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Abstract

This is a continuing attempt in a series of papers [KM 93, Mur 93,
Mur 94] to show how computer-represented knowledge can be ar-
ranged as elements of an effectively represented semantic domain in
the sense of [GS 90]. We present a direct deductive description of the
domain, which was defined semantically in [KM 93], via the Scott’s
notion of information system. Also, the internal structure of the con-
tinuous ampliative operations coordinated with the domain’s effective
basis is established. Though we always remain in the paradigm of the
toleration of contradictory information described in [Bel 75, Bel 76],
the approach in question could be extended to include domains for
consistency knowledge bases.
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1 Introduction

The presented approach grounds the notion of approximation for computer-
represented knowledge in the same way as it was done in the domain theory



for the denotational semantics of programming languages (cf. [Ten 76]). The
relation of approximation arises when one imagines the computer as placed
into changeable information environment (“information flow”). Thus, the
information which is contained in the computer’s memory is considered as
highly incomplete or partial.

More complete or total (“ideal”) information may even be inaccessible
to the computer. Considering this, we can distinguish computer-tractable
information from a theoretically possible one so that it happens to be pos-
sible to attract topological ideas as it also was done in semantic domains
(cf. [Sco 71, GHKLMS 80, GS 90]). In particular, continuous functions will
be admitted as the only information transformers in the computer. Fur-
thermore, we limit ourselves only to the continuous functions, which are
computable (in a sense to be made precise below). Thus, as the structural
side of a knowledge-based system in the framework of the approach in ques-
tion is determined completely by the domain structure, its functional side
is determined by computable functions definable on this domain. More-
over, to keep the approach realistic, we admit only effectively presented
domains, which are algebraic semilattice with effective basis. Indeed, ev-
ery element of such a domain is generated by elements of its effective basis
(cf. [Sco 71, GHKLMS 80, GS 90]).

The question arises here: Why must the knowledge be structured in that
way? Our answer is: It may not be structured at all. But by being inserted
in the computer it becomes a data type. And we simply insist that data type
be considered as an abstract notion. To ecape confusion, we would like to
emphasise that we do not share the view, according to which “a knowledge
base ... is treated as an abstract data type [in the sense of [LZ 74]] that inter-
acts with a user or system only through a small set of operations” [Lev 84].
We accept rather the concept that represented knowledge is one element of
a domain and we may use as many continuous computable functions on this
domain as we need for transforming that knowledge. The point is that we
do not consider, either theoretically or practically, a current state of the
computer’s knowledge in isolation from the others, but as one element of a
domain.

To realize this plan, we shall from the beginning call our attention to
that or another truth theory. We need do that, because we want to limit
ourselves to the linguistic interpretation of the knowledge, that is, admit
only the knowledge, which can be expressed in a formal language and allows



the truth estimation !. This interpretation is essentially the first part of the
Knowledge Representation Hypothesis (cf. [Smi 82, Lev 86, Isr 93]). The
basic language L we employ is the propositional formulas built up of the set
Var (= {p1,p2,...}) of propositional variables with help of the connectives:
A (conjunction), V (disjunction) and — (negation). The auxiliary language
L* includes also the symbol x as an “always-true” atomic formula. Thus,
we are dealing here with a quite refined representation of information flow
which curries information about facts that make propositions of the language
L true or false 2.

We would like to emphasise that we are still having a choice here. Our
future knowledge-based system is a big deal of choice at this moment. Of
course, everything depends on our goals. Therefore, we turn to our purposes,
one of which is to take into consideration possible contradictions that may
come to the computer’s input or appear in a current state of knowledge as
a side-effect of an “inoffensive” input. (Remember: the computer is inside
of the information flow.) In short, we should have at least four semantic
values for propositions: ¢ (truth), f (falsehood), L (unknown) and T (over-
determination, i.e. both truth and falsehood). Another move would be
necessary, if we chose, for example, closed-world assumption instead of our
notion of information flow (cf. [Rei 78]). Now, we are again standing before
choices. Indeed, one can construct a desire knowledge-based system as a
domain either semantically or deductively. The first way, call it semantic,
leads to the notion of Belnap’s epistemic state [Bel 75, Bel 76], the second,
call it deductive, leads to that of Scott’s information system [Sco 82, DB 90].
We have to discuss briefly both options.

The convenience of the deductive approach lies, first of all, in that the
domain, which is determined by an information system, has the ordinary set
inclusion as its partially ordered relation on its elements that look like con-
sistent theories in a considered language within chosen means of inference,
where the computer-tractable elements correspond to some finitely axioma-

1 As far as I know, such understanding of knowledge got aware in modern time due to
G.Frege (cf. [Fre 66]).

2We are following [Rus 18] in differentiating between the notions of fact and proposition.
In connection with this difference, we would like to note that that is probably not easy
for the user working with in the information flow to translate a desciption of fact into an
appropriate proposition of L. A comprehensive analysis of the models of information flow
has been recently developed in [Bar 92].



tizable theories. In our case, holding a paradigm of the toleration of incon-
sistency, we form a domain 4 being come from the formulas of the language
L and the formula % as basic propositions (“tokens”). As a basic means of
inference, we take the Anderson-Belnap’s calculus Ef4. of first degree en-
tailment from [AB 75]. In what extent is this choice justified? Any answer
within the deductive approach will be hardly satisfied. Therefore, we seek
to find an answer to that question from the point of view of the semantic
approach.

