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ABSTRACT

In this thesis, we study iterative substructuring methods for linear elliptic problems
approximated by the p-version finite element method. They form a class of nonover-
lapping domain decomposition methods, for which the information exchange between
neighboring subdomains is limited to the variables directly associated with the interface,
i.e. those common to more than one subregion. Our objective is to design algorithms
in 3D for which we can find an upper bound for the condition number k of the precon-
ditioned linear system, which is independent of the number of subdomains and grows
slowly with p.

Tterative substructuring methods for the h—version finite element, and spectral ele-
ments have previously been developed and analysed by several authors. However, some
very real difficulties remained when the extension of these methods and their analysis
to the p—version finite element method were attempted, such as a lack extension theo-
rems for polynomials. The corresponding results are well known for Sobolev spaces, but
their extension to finite element spaces is quite intricate. In our technical work, we use
and further develop extension theorems for polynomials in order to prove bounds on the
condition numbers of several algorithms.

We have also made many numerical tests. We can use our programs for several
purposes. Not only can we compute the condition numbers and study the rate of conver-
gence for a variety of the algorithms that we have developed, but we can also compute
the bounds on these condition numbers, as given by the theory. This is useful because
the theory predicts the order of magnitude and the asymptotic growth of these bounds,

not of the actual condition numbers.
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Chapter 1

Introduction

1.1 Overview

Domain decomposition methods are iterative methods for solving the linear systems of
equations that arise in the discretization of elliptic partial differential equations by, e.g.,
finite elements. There are almost yearly conferences and recently a first monograph by
Smith, Bjorstad, and Gropp [62] has appeared. There is a general abstract theory, known
as Schwarz theory; see, e.g., [25, 62].

The initial problem is divided into smaller subproblems that correspond to the de-
composition of the initial domain into overlapping or nonoverlapping domains or, more
generally, to the decomposition of the finite element space into a sum of subspaces. The
subproblems are solved directly or iteratively, and the exchange of information between
subspaces is handled by an iterative method. These subproblems can be viewed as
building blocks of a preconditioner. In addition, a coarse space that handles the global
exchange of information is needed. The choice of this subspace is a nontrivial issue.

The iterative substructuring methods form a class of nonoverlapping domain decom-
position methods for which the information exchange between neighboring subdomains
is limited to the variables directly associated with the interface, i.e. those common to
more than one subregion.

An analysis of the iterative substructuring methods for the hA—version in three di-
mensions can be found in Dryja, Smith, and Widlund [25]; see also Bramble, Pasciak,
and Schatz [13, 14] for important earlier work.

Tterative substructuring methods for the 2D p—version are analyzed in Babuska,



Craig, Mandel, and Pitkdranta [9]. For 3D spectral elements, see Pavarino and Widlund
[65, 56], Mandel [42], Casarin [18, 19], and Korneev and Jensen [35]. The hp—version is
analyzed in Oden, Patra, and Feng [50] and Guo and Cao [31, 33, 32]. For a different
approach to the 3D p—version, see Sherwin and Karniadakis [59, 60, 61] and Pathria
and Karniadakis [51].

In Chapter 1 of this thesis, we review some basic definitions and results about Sobolev
spaces and the p—version finite element method.

In Chapter 2, we present the abstract Schwarz framework.

In Chapter 3, we introduce several algorithms, which are analogous to the algorithms
defined by several authors for the h-version and spectral elements.

In Chapter 4, we prove two extension theorems for polynomials which we use to
construct our low energy basis functions. Using these, we find that the condition number
of the resulting algorithms grows only polylogarithmically in p. We also collect a series of
technical results about polynomial subspaces of Sobolev spaces, which have been proven
by several authors. Finally, we obtain our asymptotic bounds on the condition numbers.

In Chapter 5, we start by numerically computing the local condition numbers of our
algorithms. It is important to note that for one of the algorithms, the wire basket based
algorithm the global condition number is the largest of these local condition numbers.
We then compute the bounds on these condition numbers, as given by the theory. This is
useful because the theory predicts the order of magnitude and the asymptotic growth of
these bounds, not of their actual values. To this end, we compute all the factors that give
the upper bounds on the condition numbers, such as the norm of the low energy extension
and a best discrete Sobolev constant. We conclude that we have made a good choice
since the norm of the extension, which depends on the low energy extensions is much
smaller than the best discrete Sobolev constant, which depends solely on the geometry.
Finally, we compute the global condition numbers and study the rate of convergence of
the additive, hybrid, and multiplicative variants of our algorithms. We also compare the
condition numbers resulting from the use of the low energy and standard basis functions
and for algorithms with coarse spaces that contain and do not contain the constants.
We report on experiments for several choices of the vertex, edge, and coarse spaces, to
be able to make specific recommendations on the best choice of preconditioners.

We have computed the local stiffness matrices symbolically, which is a relatively



major task. We have used Maple V to do so. Most of the other programs have been

written in Matlab.



1.2 Sobolev spaces

1.2.1 Definitions

We assume that €2 is a bounded Lipschitz domain in R".

We denote by H™ () the subspace of functions u € L?(2) such that D% € L?(f2)
for |a| < m. Here, m is a nonnegative integer, & = (a1, ..., qy,) a multiindex, where the
«; are nonnegative integers, |a| = ay + - -+ + @y, and D* = 9%/0z* --- 0z, H™(Q) is
the Hilbert space with the inner product

(w,0)gm@) = Y (D, D*0)12(qy- (1.1)
la]<m
We denote by | - |gm(q) the seminorm
ulfmy = D [1D%u[72(0)- (1.2)
\al=m

It is known, see [1], that H™(2) can be defined equivalently as the completion of the
space of infinitely differentiable functions, under the inner product (1.1). In our work,
we consider only the case m = 1.

Some Sobolev spaces of fractional order are directly related to the problem of traces.
If 0 < s < 1, we denote by H*(Q) the space of functions u € L?(Q) such that

7|r;(i) Jﬁf}j@' € I2(Q) x L*(Q).

It is a Hilbert space with the norm

2 _ 2 |u(z) — u(y)]?
oy = gy + [ V5 dady (1)

H*(2) can be also defined by interpolation between H' and L?; see [39]. Only the case
of C* boundary is treated there, but many results carry over to the case of polyhedral
domains.

In all of R™, the Sobolev spaces, of integer or fractional order, can also be defined
via the Fourier transform; see [47, 39]. Extension theorems for Sobolev spaces are used
to extend this equivalent definition to bounded regions; see [47, 39].

Any function that belongs to a Sobolev space H™(2), with m large enough, is con-
tinuous; the higher the dimension n of R", the larger m is required. This well-known

result follows from Sobolev’s lemma.



Theorem 1.1 If 2m > n, then, for any u € H™(Q)
<C m(y)-
max ()| < Olullgm o)
Consequently, u is continuous on €.

If Q is a bounded interval in R!, all functions in H'!(Q) are continuous. This can be

obtained immediately, without Sobolev’s lemma, by elementary calculations.

1.2.2 Traces and extensions

Of particular importance to boundary value problems is whether functions in Sobolev
spaces have traces on submanifolds of their domain of definition or not. We also need to

characterize the trace classes.

Theorem 1.2 Let u € H*(Q), 1/2 < s < 3/2. Then its trace yu on 0 belongs to
H1/2(5Q) and

lvullgs-172(00) < Cllullms(0)-

Directly related to the trace theorem above is the subspace Hj(€2) of H*(2), defined as
the closure of C§° in the H*— norm. If 0 < s < 1/2, H§(Q) = H*(Q), and if 1/2 < s < 1,
H§() is a subspace of H*(Q2), which can also be defined as

Hi(Q) ={ue H°(Q); yu=0 on 0Q}.

If u e H5(Q), 0 < s < 1/2, then the function %, defined as u in  and as zero outside
(2, belongs to H*(R"). If u € H§(f?), 1/2 < s <1, then @ also belongs to H*(R").

The case s = 1/2 deserves special attention. The closure of C$°(Q) in HY/2(Q) is
H'/2(Q), but not all the functions in H'/2(Q) belong to H'/?(R") when extended by
zero. We denote by Hééz(ﬂ) the maximal subspace of functions in H'/2(Q) that have
this property. It can equivalently be defined as the closure of C§°(f2) under the norm

lall?12 0 = [l +/L$)2dx. (1.4)
Hob*(9) H2Q) T o dist(z, 6Q)

The inverse problem, of extending a function defined on 912 to the whole domain €2,

has the following solution



Theorem 1.3 There is a linear operator E : H*Y/?2 — H*(Q) such that, if f €
H*"12(09) and s > 1/2, then Ef = f on 0Q and

Efllms@) < Cllfllgs-—172(0)-

We remark that this theorem holds for s = 1/2, whereas Theorem 1.2 does not. For s >

1/2, the above theorem is a straightforward application of the open mapping theorem.
In our work, we are mainly concerned with trace and extension theorems for polyno-

mial subspaces of Sobolev spaces. In Section 4.1, we will consider trace theorems that

hold in the case s = 1/2 at a penalty that depends on the dimension of the subspace.

1.2.3 Equivalent norms

In the space H} (), the H'-seminorm is a norm, equivalent to the H!-norm. This fact

follows immediately from Friedrichs’ inequality; see [47].
Theorem 1.4 Let Q be a bounded domain. Then, for any u € H(Q),
ul|r2(0) < Clulgi(q)

We are also concerned with the spaces H}(2) C HE(Q2) € H'(R), where T is a subset

of 0% of nonzero measure; see [47].
Theorem 1.5 Let Q be a bounded domain. Then, for any v € H'(Q),
lullz2 (@) < C { lulfn gy + (| udz)? ).
@) @) T

The H'-seminorm and norm are also equivalent in the quotient space H'/const. The

result is Poincaré’s inequality; see [47].

Theorem 1.6 Let Q be a bounded domain. Then, for any v € H(Q),

Q

We note that the constants in Theorems 1.4, 1.5, and 1.6 depend on the diameter of (2.
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1.2.4 Explicit norms on a tetrahedral region

Notations. The main part of our analysis will be carried out on a tetrahedron. Let us

consider the reference tetrahedron, shown in Fig. 1.1, defined by
Qref:{(wayaz); wZO,yZO,zZO,x+y+z§1}. (1'5)
We use the following notations for its faces, edges, and vertices:

e Fj,i=1,...,4, are the faces contained in the planes {z = 0}, {y = 0}, {z = 0},
and {z + y + z = 1}, respectively;

e E;,i=1,...,6, are the edges contained in the lines {y = z = 0}, {z = z = 0},
{l‘:y:()}, {ZZO, I+y:1}a {y:Oa J,‘+Z:1}, and{ac:O, y+z:1}7

respectively;
e Vi,i=1,...,4, are the vertices (1,0,0), (0,1,0), (0,0,1), and (0,0, 0), respectively.

We define the barycentric functions on Q.5 by p1 = x, 2 = y, p3 = 2z, and pg =
1 -z —y— 2z We denote by W the union of the closed edges of €.y and call it the
wire basket of the tetrahedron Q,.r. We denote by PP(Q,.r) the space of total degree
p polynomials on 2,..; and by PP (y¢r) the subspace of polynomials that vanish on
the boundary 0f)..; of the reference tetrahedron. If f is a function defined on 0.y,
we denote its restriction to the face F; by f;. We define PP(0€),.r) as the space of
continuous functions on 92, such that the f; are polynomials of degree at most p, in
the two variables corresponding to F;.

Let T be the reference triangle, shown in Fig. 1.2, defined by
T={(z,y); ©>0,y>0, z+y<1} (1.6)
We use the following notations
e A, B, and C are the vertices (0,0), (1,0), and (0, 1), respectively;

e I;, i = 1,...,3, are the edges contained in the lines {y = 0}, {z = 0}, and
{z+y=1}

o IN IB I IS, IB, I§, are half-edges, shown in the figure.



We define the barycentric functions on 7" by Ay = z, A9 = y, and A\3 = 1 —z — y.
We define PP(T), PY(T), and PP(OT) in the same way as PP(Q.f), P} (Qy.s), and
PP(0S.¢), respectively.

We use the notation QP for the spaces of polynomials of degree at most p in each
variable.

Special norms. The principal goal of this subsection is to introduce explicit expres-
sions for the H'/?-norm (1.3) on the boundary 9Q,.f of the reference tetrahedron. We

will use the following equivalent norm; see [30, 48]:

el 2o,y = Z ] Bz + 3 Ci- (L.7)

1<J
Here, the C; j correspond to the cross terms [z, [ Fj in the double integral in the definition
of the H'/2-norm (1.3). Thus,

1 -z _ 2
Cr2 = C(u1, ug) :/0 / 10, 2) yuz(y,O,z)| dydz. (1.8)

The other terms are defined similarly.

We will also use the following subspaces of H'/?(T') related to one or two of its edges:
Hol({Q(T, I;) is the space of functions u € H'/?(T'), that vanish on the edge I; and satisfy
A7 2y € L2(T), with the norm

7

1/2
el 2y = oy + I Pl 2o (1.9)

(T.T:)
and Hy)*(T, T, I;) = Ho>(T, I;) N Hob (T, I;) for i # j, with the norm

—1/2 —1/2

el 1y = 1eragry + 1A 20l oy + 15 Pl (110)

Similarly, HO({ (T, 5, I, I3) = H&f(T), and its norm is equivalent to the one given
by (1.4).
We remark that, if u € H'Y/?(09,, ) is nonzero on the face Fj, and equal to zero on

the other three faces, then

lelor200,.p) = 572y

where we identify the face Fj of €2,.; with the reference triangle 7. If u € H 12(6,., 7)
vanishes on Fy and u(z,y,0) = u(z,0,y) = u(0,z,y), then

9 2
||U||H1/2(aQTef) - 3||“”H352(T,13)'



Finally, if u € HI/Q(BQref) vanishes on F; and Fy, and u(z,y,0) = u(z,0,y), then

9 _ 2
lullg1r2 00, ,) = 2“““1{352@,12,13)'

10



1.3 Continuous and discrete problems

1.3.1 The model problem

We consider the following problem formulated variationally: Find u € V such that
a(u,v) = / p(x)VuVv dz = f(v) YveV. (1.11)
Q

Here, V is a subspace of H'(Q), determined by boundary conditions, Q is a polyhe-
dral region triangulated with tetrahedra Q;, Q = UQ;. We assume that the boundary
conditions are of the same type within each face of any tetrahedra that is part of the
boundary. The coefficient p(z) > 0 can be discontinuous across the interface between the
subdomains, but varies only moderately within each ;. Without further decreasing the
generality, we assume p(z) = p; on §2;. We note that some of the bounds in Chapter 4

hold for arbitrary jumps in p;.

