Local Names In SPKI/SDSI 2.0

January 31, 2000

Abstract

In this paper, we analyze the notion of “local names” in SPKI/SDSI 2.0 and show that local
names can be interpreted as distributed groups and distributed roles. Based on the distributed-
group interpretation, we develop a simple logic program for SPKI/SDSI’s linked local-name
scheme and prove that it is equivalent to the name-resolution algorithm in SDSI 1.1 and the
4-tuple-reduction mechanism in SPKI/SDSI 2.0. This logic program is by itself a logic for
understanding SDST’s linked local-name scheme. This logic has several advantages over previous
logics, e.g., those in [1] and [9]. For one thing, it is directly implementable. We have also
enhanced our logic program to handle threshold functions and certificate reduction as well as
certificate discovery.

We also discuss the use of local names for the purpose of authorization and show that
they can be used in ways similar to roles in Role-Based Access Control (RBAC). We suggest
several modifications to SPKI/SDSI 2.0 to make it simpler and cleaner. Among other things,
we question the value of delegation certificates.

1 Introduction

Rivest and Lampson introduced “linked local names” in Simple Distributed Security Infrastructure
(SDSI). This was motivated by the inadequacy of public-key infrastructures based on global name
hierarchies, such as X.509 [4] and Privacy Enhanced Mail (PEM) [8]. After SDSI version 1.1 [11],
the SDSI effort merged with the Simple Public Key Infrastructure (SPKI) effort. The result is
SPKI/SDSI 2.0, about which the most up-to-date document is IETF RFC 2693 [7].

The goal of this paper is to study the notion of “local names.” We give two interpretations for lo-
cal names: distributed groups and distributed roles. Based on the distributed-group interpretation,
we are able to give a simple logic program for SDSI’s linked local-name scheme.

Existing work on logic for SDSI’s linked local names includes the logic of Abadi [1] and Halpern
and van der Meyden’s Logic of Linked Name Containment (LLNC) [9]. Our logic program is by
itself a logic for linked local names. Compared with existing work, our logic has the following
features.

e It corresponds exactly to SPKI/SDSI 2.0. We prove the equivalence of our logic program,
SDSI’s name resolution algorithm, and SPKI’s 4-tuple-reduction procedure. Our logic pro-
gram also handles threshold functions, which are part of SPKI/SDSI 2.0.

e The logic program is runnable without modification. It can be executed using the XSB logic
programming system [13], a Prolog variant. Furthermore, it is guaranteed to terminate for

a large class of queries, including, but not limited to, all the queries necessary for SPKI’s
evaluation of authorization requests.

e The logic program is quite simple. The version that doesn’t handle threshold functions has
only four rules and is significantly simpler than existing logics, e.g., LLNC.

e The logic program can be easily enhanced to handle certificate discovery as well as certificate
reduction. By certificate discovery, we mean the problem of finding relevant certificates among
a potentially very large set of certificates and providing them in the order needed for SPKI’s
certificate reduction procedure. We give the enhanced program in this paper.

This logic program serves both as a logical definition and an implementation of certificate reduc-
tion with threshold functions. Our hope is that it will contribute the understanding of SPKI/SDSI’s
linked local-name scheme.

In this paper, we also discuss the way SPKI/SDSI uses local names for authorization purposes.
The SPKI/SDSI work focuses more on data structures for certificate and infrastructure issues such
as certificate distribution and revocation. Processing procedures of certificates are less clearly
defined. The meaning and usage of different structures are not thoroughly discussed. In [7], the
authors state: “The processing of certificates and related objects to yield an authorization result is
the province of the developer of the application or system.” Although we agree that data structures
and infrastructures are very important, we disagree with this approach to certificate processing.
We believe that the meaning and processing of certificates should be application-independent,
rigorously defined, and extensively discussed so that people can understand the system; in this
respect, we agree with the trust-management approach to authorization [3]. Only then can people
who write policies have confidence that the policies have the intended meaning. Our discussion
suggests several modifications to SPKI/SDSI 2.0 to make it simpler and cleaner. Among other
things, we question the value of having delegation certificates.

The rest of this paper is organized as follows. In Section 2, we review SPKI/SDSI 2.0 and other
related work on local names. In Section 3, we give the distributed-group interpretation of local
names and our logic program for linked local-name resolution. We also compare our approach with
existing work. In Section 4, we discuss the use of local names in authorization and show that local
names can be used in the same way that “roles” are used in Role-Based Access Control (RBAC).
We conclude in Section 5.

2 Background on Local Names

In this section, we give background information on “local names.” In Section 2.1, we review
SPKI/SDSI’s linked local-name scheme. In this process, we occasionally refer to SDSI 1.1 [11]
when there are differences between SPKI/SDSI 2.0 and SDSI 1.1. We review the logics of Abadi
and Halpern and van der Meyden in Section 2.2 and Elien’s work [6] on certificate discovery in
Section 2.3.

2.1 Local Names in SPKI/SDSI 2.0

In SDSI, there are principals and local names. Principals are public keys and are therefore unique.
Each principal has its own name space. A principal issues certificates to define local names in its

name space. Besides principals and local names, SDSI 1.1 also has special roots. A special root is
a name that is bound to the same principal in every name space. Although this notion seems to be
meaningful, it is not present in SPKI/SDSI 2.0. For this reason, we do not deal with special roots
in this paper, but it would not be difficult to add special roots to our logic program.