The semantic approach comes out of our intuitive vision of what a de-
signed knowledge-based system should be and it is certainly more intuitively
understandable for the user. Moreover, the intuitively justified definitions
such as Belnap’s epistemic state in [Bel 75, Bel 76] may precede the theo-
retical construction of an appropriative domain, and may be turned later
into more suitable ones. Intuitive vision is especially important for obtaining
definitions of operations as knowledge transformers needed on the domain.
An example of such a situation occured, when we employed in [KM 93] the
notion of generalized epistemic state to form the elements of the domain
AGE and that of minimal epistemic state to define possible states of the com-
puter’s knowledge, leaving Belnap’s definition as an auxiliary one. Now, we
need to make sure that we arrived to the same (up to isomorphism) domain
structure using the semantic and deductive approaches. This is described in
section 3, establishing an isomorphism between domains A and AGE. This
isomorphism is an exapmle of what we could call completeness.

As we said before, we pay attention only to the continuous, and even
computable, functions on the effectively presented domains. To hold onto
the realistic spirit of the approach in question, we need to add one more con-
dition: knowledge-transformation operations must be closed with respect to
the basis, in other words, coordinated with it (cf. [KM 93, Mur 93, Mur 94]).
Moreover, we narrow down the set of the acceptable operations supposing
that the computer itself, being located in the information flow never loses
the information it currently has. Thus, those operations have to act am-
pliatively, as Nuel Belnap would say (see the definition below). What has
been said, however, does not mean that we cannot correct the computer’s
behavior in connection, for example, with backtracking ® or analyse effec-

3See on a backtracking strategy on the lattice AFE, an effective basis of the domain

AGE, in [Mur 94].



tively development of the computer’s knowledge *. It only means that the

computer itself, as an intelligent system, maintains its knowledge by means
of C AC-operations (see the definition below). In section 5 we prove that the
operations [A] and [A — B] introduced in [KM 93] are two examples of the
C AC-operations of the finite order. We also establish in that section that
all the C AC-operations possess a definite structure, in which [A]-operations
play a fundamental role.

Although we consider here only a particular knowledge representation
expressed by constructing certain domains, using C AC-operations in accor-
dance with our purposes, we maintain the idea that the approach in question
has some wide-ranging significance.

2 Preliminaries

We start with the definitions of the semantic approach. Let us first fix the set
g & {t, f,L, T} partially ordered by the relation C and we will consider it
as the lattice A4 (= ($,M,1)) pictured as the left diagram in Figure 1. For
the determination of semantic assignments of the formulas, we need another
lattice L4 (= (S, A, V)) pictured as the right diagram. Both lattices were
first introduced by N. Belnap in [Bel 75, Bel 76]. The interested reader will

also find attractive motivations there.

Figure 1: Lattices A4 and L4.

“See on a modal epistemic logic on the lattice AFE in [Mur 93].
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A setup is a mapping s : Var — $ that is extended to the formulas of the
language L* as follows:

s(ANB)=s(A)As(B)
s(AV B)=s(A)V s(B)
s(n4) = ~s(4),
s(x) =t,

?
?

where the operation — on & is defined by means of the conditions:
-t=f,-f=tand -7 =taufor r € {L, T}.
All the setups form the lattice AS ordered as follows:
s < s; if and only if s(p) C s1(p) for every p € Var.

A setup s is finite, if the set {s|s(p) # L} is finite. We denote that
set via V(s) and do it by means of V(A) the set of variables included in a
formula A. Despite being an auxiliary notion, Belnap’s concept of epistemic
state as a nonempty set of setups forms the underlying basis of what follows.
An epistemic state is called finite, if it consists of a finite set of finite setups.
An important example is the state o, which consists of the single setup so
such that so(p) = L for every p € Var. Other important examples are:

Tset(A) € {s|s € AS,t T s(A),V(s) CV(4)},
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Fset(A) & {s|s € AS,f Cs(A),V(s)C V(4)}.

By definition, we also accept: T'set (%) o

Let us denote m(e) as meaning the minimal setups in a finite state e.
Because of Descending Chain Condition, m(e) is a finite state too. It is
obvious we have the equations: m(m(e)) = m(e) for every finite state ¢ and
m(0) = 0. We call a finite state ¢ minimal whenever m(¢) = €. Thus, every
minimal state is a finite nonempty set of finite incomparable setups. All the
minimal states form the lattice AFE with the partial ordering as follows:

€ < ¢ if and only if for any s; € ¢; thereis s € ¢ such that s < s;.

Belnap’s second key notion is that of the assignment of a formula A in
an epistemic state ¢ defined as follows:

e(4) ¥ n{s(4)]s el

A generalized (epistemic) state € (generated by the epistemic state ¢) is the

set {&'|(V formula A of L)(e(A) =¢'(A)}. All the generalized states form
the domain AGE with the ordering:

g€ <7 if and only if ¢ (A) C &; (A) for every A;
moreover, AFE is an effective basis of AGE(cf. [KM 93]).