1.3.2 The finite element method

We discretize the problem by applying the p-version finite element method: Find u €

VFEM gych that
a(u,v) = f(v) VYo e VIEM (1.12)

VFEM

where is a finite dimensional subspace of V.

There are three main versions of the finite element method

e h—version. This is the standard version. The finite element space is the space
of continuous, piecewise low order polynomials. The mesh is refined in order to

increase the accuracy.

e p—version. The finite element space is the space of continuous piecewise higher
order polynomials. In its pure form, the accuracy is increased by increasing the

degree of the polynomials, while the mesh is fixed.

e hp—version. This is a combination of the two previous methods. Different degree
polynomials are often used in different elements and the mesh is often far from

uniform.

11



The h—version has been known and used extensively since the fifties. The development
of the p and hp— version has been stimulated by problems in structural mechanics and
mechanics of solids. The first experimental and convergence results appeared in the late
seventies; see [64], [63]. The systematic analysis of convergence has been worked out in
the eighties; see [6], [4], [22, 23], [2], [5], [65], [49].

Error bounds for the finite element are based on approximation results and the
structure and regularity of the solution of the elliptic problem (1.11). The following
is Lemma 11 in Munoz-Sola [48]. It is a 3D variant of the basic approximation results

in two dimensions, proved in Babuska, Szab6, and Katz [6] and in Babuska and Suri [4].

Lemma 1.1 Let u € Hk(QTef). Then there exist a sequence z, € PP(Qf), p =
0,1,2,..., such that

I = 2pllmeg,y) < Cp~*  Olullgr,,,) for 0<q<k;
llu = 2pll2m) < Cp_(k_%)HuHHk(me) for k>%, 1=1,...,4
b= zllaney < Co Dl for k>5, i=1,..,4
= zpllr2m) < Cp ® Vlullgrg,,,) for k>1, i=1,...,6;
lu=zpllmsy < Cp e, for k>2, i=1....6
b= zpllim@ry < O ¢ Dlullmga,,) for k> .

The next step is to obtain piecewise polynomial approximations which are continuous
across the boundaries of the elements without degrading the order of approximation. The
technical tools used for this are extension theorems for polynomials; see [4], [9] for 2D
global approximation results and [48] for 3D. We will use these theorems for two other
purposes, to define equivalent norms on the finite element space, see Section 1.3.4, and
to construct special basis functions for the finite element space, see Chapter 4.

A main result concerning the rate of convergence for the hp—version in 3D is given
in Mufioz-Sola [48]. To simplify the statement of the theorem, we assume homogenous

boundary conditions.

Theorem 1.7 Let u be the solution to the model problem (1.11), and let up, be the
solution of the problem (1.12), discretized by using the hp—version finite element method.

12



We assume that u € H*¥(Q), k > 2. Then,
||t — wpp||pr1 () < C H™REFLE L plok | ul| zx q)-

The author remarks that the above result is only a step towards the complete analysis
of the hp—version in 3D, since the regularity hypothesis « € H*(Q), k > 2 does not
always hold if € is a polyhedron. Further analysis would involve the decomposition of
the solution into singular and regular parts.

A complete 2D analysis has been done in Babuska and Suri in [4, 3]. Let 2 be a
polygonal domain, with vertices A;, Ao, ..., and set Dirichlet boundary conditions on a
part of I'; C 0N that is union of some of the segments A;A;;1. The piecewise polynomial
boundary values can change discontinuously at the vertices. The solution u of the model

problem can then be decomposed as
u=u1+uz+ Y usg
i

where
U1 EH’“, ki1>1, w3y =0o0onTYy;

3
ug EHk2, ko > 5;

and

ug; = ;| log ;| ¢i (0:) xi(ri),
where r;, a; are polar coordinates with respect to an origin located at the vertex A;,
a; > 0, v; > 0 are integers, ¢; is an analytic function and y; is smooth and zero away

from A;. The following theorem, taken from [4], provides optimal bounds on the error
in 2D

Theorem 1.8 Let u be the solution of (1.11), and let up, be the solution to the problem
(1.12), discretized by using the hp—version finite element method. If u € H¥(Q), k> 3,
then,

|t = unp|| g1y < C hmnPFLRI=L L=k | ul| g5 ()

If u = u1 + us, ug e HF |y > 1, up=0o0nl4, k1 < %, us € HF? kg > % Then,
lu — unpl[g1(0) < C pmin(ptLk) =L 1=k |[ull g+ @),

13



where k = min(ky, k2). Finally, if u = ug; in the above decomposition, then,

|lu — || g1 (@) < C|logp|"p~>*.

The best choice of the finite element version depends on the properties of the solution
u of the model problem (1.11). According to Babuska and Szabé [65], the following are

the best choices

1. If w is analytic in each finite element, including its boundary, the best method is

the p—version since the rate of convergence is exponential.

2. If w is analytic in each finite element, including its boundary, with possible singu-

larities at vertices, the best method is the hp—version.

3. If the mesh cannot be constructed such that the singularities are located at vertices,

the best method is the h—version.

1.3.3 Basis functions for the p—version

Local basis functions. We will now define basis functions on the reference tetrahedron
Q¢f. There are many many ways to do so, and a proper choice is the key to obtaining
an efficient iterative method. We present here only a general description. We distinguish
between four types of basis functions, associated with the vertices, edges, faces, and

interior.

1. A wvertex basis function has value one at that vertex and vanishes on the face

opposite to the vertex. There is only one vertex function per vertex.

2. An edge basis function vanishes on the two faces which do not share the edge. The
traces of the edge functions associated with the same edge are chosen to be linearly

independent on that edge. There are p — 1 such functions per edge.

3. A face basis function vanishes on the other three faces. The traces of the face
functions associated with the same face, are chosen to be linearly independent on

that face. There are (p — 1)(p — 2)/2 such functions per face.

4. An interior basis function vanishes on 9Q,.¢. They are linearly independent. There

are (p —1)(p — 2)(p — 3)/6 interior functions.
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The total number of vertex, edge, face, and interior functions is (p+1)(p + 2)(p + 3)/6.
It is easy to see that they form a basis for PP(€,.y).

We now present the standard, hierarchic basis introduced in [65].

1. The vertex basis functions are the four barycentric functions

2. The edge basis functions associated with edge E1, ..., Eg are
= pipadi(pn — pa), i=1,...p—1 (1.14)
B, = Mopadi(pz — pa), i=1,...p—1. (1.15)
oy = Mapadi(ps — pa), i=1,...p— L (1.16)
e = papadilpe — ), i=1,...p—1. (1.17)
oy = mipadi(pn — ps), i=1,...p— L (1.18)
s = Mopsdi(pe —p3), i=1,...p—1. (1.19)

Here, ¢;(z) = Li(z)/xz(1 — z) and L; is the i-th Legendre polynomial on [0, 1].

3. The face basis functions associated with the faces Fi,..., F, are
Uy = popspiaLi(pz — ps)Lj(2pa — 1), i+j=0...p—3, (1.20)
‘I’p’% = pappiaLi(pn — p3)Lj(2pa — 1), i+j=0...p—3, (1.21)
U = prpopaLi(pe — pa)Li(2us — 1), i4+j=0...p—3, (1.22)
‘I’Zﬁi = p1p2p3Li(p — p)Lj(2us — 1), i+j=0...p—3. (1.23)
4. The interior basis functions are
Ui = ppzpapaLi(pz — pa) L (213 — 1) L (214 — 1), (1.24)

it+j+k=0...p—4

It turns out that the standard vertex and edge functions (1.13 - 1.19) are not appro-
priate for our purpose because, as we will see in Chapter 5, they result in a slow rate of

convergence of the iterative methods. In Chapter 4, we therefore construct low energy
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vertex and edge functions. At this time, we only remark that the low energy functions
with highly oscillatory traces on the wire basket decay much more rapidly away from the
edges than the standard ones that have the same trace. See Fig. 1.3 for a comparison of

low energy and standard (high energy) basis function.

Global basis functions. Once we have defined the basis functions on a reference
tetrahedron, we can define them on any other tetrahedron by using an affine transfor-
mation. The basis functions (1.14 - 1.23) are not symmetric, i.e. we obtain a different
set of functions by a permutations of the variables. This will result in some problems in
constructing the triangulation since the vertex, edge, and face functions must have con-
sistent definitions on any pair of tetrahedra with a common boundary; this may cause
conflicting definitions of global edge or face functions on a closed face shared by two
tetrahedra. See Fig. 1.4 for a simple 2D example, where one cannot resolve this conflict.
One way of avoiding this difficulty is to use a symmetric basis, i.e. a basis such that any
permutation of the vertices maps a basis function into a basis function. An alternative
would be to assign some orientation to each edge and face and recompute the stiffness
matrix for each element. In the example in Fig. 1.4, we can choose the orientation of
the edge DC given by Triangle 2. Now, Triangle 3 is a new element, which cannot be

obtained from Triangle 1 or Triangle 2 by using an affine transformation.

We do not adopt the first approach because there is no hierarchic symmetric basis for
PP(K); see Zumbusch [68]. The basis (1.13 - 1.24) is hierarchical, but not symmetric. We
have found the second approach to be too expensive in our experimental work and have
avoided the problem by considering particular triangulations. A sufficient condition to
avoid conflicts is to make sure that each vertex has the same local number with respect
to each tetrahedra that share it. See Fig. 1.5 for an example of compatible versus

incompatible local numbering.

In our experiments, we will often consider regions ) that are unions of cubes and
divide each cube into 24 tetrahedra, see Fig. 1.6. We do have compatible local numbering
of the 15 vertices in the cube, with respect to of each of the 24 tetrahedra. As a
consequence, each edge or face have compatible local numberings. Furthermore, this is
true for tetrahedra that belong to different cubes. We number the vertices of each of the

24 tetrahedra in the cube as in Table 1.1.
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Figure 1.3: Basis functions on the face F3 of the reference tetrahedron 2,.s
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Figure 1.4: Conflicting oertations on the edge DC

Figure 1.5: Compatiblg versus incomp%tible local numbering
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Table 1.1: Global numbering of the vertices of the cube with 24 subregions

Global numbering of each vertex
of the current tetrahedron
tetrahedron | vertex 1 vertex 2 vertex 3 vertex 4

1 2 1 15 9
2 2 3 15 9
3 3 4 15 9
4 1 4 15 9
5 6 5 15 10
6 6 7 15 10
7 7 8 15 10
8 5 8 15 10
9 6 5 15 11
10 6 2 15 11
11 2 1 15 11
12 5 1 15 11
13 7 8 15 12
14 7 3 15 12
15 3 4 15 12
16 8 4 15 12
17 5 8 15 13
18 5 1 15 13
19 1 4 15 13
20 8 4 15 13
21 6 7 15 14
22 6 2 15 14
23 2 3 15 14
24 7 3 15 14
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Figure 1.6: Rgference cube and a special triangulation
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1.3.4 Substructuring methods

Iterative substructuring methods are domain decomposition methods without overlap
between subdomains. An overview of the direct and iterative substructuring methods
for the h—version finite elements is given in Smith, Bjgrstad, and Gropp [62]. A detailed
analysis of many iterative substructuring methods for the h—version is given in Dryja,
Smith, and Widlund [25]. For spectral elements, see Pavarino and Widlund [55, 56] and
Mandel [42]. Algorithms for the hp—version in 2D and 3D, hexahedral elements are
analyzed in Guo and Cao [31, 33, 32].

The variational problem (1.12) can be rewritten as
Ku = i .

Here, K;; = a(¢i, ¢5), fi = (f, ¢:), where ¢; are basis functions in V”. The global system

is built from local contributions, by subassembly,
Ku= Y KOu® = Y0 = 1 (129
1 %

where the local stiffness matrices K and the vectors () and f () are expanded by zero

vectors.

20



Table 1.2: Condition number of stiffness matrix and submatrices

WH+F+1

W

F

I

—
[en}

N=RNeNEN i« NS BN L o}

7.8326e+-04
1.0697e+06
2.1524e4-07
5.3688e+-08
1.6179e+10
5.2421e+11
1.7524e+13

783.3933
803.2946
845.9709
867.4798
879.7329
894.8373
935.2027

32.4031
414.8193
3.4065e+4-03
3.2074e+-04
3.5723e+4-05
4.0552e4-06
4.5951e+4-07

1
35.3369
1.0978e+03
3.4047e+4-04
1.2810e+06
4.6596e+4-07
1.6296e+09

W+F

W+

F+I

—_
jen

© 00~ O Ol D

1.6756e+04
8.8998e4-04
6.7713e+05
5.5259e+-06
5.0418e+-07
5.2306e+4-08
5.7463e+09

2.4023e+-04
3.7748e+4-05
7.9859e+-06
2.1086e+-08
7.0602e+4-09
2.3492e+11
8.0466e+12

405.5100
6.8090e+-03
1.5728e+05
4.2174e4-06
1.3336e+08
4.5341e+-09
1.5231e+11

The global stiffness matrix K is very ill-conditioned. Following the ideas in [10], we
present, in Table 1.2, the condition numbers of the local stiffness matrix as well as the
submatrices associated to the wire basket (W), face (F), and the interior (I) degrees of
freedom and of submatrices corresponding to several of these sets of degrees of freedom.

The stiffness matrix is computed in the basis (1.13 - 1.24), so the block that cor-
respond to the vertex degrees of freedom, as well as any larger block containing it, is
singular. In such cases, we define the condition number as K = Amax /A2, where Ao is
the smallest positive eigenvalue. It follows from the table that the main cause of the
ill-conditioning is the coupling between the interior and boundary (wire basket and face)
degrees of freedom.

This is the main motivation for eliminating the interior degrees of freedom by static

condensation. We factor each local stiffness matrix K as follows
K% 0
0o S

N1 .
KO or ot I Kj} Kij
KO KW 0 I
. T L .
YR K

IB>

(1.26)

where

S
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is the Schur complement of K®.
The system (1.25) reduces to
N ST =1
Sup =3 80u) = ST K K9, (1.27)
i

7
where the matrices S and vectors gg) and f %) are expanded by zeros.
Of particular importance to our work, and directly related to the Schur complement,

is the space of discrete harmonic functions VP C VP, defined by
VP = {ueV?; a(u,v)=0 YveVP v=00nT}.
Equivalently, V? can be defined as the functions with coefficients that satisfy
Krrur + Kipupg = 0.

