FETI DOMAIN DECOMPOSITION METHODS
FOR SCALAR ADVECTION-DIFFUSION PROBLEMS
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Abstract. In this paper, we show that iterative substructuring methods of Finite Element Tear-
ing and Interconnecting type can be successfully employed for the solution of linear systems arising
from the finite element approximation of scalar advection diffusion problems. Using similar ideas as
those of a recently developed Neumann—-Neumann method, we propose a one-level algorithm and a
class of two—level algorithms, obtained by suitably modifying the local problems on the subdomains.
We present some numerical results for some significant test cases. Our methods appear to be opti-
mal for flows without closed streamlines and possibly very small values of the viscosity. They also
show very good performances for rotating flows and moderate Reynolds numbers. Therefore, the
algorithms proposed appear to be well-suited for many convection—-dominated problems of practical
interest.
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1. Introduction. In this paper, we consider the boundary value problem

Lu:=—vAu+a-Vu+cu=f, in (),

(1) u=20, on JdQp,
% :0, on GQN

Here, Q ¢ R", n = 2,3, is a bounded, connected polyhedral domain with a Lipschitz
continuous boundary 9€2 and outward normal denoted by n. We consider a partition
00 = 9N NUIN p, where 0Q)y can possibly be empty. For simplicity, we only deal with
homogeneous Dirichlet and Neumann conditions, but more general non homogeneous
boundary data can also be used; see section 4 and, e.g., [31, Ch. 6].

The viscosity v is positive, but can be arbitrarily small for advection—dominated
problems. For simplicity, we assume that v is constant. The velocity field a is given
and we suppose that a € L>°(Q)" and V-a € L>(Q). The scalar function ¢ € L ()
is a reaction coefficient that may arise from a finite difference discretization of a time
derivative, and f € L?(Q2) is a source term.

The aim of this paper is to build a family of iterative methods of Finite Element
Tearing and Interconnecting (FETI) type for a conforming finite element (FE) ap-
proximation of problem (1). We show that by borrowing some ideas from a Neumann
Neumann method for the same problem, see [2], and by using some recent develop-
ments in the analysis of FETT methods, see [25, 39], FETI algorithms can be employed
successfully for advection—diffusion problems as well. We are primarily interested in
convection—dominated problems.

FETI methods were first introduced for the solution of conforming approximations
of elasticity problems in [15]. In this approach, the original domain Q is decomposed
into non—-overlapping subdomains ;, i = 1,..., N. On each subdomain £2; a local
stiffness matrix is obtained from the finite element discretization of local Neumann
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problems. Analogously, a set of right hand sides is built. The continuity of the solu-
tion, corresponding to the set of primal variables, is then enforced across the interface
defined by the inner subdomain boundaries by using Lagrange multipliers. In the
original FETI algorithm, the primal variables are then eliminated by solving local
Neumann problems, and an equation for the Lagrange multipliers is obtained. Sev-
eral preconditioners have been used extensively for the resulting dual problem. They
ensure that the condition number of the preconditioned system is independent of the
number of substructures and increases only slowly with the number of unknowns as-
sociated to the substructures. In addition, if suitable scaling matrices are introduced,
the condition number can also be made independent of possibly large jumps of the
coefficients; see section 3.1. We refer to [14, 16, 26, 10, 38, 34, 25], for Poisson and elas-
ticity problems, to [12], for acoustic scattering problems, to [13, 11, 27, 38], for shell
and plates problems, and to [39, 33], for edge element approximations of Maxwell’s
equations.

A number of domain decomposition methods have also been proposed for advection—
diffusion equations. Overlapping methods have been considered, e.g., in [6, 7, 5, 30].
For iterative substructuring methods, we refer to [32, Ch. 6] and to the references
therein. In particular, we mention [8, 18, 40, 9, 4], where the matching conditions
on the subdomain interfaces are chosen according to the direction of the flow, and
[1, 3, 2], where the same kinds of boundary conditions are employed for all the sub-
problems and are chosen in order to ensure their stability. The methods considered
in [29, 28, 30, 22, 23] also belong to the latter family; in these methods, optimized
conditions of higher order are imposed on the boundaries of the subdomains in or-
der to improve the convergence. Many multigrid methods have also been proposed
for advection—diffusion problems, and we refer, e.g., to [19, 20] and to the references
therein.

In our work, we will employ some ideas from [1, 2], and use the same Robin
boundary conditions for all the subproblems. We stress the fact that we, by no means,
claim that this is the only way of constructing FETI methods for advection—diffusion
problems and other methods are possible. We only know of few previous papers; see
[23], where a FETT coarse space is employed for an iterative substructuring method
with optimized interface conditions. When discussing our numerical results, we will
also refer to [36], where some preconditioners based on relaxation and incomplete
factorizations are carefully tested for some stabilized methods.

As is customary, see [31, Ch. 6], we suppose

1
(2) C—EV'aZCO>07 in Q,
(3) a-n>0, ondQy.