Another way to arrive at a domain is via the notion of information system
(cf. [Sco 82, DB 90]). The information system, which we deal with here, is
the quadruple (D, %, Con,I-), where D is the set of all formulas of L and the
formula x, Con is all the finite subsets of formulas in D\ {x}. Furthermore,
I means here the relation on Con x D defined as follows:

u - A if and only if - g« Au— A4,

where A() 4f 4 and E* is a conservative extension of E¢4. by adding one
additional axiom scheme A — % (cf. [Mur 94]). In what follows, we use
expressions like -+ A—B for A, B of the language L* as meaning that
both Fp« A— B and g+ B — A hold. Now, for (D,,Con,t) to be an

information system, we need to check the following properties:

1) ub %
2) ulk A, wnenever A € u;

3) ifvF Bforall B€wandult A, then v F 4;
there is meant that u,v € Con and A, B € D (cf. [Sco 82]).
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Proposition 1 (D,x,Con,tl) is an information system.
Proof is obvious.

From now on, we denote via A the domain determined by the information
system (D, x,Con,) (see a detailed definition below).

A domain D (equal, e.g., to A or AGE) with an order < can be turned
into a topological space to give the approximation more precise meaning.

According to [Sco 71, Sco 72, GHKLMS 80], a set U C D is said to be open
in the Scott topology on D, if

1) z€ U and z <y implies y € U;
2) UD e U implies DNU # 0
for any directed set D C D.

For any z,y € D, define:

5

z < y whenever °® z is a low bound of some open set U with y € U.

An element z € D satisfying ¢ < z is said to be compact (cf.  GHKLMS 80]).
All the elements of AFE are compact with respect to the Scott topology on
AGE. Also, AFE is a basis of AGE, because, for every epistemic state ¢,

e =U{e'|e € AFE,e' < g}

up to the embedding (¢ — €) : AFE— AGE (cf. [KM 93]).

Finally, we will use the following well-known fact: Operation F : D—D
is Scott-continuous if and only if for any directed set {z;|i € I} C D, the
equation

F(Wz;leel})=U{F(=)|tel}
holds (cf. [Sco 72, GHKLMS 80]).

51t is probably more preferable to choose the weaker, though less intuitive, condition
from the Definition I-1.1 in [GHKLMS 80] (cf. Notes to Section I-1 and Exercise 1-1.24
in [GHKLMS 80]).



3 Isomorphism between A and AGE

As a preliminary step, we prove that the stractures (Con,C) and AFE are
isomorphic as partially ordered sets.

Lemma 1 Let A and B be formulas or x. Then m(T'set(B)) < m(Tset(A))
if and only if - px A— B.

Proof. Denote m(T'set (B)) and m(Tset(A)) via € and ¢, respectively.
Applying the Lemmas 13 and 10 from [Mur 94] successively, we receive:

e <e¢e if and only if Fp= A&(€1)_>Al‘6(€)

Lemma 2 For any finite sets of formulas v and v, w C v if and only if
m(Tset(Au)) < m(Tset (Av)).

Proof. It is easy to check that w C v if and only if Fpx Av — Aw.
Then, in virtue of the Lemma 1, the latter is equivalent to m(7'set (Au)) <
m(T set (Av)).

Lemma 3 The mapping ¢ : w — m(Tset(Au)) is a partially ordered iso-
morphism between ({7 |u € Con},C) and AFE.

Proof follows immediately from the Lemma 2 and Lemma 12 in [Mur 94].

Now, using this preliminary result, we aim to establish an isomorphism
between the lattice AGE and the domain determined by the information sys-
tem (D, x,Con,F).

Recall that « - A for any # C D means the existence u € Con such
that v C z and u - A. Also, T means {A|A € D,z A} for any « C D

(cf. [Sco 82]). The following properties are easy to check:

NZ=%; 2)0={x}; 3)zCyimpliesT C7;
4) uw C 7 if and only if there is v € Con
such that v C z and g+ Av— Au.

(1)

Denote A as meaning the domain ({z |z C D}, C) corresponding to the
information system (D, *,Con,t-).



Lemma 4 The domain A is a complete lattice. Moreover,

W{zilicel}=U{zilic I} =U{z;|li eI},
zlly=zN1y.

Proof. The first equation is proved with help of properties (1). Also, (1)
implies that A has the least element {x}. Thus, A is a complete lattice
according to a well-known lattice argument. The second equation follows
from (1) and the first equation. To establish the equation ZMy =z N7y is

enough to show that « C TNy and v - A implies A € T Ny which, also,
follows from (1) and entailments valid in E* (consult [AB 75]).

Our next step is to establish that A is a lattice with relative psedo-
complement which we will denote as T = ¥ for any z,7y € A.

Lemma 5 g+ Ai1A.. . ANA, — A implies - g+ (A1VB)A...N(4,VB)— AVB.
Proof. Let s be a setup. We come out of the inequality:
s(A1) A .. N s(An) < s(4).