The discrete harmonic functions are completely defined by their values on the inter-

face ', and VP can be decomposed into a direct sum of a(-,-)—orthogonal subspaces,
VP =VP 43" PI().
i
It is easy to see that
T _ _ . T
upSup = a(u,u) = min _a(v,v) = min v" Kuv,

v=uonI Up=Up

where u and v contain the coefficients of u and v, respectively.

The middle factor in (1.26) is the expression of the stiffness matrix in a new basis,

with discrete harmonic vertex, edge, and face functions, defined by

U= ’LB+ZO‘Z]\P‘}1
J
¥ - ol

Here, the \I/% are the original vertex, edge, and face basis functions, and the \IIJI are the
original interior functions. The «;; are the entries in —Kl_llK 18- We remark that since
the \TJZB are obtained from the \IJ% by adding interior functions, their type (vertex, edge,
or face) has not changed after the orthogonalization.

In Chapter 4, we will use the equivalent norm ), Hu||§11 /200, On the space VP, In

(%)
general, the proof of this equivalence is based on trace and extension theorems. As
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mentioned in Section 1.3.2, this is still another application of extension theorems for
polynomials; cf. Section 1.3.2. We also use them in Chapter 4 in the study of our
iterative methods to solve problem (1.12).

The goal of this work is to design iterative methods for the system (1.27). Such meth-
ods are known as iterative substructuring methods in the literature. The system is still
very ill-conditioned, see the column W+F in Table 1.2, so an iterative method without
preconditioning is potentially very expensive and is likely to be completely useless. We

will use the preconditioned conjugate gradient method, presented in Section 1.4.

1.4 Iterative methods

The preconditioned conjugate gradient algorithm (PCG) is the standard choice for our
problem.

Let A be a N x N symmetric, positive definite matrix, and consider the system
Az =b.

Given a tolerance € > 0, the conjugate gradient algorithm (CG) is given by

Set k = 0; zp = 0; 7o = b;
While [|rg||2 > €||rol|2

k=k+1
ifk=1
b1 =T70
else

Be = (rk—1,7%1)/(Tk 2,7k 2)
Pk = Tk—1+ BrPr—1

end

ok = (re—1,7k-1)/(Pe, Apr)

Tk = Tkp—1 + OPk

Tk = Tk—1 — Qg Apy

end.
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Here, (z,y) = 27 Ay. The conjugate gradient algorithm gives the exact solution after

at most N steps. The reason is that the search diretions py are S—conjugate:
piSpj =0, i#j.

It is well known that

k
k(A) =1
(4) ) e = aols,

||z — zx||s = 2 (m

where k(A) is the condition number of A, given by

)\maz (A)

If k(A) is very large, we need to introduce a preconditioner B and solve the system

k(A) =

BAz = Bb.

The preconditioned conjugate gradient algorithm is obtained by applying CG to the
transformed system
BY2ABY?3 — BY/2p,
where & = B~1/2z. The explicit references to the matrix BY/24B/2 can be eliminated.

The PCG algorithm becomes

Set k= 0; z¢g = 0; 7o = b;
While ||rg||2 > €[|rol|2

Solve z;, = Bry,

k=k+1
ifk=1
p1 =20
else

B = (Tk—lazk—l)/(rk—Q;zk—Q)
Pk = zk—1 + BePr—1

end

a = (rk—1,Tk—1)/(Pr, Apr)

Tk = Tk—1+ Pk
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T = Tk—1 — QR Apg

end.

The preconditioner B should be chosen such that

e k(BY2AB'?) is much smaller than x(A),

e the solution of the system system Bz, = ry is easy to compute.

Standard preconditioners are diagonal scaling and incomplete factorization. For do-
main decomposition methods, a standard choice is preconditioners based on the Schwarz
framework.

Approximate values of the condition number of A can be obtained during the CG
iteration by using a variant of an eigenvalue algorithm due to Lanczos [37]. Let Ry be
the matrix with the normalized residual vectors ro/||7ol|2,---,7k/||7k||2 as columns. It
is possible to prove that

1/on —VB2 /e
—VB2/a1 Pafar+1]az —/B3/az

T _
B ARy = —\/@/012

We have obtained our experimental values of the condition number of our different

iterative methods by computing the extreme eigenvalues of these tridiagonal matrices.
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Chapter 2

Abstract Schwarz theory

In Section 1.3, we have derived the linear system that arises from the discretization of
the continuous problem (1.11) and indicated that we would build preconditioners for this
system, based on the decomposition of the finite element space into a sum of subspaces.

In order to analyze the convergence of the algorithms, we introduce a variational
framework, known as the abstract Schwarz theory. This approach has been adopted by
many authors; cf. [25, 55, 56]. For a comprehensive treatment, see the monograph by

Smith, Bjgrstad, and Gropp [62].

2.1 The classical Schwarz alternating method

This method was introduced by Schwarz in 1870 [58] and is the oldest domain decom-
position method.

Let Q = Q1 U5 be a plane domain. The goal is to find the solution u to the problem

—Au = f in
u = 0 on 09

To this end, we compute a sequence u,, that converges to u. We choose an initial guess

ug. Then, for n =1,2,..., we solve the Dirichlet problems

—Auyyrp = f in

Up41/2 = Up ON ofdy;
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and
—Aupyr = f in Qo
Up+1 = Upyi2 on 0.
The sequence

u :{ Upyie  in Q1 \ €
" Unp+1 in QQ

converges to the solution u of the original Dirichlet problem,
This algorithm can be rewritten in variational form; see [40]. Find u € H}(Q) such
that
/QVu - Vodr = /vad:z; Vo € Hy(Q).

We use the notations
a(u,v) :/Vu-Vvdav; fw) :/ fudz.
Q Q

The two fractional steps of the method are formulated variationally:
Find uy,41/9 — un € Hg(€) such that

a(p 41/ = un,v) = f(v) = alun,v), Vv € Hy(h);
and: Find up41 — Uny1/2 € H&(Qg) such that
a(Unt1 — Unt1/2,v) = f(v) — alupiry2,v), Vv € Hg ().
We define the orthogonal projections P; : Hj(2) — Hg (1) by
a(Pv,¢) = a(v,¢), VYé¢m eV,
and we can show that
U—Upy12 = (I —Pr)(u—up)
u—tupy1 = (I —P)(u—upy1/2)-

It follows that
U — Up+1 = (I — PQ)(I — Pl)(u — un)

Thus the error propagation operator E for a complete step of the classical alternating
Schwarz algorithm is
E=(1-P)I-P).
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2.2 Abstract Schwarz theory

Schwarz methods are generalizations, in an abstract setting, of the alternating Schwarz
method.
Our abstract problem is: Find u € V such that

a(u,v) = f(v) YweV. (2.1)

Here, V is a finite-dimensional vector space, a(-,-) a symmetric, positive definite bilinear
form on V, and f a linear functional on V.

A Schwarz method is closely related to a decomposition of V' into subspaces
V=W+Vi+--+ V.

In the case of our finite element problems, the subspaces correspond to subsets of degrees
of freedom. It is often the case that these subsets consist of degrees of freedom associated
with subdomains €2; of 2. We also need a subspace that corresponds to a coarse mesh, to
be responsible for the global transfer of information in each step of the iterative methods
we are going to define.

To each subspace, we associate an operator T; defined by
a;(Tyu,v) = a(u,v) Yo e V.

Here, a;(-,-) is a positive definite, symmetric bilinear form on the subspace V;.

Each bilinear form a;(+, ) uniquely defines the operator T; and vice-versa. If a;(-,-) =
a(-,+) then T; = P;, the a(:,-)-orthogonal projection on V;. We say that 7T; is an ap-
proximate projection. For specific problems, we often choose T; to be almost spectrally
equivalent to P;, but cheaper to compute.

We construct the relevant operator T' for our iterative method from the operators T;.
The classical multiplicative Schwarz algorithm is a straightforward generalization
of the two-domain Schwarz method:

1. Compute g; = Tju, 2 =1,...,N.

2. Given uy, compute unp+1 in N steps:

Uy il = Uy, i +(gi_Tiun+

N+1




It is often a good idea to minimize the number of intermediate steps by coloring the
subdomains. For each subdomain, we associate a color so that domains that share
common points have different colors. We attempt to keep the number of colors small, or
even to minimize it. We then merge the subspaces that correspond to domains having
the same color into a single subspace and apply the multiplicative method to the new
decomposition into subspaces.

This algorithm can be viewed as an iterative method for solving the equation

Ty = gm,

where T,,, = I—(I-Tx) ... (I-T1) and g,,, = T,,u. The right hand side can be computed
without knowledge of the solution u since Ty, is a polynomial without a constant term.
The accelerated multiplicative Schwarz method: The nonsymmetric equation
Tmu = gm can be solved by the GMRES method, which is a preconditioned GMRES
method for the initial system; the preconditioning step is the iteration above; see [62].

The symmetrized multiplicative Schwarz method. In this case, the system we

are solving is

Tsm = gsm,
where
Tyn = I—(T =Ty (I-Ty) =Tyn+TE —TIT;, (2.2)
= I-(I-T)...(1 =Tn-1)(T = TN)(T = TN)(I = TN-1) ... (I = T1)
and

gsm = Tsmu.

Since the operator Ty, is symmetric and positive definite, we can use the conjugate
gradient method to solve the system. We can simplify the algorithm by removing one of
the factors (I — Ty).

The additive Schwarz method: The relevant operator is
T, =Ty +...Ty. (2.3)
Other Schwarz methods: Cai [17] uses the operator
Yo+ I1—(I—-Tn)...(I-TY),
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where v > 0 is chosen appropriately.
We give lower and upper bounds on the spectrum of the operator (2.2) and (2.3), in
this abstract context. They depend on a few parameters which we will now define.
e Let C2 be the minimum constant such that for all u € V there exists a representation
u = > uj, u; € V; with
Z&i(ui,ui) < C2a(u,u).

2

e Let €;; be the smallest positive coefficients such that
|a(’UZ',’Uj)| < Eija'(viaUi)l/za(vjavj)l/z Vu; € Vi, V’U] € V}a i,j=1,...,N.

Let £ be the matrix of the coefficients ¢;; and let p(€) be its spectral radius.

e Let w be the minimum constant such that
a(u,u) < wdéi(u,u), Yu€eV;,, i=0,...,N.

We can choose w = max ||T;||,- We can always scale @; such that 1 < w < 2. However,
we note that this scaling will affect the value of C3.

The following is a result of Bramble, Pasciak, Wang, and Xu [15], and Xu [66].

Theorem 2.1 An upper bound on the condition number of the operator T, is

1+ 20%p(E2)C3
N(Tsms) < ( 2_pé ) 07

where & = max(1,w).

A basic result for the additive case has been proven by Dryja and Widlund [26, 27]
and Nepomnyaschikh [46].

Theorem 2.2 A lower bound on the spectrum of the operator Ty is
Amin(T,a) Z C()_2;

and an upper bound is

Amax(Ta) < w(p(€) +1).
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We note that richer choices in decomposition of u potentially decrease C3.

The upper bound can be derived more directly, outside of the abstract setting; see
Dryja and Widlund [28]. Suppose that we use exact solvers on subspaces. By construc-
tion, there is always an upper bound N, on the number of functions that belong to

different subspaces and are simultaneously nonzero. Then

N
a; (u7 u) < Nca'(ua U),
=1

1

where a;(-,-) is the restriction of a(-,-) to the subdomain where the functions in V; are
supported. Then
Amax(P) < N.. (2.4)

Because of this, we skip the proof of the upper bound of Theorem 2.2.
We now present a proof of the lower bound in Theorem 2.2; see Dryja and Widlund
[26, 27], and Zhang [67]. We use the following lemma

Lemma 2.1 The operator T,, = >, T; is invertible and
a(T~'v,0) = min ) a;(v, vi),
i

where the minimum is being taken among all possible decompositions v =), v;, v; € V;.

The minimum is attained at v; = T;T .

Proof.
a(T 'v,0) =Y a(T 'o,v;) =Y a&(TiT 'o,v;) <
< (Z&i(Tinlv,ﬂ-Tflv))l/Q(Z&z’(vz’,vz’))l/2 =
= (Y a(T o, T 1)) (Y ai(vi,00) 7 =
= (a(T v, 0)) (Y (i, 00)) .
It follows that
a(T v,v) <> as(vi, 7).

We remark that, for v; = T;T'v, we obtain equality. O
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The proof of the lower bound in Theorem 2.2 is a direct consequence of this lemma.

Another direct consequence is

71 a1 1
(T) = )‘max(T_l) = max w — max min M
v 0/(’(),’1)) v ’U:E V4 0/(’0,’())

)\—1

min

2.3 Matrix form of the preconditioners

Let us fix bases in each V; and V. Let A;, A be the matrix expressions for é;(-,-) and
a(-,-), respectively. Let IT; be the matrix that contains the coefficients of the basis in V;

in terms of the basis in V. We rewrite (2.1) as
Az =b.
Then the matrix expression of the operator T;, in the basis of V, is
nf A7 A.

In the simplest case, the d;(-,-) is the restriction of a(-,-) to the subspace V;, and V; is

spanned by a subbasis of V. The above expression then becomes, after a reordering of

At 0 An A

To fix the ideas, consider the additive Schwarz method. We apply the conjugate

the basis functions,

gradient method to the system
O mf A7) Az = ()T A7),
i i

i.e. we apply the preconditioned conjugate gradient method to the system Az = b, with
the preconditioner Ay,.., defined by

Apree = YT A7 'L (2.5)
%
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Chapter 3

Algorithms

Our algorithms are preconditioned conjugate gradient methods based on the decom-
position of the finite element space V7, of discrete harmonic functions, into a sum of
subspaces. There are many local spaces and one global, coarse space. The coarse space
must contain the constants, otherwise the condition number will deteriorate with a grow-

ing number of subregions; cf. Dryja, Smith, and Widlund [25].

3.1 A wire basket algorithm
3.1.1 Local solvers

This algorithm is analogous to the wire basket algorithms defined by Dryja, Smith, and
Widlund [25, Section 6.2], and Pavarino and Widlund [55, 56, Section 6].

An interesting theoretical feature of this algorithm is that the bound on the condition
number of the global preconditioned system is the same as the local one.

We will define the coarse space Viy as the space spanned by a special set of discrete
harmonic vertex and edge functions such that it contains the constants. In Chapter 4, we
will construct special, low energy vertex and edge functions for which we can prove log-
arithmic bounds on the condition number. In Chapter 5, we will compare the condition
number and rate of convergence for algorithms based on preconditioners constructed by
using low energy and standard (high energy) vertex and edge functions.