For any D C (, the bilinear form associated to the operator L and the boundary
conditions in (1) is

(4) ap(u,v) = /(l/Vu Vv +a-Vuv+cuw)dr, u,ve H (Q;00p),
D

where H'(Q; 0Qp) is the subspace of H*(f2) of functions that vanish on 9Qp. In case
D = Q, we drop the subscript. The variational formulation of problem (1) is: Find
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u € HY(Q;00p) such that

(5) a(u,v) = /fv dz, ve HY(Q;00p).

The bilinear form ap(-,-) can be decomposed into a symmetric and a skew—
symmetric part

ap(u,v) = bp(u,v) + sp(u,v),

with

1 1
(6) bp (u,v) ;:/ (VVu-Vv—l— (c §V-a> uv) dx + 5 / a-nuw ds,
D

OD\ONp

1
(7) sp(u,v):== [ (a-Vuv—a-Vou) dz,
2 D/

for all u and v in H*(Q;0Qp).

We note that conditions (2) and (3) ensure that the bilinear form a(, -) is coercive
in H'(Q;00p) and problem (5) is then well-posed.

The outline of the remainder of this paper is as follows. In section 2, we introduce
a partition of the domain €2, together with some local finite element spaces and local
bilinear forms. In section 3, we define our one and two level FETI methods. The
numerical results for three significant test cases are presented in section 4.

2. Finite element spaces and stabilized formulations. We consider a shape—
regular triangulation 7; of the domain Q. For each triangle t € 7, let hy be its diam-
eter, and let h be the maximum of the diameters of the elements. We next consider
a non overlapping partition of the domain 2 into subdomains,

N
sz{fm 1<i<N, Uﬂ_izﬁ},

i=1

such that each €); is open and connected, and is the union of some elements in 7.
We denote the diameter of 2; by H; and define H as the maximum of the diameters
of the subdomains. The elements of Fy are also called substructures. Let I'; be the
part of 0€); that is common to other substructures

and let the interface I' be the union of the I';. We note that I" and the I'; are closed
sets.

For the approximation of problem (5), we consider the standard FE space of
continuous, piecewise linear functions on :

Xp(Q) = X = {u € H(Q0Qp)| u, €Pi(t), t € Ty, }.

In order to define our FETI method, we need to introduce some local spaces. We
define

HI(QZ'; 8QD) = {’U,i € Hl(Qz)| u; = 0on IQp N an}
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We next introduce the FE spaces of continuous, piecewise linear functions on each
subdomain €2;

X}L(Ql) =X, = {ul S Hl(Ql,89D)| ui|, € ]Pl(t), te ,]71, t C Ql},

and the product space

Xn(Q) =X =[] Xi c [] H" (2:;00p)

i=1 i=1
We also need some local trace spaces
Wip(T;) = W; := {u; restricted to I'; | u; € X;},

and the product space

The local trace spaces W; consist of continuous, piecewise linear functions on the I';.

It is well known that for advection dominated problems the original bilinear form
a(-,-) has to be modified in order to remove spurious oscillations of the Galerkin
approximation on standard continuous polynomial spaces, if the mesh does not resolve
boundary or internal layers. A large number of strategies have been proposed in the
past twenty years and many of them consist of adding mesh dependent terms to the
FE approximation; see, e.g., [24, 31] and the references therein . Here, we consider
the Galerkin/least—squares method (GALS) originally developed in [21]. We introduce
the modified bilinear form

(8) apy (u,v) = a"(u,v) == a(u,v) + Z 5(ht)/Lu Lvdz, u,ve Xu(),

tcQ p

and the corresponding local bilinear forms

9) figi(u, v) = agq, (u,v) + Z 5(ht)/LuLvdx, wveX;, i=1,...,N,

tC ¢

where §(h;) is a positive function that vanishes with h; and may depend on the values
of v and a on the element ¢; see section 4 for a particular choice.
Our discrete problem becomes: Find u € X such that

(10) a’(u, v) :/fv dm+25(ht)/vad:z;, veX.
a tcQ f

We will use modified local bilinear forms from now on. We note that we cannot in
general ensure that the bilinear form agi (+,-) is positive definite on the space X;. This
can be seen by considering the symmetric part of ag, (-, ), defined in (7), and noting
that the boundary integral on 9€; \ 9Q2p does not vanish in general and that, along
the internal part of the boundary I';, the sign of the coefficient a - n depends on the
orientation of the normal n with respect to the flow a. Following [2], we consider
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a modified bilinear form in 2;, obtained from the original one by subtracting this
boundary integral along the internal part of the boundary:

. 1 .
ad, (u,v) ::agi(u,v)—a/a-nuvds, i=1,...,N.
T

The conditions (2) and (3) now ensure that these new local bilinear forms are positive
definite on the spaces X;. In addition, they are related to Robin problems on the
substructures; if a function v € H*(Q;; 0Qp) satisfies

1
agi(u,v)—i/a-nuv ds:/fvdm—{—/gvds, v e HY(Qy;09p),

and is sufficiently regular, it also satisfies

Lu=f, in §;,

u=20, ondQpN i,
@ =0, on JdQy NI,
on

ou

%—ia-nu:g, on I';.