Then
(s(A1)A...A8(An))Vs(B)<s(A)Vs(B).

Using distributivity of the lattice L4, we receive:
(s(A1))Vs(B)A...AN(s(A,Vs(B))<s(A)Vs(B).

Lemma 6 For any z,y € A, the equation

zNy={AVB|A€z,Bey}

holds.

Proof. Assume A € {AV B|A € z,B € y}, that is, there are formulas
Ai,...,A, €z and Bq,...,B, € y such that

10



However, we know (cf. [AB 75]) that
l_E* Al/\/\An—>(A1\/Bl)/\/\(An\/Bn)

and

l_E* Bl/\Bn—>(A1\/Bl)/\/\(An\/Bn)
which give
Fpr AtA...NAp—Aand s BiA...AB,— A.

That implies A € TN 7 and, in virtue of the Lemma 4, A € TN 7.
Let now A € M7, that is (the Lemma 4), A € ZN7Yy. Then, there are
formulas A,,...,A, € ¢ and Bs,..., B,, € y such that

Fpr AtA .. NAp—Aand s BiA ... A B, — A

In virtue of the Lemma 5, we receive:
l_E* (Al \/Bl)/\ RRRVAY (An\/ Bl)—>A\/Bl,

l_E* (A1VBz)/\/\(AnVBz)—>AVBz,

Denote
v {A;VBy,...,A,VBi1,...,A1V Bp,..., AnV B}
Manipulating with entailments in E4. (consult [AB 75]), we receive:
ub (AV Bi)A...N(AV Bp,).
However, our premise gives us:
Fgpx (AVB1)A...AN(AV B,)— A.

Thus, v - A.

We will need the following corollary in the section 4.

11



Corollary 6.1 For any formulas A and B and v C Con,

uU{A}TwU{B} =uU{AV B}.

Proof. Using the Lemma 6 and g+ (CAA)V(CAB)—=CA(AV B), we

receive:

wU{A}NMuwU{B} = AuAATTAuAB
(AuAA)V (Au A B)
NuA(AV B)

= uwU{AV B}.

Lemma 7 For any T,y € A, the relative pseudo-complement T = Y exists
and, moreover,

T=>y={B|(VAecz)(AVBey)}
Proof. Denote
z ¥ {A|(VAez)(AVBey)}.

Assume A € T 11 Z. According to the Lemma 6, there are formulas
Ay,...,A, €z and Bq,...,B, € z such that

A1V By,..., A,V B, - A.
In virtue of the definition of z,
{A;V B,,...,A,VB,} Cy.

And we receive A € 7 that implies the inclusion z Mz C 3.
Now, assume T 1w C ¥ for a fixed w from A. With respect to the
Lemma 6, we have

zNw={AVB|A€z,Bcw}.
It implies the inclusion
{AVB|A€z,Bew} CT.

Therefore, w C z and, hence, w C Z (cf. (1)).

12



Corollary 7.1 The equation
(H{zlieIP)Ny=u{z;Nyli eI}
holds in A.

Proof follows immediately from the Lemma 7 and Theorem I-11.2in [RS 63].

Lemma 8 For anyu € Con, the set {Z |u C T} is open in the Scott topology
on A.

Proof. Let {z;|i € I} be any fixed directed set of elements in A. In vitrue
of the Corollary 7.1, we receive:

v=(UWztel}h)Nu={z;Nuli e I}.
And with help of the Lemma 4, we have:
u=L{z;Nultel}.

Notice, first, that the set {z; M w|i € I} is directed, because if Z;LIz; C T,
then, with respect to the Corollary 7.1, (z; M%) U (Z; M%) C ZTx [1@. Second,
the set {Z; Nw|i € I} is finite. Thus, there is 75 € I such that

z,Nu=U{z;Nuli € I}.
Consequently, @ = 7;, I @ that implies the inclusion @ C 7.
Corollary 8.1 For any v € Con and ¢ C D, u < 7 if and only of u C z;
in particular, u < u. Hence, ({u|u € Con},C) is a basis of A, that is, for
every T € A, the equation T = LU{u|u € Con,u < T} holds.

Proof. The first part immediately follows from the Lemma 8. The sec-
ond part follows from the first part, the Lemma 4 and the basic formula

in [Sco 82| or the Lemma 3.36 in [DB 90].

Recall that an element z € A is compact, if T < .

13



Corollary 8.2 An element T € A is compact if and only if there isu € Con
such that uw = T.

Proof. From the Corollary 8.1 follows @ is compact for any u € Con.
Now assume T is a compact element. According to the Corollary 8.1, T =
L{u |u € Con,u CT}. For the set {u|u € Con,w C T} to be directed,
there is u € Con such that T Cuw and uw C Z.

Theorem 1 The mapping f : T — LU{p(%) |u € Con,u K T} is an isomor-
phic extension of ¢ between the domain A and the lattice AGE.

Proof. 1t is clear, because of the Corollary 8.1, that f is an extansion of
¢. Next we first prove that the mapping f is surjective.

Let €9 € AGE. Then, in virtue of the Theorem 4.3, Basic Lemma 3.3 and
Theorem 6.4, all in [KM 93], we can write the equation

go = U{e|e € AFE,e < ep}.