ATl the local spaces are associated with individual faces of the tetrahedra. For each

face Fj,, we define this face space VFk as the space of discrete harmonic functions in V?
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that vanish on all the faces of the interface I' except Fi. We obviously have
V=V + 3 Vi
k

The decomposition of any u € V? as a sum of functions in these subspaces is unique.
We will now explain how we can construct vertex and edge functions such that Viv
contains the constants, starting from vertex and edge functions for which Vi does not

satisfy this condition. This is the general situation, see Fig. 4.2. Let
o, &, Fi) (3.1)

be a given preliminary basis for VP, where the upper index refers to the vertex, edge, or
face, and the lower one to the local numbering within that edge or face.

We now present a construction given in Mandel [42], which provides an alternative
approach to obtaining a low condition number. It is not essential for our work, and we
could proceed without it, but is nevertheless of interest. In Chapter 5, we will see how
much this approach can reduce the condition numbers.

We orthogonalize each vertex function with respect to the face spaces associated
with the three faces that share the vertex and each edge function with respect to the
two face spaces associated with the faces that share the edge. Returning to the reference
tetrahedron, Fig. 1.1, and the local numbering of the basis functions, the new vertex

function associated with the vertex V; is

- p—1)/2 p—1)/2

oM =g Z ) Z of? <3)+ Z o FO, (32

2 B

1,m> O‘l,m’

(4)

where the a and a; ,, are uniquely determined such that o™ is a(-, -)-orthogonal

to the subspaces VF“ 1=1...3. If we set

2 2 3 3 4 4
(XV1F2 XV1F3 XV1F4) = (O‘g,% v O‘g,g))(p—l)/Q ag’% §]))(p 1)/2 ag,% o ag,;z))(p—l)/Q)’
then,
-T
Xq% 51;21% SkFy SEF, SaT/JFz
X)1/4F3 = - S§2F3 Sf}:st 5F3F4 S¥4F3
XV1F4 SF2F4 SF3F4 SF4F4 SV1F4



The new edge functions associated with the edge E; are

p—1)/2 p—1)/2

0 — ey Z B mf Z Bl 1=1,..,p—1,  (33)

(3)

1,l,m

(1)

where the ﬁl Lm are uniquely determined such that ¢’ is a(-, -)-orthogonal to the

subspaces VFi, 1=1...3. If we set

2 2 3
/Bg,l),l ﬂ§1)pp 1)/2 ﬁ§,3,1 ﬁl),l,pp 1)/2)

(Xeym XE1Fy) = (
o IBl’piLl T B:E,p—l,p(p—l)/Q /8]_’])7]_’1 e 1317p_11p(p_1)/2

then,
T T/ ar
Xg/‘_‘ng — SF2F2 SF2F3 S%lFQ .
XE1F3 SF2F3 SFSFB SEng

The other new vertex and edge functions are defined analogously. Thus, we obtain a

new basis

wherefm = (k) yk=1,...,4, m=1,...,p(p—1)/2.

It is easy to see that, for symmetry reasons, the definition of the basis functions
(3.4) on faces shared by two tetrahedra is consistent. It is not necessary to compute
these new vertex and edge functions explicitly. If S is the local Schur complement in the

preliminary basis (3.1) then the Schur complement in the new basis is

Usu’,
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where

1000 00O0GO0TO0O 0
0100 000000 Xug
0010 000000 Xug
0001 000000 Xyug
0000 I 0O0O0GOO 0
0000 0710000 Xpgg

p_| 0000 00171000 Xpn
0000 000O0TIO0O 0
0000 000O0O0TIO 0
0000 000O0O0TI Xgg
0000 000O0GOO I
0000 000O0O0TOO 0
0000 000O0GO0O 0
0000 000O0O0TOO 0

XviFy

XVBFz
XvyF,

Xe
XE3F2

XEs

S ~N O

0

XV1F3
XvyFs

XV4F3

Xg
Xp,ry

X5,y

O ~NO O

The inverse U~! is obtained by changing all the signs of the off-diagonal blocks of U.

The Schur complement in the new basis has a number of null blocks below and above

the diagonal. Those above the diagonal are located exactly in the same places as the

nonzero blocks of U.

We now construct vertex and edge functions such that Vi contains the constants.

We proceed as in [25, 55, 56]. We consider the expansion of the constant function 1 in

the basis (3.4)

p—1 4 p(p—1)/2

4 6 _
1= a0 1+ 33 el ¢ Z Z (k) f (k).
i=1 j=11=1 m—

We define the special face functions by
p(p—1)/2

m=1

and the new vertex, edge, and face basis functions by

. (i)
@ = A<Z+fo3FkU k=1,...,4,i=1,...

k=1 faFk
0 = +szm Ch=led =1
faFk
f?griC) = f'r(f)’ m:l,...,p(p—l)/Q,k)zl,...,4-

74’

(3.5)



It is easy to see that the wire basket space spanned by these vertex and edge functions
contains the constants.

Once again, for symmetry reasons, the definitions of the basis functions (3.6 - 3.8)
on faces shared by two tetrahedra is consistent. If S is the local Schur complement in

the preliminary basis (3.4) then the Schur complement in the new basis is

Usu’,

(I Uwr
=0 ")

4 T
wE = 2 Mg 2w
k=1 ‘W F W

where
with

Here MF, is the mass matrix of the boundary of face Fy, and zr, and zy are the vectors
containing the coefficients of the constant function 1 that correspond to the face Fj and
the wire basket W, respectively.

On the coarse space, we can use the exact solver a(-.-), or, more economically, an

inexact solver based on the bilinear form
aw (u,u) = (1+logp)p; :igf”’“ - Ci”%2(W¢)'
Z. (]

The preconditioner for the additive Schwarz method, using the exact solver on Vv,

has the following matrix form:

Sww 0 0 0
0 Spm 0 0
SI”‘eC = 0 0 SF2F2 0 ' (39)
0 0 0

If we use the inexact solver ayy(-,-), the block Sy is replaced by
M®z

@) . (M@ z(i))T)
( b

Sww = (1+logp) (M -> ( T 216400
i zl 2 ZZ

where M) is the mass matrix of the wire basket W;, and z() is the vector containing

the coefficients of the constant function 1. The edge blocks of the mass matrix M are
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Table 3.1: The number of vertex and wire basket degrees of freedom

P Number of vertices Number of wire basket d.o.f.
24 192 684 24 192 684
tetrahedra | tetrahedra | tetrahedra | tetrahedra | tetrahedra | tetrahedra
4 15 71 199 165 1001 3061
5 15 71 199 215 1311 4015
6 15 71 199 265 1621 4969
7 15 71 199 315 1931 5923
8 15 71 199 365 2241 6877
9 15 71 199 415 2551 7831
10 15 71 199 465 2861 8785

tridiagonal because the restrictions of the edge functions to the edges are integrated
Legendre polynomials, for which a recurrence relation that involves only three terms
holds.

In Chapter 4, we will construct vertex functions with traces on the wire basket
which are L?—orthogonal to the traces of the edge functions and with mutual L2 —scalar
products that are negligible (4.20). We can then simplify the preconditioner further by
replacing each M@ and M by a block diagonal matrix D) and D, obtained from M ()
and M, respectively, by dropping the couplings between pairs of vertices. Since these

couplings are negligible, there are ¢ and C such that
cx@ DO () < 20 pr®) () < 0z pli) (0,

3.1.2 The coarse problem

The coarse problem, i.e. solving S'WW:EW = ry or SwwZw = rw can be quite expensive
if we use a direct method. See Table 3.1 for a comparison of the sizes of the coarse problem
for a method with a vertex-based coarse space (see Section 3.2) and a wire basket-based
space, respectively.

The following method, introduced in [13, 14], allow us to solve an auxiliary problem
which first provides the local averages of zy. See also Mandel [42] and Dryja, Smith,
and Widlund [25] for further details. It is quite cheap to solve this problem, since it has

only one degree of freedom per element.
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Solving the system SWWwW = ry is equivalent to solving the minimization problem
. ! i T i i T
mmlnz min §($(Z) — iz D (29 — ;20 — 2T
3

Taking derivatives with respect to the () and ¢;, we obtain the system:

(z07 D@, ye; — T D@ a1 3" DUl = 0T pe p-1,.
J
Dz — Z D@0 =, (3.10)
%

Eliminating z, we obtain a system for the ¢;:

(z(i)TD(i)z(i))ci _ 0 pp-1 Z z(i)cj = " pip-1iy. (3.11)
J
Finally, we compute x by solving the system (3.10).
We remark that it is quite cheap to solve the systems (3.11) and (3.10) since the

mass matrix D is tridiagonal, unlike the wire basket block Sww.

3.2 A vertex-based algorithm

In this section, we consider the method defined by the decomposition into subspaces

ny ng np
VPE=Vo+ Y W+ Vg + > Vg,
i=1 j=1 k=1
where V; is the space of piecewise linear functions on the whole region Q. This a block-
Jacobi method using the subspaces associated with the vertices, edges, faces, augmented
by a coarse solver.

The piecewise linear functions are degrees of freedom associated with the vertices,
but it turns out, see Theorem 4.8, that it is necessary to introduce one extra degree
of freedom for each vertex, in order to make the condition number independent of the
number of substructures.

Finally, in this case, the space spanned by the vertex and edge functions need not
contain the constant functions, since the coarse space of piecewise linear functions already

contains them.
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The preconditioner for the additive method is defined by

S, =TS L JI+ 8,1

prec coarse

where

Svivi 0 0 0 0 0
0o - 0 0 0 0
0 0 Sgp O 0 0

Sy = o (3.12)

0 0 0 .0 0
0 0 0 0 Smmp O
0 0 0 0 0

and II is the interpolation matrix from V? to V.

3.3 Algorithms using overlap

It easy to see, from the abstract theory that a richer choice in a decomposition of any
u € VP as a sum of functions in the subspaces potentially improves the lower bound on
the eigenvalues of the relevant operator T' for our method; see Theorem 2.2.

For the previous two algorithms, we can enlarge the face spaces by adding some of
the edge degrees of freedom that are coupled to the face in question in the original finite
element model. We can, e.g., add all the first and the second edge basis functions, or
we can do this only for the edges that are coupled to the face in question, but do not
belong to the face, if we use the basis (3.4). To fix the ideas, given the face Fj, of
the reference tetrahedron, we can add to its face space some of the degrees of freedom
associated with the edges E3, E5, and Eg. In Chapter 5, we will investigate which edge
degrees of freedom are the main cause of the ill conditioning and add them to the face
spaces to which they are coupled.

There are disadvantages with such a strategy. The face spaces no longer consist
solely of functions that are nonzero on that face only, but also contain functions that
are nonzero on more that one face. We now use the notations in Fig. 1.6. Denote a face
by the triplet of its vertices and an edge by the ordered pair of its endpoints. Consider
the edge (4,15). The faces that are coupled but adjacent to this edge, are: (1,4,9),
(1,9,15), (1,4,14), (1,14,15), (4,8,14), (8,14,15), (3,4,9), and (3,9,15). This means

that, for any point on the edge (4,15), there are be nine functions that are nonzero, and
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belong to different spaces. This can result in an upper bound that is nine times as large
as before the overlap was introduced.
Moving now to the global numbering of the faces, the new decomposition into sub-

spaces is

‘N/p = VW"’ZV}I?‘,C’
k

where the Vlfwk are the subspaces spanned by the VF,C, and the edge functions as just
indicated. The decomposition into subspaces V? is no longer a direct decomposition.

In conclusion, we expect to obtain
e 3 larger upper bound, which is bad for our purpose.
e 3 larger lower bound, which is good.

We hope that the increase of lower bound might compensate for the increase of the upper
bound.

The preconditioner is no longer block-diagonal. Instead, we have

ng
-1 _ g-1 T —1
Sprec - SWW + Z HFk SFka HFk’
k=1

where I, is the matrix form of the identity operators VFk — VP

3.4 Neumann-Neumann algorithms

In the previous algorithms, we eliminate the couplings between all pairs of faces and the
wire basket or between all pairs of faces, edges, and vertices. In this section, we adopt
a different approach. We keep all the couplings between the vertices, edges, and faces
of the individual tetrahedra, but decouple all the tetrahedra. For each tetrahedron §2;,
the space VQZ is spanned by the vertex, edge, and face basis functions associated with
its vertices, edges, and faces. The preconditioner is based on the decomposition into

subspaces given by
V=3 Vo,
i
and is built from the local Schur complements S;.

41



The auxiliary bilinear forms are given by
bi(u,v) = ai(Hi(vi(u)), Hi(vi(v))).

Here #,(w) is the discrete harmonic extension of the finite element interpolant of a
continuous function w, defined on 0€2;. For the h—version, the counting functions v; are

defined on the set of degrees of freedom by:

vi(z) = number of 0Q; to which z € 09; belongs,

The definition of the counting functions for the p—version is similar, except that the
degrees of freedom are no longer associated with nodes. Let ¢ be any basis function
associated with a vertex, edge, or face of the tetrahedron ;. Then v;(¢) is the number
of substructures €2; to which that vertex, edge, or face belongs. If ¢ is a face function
associated to a face that is not part of the boundary, then v;(¢) = 2. If the face is part
of the boundary, then v;(¢) = 1. If ¢ is a vertex or edge function associated to a vertex
or edge that are not part of the boundary, then v;(¢) > 2.
If u =73, a;j¢;, we define v;(u) by

vi(u) = o).
%
We define the pseudoinverses 1/2L by

vi(e) = vl (e) if vi() #0,
V;r () = 0 otherwise .

The preconditioner is given by
- Al
Sprlec = ZNZS(Z) N,
%

where the N; are diagonal matrices and the diagonal entry corresponding to the basis
function ¢ is 1/;r (¢)-

For previous work, see Dryja and Widlund [29], Bourgat, Glowinski, Le Tallec, and
Vidrascu [12] Le Tallec, De Roeck, and Vidrascu [38], Le Tallec and De Roeck [21],

42



Cowsar, Mandel, and Wheeler [20], Kuznetsov, Manninen, and Vassilevski [36], Mandel
[43], and Mandel and Brezina [45, 44].

A major technical difficulty stems from the fact that the local components S; of the
preconditioner, corresponding to the tetrahedra that do not touch the Dirichlet part of
the boundary are singular. The components corresponding to tetrahedra that touch the
Dirichlet part of the boundary, are not singular. There are several ways to deal with
this.