3. A FETI algorithm. In this section, we introduce a FETI method for the
solution of problem (10).

We first assemble the local stiffness matrices K, relative to the local bilinear forms
agi(-, -), and the local load vectors f;. The local matrices K; can be represented as

KT KIP
KZ-: i i 7
KBl KPP

where we divide a local vectors u; into two subvectors, u” and u!, of degrees of
freedom corresponding to nodes on I'; and on the rest of ;, respectively. The load
vectors f; are divided in the same way.

We then consider the following problem

Dt
(11) Ifw 4+ B'XA =
Bw = 0,
where
w1 fl
w = € X, K :=dag{Ky,...,Kn}, f:=
wWN fN

The matrix B has entries in {1,—1,0} and is chosen such that the values of the
solution w are equal at the nodes on the subdomain boundaries that are common
to two or more substructures when Bw = 0. The vector X is a Lagrange multiplier
relative to the continuity constraint Bw = 0. In the following, we suppose that the
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constraints are linearly independent and therefore there are no redundant Lagrange
multipliers. In this case, B has full rank. An analogous algorithm can be defined in
the case of redundant multipliers; see, e.g., [34, 25].

We remark that we have Ker(B) = X and that, when the matrix K is restricted
to X , the boundary integrals in the definition of the modified local bilinear forms
agy (+,+) cancel out. Problems (11) and (10) then have the same solution u = w.

The degrees of freedom that are not on the interface I' belong to only one sub-
structure and can be eliminated in parallel by block Gaussian elimination. Let g; be
the resulting right hand sides and let S; be the Schur complement matrices

S,L': WZ —>Wi,

relative to the degrees of freedom on I';.
After eliminating the interior variables, we obtain the following problem for
ueW:

ty
e n oy
where

u; = wi, , S = diag{S,...,Sn}.
The matrix B = [By,. .., By] is obtained from B by deleting the columns relative to
the interior variables. We have, for i = 1,..., N,

Si = KPP KPI(KI) " KIP,

g = JP—KPH(EI) L

We can easily check that, since our local bilinear forms are positive—definite, the local
Schur complements S; are always invertible and, consequently, there is no natural
coarse space associated to the substructures; we are in a similar case as that considered
in [10].

Following [10], we first find u from the first equation in (12), and substitute its
value in the second equation. We obtain the system

(13) F)\=d,
where
F:=BS™'BY d:=BS7'f}.

Following [25, 39], we now define a preconditioner for (13).
We introduce the matrices,

(14) R = [Rl, RQ, ey RN], G .= QBR,

where R; are vectors in W, related to the substructures {€;} and @ is a suitable
invertible matrix. More precisely, we suppose that R; is obtained from a local vector
r; € W; on I';, by extending it by zero to the boundaries of the other substructures.
We will make some particular choices for R and () in sections 3.2 and 3.3.
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Following [10, 39], we next define the projection
P:=1-G(G'FG)'G'F,

onto the complement of Range(G). We remark that this is not an orthogonal pro-
jection since the matrix F' is not symmetric. Following [25, 39], we next define the
preconditioner

M ':=(BD 'B")'BD 'SD 'B*(BD 'B")!,

where D is a symmetric, non singular matrix that we will specify in the next section.
It can be easily seen that BD~1B? is invertible and is block diagonal.

As in [10, 39], we consider a projected preconditioned algorithm. Since our linear
system is not symmetric, we consider the generalized minimal residual (GMRES)
method; see, e.g., [35]. Other choices are clearly possible.

1. Initialize
N = G(G'FG)'Gd
Project: w® = P'(d— F\°)
Precondition: 2° = M 1’
Project: y° = P2
vt o=y
2. Iterate k =1,2,...,7,..., until convergence
qk — F’Uk
Project: wh = Ptqk
Precondition: 2% = M lw*
Project: y’€ = PpPZF
hip = yktui, i=1,...,k
k
o= yF - Z hi v
i=1
hiie =[98
oF 0% /hyr1 ke
3. Form the approximate solution
N = XN 4+Vjud, where u minimizes ||Se; — Hjul|, u e RY.

Here, 8 = [|§°]|, e1 is the first column of the (j + 1) x (j + 1) identity matrix,
V; is the matrix, the columns of which are the vectors vg, kK = 1,...,j, and Hj is a
(7 + 1) x j matrix, the non-zero entries of which are the elements h; ; see [35].

Because of the choice of the initial vector A\?, we can easily prove the following
lemma.

LEMMA 3.1. The following properties hold

(15) w’ =d— F)\°,
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(16) wh =qF,  fork>1,
(17) N — \? € Range(P).

We note that, thanks to Lemma 3.1, the action of P! needs not be calculated in
practice.
The method presented here is equivalent to using GMRES for solving the following
preconditioned system

(18) PM'P'FAx=PM1Pld, Xe X +V,
with
V := Range(P).