Denote

z ¥ U{¢(c)|e € AFE,e < & }.
Then, prove that

¢ '(e) Cz if and only if ¢ < g (2)

for any ¢ € AFE.

The “if” part of (2) follows from the definition of Z.

To prove the “only if” part we suppose that ¢~*(¢') C Z for some fixed
¢’ € AFE. In virtue of the Lemma 12 in [Mur 94], the equation ¢~ '(g) =

{A&(s)} holds for every ¢ € AFE. Thus, with respect to the Lemma 4, we

have the equation

7= {4, ()l €AFEc e},

So, our premise implies that there are ¢;,,...,¢;, such that ;) ... Ue;,
go and A"&(é'io)""’A/‘&(&in) + A&(el). The latter implies that ¢~*(e’)
¢ (&i,)U. ..Up7 (s, ). Then, with help of the Lemma 3, we receive ¢~ (&)
¢ ey U...Ue;,) and, then, &' < g U...Ug;, < eo.

N 1IN IA
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Now, we prove the inquality
U{¢(u) [u € Con,u C 7} (4) E &0 (4) (3)

for any fixed formula A.
Let V be the variables occuring in A. Recall from [KM 93] that V-down-

restriction of setup s is the setup sV defined as follows:

i det | s(p) forpeV
- 1 forpg V;

and V-down-restriction of epistemic state ¢ is the state ¢+ defined as follows:
eVl &f {sVL s € e}.

Also, we mean: V1 = ' VL, Then according to the Lemma 6.1 and Theorem

3.1, both in [KM 93], we have the equation:
(U{¢(@) lu € Con,w C T})"* = Uf{m(¢(@)"*) |u € Con,u C z}.
Notice that, in virtue of the Lemmas 4.2 and 3.3 in [KM 93], the set
{m( VL) |lu € Con, qu}

is finite and directed, because the set {#(uw)|u € Con,u C T} is directed.
Then, there is ug € Con and uy C T such that

u{m(qb(g)‘“.) |u € Con,ﬂ C f} — m(QS(UO)VJ‘)

Notice that m<¢(u_0)Vl) < ¢(wo)V+ < f(wo). With respect to the Lemma 3,
we receive ¢)_1(m<¢>(u_0)VL)) Cu Cz
m(gﬁ(u_o)VL) < €9. Now, (3) follows from the last in virtue of the Proposition

4 and Basic Lemma 3.3 in [KM 93].
Finally, (3) implies the inquality

And according to (2), we have

{¢(@) [u € Con,a C T} < &

which gives the equation f(Z) = g, that is, the mapping f is surjective.

15



To finish the proof we need to prove the equivalence
ZCy ifand only if f(z) < f(7) (4)

for any z,7 € A.
The “only if” part of (4) is quite trivial: Z C y implies the inclusion

{$(w)|u € Con,u T} C{¢(T)|u € Con,uk7y}

which in turn implies the inequality f(z) < f(7).
Now, assume f(Z) < f(7) and denote

J. ¥ {¢(w)|u e Con,u <z}

for any # C D. Thus, our premise means LIJ, < LIJ,. Let ¢(u) € J,, where
u € Con.
Introduce under consideration two new functions:

g ¥ (J— 1UJ): IdAFE— AGE,

def

d % (g {¢'|c' € AFE, ¢’ < €}) : AGE — IJAFE,

where IdAFE is the set of the ideals of the lattice AFE (cf. [GHKLMS 80]).
Recall that the following equivalence

€ <g(J) if and only if d(g) C J (5)

holds ¢ according to the Proposition 11I-4.3 in [GHKLMS 80].

Now, assume ¢(u) € J,, where u € Con. It follows ¢(u) < UJ, and,
hence, ¢(w) < UJ,, that is, ¢(w) < g(Jy). In virtue of (5), d(¢(w)) C J,.
However, according to the Lemma 6.2 in [KM 93], ¢(u) < ¢(u), that is,
¢(uw) € d(¢(w)) that implies ¢(u) € J,. That establishes the inclusion J, C

Jy. This inclusion gives:
{tjlu e Con,u <Kz} C{ulu€ Con,u <7y}

Indeed, let w <« Z. Then ¢(uw) € J, and, therefore, ¢(w) € J,. That
is, there is v € Con such that ¢(7) = ¢(u) and 7 < . In virtue of the
Lemma 3, v = w that implies 7 < 7.

Finally, in virtue of the Corollary 8.1, we receive z < .

8The pair (g, d) is a Galois connection between IdAFE and AGE, indeed.
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4 Operations [4] and [4—B] on A

We consider here some operations modifying elements in 4. For this, we
recall several auxiliary definitions from [Mur 94].
For any epistemic state ¢ and formula A4,

_ def  def €4 if ey #0
AT {sls €&t s(4)} and AT { the unit 1 in AGE otherwise,

and
k(e) means {k(e)|s € ¢},

where

p* € K(s) &L or
p*=-p and fLC s(p)

for any setup s. Note the following useful inequality:

{p*—p and tLC s(p)

£ C s(An(s)) (6)

for every setup s.
With every nonempty finite collection of sets of literals 3, we associate
the formula Ays as follows:

4 d_ef{\/{/\:c|a:62} Dgx
s =

* otherwise.
Now, for any formula A and v € Con, we define the formula AuZ as
follows:

Aoy Vv {Ak(s)|s € p(m), Ar(s) If A}.