1. We can work with pseudoinverses S Ok of the local Schur complements.

2. We can follow the approach taken in Dryja and Widlund [29], and solve local
problems using a different elliptic operator, for the substructures that do not touch the

boundary:
- 1
a;(u,u) = /Q'(V’u,)zdiﬂ-f- H_Z2/Qz u?dz.

?

Dryja and Widlund [29] contains a detailed discussion concerning those substructures
that touch the boundary. If a given substructure touches the Dirichlet part of the
boundary along an edge or face, then the bilinear form é;(-, -) is used on that substructure.
If it touches the boundary at a vertex only, then the bilinear for a(-,-) is used.

3. We can impose zero Dirichlet boundary conditions at some points of the wire
basket of the local substructures, e.g., one vertex, all the vertices, or the whole wire basket
of each substructure. In such a case, we must add a component to the preconditioner
that corresponds to the degrees of freedom set to zero by these local Dirichlet boundary

conditions.
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Chapter 4

Auxiliary results and main
theorems

In this chapter, we construct the low energy vertex and edge functions announced in
Section 1.3 and prove upper bounds on the H'—norm of the vertex, edge, and face
components of a discrete harmonic function. We then use these technical tools to prove

bounds on the condition numbers of the algorithms defined in Chapter 3.

4.1 Technical tools

We begin by collecting several general results concerning Sobolev norms and polynomials.
The following construction and lemma are given in [9, Lemma 7.1] and [41, formula

(4)], [11, Theorem 2.2]. For f € PP(I;), we define

T+
Flla) =3 [ fo (4.1

i.e. the value of Fl[f I at the point (z,y) is the average of the values of f on the segment
[(z,0), (z +y,0)]; see Fig. 4.1. We denote the similar extensions of f € Iy and f € I3 by
F2[f] and F?Eﬂ, respectively. It is easy to see that Fl[f] € PP(T) and that Flm (z,0) = f(=).

Lemma 4.1 Let f € PP(I;) and let Fl[f] be defined by (4.1). Then,
1E ey < Ollfllascay- (4.2)
The following is the classical Markov inequality; see, e.g., Rivlin [57].
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Figure 4.1: Extension of boundary values

X X+y
1

Lemma 4.2 Let f € QP([0,1]). Then,

< 2p? )
<2p Ifroljaﬁclf(w)l

df
dr (z)

max
[0,1]

The following result is Theorem 6.2 in Babuska, Craig, Mandel, and Pitkaranta [9].

Lemma 4.3 Let u € QP([0,1] x [0,1]). Then,
H“”%w([o;]x[o;]) <C@1+ 10gp)||U|@11([0,1]x[0,1])-
If g € [0,1] x [0,1], then
[l = w(20) |7 (f0,11x[0,17) < C(1 +Tog p) ul71 0. 17x[0,1))
The following is Lemma 5.3. in Pavarino and Widlund [55].

Lemma 4.4 Let I be any line segment in the closed reference tetrahedron Qref and let
u € PP(Qycr). Then,

llullZ2y < €A +logp)llull,, ,)-

If ayy is the average of u over the wire basket W, then,

[l = awl[32) < C(1+logp)lulin,, )
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We remark that the original Lemma 5.3 in [55] requires I to be parallel to a coordinates
axis, and that v € QP([—1,1]%). Since we only have u € PP(Q,y), we can let I be any
line segment, without violating the hypotheses of that lemma.

The following is analogue to Lemma 1 in Dryja [24].

Lemma 4.5 Let u € PP([0,1]). Then,

]l o 10,17y < C(1+ logp)l[ul /20,1

Proof. Let U be the extension (4.1) of u to the reference triangle 7. From Lemma 4.1,

we have
WUty < Cllullgare,)-

We then combine this inequality and the one provided by Lemma 4.3. O
The following is the classical Hardy’s inequality [34].

Lemma 4.6 Let f > 0. Then,

/Ol_myl—2 (/:+yf(t)dt)2dy < 4/: f(t)?dt.

The following is a weaker variant of Lemma 5.9. in Pavarino and Widlund [55]. It is

/

important because it gives a bound of the Hy)}”—norm in terms of the H'/2—norm.

Lemma 4.7 Let u € PP(T) and uw =0 on I;. Then,
2
u(z,y
/T%dydm < C(1 +logp)?|[ull 1/ (-

Proof. We divide the double integral into an integral over a thin slice along the z-axis

and over the rest of the triangle.

11 pl-y 1/p?2 1 rl-y 1 1 rl-y
/ - / wldzdy = / - / w’dady + / - / u?dady. (4.3)
0 YJo 0 Yy Jo 1/p2 Y Jo

The second integral is bounded by

11 1—y 9 1—y 9 1 1 1-y 9
/ —/ udxdygmax(/ udm)/ —dySClogpmaX(/ uda:).
1/p> Y Jo y 0 1/p? Y y 0

From Lemma 4.4, we obtain

1—y 1
max ([ ) < O +10g0) [ o0 ooy (4.4)
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By using an equivalent formula for the H'/2—norm; see [47], [24], we obtain

1-y
max (/0 quac) <C(1+ 10gp)||u\|§{1/2(T).

We now bound the first integral in (4.3). We observe that fol_y u(z,y)?dz is a poly-

nomial of degree 2p in y and use the mean value theorem and Lemma 4.2 to obtain

1/p* 1 rl-y )
/ - / u(z,y) dzdy
0 Yy Jo
1/p% 1 1—y ) 1 )
= / — (/ u(z,y) d:v—/ u(z,0) dm) dy
o y\Jo 0
1/p* g 1= )
- el \§)2dad
/0 Y, /0 u(z,§) dzdy
) 1-y ) 1/p?
Cp” max (/ u(z,y) da:) / dy
Y 0 0
1-y 9
C max (/ u(z,y) dm) .
y 0

The last member of the sequence of inequalities can be bounded as in (4.4). O

The following is Lemma 4.2 in Bramble and Xu [16].

IN

IN

Lemma 4.8 Let Q be the L?>—projection operator onto the coarse space Vy. Then
|l — Qul|F2(q) < CHJulfp (-

and

|Qul% gy < Clulfn g

4.2 Extension theorems and vertex and edge functions

In this section, we construct the low energy vertex and edge functions on the reference
tetrahedron €,.¢ (1.5). Our work involves the use and further development of exten-
sion theorems for polynomials given in Munoz-Sola [48], Babuska, Craig, Mandel, and
Pitkaranta [9], Babuska and Suri [3], and Maday [41].

The corresponding results are well known for Sobolev spaces, but their extension
to finite element spaces is quite intricate. Similar constructions for the h-version and

for spectral elements have been given in Dryja, Smith, and Widlund [25] and Pavarino
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and Widlund in [56, 55], respectively. The difference between the case of spectral ele-
ments and our case, of tetrahedral substructures, is that our wire basket functions are
polynomials in PP, whereas in the other case they are polynomials in Q. The use of
separation of variables makes the QP case much easier. Different ways of constructing

these functions as well as different stability results are needed.

4.2.1 Extension theorems (I)

The constructions in this section are basically those of Babugka, Craig, Mandel, and
Pitkaranta [9] and Maday [41]. Let T be the reference triangle (1.6), shown in Fig. 1.2.
The following is Theorem 7.4 in [9]:

Theorem 4.1 Let f be a continuous function on the reference triangle T such that

fi € PP(1;), i = 1,2,3. Then there exists a U € PP(T) such that U = f on 0T and
WUy < Cllfl 2oy
Maday [41, Theorem 4] proves a more general result:

Theorem 4.2 Let f be a continuous function on the reference triangle T such that
fi € PP(I;), i =1,2,3. Then there exists a U € PP(T) such that U = f on 0T and

WUl gs+1r2¢ry < Cllf 1oy Vs 2 0.

The proof of the main theorems of Section 4.4 require similar bounds on some

1/2
H,;” -norms.

Theorem 4.3 Let f be a continuous function on the reference triangle T such that

fi € PP(1;), i =1,2,3. Then there exists a U € PP(T) such that U = f on 0T and

112y < ClFBngory- (4.5)
If f3 =0, then
1012 121y < OO+ 10821 oy (4.6)
If f2=f3 =0, then
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Proof. Inequality (4.5) is proven in Maday [41, Theorem 4]. Inequalities (4.6-4.7) follow
immediately from (4.5) by using Lemma 4.7. O

Our conjecture is that the logarithms in (4.6-4.7) can be dropped. In Chapter 5, we
present numerical experiments that support this conjecture.

The proof of the theorems cited above are based on the extension (4.1) and Lemma 4.1,

case s = 0.

4.2.2 Extension theorems (II)

The construction in this section is basically given in Muiioz-Sola [48]. The following is
Theorem 1 in [48]:

Theorem 4.4 Let f be a continuous function on the reference tetrahedron §)..; such
that f; € PP(Fy), i = 1,2,3,4. Then there exist U € PP(Qycf) such that U = f on 08¢y

and

NUllat(2,es) < Cllf 17200, 5)-

This result is important for several different reasons. First, it is used to obtain approxi-
mation results for the p—version finite element, as well as to deal with nonhomogeneous
boundary conditions [48]. It also provides a necessary inequality in the equivalence be-
tween the a(-,-)— and H'/?—norms in the space of discrete harmonic functions. We have
briefly reviewed these matters in Section 1.3. Finally, we will also use a 2D analogue,
Theorem 4.6 given below, to provide an alternative recipe for the construction of our
vertex and edge functions.

We also consider the simpler, 2D version of this theorem. Here, T' is the reference

triangle (1.6).

Theorem 4.5 Let f be a continuous function on the reference triangle T such that
fi € PP(I;), i=1,2,3. Then there exist U € PP(T) such that U = f on 0T and

WUy < Cllf i omy-

We are not going to give a proof, since this is a much simpler variant of Theorem 4.4.

The result we prove depends on a factor N(p) to be defined later in the section.
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Theorem 4.6 Let f be a continuous function on the reference triangle T such that

fi € PP(1;), i =1,2,3. Then there exist U € PP(T) such that U = f on 0T and

WU g1r2(ry < C Nl 2(o1)-
If f3 =0, then
HU||H;({2(T,13) < C N)|fllz2or)-

If f2 = f3 = O, then
||U||H362(T,IQ,I3) S C N(p)||f||L2(3T)

(4.8)

(4.9)

(4.10)

A proof of this theorem is given later in this section. We believe that N(p) can be

eliminated. In Chapter 5, we present numerical experiments that support this conjecture.

Lemma 4.9 Let f € PP(I}) and FUY! be defined by (4.1). Then,

WE oy < Cllfllzaa)-
WE N2y < Ol Fla)-

1E 2y < ONA =) 2 f ] 1201y)-

Proof. For (4.11), see Lemma 4.1.
We now prove (4.12):

1 1-z 1 T+y 2
1My = [ [ ([ swit) ayas

From Lemma 4.6, we deduce

/Ol_my—l2 (/:+yf(t)dt>2dz < 4/; (2)%dz.

It follows that
[£1)12 LR beoe [f
[E T2y < 4/0 /w f(2) dzd:v:4/0 f(z) /0 dzdz =
1
= 4 [ 1@%de =422 o ),
We prove (4.13) similarly. O
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The following constructions and lemmas provide the main result of this subsection.

For f € PP(Iy), f(0) =0, let

x [Tty t
ng](x,y) = ;/x @dt.

For f € PP(Iy), with f(1) =0, let

l—z—y (=Y f(t)
EL] _ / '
Finally, if f € PP(I;), with f(0) = f(1) =0, let

B - HLZEZ0) [0SOy

Lemma 4.10 If f € PP(Iy), f(0) =0, then ng] =0 on I, ng] = f on I, and

1B a2,y < CN O 200
If f € PP(I), f(1) =0, then ng] =0 on I, ng] = f on I, and

BN 17271y < ON DI l2r,)

If f € PP(Iy), f(0) = f(1) =0, then EU! =0 on I and Is, EYl = f on I, and

||E[f]\|H;g2(T,12,13) < CNIfll2 )

Here, N(p) is the smallest constant such that
1B 2y < N@IFP 2 ry-
Proof. First, we prove (4.17).

1B lrr2(ry < © NI 220m).

By Theorem 4.5 and a trace theorem, we have
1B iy < CllAllerogory < CHEP i ry-

By an interpolation argument and Lemma 4.9

1B 12y < ON )| f |2 om)-
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In order to complete the proof of (4.17), we must bound the weighted L2-norms, in the

expression of HE{ /2 , from above.
00

(T’I2)

1 pl—z T4y 2
—1/2 gl 112 z f(t)
|z~ /2 E; T2y = /0 /0 " (/x ~ dt) dyd

From Lemma 4.6, we deduce

/Ol_zy—12</:+y@dt)2dzﬁ4/;%?2d
—4/ Iz /mdxdz:

e
=4 /0 e 5dz—2||f||m<[o,m-

The proof of (4.18) is analogous to the proof of (4.17), given above.
We now prove (4.19). Because Ef(x,y) = (1 —m—y)ng](x Y) +.€CE[f]( y), we need
to look at the first term only.