In section 4, we will also consider some numerical results for the following precondi-
tioned problem

(19) M'Fx=M"1d, XeU,
with
U := Range(B),

which corresponds to the choice P = I and A” = 0 in our algorithm. In the following,
we refer to GMRES applied to Equation (18) as two-level FETI (FETI-2), and as
one-level FETI (FETI-1) when applied to Equation (19).

Before introducing our choices for the matrices D, R, and ), we remark on the
computational cost of our algorithms. The matrices S and S~ need not be calculated
in practice. The action of the local Schur complement S; on a local vector requires
the solution of a Dirichlet problem on the substructure 2;, while the action of S; !
requires the solution of a problem on 2; with Robin boundary conditions; see [37, Ch.
4]. At each step of FETI 2, the following problems have to be solved:

e one Dirichlet problem on each substructure, for the application of the pre-
conditioner M ~1;
e two Robin problems on each substructure, for the two applications of F' (cf.
the definition of projection P);
e one coarse problem of dimension N, involving the matrix G*FG (cf. the
definition of P).
For FETI-1, we only have to solve one Dirichlet problem and one Robin problem on
each substructure.

We recall that, for the two—level Robin—Robin method in [2], at each step, we
have to solve one coarse problem, and two Dirichlet problems and one Robin problem
on each substructure. For the corresponding one—level method, we only have to solve
a Dirichlet problem and a Robin problem on each substructure.

3.1. The scaling matrix D. Following [2, 25|, for the substructure Q;, we first
T € W; defined in the following way:

consider a continuous piecewise linear function y;

For every node zp, C I';, we set
T P
p (Xn) = =—,
! Zk Pk
where, for every € that share the node x, pr is the diagonal entry of the stiffness
matrix K} corresponding to the node x, and the sum is extended to all substructures
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that share z;,. Let D; : W; — W;, be the diagonal matrix that represents the
multiplication by ,u;-r.
We define the global scaling matrix D : W — W as

D := diag{Dy,...,Dn}.

3.2. The matrix R. In this section, we consider a particular choice of the matrix
R in the definition of our two-level FETI algorithm. It is given in terms of local
vectors.

Following [2], we define a set of local functions that depend on the particular
problem solved. We consider a substructure 2; and the solution ¢; to the following
adjoint local problem: Find ¢; € X; such that

a?li (Uiv(bi) = /vi de, veX;.

Q;

We then consider the following definition:
DEFINITION 3.1. The local functions {r; € W;, i =1,..., N} are defined as

ri := ¢;, restricted to I';.

The global functions R; are obtained by extending the local vectors r; by zero outside
09);.

We note that other choices are possible; see, e.g., [10] and [2, Sect. 4]. We could,
e.g., choose r; as a constant function on I';. We have chosen to use the functions of
Definition 3.1 since, for convection—dominated problems, they perform better than
the constants in our numerical tests (the results are not presented here).

3.3. Some choices for the scaling matrix (). Particular scaling matrices are
often employed for FETI methods in order to improve their convergence properties. In
[16, 25], some suitable matrices are employed for FETT methods for problems where
the matrix S of local Schur complements has a non—vanishing kernel. The central
idea of many of these choices is to make the scaling matrix as similar as possible or
equal to the preconditioner M 1. In [33], a different scaling matrix is considered for
a problem where the matrix S is invertible; see [10]. There, such a matrix ensures
that a scalable FETT method can be found for an edge element approximation on
non—matching grids.

Our first choice for @) is simply the identity matrix. Our second choice is similar
to that in [33]. We define the block—diagonal matrix

(20) Q1 := (BD 'B") 1.

Our third choice for @ is more in the spirit of [16, 25] and is defined by
N

(21) Q2:=Y (BD'B")'BiD;'KPPD; B} (BD 'B")"".

i=1

We note that @2 is obtained from the expression of the preconditioner M —1, by
replacing the local Schur complements S; with the diagonal blocks KP% of the local
stiffness matrices.
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4. Numerical experiments. We now present some numerical results for three
test problems in two dimensions. We are primarily interested in the performance
of our algorithm when varying the mesh size, the number of subdomains, the ratio
between the advective and diffusive coefficients, and the type of vector field a.

Our numerical results have been obtained with Matlab 5.3, using the mesh gen-
erator in the package PDFETool, which, once a domain and a decomposition into
subdomains are specified, creates a conforming, unstructured mesh, such that the
subdomain boundaries do not cut through the elements. For this reason, for different
partitions, the meshes that we have obtained are not exactly equal, but they can be
made similar and with a comparable number of elements.

For the stabilization function §(h:), we have followed [21]. For every triangle
t € Ty, let the local Peclet number be

h
zjet;::-lLUEHESS, with ||a]/se0 := sup |a(z)],
2v ’ xEt
and

h

ﬂ%f_” if Pe, > 1,
a t;

6(ht) = h2 o
T%  if pe, < 1.
4y

In our experiments, we have considered the value 7 = 0.7.