Similar to operations [A] and [A — B] from [KM 93] modifying epistemic
state of the computer, consider the following operations on 4 having the
same names:




and
[A—B|(z) ¥ U{[4— B](®)|u € Con,u C T}

for any formulas A and B of L, v € Con and z C D.
Note that for every u € Con, there is v’ € Con such that [A— B](u) =

u!.

We will use at least twice the following simple lattice argument.

Proposition 2 Let {a,|s € S} and {a;|t € T} be two sets of elements in a
complete lattice and S C T. Assume also that for every a; there is a, such
that a; < a,. Then the equation

U{as|s € S} =1{a; [t €T}
holds.

Proof is obvious.

Next we aim to prove that the function f is an isomorphism between

A and AGE with respect to the operations [A] and [A— B] defined on A
above and those on AGE introduced in [KM 90, KM 93] (also, see [Mur 93,

Mur 94]). That is why we used the same names for those operations on A

as on AGE.

Lemma 9 For every u € Con such that w C z U {A}, there is u' € Con
such that w' C 7 and wU {A} C ' U {A}.

Proof. Assume w C z U {A}. Then, according to (1), there is v € Con
such that v C z U {A} and g+ Av— Au. Denote: u' i \ {A}. Then
u' C z and g+ Au' A A— Au A A. In virtue of (1), u U {A} C /U {A}.

Theorem 2 For any z C D and formula A, f([A](Z)) = [A](f(Z)).
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Proof. Here is a chain of equations with appropriate references:

f([Al(=

[Theorem 1, Corollary 8.1
[Lemma 9, Proposition 2
[Lemma 4

[Lemma 4

[Lemma 3

[Lemma 9, Proposition 2

[Theorem 4.3 in [KM 93], Theorem 1
[Theorem 1

[Theorem 6.4 in [KM 93]

)
]
]
]
]
[Lemma 3|
]
]
]
]
[Definition in [KM 93]}
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[A](f(Z)).

Lemma 10 For any formula A and u € Con, the equation

m(Tset <AUZ>> = (m(Tset (/\u)))z

holds.

Proof. Assume s € m(Tset (Au_>>. Then t C s(A.

A

) and, hence,

A

there is a setup s’ such that x(s') € x(m(T'set (Au))), Ak(s') /NA and t C
s(Ak(s")). From that, we conclude that t IZ s(A)and ¢t C s(A w(m(Tset (/\u))))

In virtue of the Lemma 10 in [Mur 94],

FE* Ag(m(Tset (M) N

and, therefore, t C s(Au). Thus, we conclude that s € T'set (Au). Let s”
and s” € m(Tset (Au)), that is, s” € ¢(u) and ¢t [Z s”(A). Therefore, £(s’
k($(uw)) and, in view of (6), t C s"(Ax(s"

Thus, s” = s that implies that s € (m(T'set (Au)))

))-

<s
) €
Consequently, t T s"( A, )

Z.

Now assume s € (m(T.set(/\u)))Z. That means that s € m(T'set (Au))

and ¢t [Z s(A).

Rewrite the former as follows:

In view

K(s) € r(4())-

of (6), we also have t T s(Ax(s)) that implies Ak(s) I/ A. Thus, we conclude
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that t C s(A.—).
A

Then, there is a setup s’ such that s’ < s and s’ €

m <Tset <AUZ>> . According to the first part of the proof, s’ € m(T'set (Au)).

Consequently, s = s’ and, hence, s € m<Tset <AUZ>>.

Theorem 3 For anyz C D and formula A, f([A— B|(z)) = [A— B|(f(%)).

Proof. We prove previously the following equation:

f([A— B](w)) = [A— B](f(u)),

(7)

where u € Con. To prove that we consider the following chain of equations

with appropriate references:

[Theorem 1, Lemma 3

[Theorem 7.8, Theorem 6.4 in [KM 93]

]
]
]
]

HA—Bl@) = f({Au;}"[B](®)
[Theorem 1] = f({Au_2}) N F(|B](w))
[Theorem 1, Lemma 3] = m(Tse (AUZ>> M f([B](w))
[Theorem 2] = m|Tset (AUZ>> M [B](f(w))
[Lemma 10] = (m(Tset(/\u)))Z M [B](f(w))
[Theorem 1, Lemma 3] = (f(ﬂ))z M [B](f(w))
[Theorem 4 in [Mur 94]] = [4A— B](f(%))
Now we receive for any z C D:
f([A—B|(z)) = f(L{[A—=B]@)|ue Con,uC T}
[Theorem 1] = U{f([A— B](@)|u € Con,u Cz}
[Equation (7), Theorem 1] = U{[A— B|(f(w)) |u € Con, f(u) C

L{[A— B](¢) |e € AFE,e < f(u)}
[A— B](f(%)).