It follows

||$_1/2E£f]||%2(T) <

11—z — ) B (z,9) — (1 - o' — ) BV (@' o) <
21—z — )| BV (z,y) — BV (' ,o)P + 20’ — 2+ o/ — 9)? BV o) 2

It follows

(1—2—y) B2,

vty (@ —x+y v’ B (,y)?
|E1 |H1/2 +/ / / / @ =22+ (f — g7 d:v'dy'dxdy)

<
< (|E1 31/ + HEl 172)-
Also,
o221 _37_?/)E£f]||%2 - /01 /Ol—y z(1 —wa—y)2 (/xzcw t({(ﬁ)t)yda:dy
< /01 /Olyy% (/”y @dedy < C|fl2-

We next prove Theorem 4.6.
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Proof. The inequality (4.10) is exactly (4.19). We now prove (4.9). Let U; = ng 1]
and let go be its trace on Is. Consider now Us € PP(T) such that Uy = go — fo on I,
Uy =0on I; and I3, and

HU2||H362(T,11,13) < C N(p)Hg2 - fQHLQ(Iz)'

Finally, let U = U; 4+ U,. We only have to prove that

llg2ll22 (1) < Cllfllz2(m)-

This follows from Lemma, 4.6 in the same way as in the previous lemmas.
Finally, we prove (4.8). Let U; = Fl[f 11 and let g2 be its trace on I. Consider now
U € PP(T) such that Us = fo — g2 on Iy, Uz = 0 on I and

1021l 12,1,y < € NP2 = g2llL2(,)-

Let g3 be the trace of U; + Us on I5. Finally, consider Us € PP(T') such that Us = f3—g3
on I, Uy =0 on I; and I35. We obtain

HU3||H362(T7]17I2) < C N(p)Hf3 - g3||L2(13)'

We finally set U = U; + Uy + Us. O

4.2.3 Construction of the vertex and edge functions

We now turn to the construction of the vertex functions. We need a preliminary result
concerning a special polynomial in one variable; cf. Pavarino and Widlund [55]. We de-
note by ¢o(x) the degree p polynomial of minimal L? norm satisfying ¢o(0) = 1, ¢o(1) =
0. It follows immediately from the definition that ¢ is L?-orthogonal to P§. The Leg-
endre expansion of ¢y can be calculated explicitly, as in Lemma 4.1 of [55]. Based on
this expansion, it is shown that ||¢0||%2([0’1]) = 1/(p? + p). The degree p polynomial of
minimal L? norm satisfying ¢(0) = 0 and ¢o(1) = 1 is ¢ (z) = ¢o(1 — z) and we have
the following equality, given as Lemma 4.2 in [55]:

_ (=P

(b0, o ) 2([0,1])) = WH%HH([@J])- (4.20)
We now construct the vertex function associated with the vertex V4. We start by

defining it on the face F3. To this end, we identify the face F3 of Q.. with T'. Let f be

53



a continuous function on 9T such that f = ¢y on I; and I3, and f = 0 on I3. We define
by 4a(x,y,0) = U(z,y), where U is the extension of f given in Theorem 4.3 or 4.6.
We similarly define the vertex function on the faces Fy, and F; and set it to zero on

the face Fy. Finally, we consider its discrete harmonic extension to the interior of ;..

Lemma 4.11 If the function ®v4 is constructed by using the extension of Theorem 4.3,
then

| @va|lm (,.;) < C(1 +logp)lldol|L2(ry)- (4.21)

If it is constructed by using the extension of Theorem 4.5, then

[ @vallmr(e,.;) < CN(D)¢ollL2)- (4.22)

Proof. To fix the ideas let @+ be constructed by using the extension of Theorem

4.3. By a trace theorem, we have

1®vallai (e, ) < ClI®vallmiraq,. -

The HY2-norm can be broken into a sum of H/2-norms on faces and weighted L2-norms
that represent the H'/? -couplings between faces. The H'/2-couplings between Fy, Fj,
and Fy are zero, for symmetry reasons. The H'/?-coupling between F3 and Fj is the

weighted L?-norm in the expression of ||U|| The H'/?-couplings between Fy

Hof (1, 1s)°
and Fy, and between F, and Fjy, can be characterized similarly. The H/2-norms can

be bounded from above as in Theorem 4.3. In order to prove the theorem, we need to
bound the Héé2(T, Is)-norm by the H'/2_-norm. From Lemma, 4.7, we have

||UHH(%2(F3,13) < C(]' + 10gp)||UHH1/2(F3)
and, consequently,

1@yallir2(a0,,,) < C(1 +logp)lldol|L2(m)-

We now construct the edge functions associated with the edge E;. As before, we start
by defining it on the face F3, which we identify with T". Let f be any continuous function
on JT such that f = 0 on I and Is. We define @g} (z,y,0) = U(z,y), where U is the
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extension of f given in Theorem 4.3 or 4.6. We define it similarly on the face F5 and set
it to zero on the faces F; and Fj. Finally, we consider the discrete harmonic extension
to the interior of €,.;. We remark that the edge functions are uniquely defined by their
traces on the edge FEy. It follows that the dimension of the space of edge functions

associated with one edge is p — 1.

Lemma 4.12 If the @Eg are constructed by using the extension of Theorem 4.3, then

188110,y < O+ log P)If |2 0w)- (4.23)

If they are constructed by using the extension of Theorem 4.6, then

12110, < CN@)IIFI220w)- (4.24)

Proof. Again, let @%} be constructed by using the extension of Theorem 4.3. By a

trace theorem, we have

||@.[.Ef3HH1(Qref) < C'||‘I’m||1L11/2(anref)

The HY2-norm can be broken into a sum of H/2-norms on faces and weighted L2-norms
that represent the H'/2-couplings between faces.

The H'/2-couplings between F3 and F», and between F; and Fj are zero, for symme-
try reasons. The H 1 2_coupling between F3 and Fy, F3 and F, F» and Fy, F, and Fy,

are the weighted L?-norm in the expression of |[U]| 1/ , given in Theorem 4.3.
00

(T, I2,13)
The H/?-norm can be bounded from above as in Theorem 4.3. It follows that

1B 12 o0e,. ) < Ol Nl

In order to prove the theorem, we need to bound the HééZ(T, I3)-norm by the H'/2-norm.
We have

1011721y < OO+ 108D Uiy,

and, consequently,

12112000, ) < C1+og Pl z2(z0)-
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4.3 The wire basket interpolant and the face functions

In this section, we use some ideas and results given in Pavarino and Widlund [55, 56].
We adopt a different approach only in those parts of the proofs where the extension
theorems given in the previous sections are involved.

We denote the vertex, edge, and face components of u € VP by ay;, ¢+ = 1...4,
up;, j=1...6, and 4, k= 1...4, respectively.

We first define a preliminary interpolation operator IV : V? — Vvﬁ’,, by

4 6
fWu = Zﬂ’Vz + Z’&Ej.
=1 j=1

We use Theorem 4.3 or 4.6 to prove the following bound on the energy of this interpo-

lation operator. We denote by C(p) either C(1 + logp)? or CN(p)2.

Lemma 4.13

Y ulna,.,) < OOl B

Proof. From Theorem 4.3 or 4.6, it follows that

T

M=

6
2 o2 an |2
g, < |“Vi|H1(mef)+Z|UEJ'|H1(QM))

C(p) (
i=1 j=1
4 6
< C(p) (;H’&Vz“%z(m + ZIHQEJ-H%%W))
4 6 ’
< Clp) (H ay; + ZﬂEj||%2(W) — 2 (v, Gy, ) 2(w)
i—1 j=1

i 11,82

— 2 (av;,,GE 2wy —2 ) (ﬂEklaﬂEkz)L2(W)>-
Ji,k1 k1,k2

The L?-scalar products on the last two lines vanish with the exception of (ﬂvj1 ; Wy, ) L2(W)s

which is negligible; cf. (4.20). Thus,

4 6
1l < CONS v+ i ey = COlulgn).
i=1 j=1
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Figure 4.2: Extension of constant wire basket values

The range of this interpolation operator does not contain the constants, see Fig. 4.2.
Our next goal is to define new vertex and edge function as well as a new interpolation
operator which reproduces the constants.

We proceed as in [25, 55, 56]. We consider the expansion of the constant function 1

in the preliminary basis {7;; & ; fl,k}- We define

p(p—1)/2 ~
Fr= Y o fig (4.25)
=1

and we define an interpolation operator IV by
Wu=1I"u+ ifkﬁaF—ku,
k=1 faFk 1
which maps a constant function into itself. The new vertex and edge basis functions
v;, 1=1...4,and ej, j = 1...6, are the images of the preliminary ones under IY. The
face basis functions fx, K = 1...4, are the same as before. We denote the components
of u € V? in the new basis by uy;, i =1...4, ug,, j=1...6, and up,, k=1...4.
We now prove bounds on the energy of the face functions and the new I'V'. The

following is a stronger version of Lemma 4.7. It is an adaptation of Lemma 5.7 in

Pavarino and Widlund [55] to our context.
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Lemma 4.14 Let u € PP and let up, be its component associated with the face F3 in

the preliminary basis. Then,

ey sy < O+ logp) ullfnca, -

0
Proof. On the face F3, u = iy, + . By using Theorems 4.3 or 4.6.
v 12y < CO) i llz2(ory < C)(1 +logp)lulse,. -
It follows:
[@rs 31/ gy < C0) (1 +1ogp)|lulln o, -

The bound on the weighted L? norms of i, is obtained exactly like in Lemma 4.7,

except the part where we use Lemma 4.5, which we now replace by Lemma 1.2.

/11/1_1,&% dzdy = /1/,)21/1_3,&% dmdy+/1 l/l_ya% drdy.  (4.26)
0 yJo N o ylJo 8 1/p2 Y Jo 8

The second integral is bounded by

1 1 pl-y 9 1 1 pl-y
/ —/ u d:cdy—l—/ —/ Uy drdy
1/p2 Y Jo 1/p2 Y Jo

< @ +1ogp)(llullfna,.,) + llawl,.,)
< O(p)(1 +logp) ||l ,)-

We now bound the first integral in (4.26).

11 fl-y _ )
/ -~ / i (T,y) drdy
0 Yy Jo

1/p? 1 -y ) 1 )
= / - (/ Upy (2,Y) dw—/ ipu(z,0) d:z;) dy
0 Yy \Jo 0

p® g -9 _ .
= /0 yd—y/O gy (z,7) dzdy

) 1—y ) 1/p?
< Cp”max (/ Uy (Z,y) d:z:) / dy
Y 0 0
1-y . 9
< Cm{}x (/ U, (z,y) dx) .
0

The last member of the sequence of inequalities can be bounded as above. O
We provide now bounds on the energy of the special face functions and, consequently,

on the energy of the corrected interpolant I".
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Lemma 4.15

el S ) +logp) (21)

Proof. This is an immediate consequence of Lemma 4.4. O
Lemma 4.16
1 ulin,,,) < C)(1+logp)llullfzqr.- (4.29)

Lemma 4.17 Let u € PP and let up, be its component associated with the face F3 in

the corrected basis. Then,
ooy < C0) +logallulin,

Proof. We use Lemmas 4.14 and 4.16. The H' —norm can be replaced by the H! —seminorm

because, by adding a constant to u, the face component ur, does not change. O
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4.4 Theoretical bounds on the condition number

We now prove upper bounds on the condition numbers of the relevant operators for the
algorithms defined in Chapter 3. We follow the proofs of analogous theorems given in
Dryja, Smith, and Widlund [25], Pavarino and Widlund [55, 56], and Smith, Bjgrstad,
and Gropp[62]. The proofs consist in putting together all the technical results of Sec-
tions 4.1- 4.3 with the abstract Schwarz theory of Chapter 2.

Theorem 4.7 For the additive wire basket-based algorithm defined in Section 3.1,
K(T) < C(p)(1 + logp)®.

The constant in the bound is independent of the jumps of the coefficient p; in (1.11).
The global bound is the largest of the local bounds.

Proof. We will find an upper as well as a lower bound for the eigenvalues of T'. To fix
the ideas, we consider the case of an inexact solver on the wire basket. It is enough to

prove the local lower and upper bound

&(j)(uw,uw) + Za(j)(qu,qu) <C@1+ logp)Qa(j)(u,u) Yu € VP, (4.30)
k
and
a'?) (u,u) < C’dg,)(uw,uw) + Za(j) (up,,ur,) Yu€ VP, (4.31)
k

respectively. Here /) (u,u) and &%) (u,u) are the contributions from the substructure
Q; to the bilinear forms a(u,u) and aw (u, u), respectively. The global bounds are the
same and are obtained by adding over the substructures. We prove the bounds on the
reference tetrahedron ..

(i) The lower bound. From Lemmas 4.4 and 4.17, we have
4
(1 +logp)llu — awl[Zagwy + D [urling,,,) < CP)(1 +logp)lultp(g, )  (432)
k=1

(ii) The upper bound. From Lemmas 4.15 and 4.13, we have
y 4
\Iwuﬁp(nw) < 5(\IWU|§11(QM) + Zﬂ%Fkaﬁﬂ(nw))
k=1
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4

< OO)(llullqwy + Y- @or, (1 +logp))
k=1
< C(p)(1 +logp)l[ull72wy-

We shift 4 by a constant such that uy = 0. Then

2

4
a(u,u) = ‘IWU—J’_ZUFk‘Hl(QTef)

k=1

4
< ) (1 +10gp)[ullZ2iwy + D lum e, )
k=1

which proves (4.31). O
Theorem 4.8 For the additive vertez-based algorithm defined in Section 3.2,
K(T) < C(p)(1 +logp)®.
The constant in the bound might depend on the jumps of the coefficient p; in (1.11).

Proof. The difficult part is to obtain the lower bound. In order to do so, we prove that
every u € V can be decomposed as u = ug + Y; uf + > ul + 3y, u’J‘i, such that:

alug,ug) + Y aluy,uy;) + Y alug,,ug;) + > alus,, ur,)
G j %

< C(p)(1 +logp)?alu,u). (4.33)

Let ug = Qu, where Q is the L?-projector on the space of piecewise linear functions
defined on the triangulation of Q. Let w = u — ug By using Lemma 4.8, the problem

reduces to showing that

" awv,wv) + Y a(ws,, we,) + Y a(wr,,wr,) < O(1 +logp)llwllg o (434

i j k
From now on, everything follows exactly as in Theorem 4.7. There are two differences: in
Theorem 4.7, we use the second inequality in Lemma 4.4, but now it is the first inequality
of the same lemma, that is needed. We also use Lemma, 4.14 instead of Lemma, 4.17 since
the wire basket space may not contain the constants. Lemma 4.14 is sufficient for our

purposes, since we need a bound in terms of ||w||51(q), not in terms of |w|x1(g). O
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The following theorem is given in Dryja and Widlund [29, Theorem 3|, for the
h—version. See also [62, Theorem 4, Section 5.3.3]. As in the previous two proofs,
the proof for the h—version carries over to our case by making the appropriate changes,

so we do not give it here.

Theorem 4.9 For the additive Neumann-Neumann algorithm defined in Section 3.4,

1+ logp)2

K(T) < C0)—p

The constant in the bound is independent of the jumps of the coefficient p; in (1.11).

The factor H? appears because there is no coarse space. If we add a coarse component

to the preconditioner, it can be dropped; see [29], [62], [54].
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Chapter 5

Numerical experiments

In this chapter, we report on some numerical experiments with the methods introduced
in Chapter 3. Our goal is to obtain numerical results that support the theory given in
Chapter 4 and to get a sense of the size of the constants that appear in the theoretical
bounds. We describe numerical experiments on a single tetrahedron as well as on a

polyhedral region triangulated with relatively many tetrahedra.

