61, 2001.

[23] J. C. King. Symbolic execution and program testing. Communications of the

ACM, 385:226–394, 1976.

123



[24] D. Kroening and M. Tautschnig. CBMC - C bounded model checker - (com-

petition contribution). TACAS, 8413:389–391, 2014.

[25] Daniel Kroening and Ofer Strichman. Decision Procedures: An Algorithmic

Point of View. Springer Publishing Company, Incorporated, 1 edition, 2008.

[26] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Candea.

Efficient state merging in symbolic execution. SIGPLAN Not., 47(6):193–204,

June 2012.

[27] S. K. Lahiri and S. Qadeer. Back to the future. revisting precise program

verification using SMT solvers. POPL, pages 171–182, 2008.

[28] A. Lal, S. Qadeer, and S. K. Lahiri. Corral: A solver for reachability modulo

theories. CAV, 2012.

[29] Chris Lattner, Andrew Lenharth, and Vikram Adve. Making Context-

Sensitive Points-to Analysis with Heap Cloning Practical For The Real World.

In Proceedings of the 2007 ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation (PLDI’07), San Diego, California, June

2007.

[30] Laurent Mauborgne and Xavier Rival. Trace partitioning in abstract interpre-

tation based static analyzers. In M. Sagiv, editor, European Symposium on

Programming (ESOP’05), volume 3444 of Lecture Notes in Computer Science,

pages 5–20. Springer-Verlag, 2005.

[31] J. McCarthy and P. Hayes. Some philosophical problems from the standpoint

of artificial intelligence. Machine Intelligence, 4:463–502, 1969.

124
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