Corollary 3.1 The operations [A] and [A— B] are Scott-continuous on A.

Proof follows immediately from the Theorems 1,2 and 3 above and the

Theorems 7.2 and 7.8 from [KM 93].

Corollary 3.2 For any fired u € Con and formulas A and B, the correla-
tion [A— B|(w) = u is effectively decidable (comp. the Theorem 4 in [Mur 93]).
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Proof. Indeed, we have the equivalence:

[A— B|(u) = w if and only if {AUZ} MuU{B},

the right part of which is equivalent to {AuZ V (Au A B)} = u according to

the Lemma 6. The last equation in turn is equivalent to
- AUZ\/(/\u/\B)H/\u

that is equivalent to that the following entailments

Fos Ay — A dFgps A A, VB
E A—) U an E U — A

hold.

5 Continuous, Ampliative Operations Coor-
dinated with Basis

Denote
C ¥ {u|ue Con},

which will consider as a set or a partially ordered set with C or a lattice with
operations as in the Lemma 4.
For any c € C, we define:

D. % {[4)(c)|4 € D},

where [x] means the identical operation on A.
Furthermore, we denote:

D ¥ [[{D.|cec}.
Then, for any operation F on A and function G € D, we introduce 7:

Gr ¥ {(m,F(m)|[uecC} and Fo(z) & U{c|(m,c) € G,u C T}

"Next two definitions were inspired by [GS 90].
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— the restriction of F' to C and an operation on .4, respectively.

Following [Bel 75|, we call an operation F on A ampliative, if T C F(Z)
for every T € A. The operations [A] and [A— B]| considered above both are
ampliative. Recall that F' is coordinated with C if F is closed on C, that
is, F(c) € C whenever ¢ € C. We will especially pay attention to monotone
functions G in D, that is, where @ C w7 implies ¢ C ¢; when the pairs (%, ¢)
and (@r, c;) both are in G.

Theorem 4 Let a function G from D be monotone. Then the operation Fg
1s continuous, ampliative and coordinated with C. Moreover, the equation

G = Grg) holds.

Proof. Let {z; |t € I} be a directed set and 7 = LU{z; |[¢ € I }. According
to the Corollary 8.1, for any w € C, if w C 7, then there is 2 € I such that
u C z;. Having that, we receive:

Fe(@) = UW{c|(u,c)eG,uecl,ulC7}
W{c|(@,c)eGuelulm,icl}

U{{c|(u,c) e GaueC,uCz}liel}

= U{Fq(z;)|i € I}, that is Fg is continuous.

Notice that @ C ¢ whenever (@, c) € C. Thus, Fg is ampliative.

Then, in virtue of monotonicity of the function G, Fg(@) = ¢, provided
that (@,c) € G. Therefore, Fg is coordinated with C.

Again, the monotonicity of G gives us:

(@, c) € Grg) = c=Fg(u) = (u,c) €G.
That means that G = G(ry).

Theorem 5 Let F be a continuous, ampliative operation on A coordinated
with C. Then Gg 1s monotone and belongs to D. Moreover, the equation

F = Fgy) holds.

Proof. The operation F' is continuous and, hence, monotone. It implies
the monotonicity of Gp.

Now, assume (@, F(u)) € Gp. Then for some v C Con, the equa-
tion v = F(u) holds. It first implies w C v. That in turn implies that
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F g+ AM(wUv)e Aw, that is, the equation 7 = [Av](%) holds. Thus, we have
proved that Gr € D.
Finally, with help of the Theorem 4, we receive:

c= Fp(u) < (u,c) € Gr <= c= F(u).
Thus, the equation F' = F(g,) is proved.

A continuous, ampliative and coordinated with C operation F' on A is
called computable, if the corresponding G from D is recursively enumerable
(or as a function on C recursive in view of the Theorem 5-IX in [Rog 67]) after
introducing an appropriate enumeration (comp. [GS 90]). Notice that both
operations [A] and [A— B] are computable. Next we are going to present
some classification of the continuous, ampliative and coordinated with C
operations on A. Now on we call them C AC-operations 8. We certainly
concern of computability of such operations.

As in [Mur 94], we will call every [A]-operation (elementary) action. We
will say that a set Op characterizes a C AC-operation F, if for evry € € AFE
there is an action m € Op such that F(¢) = n(e). The least coordinal number
of a set characterizing F' among all such sets we call the order of F. Thus,
we devide all C AC-operations on the operations of the finite and wnfinite
order. It is clear that all [A]-operations are operations of the order 1. Our
next purpose is to establish that [A — B]-operations are operations of finite
order too. To do that for a fixed [A — BJ-operation is satisfactory to show
that there is at least one finite set of actions characterizing [A — B].

In what follows, we return to the AFE-notation. We begin with a lemma
that could be proved earlier.