We have employed GMRES without restart. As a stopping criterion, we require
the I2-norm of the residual of the system FA = d to be reduced by a factor 1075,
Other stopping criteria have been proposed for FETT methods for symmetric, positive—
definite problemns; see, e.g., [16, 10].

For the test problems considered, we also present a comparison with the Robin—
Robin method developed in [2]; see also [1]. As we will show, our method and that
of [2] give comparable numbers of iterations. However, some caution must be used
in this comparison, since two different linear systems are solved. The Robin-Robin
algorithm is a preconditioned iterative method in the conforming space X for problem
(10), which involves the primal variable u. The FETT algorithm, on the other hand,
is a preconditioned iterative method for problem (13) for the dual variable A. Once
an approximation for X is found, an approximation for the primal variable u can
be calculated; the approximate solution u* that we obtain satisfies the equilibrium
equation Su* + B'AF = g exactly, and is in general discontinuous, since the residual
considered in the FETI algorithm is equal to the jumps of our approximate solution:

BuF =d — F\*.

As the two methods employs different stopping criteria, some care should then be used
in the comparison. In a future work, we intend to address the issue of the stopping
criterion for FETT methods for convection—dominated problems in more detail.

4.1. Thermal boundary layer. We first consider a thermal boundary layer
problem: see, e.g., [17, 40]. We choose Q = (—1,1)? and the parallel velocity field

1
- (t300)
2
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Thermal layer (Flow 11), nu=0.01

Flow 11
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Fi1G. 1. Thermal boundary layer problem. The flow field (left) and the solution for v = 0.01

see Figure 1. We consider the following Dirichlet conditions on 9€:

o r=-1, -1<y<I,
u=1 {y:l, —1<z<1,

u=0 y=-1, -1<z<1,

:H—y, r=1 -1<y<1,

2
and the values f = 0 and ¢ = 10~%. The solution for v = 0.01 is shown in Figure 1.
We note that there are two boundary layers along 9f2.

In Table 1, we show the number of iterations for FETI-1 and FETI-2 for different
choices of @, versus the viscosity v. We consider partitions into 4 x4, 8 x8, and 16 x 16
equal square substructures.

For large values of the viscosity, our algorithms exhibit convergence properties
similar to most of domain decomposition methods for symmetric, coercive problems;
see, e.g., [37]. The number of iterations increases with the number of subdomains for
the one—level algorithm, but, with a suitable coarse problem, the number of iterations
is independent of the number of subdomains. For smaller values of the viscosity (v <
0.01), the difference between FETI 1 and FETI 2s becomes smaller. In particular,
for the 16 and 64 subdomains cases, the iteration counts are the same for the two
classes of algorithms. For the 256 subdomains case, the FETI 2 algorithms show a
slight improvement with respect to FETI-1.

In addition, we note that for a fixed number of substructures, the number of itera-
tions appears to converge to a constant value as v tends to zero, for the four algorithms
considered. For the 16 and 64 subdomains cases, these values are approximately the
same for the four algorithms. For the 256 subdomains case, the number of iterations
of FETI-1 is a little higher than those of the FETI-2 algorithms. We note that, for
convection—dominated problems and parallel flows, this is the same behavior as ex-
hibited by some other iterative substructuring methods, see, e.g., [9, 40, 3], and some
preconditioned iterative methods based on incomplete factorizations, see, e.g., [36].
We conclude that the FETI-2 algorithms do not seem to present any considerable
advantage over FETT-1 for the choices of ) considered in section 3.3.

In Table 2, we present some results for different meshes. An initial mesh consists of
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[ v [noes]|Q=1]0=0:1[Q=@ |

1 13 11 10 11
0.1 13 11 11 11
0.01 9 9 9 9
0.001 10 10 10 10
le-04 11 11 11 10
le-05 11 12 11 10
1le-06 11 12 10 10

[ v 00 [Q=T]Q=0C1[Q=0s]

1 44 9 9 9
0.1 34 11 10 10
0.01 16 13 13 13
0.001 16 15 14 15
le-04 18 18 17 18
le-05 19 19 18 19
le-06 19 19 18 19

[ v [[mocs[[Q=T]Q= [Q=0: ]

1 159 8 8 7
0.1 98 10 9 9
0.01 38 18 18 18

0.001 33 27 27 27

le-04 46 38 38 40

1le-05 51 42 41 45

1le-06 51 42 41 45
TABLE 1

Thermal boundary layer. FETI method. Number of GMRES iterations to decrease the
residual norm by a factor 10~6, versus the viscosity v, for FETI-1 (first columns) and FETI-2 with
different choices of the scaling matriz Q. Cases of 16 (first table), 64 (second table), and 256 (third
table) substructures, with meshes consisting of 1792, 1920, and 1984 elements, respectively.