5.1 Local experiments

In this section, we compute the local condition number of the preconditioned Schur com-
plement, on the reference tetrahedron. We compare the condition numbers obtained in
the case of low energy basis functions versus standard basis functions. The computa-
tion of the local condition numbers is particularly important for the wire basket-based
algorithm, since the global condition number is bounded from above by the largest of
the local condition numbers; see Theorem 4.7. We also look at how strong the couplings
between particular elements are, with the goal of duplicating, in overlapping methods,
those vertex or edge degrees of freedom that have the strongest couplings with the face
degrees of freedom.

Next, we look at the bounds on these condition numbers, given by the theory. To
this end, we compute all the constants in the inequalities used in the proof of the main
results. The asymptotic logarithmic growth of these bounds is more visible than that of
the actual condition numbers.

Finally, we present numerical experiments that support the conjectures related to
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Lemma 4.3 and Lemma 4.6.

5.1.1 Local condition numbers

In Tables 5.1 and 5.2 we give the local condition numbers of the preconditioned local
stiffness matrix for the wire basket algorithm, described in Section 3.1. We make the
experiments for several choices of basis functions, described below.

(I) The low energy basis functions constructed in Subsection 4.2.3, by using the exten-
sions (4.14-4.16), and the standard vertex functions (1.13-1.19).

(IT) The basis obtained from (I) by adding the corrections (3.5).

(ITI) The basis obtained from (I) by applying the partial orthogonalization (3.2 - 3.3).
(IV) The basis obtained from (III) by adding the corrections (3.5).

If we start with the standard vertex functions, the initial wire basket space already
contains the constants, so the bases (I) and (II) coincide, so we do not show column (IT)
in Table 5.2.

The Schur complement S is singular. If the preconditioner Sj... is nonsingular,
then we define A,,;, as the smallest eigenvalue of S;TleCS . If Sprec is singular, then, by
elementary linear algebra, the two matrices have a common null eigenspace. We then
define A,;;, as the smallest positive eigenvalue, on the complement of the null space, of
the generalized eigenvalue problem Sz = ASp,..x. We already mentioned, in Section 3.1
and Theorem 4.7 that, for the wire basket algorithm, the global \,,;, is the smallest of
the local Apir,-

We remark that the condition numbers obtained by using low energy vertex and
edge functions are substantially smaller than those obtained by using standard vertex
and edge functions.

By comparing the numbers in columns I and III of Table 5.1, we conclude that the
partial orthogonalization process, described in Section 3.1, reduces the condition numbers
by at about a half. Things do not change much after we apply the corrections (3.5); the
numbers in column IV are smaller than those in column II.

Turning now to the vertex-based algorithm, we can draw similar conclusions by study-
ing Table 5.3. We show only columns I and III since, in this case, the wire basket space
does not have to contain the constants, so we do not have to apply the corrections (3.5).

We next consider the couplings between the wire basket and the faces, and between
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Table 5.1: Local condition numbers, wire basket algorithm, low energy vertex and edge
functions

p I 11
Amin Amaz K Amin Amaz K

0.1166 2.4715 21.1886 | 0.1012 2.4403 24.1153
0.0852 2.5726 30.1823 | 0.0874 2.5347 28.9883
0.0730 2.6060 35.6864 | 0.0727 2.5650 35.2916
0.0581 2.6248 45.1407 | 0.0581 2.6248 45.1407
0.0511 2.6486 51.8690 | 0.0511 2.6486 51.8690
0.0443 2.6584 59.9418 | 0.0443 2.6584 59.9418
0.0407 2.6731 65.7369 | 0.0419 2.6334 62.8346

111 v

Amin Amaz K Amin Amaz K

0.1921 1.8000 9.3691 | 0.1331 2.2549 16.9416
0.1358 1.7788 13.1022 | 0.1063 2.3890 22.4775
0.1033 1.8203 17.6186 | 0.0842 2.4503 29.1136
0.0864 1.8205 21.0818 | 0.0753 2.4996 33.2026
0.0740 1.8407 24.8854 | 0.0655 2.5374 38.7335
0.0656 1.8476 28.1508 | 0.0601 2.5668 42.6989
0.0590 1.8588 31.4892 | 0.0541 2.5911 47.9346

© 0 O Ot i

—_
jen

3

© 0 O O i

—_
jen

the faces, to determine which decoupling causes more ill-conditioning. Table 5.4 contains

-1
Sww 0 .
()

1

SF1F1 0 B g
FF,
0

We remark that the condition numbers in the columns I, II, and IV of the upper part

the extreme eigenvalues of

and

respectively.

of Table 5.4, are larger than those in the lower part of the same table. This conclusion
is important because we can only reduce the former, by using an appropriate extension
in the construction of our vertex and edge functions. The latter depend solely on the

geometry.
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Table 5.2: Local condition numbers, wire basket algorithm, standard vertex and edge
functions

p I

Amin Amaz K
4 10.0398 2.4723 62.0469
5 | 0.0262 2.5643 98.0488
6 | 0.0188 2.6010 1.3843e+02
7 | 0.0140 2.6104 1.8589e+02
8 | 0.0109 2.6265 2.4006e+02
9 | 0.0088 2.6300 2.9996e+02
10 | 0.0072 2.6398 3.6723e+02
p 111 v

Amin Amaz K Amin Amaz K
4 | 0.0805 1.7716 22.0113 0.0128 2.2540 1.7582e+02
5 | 0.0389 1.8752 48.1564 0.0064 2.4210 3.7760e+02
6 | 0.0208 1.8516 89.0675 0.0040 2.4902 6.2770e+02
7 | 0.0134 1.9020 1.4184e+02 | 0.0026 2.5479 9.8516e+02
8 | 0.0090 1.8811 2.0937e+02 | 0.0018 2.5743 1.3964e+03
9 | 0.0066 1.9069 2.9056e+02 | 0.0014 2.6057 1.9262e+03
10 | 0.0049 1.892 3.8639e+02 | 0.0011 2.6324 2.3931e+03
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Table 5.3: Local condition numbers, vertex-based algorithm

Low energy vertex and edge functions
I 111
Amin Amaz K Amin Amaz K
4 | 0.0472 3.9954 84.5857 0.0667 2.3817 35.6813
5 | 0.0349 4.0631 1.1629e+02 | 0.0511 2.1795 42.6378
6 | 0.0307 4.0788 1.3299e+02 | 0.0501 2.3263 46.4560
7 1 0.0262 4.0903 1.5642e+02 | 0.0427 2.1290 49.8143
8 | 0.0242 4.0951 1.6914e+402 | 0.0428 2.2920 53.5686
9 |0.0219 4.0985 1.8742e+02 | 0.0383 2.0970 54.7887
10 | 0.0207 4.1002 1.9797e+02 | 0.0384 2.2594 58.8362
Standard vertex and edge functions
I 11
Amin Amaz K Amin Amaz K
4 1 0.0127 5.5692 4.3682e402 | 0.0232 2.6511 114.2572
5 | 0.0076 5.6015 7.3695e+02 | 0.0149 2.4447 1.6403e+02
6 | 0.00562 5.6087 1.0845e+03 | 0.0107 2.4542 2.2985e+02
7 10.0037 5.6117 1.5102e+403 | 0.0078 2.3479 3.0292e+-02
8 10.0028 5.6129 1.9862e+03 | 0.0060 2.3590 3.9296e+02
9 |0.0022 5.6135 2.5361e+03 | 0.0046 2.2960 4.9399e+02
10 | 0.0018 5.6138 3.1380e+03 | 0.0036 2.3048 6.3943e+02
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Table 5.4: Local condition numbers, etc.

Decoupling the wire basket from the faces

1 II

Amin Amaz K Amin Amaz K

© 0~ S Tl

—_
el

0.1047 2.0000 19.1089 | 0.1236 1.8764 15.1827
0.0803 2.0000 24.9046 | 0.1007 1.8993 18.8605
0.0786 2.0000 25.4463 | 0.1005 1.8995 18.8953
0.0664 2.0000 30.1218 | 0.0869 1.9131 22.0084
0.0657 2.0000 30.4505 | 0.0852 1.9148 22.4781
0.0584 2.0000 34.2378 | 0.0774 1.9226 24.8429
0.0579 2.0000 34.5572 | 0.0730 1.9270 26.3947

3

111 v

Amin Amaz K Amin Amaz K

© 0~ O T

—_
jen

0.2554 2.0000 7.8316 | 0.1627 1.8373 11.2962
0.2553 2.0000 7.8336 | 0.1437 1.8563 12.9221
0.2022 2.0000 9.8890 | 0.1127 1.8873 16.7443
0.1962 2.0000 10.1916 | 0.1013 1.8987 18.7483
0.1762 2.0000 11.3515 | 0.0892 1.9108 21.4119
0.1716 2.0000 11.6579 | 0.0824 1.9176 23.2672
0.1611 2.0000 12.4151 | 0.0761 1.9239 25.2860

Decoupling the faces from each other
p Amin Amaz K

4 10.2099 1.6109 7.6746

5 | 0.1899 1.6906 8.9026

6 | 0.1326 1.7533 13.2225

7 101272 1.7792 13.9874

8 |0.1026 1.8041 17.5838

9 | 0.0996 1.8205 18.2781

10 | 0.0855 1.8343 21.4538
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5.1.2 Bounds on the local condition numbers

We now compute the bounds on the local condition number, as given in Theorem 4.7.
We consider the case of an exact solver on the wire basket and the vertex and edge

functions (I). The smallest eigenvalue is given by

-1 a(uwauw)—l_za(ufkaufk)
. = max ,
min P alu, u)

A

but in Theorem 4.7, we provide a bound for

2 a(uw,uu) E :a(u/fk, ufk)
Co—ma.x ( , ) + max ( , ) (5 )

In a first step, we compute the lower bound given above and collect them in Table 5.5. We
remark that the lower bound is slightly smaller than the actual smallest eigenvalue, given
in column I of Table 5.1. The numbers in the first column correspond to the C(1+1log p)?

factor of Lemma 4.7. We compute this factor by considering the generalized eigenvalue

problems
0 0 0
0 Smm 0 |z=ASz
0 0
and
< SVEW 8):1,':)\533,
respectively.

The number of zero eigenvalues is equal to the number of wire basket or face functions,
respectively. There is also an infinite eigenvalue. Our factor, C(1 + log p)2, corresponds
to the largest finite eigenvalue of the generalized eigenvalue problem.

However, the numbers in the third column of Table 5.5 are not yet the lower bounds
provided by Theorem 4.7 because the upper bound on maxy a(uy, uy)/a(u,u) is not
computed directly, but in two steps. The upper bound on max, a(u,uy)/a(u,w) is the
product of the two factors also given below in Tables 5.6 and 5.7. Their product is given
in Table 5.8. Fig. 5.1 shows how the condition numbers and their upper bounds grow
with p.

The numbers in Table 5.6 correspond to the smallest number C(p) such that

el (1) < CO[ullZ2gwy Yu € Vir.
(1) ()
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Table 5.5: Lower bound on the smallest positive eigenvalue (1)

p | maxy Y a(uge, ugpr)/a(u,u) | maxy a(uy, tw)/a(u,u) Cy?

4 4.3461 5.0410 0.1065
5 9.0413 6.4866 0.0644
6 11.3375 6.6218 0.0557
7 14.8239 7.7890 0.0442
8 16.9317 7.8711 0.0403
9 19.8529 8.8170 0.0349
10 21.7060 8.8968 0.0327

Table 5.6: Norm of the extension L?*(W) — H' (Qyf).

Low energy vertex and edge functions

I

11

I11

v

4.9293
5.4829
5.9562
6.3320
6.6874
6.9591
7.2396

S oo o oS

4.9056
5.4594
5.9472
6.3231
6.6840
6.9548
7.2381

4.4232
4.8942
5.3827
5.6860
6.0260
6.2373
6.4914

4.4350
4.9110
5.3896
5.6951
6.0297
6.2430
6.4936

This factor can be viewed as the norm of an extension operator
E: L*(W) = H Q).

We have seen in Section 4.2 that the norm of this extension operator is bounded from
above by C(1 + logp)? if the extension is based on given in Theorem 4.3, and CN(p)
if based on Theorem 4.6. We conjectured that, in both cases, the norms are actually
constant, independent of p. The experiments described in Table 5.6, support this con-

jecture in the second case. The factor C'(p) is the largest eigenvalue of the generalized

eigenvalue problem

The numbers in Table 5.7 correspond to the discrete Sobolev factor C(1+1logp) that

appear in Theorem 4.4. In order to compute this factor, we consider the generalized
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Table 5.7: Best discrete Sobolev factors

C(1+logp)
16.8552
18.2909
19.3894
20.3045
21.0353
21.6849
22.2217

© 0~ oS

—_
[en}

Table 5.8: Lower bound on the smallest eigenvalue (2)

I II III v
0.0114 0.0115 0.0127 0.0126
0.0091 0.0092 0.0101 0.0101
0.0079 0.0079 0.0086 0.0086
0.0070  0.0070 0.0077 0.0077
0.0063 0.0063 0.0070 0.0070
0.0059 0.0059 0.0064 0.0064
0.0055 0.0055 0.0060 0.0060

50 oo oS

eigenvalue problem

M 0
( 0 O)x—/\S.’E.

where the null diagonal block correspond to the degrees of freedom associated with the
faces of the reference tetrahedron. There is a number of zero eigenvalues, which is
equal to the number of face functions. There is also an infinite eigenvalue. Our factor,
C(1 + logp), is largest finite eigenvalue of the generalized eigenvalue problem.

The factors in Table 5.6, which depend on the extension used to construct the vertex
and edge functions, are much smaller than those in Table 5.7, which are independent of

our construction of the extension operator.
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Figure 5.1: Condition numbers and bounds on them, for the wire basket algorithm
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5.2 Global experiments

In this section, we report on some numerical experiments with the methods introduced in
Chapter 3. We solve the Poisson problem with mixed homogeneous boundary conditions,
on regions that consists of many tetrahedral substructures.

As in the previous section, we obtain numerical results that support the theory given
in Chapter 4 and we also get a sense of the size of the constants that appear in the
theoretical bounds. We already have seen, in the case of one tetrahedron, see Fig 5.1,
that the actual condition numbers may be much smaller than their upper bounds.

We look at the number of iterations required to reduce the error by a fixed factor as
well as the condition number of the preconditioned system, which is directly related to
the number of iterations. We do not consider the computing time since it depends heavily
on the efficiency of the implementation. Our goal has been to develop an experimental
code that allow us to compare the condition numbers of different algorithms; we have
not had the time to do an efficient or parallel implementation.

In order to simplify the experiments, we have considered cubic regions €2 that consist
of N x N x N cubes, each cube being divided into 24 tetrahedra, as in Fig. 1.6. We set
homogeneous Dirichlet boundary conditions on one face, and Neumann on the other five
faces of the region.