Lemma 11 For any formulas A and B and a minimal state ¢ (¢ € AFE),

[4l(e) N [B(e) = [AV B](e)-

8Notice that the notion of C AC-operation is in accordance with considering knowledge
as a competence notion in [Lev 84], because if the computer imagines a current world (as
a minimal state) in which p and p— g are true and concludes that g will be true in any
world imaginable in the current one, then it is only possible, provided that the computer’s
knowledge in the imaginable world is supposed not to decrease. It should be added that,
according to the approach being accepted here (comp. [Mur 93]), an imaginable world is
a state accessible from a current one by means of a C AC-operation.
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Proof follows immediately from the Corollary 6.1 and the definition of
[A]-operations on A.

Let us denote:
Nset (A) & {s|s € AS,t IZ s(A),V(s) CV (4)}.

Notice that the epistemic state Nset (A) is finite one for every A. Then recall
that we can rewrite the definition from [Mur 94| of the minimal state £ for
every minimal state ¢ as follows:

) m(enNset(A)) ifen Nset(A)#0
47\ the unit 1 in AGE otherwise.

We furthermore define:

Ny & {m(e)]e C Nset(4),e #0}.
Theorem 6 FEvery operation [A— B] is characterized by the set { [An(s) \Y% B] ‘6 € /\/A }U
{[B]}. Hence, every [A— Bl-operation is one of the finite order.

Proof. According to the Theorem 4 in [Mur 94|, for every [A — B]-operation,
we have the equation:

[A— B](e) = e 1 [B](e)

holding for every minimal state ¢. If ey = 1, then [A— B](e) = [B](¢e).
Otherwise, there is ¢’ € N4 such that [A— B](e) = ¢/ [B ]( ). However, in
virtue of the Lemma 12 and Theorem 4, both in [Mur 94], [

Thus, [A— B](¢) = [A&(E/)] (¢) M [B](e), which, with help of the Lemmas 11

and 3, gives the equation [A— B](e) = I:AK,(E:I) % B] ().

Another interesting example of computable operation on A (or on AGE,
as below) of the finite order is the operation [A 5 B] defined as follows:

[A%5B(z) € L{[4— BI"(?) |» > 0},
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where [A— B]® % [+] and [A— B"™" % [A— B]o[4— B]". We do not
bring a proof of this fact here. Instead, we will bring a proof of the existence
of a computable operation of the infinite order.

Consider the following countable sequence {s;}i<,, of finite setups:
t if;<iq
L otherwise,

(e - {

and correspondent sequence € (= {¢;}i<.) of minimal epistemic states, where
e; = {s;}. Furthermore, denote:

1€ Y {e]e € AFE,(Fe' € £)(e' <€)}

Let U(€) be all the upper bounds of £. Thus, U(€) CT €. Also, notice that

e never belongs to U(£) providing ¢ € AFE. Otherwise, we would have in
virtue of the Lemma 4 in [Mur 94| that for every s € ¢, Var C x(s) which is
impossible, because x(s) is a finite set of variables.

Theorem 7 Let £ be the sequence above and G the set of pairs of minimal
states defined as follows:

/ def e =[p1 Ao Apuril(e) ifen<eande,p1 L¢
(e,e') e G < ¢ € AFE and{ e = [(e) ife 41 €.

Then G is monotone and Fg 1s a C AC -operation of the infinite order. More-
over, Fg 1is computable.

Proof. First of all, notice that G is an amplaitive function on AFE. Then,
we prove that G is monotone.
According to the Lemma 12 in [Mur 94|, we can write:

"=elepyr ife, <ecande,y Le

/ €
(6,6)€G<:>€EAFEand{ o e ifedl £,

Suppose ¢ < ¢’. We will show then that G(¢) < G(¢’). Consider a number
of cases.

Case: € €T E\U(E). Then there is a natural number n such that G(¢) =
€ U eny1. For €', it is certainly true that ¢’ €T £ \ U(E), that is, for some
natural p, €,4, < €' and €441 £ €. Thus, we have:

G(e) = eUent1 < &' Ueniprr = G(&').
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Case: € ¢7 €. It immediately gives: G(¢) = ¢ < &' < G(¢').

Defining operation Fg, we can conclude with help of the Theorem 4 that
F¢ is a C AC-operation on A.

Now we prove that F is an operation of the infinite order. In contrary,
suppose there is a finite set O of actions which characterizes Fg. Then there
are two different elements ¢; and ¢;, say ¢ + 1 < j, in £ and an action
[A] in O such that Fg(e;) = [A](ei) and Fg(e;) = [A](¢j). Thus, we have
[A](e;) = €41 and [A](g;) = €j41. It implies, in virtue of the Theorem 2
in [Mur 94] two equations:

gi41 = &; Um(Tset(A4)) and €11 = ¢; Um(T'set (4))

which give m(T'set(A4)) < €;41 < ¢;. Consequently, €; = ¢;11. A contradic-
tion.

To prove the computability of Fg, notice that for any ¢ € AFE, we can
effectively find a positive number n such that ¢, < ¢ and ¢,4; £ ¢, if such
a number exists. To check the existence of such a positive number and find
it, we have, according to the Lemma 4 in [Mur 94], to find out which among
the following conditions:

(Vs € &)({p1y - --»pi} C (s)) and {p1, ..., pispisi} L £(s) (i > 1)

is satisfied or no one of them is. It is possible to do effectively because of
finiteness of ¢.
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