480 triangles and we make three successive uniform refinements. We show the number
of iterations versus the viscosity v, for the case of 64 substructures and FETI-1 and
FETI-2 with @ = I, for four different meshes. We note that our iteration counts
appear to be bounded as the mesh—size becomes smaller. In particular, for viscosities
v < 0.001, both FETI-1 and FETI-2 converge faster once the mesh is refined enough.
Note also the relative large number of iterations for a very coarse mesh (480 elements).
This is a similar behavior as that of some other iterative substructuring methods see,
e.g., [9, 40, 3, 2].

We finally report some results obtained with the one— and two—level Robin—Robin
algorithms described in [2]. For the same test problem, Table 3 shows the number
of iterations versus the viscosity v. We consider the same partitions and meshes as
before. By comparing the values in Tables 1 and 3, we observe that the FETT and
the Robin—Robin methods give very similar iteration counts. We refer to [25], for
some theoretical and algorithmic connections between the two families of methods for
symmetric, positive—definite problems.
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| elem. || v=1 | v=20.1 | v =10.01 | v = 0.001 | v=1e—04 | v=1e—05 | l/:16*06|

480 43 32 16 24 32 36 37

1920 44 34 16 16 18 19 19

7680 46 36 17 14 16 18 17
30720 47 38 19 14 15 17 17

| elem. | v=1 | v =20.1 | v =0.01 | v = 0.001 | v=1le—04 | v=1e—05 | v=1e—06 |

480 8 10 14 21 27 29 29

1920 11 13 15 18 19 19

7680 11 12 15 13 16 17 17
30720 13 14 16 13 14 16 16

TABLE 2

Thermal boundary layer. FETI method. Number of GMRES iterations to decrease the
residual norm by a factor 1075, versus the viscosity v, for different meshes, for FETI-1 (first table)
and FETI 2 with Q = I (second table). Case of 64 substructures.

16 substr. 64 substr. 256 substr.

v llev. 2lev. | 1lev. 2lev. | 1lev. 2 lev.
1 13 10 44 9 163 7
0.1 13 12 34 12 97 9
0.01 10 9 16 13 37 17
0.001 11 10 16 16 33 28
1.e-04 11 12 19 19 46 42
1.e-05 11 11 20 20 50 47
1.e-06 11 11 20 20 50 48

TABLE 3

Thermal boundary layer. Robin—Robin method. Number of GMRES iterations to decrease
the residual norm by a factor 10=5, versus the viscosity v, for the one-level (first columns) and
the two-level algorithm (second columns). Cases of 16, 64, and 256 substructures, with meshes
consisting of 1792, 1920, and 1984 elements, respectively.

4.2. Variable flow field. We next consider a more complicated flow; see [36]
for a similar test case. We choose = (—1,1)? and a discontinuous Dirichlet data
that is advected inside € by the flow field

1

a=g (=21 +y),—@E— 1+y))r);

see Figure 2. The Dirichlet conditions are defined by

y=-1, -1<2<0,
elsewhere.

u=1,
u =0,

We have chosen the values f = 0 and ¢ = 10~%. The solution for v = 0.01 is shown
in Figure 2. We note that there are boundary layers along 9f2.

In Table 4, we show the number of iterations for FETIT-1 and FETI-2 for different
choices of @), versus the viscosity v. We consider the same partitions into 4 x 4, 8 x 8,
and 16 x 16 substructures.

We first note that for the diffusion—dominated case, we observe a similar behavior
as in the previous test case, where a coarse space is quite useful if the number of
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F1a. 2. Variable flow field. The flow field (left) and the solution for v = 0.01 (right).

subdomains is large; see Table 1. For values of v between 1072 and 104, the numbers
of iterations for the one— and the two—level algorithms are very similar, as in the case
of the thermal boundary layer problem. On the other hand, for smaller values of v,
the FETI-2 algorithm with @) = I shows a relatively larger improvement with respect
to FETI-1. We remark that considerable worse results are obtained using Q1 or Q2
for convection—dominated cases. In this case as well, the numbers of iterations appear
to be bounded as v goes to zero. We note that, for convection-dominated problems,
this is the same behavior exhibited by some preconditioned iterative methods based
on incomplete factorizations for similar flows, see [36].

In Table 5, we present some results for the same meshes considered in the previous
test case. For the case of 64 substructures and FETI 1 and FETI 2 with Q = I, we
show the numbers of iterations versus the viscosity v, for four different meshes. The
results in Table 5 are similar to those in Table 2 and, in this case as well, our iterations
counts appear to be bounded as the mesh size becomes smaller.

We finally report some results obtained with the Robin—Robin algorithms in [2].
For the same test problem, Table 6 shows the number of iterations versus the viscosity
v. By comparing the values in Tables 4 and 6, we observe that for this test problem
as well, the FETI and the Robin-Robin methods give very similar iteration counts,
except for the case of 256 substructures and extremely high Reynolds numbers, where
the two—level FETT method with Q = I gives better results.