The system Sz = b is solved by using the preconditioned conjugate gradient method.
The number of iterations is fixed beforehand. We provide the exact solution Z¢zqct, which
is a random vector and compute the right hand side . We compute the a(-,-)-norm of
the error £ — Zegzqct, Wwhere x is the solution computed by our iterative method.

The programs have been written in MATLAB and have been run on Sun workstations.

5.2.1 Coarse space

We have already mentioned the need of a coarse space that contains the constants.
We now report on experiments for two regions, consisting of 24 and 192 tetrahedra,
respectively, and study the condition number x as well as the number of iterations
required to reduce the norm of the error by a fixed factor, 107°. If there is no coarse
space that contain the constants, the iteration count and condition number depend on

the number of subregions, otherwise they do not. Fig. 5.2 contains the results of two
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Figure 5.2: Coarse space that does not contain the constant functions, p = 4.
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experiments, on regions made of 1 X1 x1x24 =24, and 2 X 2 X 2 x 24 = 192 tetrahedra,
respectively. We have used low energy vertex and edge functions (I), constructed by
using the extensions (4.14-4.16) with the wire basket space as the coarse space, using the
exact solver. The smallest eigenvalue and, consequently, the condition number as well as
the rate of convergence deteriorate as the number of substructures increases. The largest

eigenvalue remains the same, since it depends only on the local geometry; see (2.4).

Performing a similar experiment using the vertex and edge functions (III), for which
the wire basket space contains the constants, the smallest eigenvalue, condition number,

and rate of convergence are virtually the same in both cases; see Fig. 5.3.
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Figure 5.3: Coarse space that contains the constant functions, p = 4.
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Figure 5.4: Comparison of basis functions, wire basket algorithm, p = 6.
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Figure 5.5: Comparison of basis functions, vertex based algorithm, p = 6.

400

350

300

250

condition number
N
o
o
.

[y

o

o
T

[y

o

]
T

50 /

-

Condition number, succesive approximations

Hi/ghieniergy an_._ . _ . |

Low energy (1)

The largest eigenvalue, succesive approximations

4

20

40 60
Iteration count

80 100

3.5

The largest eigenvalue
N

20

40 60 80
Iteration count

100

7

The smallest eigenvalue
o
o
a

The
0.1

0.09

© o
o ©
J®

o
o}
)

© o o o
o o o o
PO ® K

o

log10(error)

-10

—15

smallest eigenvalue, succesive approximations

|
L | 4
L | 4

\

20 40 60 80 100
Iteration count

History of convergence

N T T T T
N —
AN
N
N
N —
\
\
N
\
AN
L N
20 40 60 80 100

Iteration count



Table 5.9: Condition numbers and iteration count, the wire basket algorithm.

P Exact solver Inexact solver
Amin  Amax K # iter | Apin Amax K # iter

4 10.1400 2.2291 15.9260 20 0.0566 4.2247  74.6729 37
5 | 0.1100 2.3658 21.5138 24 0.0470 4.8037 102.2064 41
6 | 0.0868 2.4268 27.9439 26 0.0434 5.2117 119.9645 44
7 10.0790 2.4743 31.3309 28 0.0411 5.5890 135.8435 47
8 |0.0667 2.5152 37.6905 30 0.0368 5.8769 159.5147 50
9 | 0.0607 2.5452 41.9467 31 0.0342 6.1498 179.7665 56
10 | 0.0546 2.5699 47.0280 32 0.0327 6.3605 194.4376 59

5.2.2 Basis functions

In this section, we compare the condition number and number of iterations, to achieve a
desired tolerance, using low energy and standard basis functions. We have already seen,
in Section 5.1 that, by using low energy vertex and edge functions, we obtain condition
numbers several times smaller than those obtained by using standard vertex and edge
functions. We now consider the case of a cubic region made of 24 tetrahedra, with
homogeneous Dirichlet boundary conditions on one face.

In Fig. 5.4, we give results for the wire basket algorithm. Since the wire basket space
should contain the constants, we use the low energy functions (III) and standard basis
functions (I) and (III).

In Fig. 5.5, we give results for the vertex-based algorithm. We use the vertex and
edge functions (II) since they have the lowest energy among (I), (II), and (III) in both
the low and high energy basis function case.

We conclude that the convergence of the algorithm deteriorates when using standard

vertex and edge functions.

5.2.3 Additive, hybrid, and multiplicative methods

In this section, we start by considering the additive variant of the wire basket algorithm,
with an exact and inexact solver on the wire basket. We study the condition number
and number of iterations required to reduce the error by 1075. We collect the results in
Table 5.9.
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Even if the condition numbers corresponding to an inexact solver on the wire basket
are much larger than the ones corresponding to the exact solver, the convergence does
not deteriorate very much; it takes less than twice as many iterations to reduce the error
by the same factor. We have already mentioned, in Chapter 3 that the algorithm of
practical interest is the one that uses an inexact solver.

We next compare the performances of additive, hybrid, and multiplicative methods,
for the wire basket and vertex based algorithms. We recall that the additive Schwarz
method (ASM) is defined by the operator

for the wire basket based algorithm, and by
T=Ty+ Ty +"'TVnV +Tg, +"'TEnE + Tr, +"'TFnF

for the vertex-based algorithm, where ny, ng, ng is the number of vertices, edges, and
faces, respectively.

The hybrid method HSM1 is given by the operator
T=I-(I-Tw)I—-Tr)I—-Tw)
for the wire basket based algorithm, and by
T=1-I-To)(I-1Tv)(I-Tg)I—Tp)I —Tg)(I —Tv)(I —To)

for the vertex-based algorithm. Here, Ty = Ty, + ---TVnV, Tp =Tg, + -+ TEnE, and
Trp =TF + TFnF
The hybrid method HSM2 is defined by the operator

T=I-(I-Tr)(I—-Tw)I —TF),
for the wire basket based algorithm, and by
T=1-(I-Tr)I-Tp)I -Tv)(I - To)({ - Tv)({ — TE)( — TF),

for the vertex-based algorithm.

The symmetrized multiplicative method MSM1 is defined by the operator

T=I-(I-Tw)I—-Tr)---(I—-Tp,,) (I —-Tr)I —Tw),
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for the wire basket based algorithm, and by

T = I-(I-To)I-Tw) -U-Tv,, )T —Tg) - I-Tg,,)
(I-Tgr)---(I-Tp,,) - I-Tk)
(I -Tg,,) - I—-Te)I —Ty,,) I —-Ty)I —To).

for the vertex-based algorithm.

The symmetrized multiplicative method MSM2 is defined by the operator
T=I-(I-Tr)..(I-Tr,)I —Tw)...(I - Tr),
for the wire basket based algorithm, and by

T = I—(I—Tk)-(I—Tp Y[ —Tu)-- (I —Tp, )
(I-Tw) - (I-Tv,, )T -To)I —Tv,,) - (I - Tvy)
(I-Tg,, ) I-Tg)I—-Tp,, ) (I—Tr)-

for the vertex-based algorithm.

In Fig. 5.6, we consider the wire basket based algorithm, using the exact solver on

the wire basket. For the experiments of Fig. 5.7, we use the inexact solver defined in

Section 3.1, obtained by multiplying the mass matrix on the wire basket by (1 + logp).

Finally, we scale the inexact solver by a different factor, such that w = 1; see Chapter 2.2.

The results are given in Fig. 5.8.

The results of similar experiments with the vertex-based algorithm are given in

Fig. 5.9, for the basis functions (II).

As expected, the hybrid and multiplicative algorithms perform better than the addi-
tive. Also, MSM1 performs better than HSM1 and MSM2. On the other hand, MSM2

does not perform any better than HSM2.
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Figure 5.6: Comparison of additive, hybrid, and multiplicative methods, p = 6, exact
solver on the wire basket.
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Figure 5.7: Comparison of additive, hybrid, and multiplicative methods, p = 6, inexact

solver on the wire basket, with (1 + log p) scaling
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Figure 5.8: Comparison of additive, hybrid, and multiplicative methods, p = 6, inexact
solver on the wire basket, with scaling such that w = 1.
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Figure 5.9: Comparison of additive, hybrid, and multiplicative methods, p = 6, standard
coarse space.
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5.2.4 Algorithms using overlap

In this section, we describe experiments with algorithms using overlap, as described in
Section 3.3. To each face space, we add the entire edge subspaces that correspond to
edges that are coupled to the face and are (1) or are not (2) part of the boundary of
the face. An edge is coupled to a face if they belong to the same tetrahedron. The
overlap is very generous but similar results can be obtained if, instead of adding the
entire edge space to the face space, we add a subspace spanned only by those degrees
of freedom that are coupled the strongest to the face, since they are the main cause of
the ill-conditioning. Unfortunately, we did not find a regular pattern, like, e.g., that the
first and the second edge functions are coupled stronger to the face than the other edge
functions. One idea would be to scan the local Schur complements and determine which
these degrees of freedom are in each case.

As we already noticed in Section 3.3, in order to reduce the condition number, we
must obtain a lower bound which is large enough to compensate for the increase of the
upper bound. This turns out to be unsuccessful for all the additive methods. Actually,
the condition number and rate of convergence deteriorate. We do not see an improve-
ment for the wire basket algorithm with the exact solver on the wire basket for either
the additive, hybrid, or multiplicative methods. However, the improvement is clear for
multiplicative variants of the wire basket based algorithm with inexact solver on the wire
basket, and for vertex-based algorithms. In some cases, the hybrid methods break down;
we do not show those results in the figures. There is no contradiction here, since we do

not have an abstract Schwarz theory for the hybrid methods.

5.2.5 Neumann-Neumann algorithms

We describe experiments that correspond to several ways of treating the singularity of
the subproblems as well as several choices of the coarse space, as described in Section

3.4.

Fig. 5.20 contains results of experiments for zero Dirichlet boundary conditions on
the entire wire baskets. We use the exact solver on the wire basket as well as the inexact
solver with the natural scaling (1+1logp), indicated by “inexact solver (1)” in the picture,

7

and the inexact solver scaled such that w = 1, indicated by “inexact solver (2)
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Figure 5.10: Wire basket algorithm with overlap (1), exact solver on the wire basket,

p==6
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Figure 5.11: Wire basket algorithm with overlap (2);

p==6
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Figure 5.12: Wire basket algorithm with overlap (1); inexact solver on the wire basket;
(1 +logp) scaling; p =16

Condition number, succesive approximations The smallest eigenvalue, succesive approximations
300 T T T T 0.5— T T T T
|
0.45} | 1
250 - T T ] .
/ 0.4+ 9
- - |
/ g 9
_ 200 | 1 =
<5 =
= I g ]
{=2}
2 2
gwor ) 1 = 1
= / =
g £ 1
oS | @
© Ity
100 | £ |
!
; 4
50 1
/
o = S
ol 0
20 40 60 80 100 20 40 60 80 100
Iteration count Iteration count
The largest eigenvalue, succesive approximations History of convergence
10 T T T T o T T T T
ASM - =
9F ]
... HSM1
8l / 4
/ N
- MsSM1
o 7 — -
= MSM2  semessmscess
s Ll N
c 6 1 = ~
S | 2 D
(<5}
@ S 1 =1 A
(<5} =l ~
S 8
8 4 d 2
[ i
_E 4
3 1
2t 1
1
o . . . . . .
20 40 60 80 100 60 80 100
Iteration count Iteration count

88



b

Figure 5.13: Wire basket algorithm with overlap (2)
(1 +logp) scaling; p =16
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Figure 5.14: Wire basket algorithm with overlap (1); inexact solver on the wire basket;
scaling such that w =1; p =6
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Figure 5.15: Wire basket algorithm with overlap (2);

scaling such that w =1; p =6
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Figure 5.16: Vertex-based algorithm (I) with overlap (1); p =6
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Figure 5.18: Vertex-based algorithm (I) with overlap (2); p =6
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Figure 5.19: Vertex-based algorithm (IT) with overlap (2); p =6
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For the experiments in Fig. 5.21, we have used the pseudoinverses of the local Schur
to compute the preconditioner. We use three different coarse spaces, the standard coarse
space and the wire basket space with the inexact solvers. This algorithm performs better
than the previous one.

If we treat the singularities by imposing zero Dirichlet boundary conditions at the
vertices only, or use no coarse space, then the convergence is very slow. Fig. 5.22 contains
results of the experiments for the following choices of local and coarse spaces:

(1) Zero Dirichlet boundary conditions at the vertices of each substructure, and the
standard vertex-based coarse space.

(2) No Dirichlet boundary conditions on the substructures, i.e. pseudoinverses are
used, and no coarse space.

(3) Zero Dirichlet boundary conditions at the vertices of each substructure, and the
wire basket space with inexact solver, with the natural scaling.

(4) Zero Dirichlet boundary conditions at the vertices of each substructure, and the

wire basket space with inexact solver, with scaling such that w = 1.
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Figure 5.20: Neumann-Neumann, zero Dirichlet boundary conditions on each local wire

basket.
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Figure 5.21: Neumann-Neumann, without Dirichlet boundary conditions on the local
wire baskets.
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condition number

Figure 5.22: Neumann-Neumann, cases when convergence is very slow.
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Chapter 6

Possible future work

We see several possible extensions of this work.

Extensions from the wire basket, based on quadrature points. This would
be analogous, in the case of tetrahedral elements, to the work of Pavarino and Widlund
[66]. We could use either the ideas of Sherwin and Karniadakis [59] or those of Babuska
and Chen [7, 8].

Iterative substructuring methods for linear elasticity. The recent work of
Pavarino and Widlund, on spectral elements [52, 53] seems to extend straightforwardly
to our case. One technical difficulty, solved by these authors, is to make the extensions
from the wire basket preserve the rigid body motions while also being low energy, which
is not the case for our extension from the wire basket, and have low energy. We note
that another approach has been explored by Mandel [42].

Iterative substructuring algorithms for the hp version finite element method.
Domain decomposition algorithms for the hp version finite element method have been
analysed by several authors in case of square, triangular, and cubic elements; see Chap-
ter 1. There seems to be no major technical difficulty to extending our work to the hp
version.

Large numerical experiments and parallel implementations. As we noted in
the beginning of Chapter 5, our goal has been to develop an experimental code that allow
us to compare the condition numbers of different algorithms. We have not found the time
for not an efficient or parallel implementation. To more fully assess the practicality of
our methods, it would be very interesting to study the performances of efficient, parallel

implementations of these algorithms.
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