We conclude this section with some remarks on the two test cases considered so
far. Our FETT algorithms perform very well for convection dominated problems and,
when the mesh—size goes to zero, the number of iterations appears to be bounded.
Moreover, for parallel flows, a coarse space does not appear to be necessary. We have
found a similar behavior for different types of parallel lows and, more generally, for
flows with no closed streamlines (other results are not presented here).

4.3. Rotating flow field. We now consider a difficult test case with a flow with
some closed streamlines. We choose € = (—1,1)? and a discontinuous Dirichlet data
that is advected inside 2 by the rotating flow field

a= (y,—ac);
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[ v [noes]|Q=1]0=0:1[Q=@|

1 14 11 11 11
0.1 14 12 11 11
0.01 10 10 10 10
0.001 12 12 12 11
le-04 14 14 14 14
le-05 14 14 14 14
1le-06 14 14 14 14
1e-07 14 14 14 14
[ v [0 [Q=T]Q=0C1[Q=0s]
1 44 9 9 9
0.1 29 12 11 11
0.01 18 17 17 16
0.001 22 21 20 22
le-04 28 23 26 28
le-05 35 25 33 33
le-06 44 26 30 31
le-07 40 25 30 32
[ v [[nocs[Q=T]Q=0C1[Q=0s]
1 125 8 8 7
0.1 66 12 12 10
0.01 40 31 30 26
0.001 49 45 40 43
le-04 73 60 69 68
1e-05 87 71 81 85
le-06 87 68 72 89
1e-07 88 69 78 89
TABLE 4

Variable flow field. FETI method. Number of GMRES iterations to decrease the residual
norm by a factor 10=5, versus the viscosity v, for FETI-1 (first columns) and FETI-2 with different
choices of the scaling matriz Q. Cases of 16 (first table), 64 (second table), and 256 (third table)
substructures, with meshes consisting of 1792, 1920, and 1984 elements, respectively.

see Figure 3. We consider the following Dirichlet conditions on 9€:

y=-1,0<2x<1,
u=1 y=10<z <1,
r=1 —-1<y<1,

u =0, elsewhere,

and the values f = 0 and ¢ = 10~%. The solution for v = 0.01 is shown in Figure 3. As
also noted in [2], this case is quite difficult, since even in the convection—dominated
regime, diffusion is the only mechanism that propagates the information from the
boundary of the domain into its center.

In Table 7, we show the number of iterations for FETI-1 and FETI-2 for different
choices of ), versus the viscosity v. As before, we consider partitions into 4 x 4, 8 X 8,
and 16 x 16 substructures.
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| elem. || v=1 | v=20.1 | v =10.01 | v = 0.001 | v=1e—04 | v=1e—05 | l/:16*06|

480 43 29 22 34 44 42 42
1920 44 29 18 22 28 35 44
7680 46 30 19 19 22 28 30
30720 48 32 21 17 20 24 25
| elem. || v=1 | v =20.1 | v =0.01 | v = 0.001 | v=1le—04 | v=1e—05 | v=1e—06
480 8 12 20 27 37 37 37
1920 12 17 21 23 24 25
7680 11 13 17 18 20 25 25
30720 12 15 18 16 20 23 25
TABLE 5

Variable flow field. FETI method. Number of GMRES iterations to decrease the residual
norm by a factor 10~5, versus the viscosity v, for different meshes, for FETI-1 (first table) and
FETI-2 with Q = I (second table). Case of 64 substructures.

16 substr. 64 substr. 256 substr.

v llev. 2lev. | 1lev. 2lev. | 1lev. 2 lev.
1 14 11 45 9 127 7
0.1 14 12 29 12 66 9
0.01 10 10 19 17 41 23
0.001 12 12 23 21 50 42
1.e-04 14 14 28 24 73 60
1.e-05 15 15 34 27 86 74
1.e-06 15 15 38 27 88 93
1.e-07 15 15 36 27 88 85

TABLE 6

Variable flow field. Robin—Robin method. Number of GMRES iterations to decrease the
residual norm by a factor 106, versus the viscosity v, for the one—level (first columns) and the two—
level algorithm (second columns). Cases of 16, 64, and 256 substructures, with meshes consisting of
1792, 1920, and 1984 elements, respectively.

For the diffusion—dominated case, we observe a similar behavior as in the previous
test cases, where a coarse space is quite useful if the number of subdomains is large;
see Tables 1 and 4. For the 16 and 64 subdomains cases, the numbers of iterations still
appear to be bounded as the viscosity becomes small, but the numbers in this case are
larger than previously. In addition, when the number of subdomains becomes quite
large, our methods exhibit poor convergence properties for convection—dominated
cases; cf. the 256 subdomains case.

We also note that the FETI-2 methods present some improvement with respect
to FETI-1, and that the best choice for the scaling matrix ) appears to be ()5 for
this test case. We recall that the best choice for the previous test case is Q = I.

In Table 8, we present some results for the same meshes considered in the previous
test cases. For the case of 64 substructures and FETI-1 and FETI-2 with Q = Q2,
we show the number of iterations versus the viscosity v, for four different meshes.
The iteration counts still appear to be bounded as the mesh—size becomes smaller, for
v > 0.001. However, they do not appear to be uniformly bounded, when the viscosity
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Fic. 3. Rotating flow field. The flow field (left) and the solution for v = 0.01 (right).

decreases further.

We finally report some results obtained with the Robin—Robin algorithms in [2].
For the same test problem, Table 9 shows the number of iterations versus the viscosity
v. By comparing the values in Tables 7 and 9, we observe that also for this test
problem, the FETT and the Robin—Robin methods give similar iteration counts, except
for the two—level algorithms for the cases of 256 substructures and v < 10—, where
the two—level FETI algorithms require more than 200 iterations.

5. Conclusions. We have considered one— and two-level FETT methods for the
solution of linear systems arising from the finite element approximation of scalar
advection—diffusion problems. Using ideas similar to those of a recently developed
Neumann—Neumann algorithm, we have modified the local problems by adding certain
boundary terms, which have the effect of making the local problems stable.

We have presented some numerical arguments for three significant test problems
and offer the following conclusions.

e For flows without closed streamlines, both the one and two level methods
are optimal and the number of iterations tends to a constant value as the
viscosity becomes small. The number of iterations increases with the number
of subdomains, but our numerical results remain very good even for very
large numbers of subdomains. In addition, for parallel flows, a coarse space
correction does not appear to be necessary.

e For rotating flows, our methods appear to be optimal if the viscosity is not too
small. For a fixed mesh, the number of iterations tends to a constant value
as the viscosity becomes small, if the number of subdomains is not too large.
A coarse space correction improves convergence for convection—dominated
problems.

e In our experiments, we obtain iteration counts that are very similar to those
for the corresponding Robin—Robin methods in [2], and the two families of
methods have similar computational costs.

e For the two—level FETI method, a suitable scaling matrix can improve the
convergence in some cases, and the best choice of such a matrix appears to
depend on the particular flow considered.

Acknowledgments. The author is grateful to Axel Klawonn and Olof Widlund
for enlightening discussions of his work.
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[ v o [Q=T][Q=[Q=Q: |
1 14 11 11 11
0.1 16 12 12 12
0.01 28 23 22 22
0.001 50 45 45 50
le-04 75 69 72 68
le-05 83 77 80 76
1e-06 85 79 81 7
[ v [noes [Q=T[Q=[Q=0> |
1 44 10 9 9
0.1 34 11 11 10
0.01 45 27 24 23
0.001 82 68 62 60
le-04 124 111 105 99
1le-05 135 121 113 109
le-06 138 123 115 111
| v Inoes [Q=1]Q=0Q:1 ]| Q=Q>|
1 119 9 8 8
0.1 67 16 13 12
0.01 95 63 51 32
0.001 || >200 176 174 144
le-04 || >200 || >200 >200 >200
le-05 || >200 || >200 >200 >200
le-06 || >200 || >200 >200 >200
TABLE 7

Rotating flow field. FETI method. Number of GMRES iterations to decrease the residual

norm by a factor 1075, versus the viscosity v, for FETI-1 (first columns) and FETI-2 with different
choices of the scaling matriz Q. Cases of 16 (first table), 64 (second table), and 256 (third table)
substructures, with meshes consisting of 1792, 1920, and 1984 elements, respectively.

[elem. [v=1]v=01]v=001[rv=0001]rv=1e-04][v=1e—05]v=1e— 06 |

480 43 33 39 73 86 92 92
1920 | 44 34 45 82 124 135 138
7680 || 46 36 50 93 163 >200 >200
30720 || 48 38 53 93 >200 >200 >200

[elem. [v=1]v=01]v=001[v=0001[rv=1e—04[v=1e—05[v=1e—06

480 7 10 25 59 77 82 84
1920 9 10 23 60 99 109 111
7680 || 11 12 24 63 134 191 195
30720 || 12 14 26 70 182 >200 >200

TABLE 8

Rotating flow field. FETI method. Number of GMRES iterations to decrease the residual

norm by a factor 10~6, versus the viscosity v, for different meshes, for FETI 1 (first table) and
FETI-2 with Q = Q2 (second table). Case of 64 substructures.
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Rotating flow field.

16 substr. 64 substr. 256 substr.
v llev. 2lev. | 1lev. 2lev. | 1lev. 2 lev.
1 14 10 44 9 122 7
0.1 15 12 34 11 66 10
0.01 25 22 44 24 93 33
0.001 48 43 80 58 >200 106
1.e-04 74 65 121 93 >200 183
1.e-05 82 74 134 103 >200 193
1.e-06 83 75 136 105 >200 194
TABLE 9

Robin Robin method. Number of GMRES iterations to decrease the

residual norm by a factor 10~%, versus the viscosity v, for the one-level (first columns) and the two—
level algorithm (second columns). Cases of 16, 64, and 256 substructures, with meshes consisting of
1792, 1920, and 1984 elements, respectively.
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