SDSI allows principals and local names to be linked together to form compound names. We call
SDSI 1.1’s compound names general compound names. A general compound name is a principal,
a local name, an object of the form “(e),” or an object of the form “e¢’s f,” where e and f are
general compound names.! The name-resolution algorithm in SDSI 1.1 always resolves compound
names from left to right and ignores any parenthesis. Therefore, one can remove all parentheses
from a compound name and still have an equivalent compound names. SPKI/SDSI 2.0 does not
allow compound name to contain parentheses.

In most cases, a compound name starts with a principal. The only exception is when a compound
name occurs inside a certificate, in which case it may start with a local name that is assumed to
be in the certificate issuer’s name space. One can always explicitly add the issuer to the front
of the compound name. Therefore, every compound name can be transformed to a fully-qualified
compound name defined as follows.

Definition 1 A fully-qualified compound name has the form:
keyA's name|s namehs ... name,p,
where keyA is a principal and each name; is either a local name or a principal.

From now on, we use compound names to mean fully-qualified compound names unless we explicitly
say the opposite.

SPKI/SDSI 2.0 has two kinds of certificates. Name-definition certificates came originally from
SDSI; they bind a local name to a subject. Delegation certificates came originally from SPKI; they
delegate some right from an issuer to a subject. Subjects can also contain threshold functions.

Definition 2 A subject is either a compound name or an object having the form:
(k-of-n K N suby subs ... suby)
where K < N are both positive integers and suby, subs, ..., suby are subjects.

In most of this paper, we assume that subjects do not contain threshold functions, i.e., that they
are compound names. The handling of threshold functions will be discussed in Section 3.4. When
it doesn’t cause confusion, we use “certificates” to mean name-definition certificates. In this paper,
these certificates are represented by the following form:
keyA says binds(name0O, keyB’s namel’s ... namep).

The principal keyA is the issuer of this certificate, and the compound name “keyB’s namel’s ...
namep” is the subject. We say that this certificate defines the compound name “keyA’s name0.”

Compound names are eventually resolved to principals. SDSI 1.1 [11] gives a resolution algo-
rithm, which we provide in Appendix C. Figure 1 gives an adapted version of it in C-style syntax.
The adapted version removes the code for things that do not exist in SPKI/SDSI 2.0, namely
group certificates, quote certificates, and encrypted objects, and it only deals with fully-qualified
compound names. Otherwise, it is equivalent to the algorithm in SDSI 1.1, although we change
the code to use only one function REF and to make the set of certificates an explicit argument, i.e.,
the argument Certs.

LThis is a simplified and syntactically sugared version of the actual syntax.

1 REF(Certs, P’s nl1’s n2’s ... nk) {

2 if (k=0) return P;

3 else if (k=1) {

4 if (nl is a principal) return ni;

5 else if (nl is a local name and there exists a certificate
6 "binds(P’s nl, Q’s ml’s m2’s ... ml)" in Certs)
7 return REF(Certs, Q’s ml’s m2’s ... ml)

8 else fail;

9 } else {

10 Q = REF(Certs, P’s nl)

11 return REF(Certs, Q’s n2’s ... nk)

12 }

13 }

Figure 1: Adapted version of SDSI’s name-resolution algorithm

The algorithm in Figure 1 is nondeterministic. On lines 5 and 6, the algorithm is free to choose
any certificate that defines the name “P’s n1.” Given a set of certificates C and a compound
name cn, the function call “REF(C, c¢n)” may return a principal, fail, or run forever. Given C, the
function REF defines a relation between compound names and principals.

Definition 3 A compound name cn is resolvable to a principal k given a set of certificates C if
and only if there exists an execution of REF(C, cn) that returns k.

SPKI/SDSI 2.0 defines a 4-tuple-reduction procedure to reduce compound names to principals.
The following is taken from [7].

The rule for name reduction is to replace the name just defined by its
definition. For example,
(name K1 N N1 N2 N3) + [(name K1 N) -> K2]
-> (name K2 N1 N2 N3)
or,
(name X1 N Na Nb Nc) + [(name K1 N) -> (name K2 N1 N2 ... Nk)]
-> (name K2 N1 N2 ... Nk Na Nb Nc)

The 4-tuple-reduction mechanism defines a relation among compound names. The goal of reduction
is to reduce a compound name to a principal.

Definition 4 A compound name cnq is reducible to a compound name cng given a set of certifi-
cates C if and only if there exists a sequence of certificates in C that reduces cny to cno.

2.2 Overview of previous logics for local names

Both Abadi’s logic [1] and Halpern and van der Meyden’s Logic of Local Name Containment
(LLNC) [9] aim at giving a logical account of linked local names. However, their goals are somewhat
different.

Abadi’s goal is not to capture SDSI’s name-resolution algorithm exactly but rather to gener-
alize it and to study axioms for linked local names in the generalized setting. He generalized the

Propositional Logic: All instances of propositional tautologies

Reflexivity: p—p
Transitivity: pr—q)={(g—r1)=(p—r1))
Left-monotonicity: (p—— q) = ((p's r) — (¢'s 1))
Associativity: ((p's q@)'s m)— (p's (¢'s 1))

(P's (¢'s 7)) — ((p's @)'s 7))
Key Globality: (K's g) —— g

if g is a global identifier, i.e., a principal
Key Linking;: (k says (n+—— 1)) = ((K's n) — (K's 1))

if n is a local name
Key Distinctness: — (k1 +— ko)if k1 and ko are distinct keys

Witnesses: “(pr—q) = Vi(=~(p— k) AN (g— k))
(P's q) ¥ k1 = Vi((p— k) A (K's qr— k1))
Modus Ponens: From ¢ and ¢ = 9 infer ¢

in all axioms, p, ¢, and r are compound names and k and k; are principals.

Figure 2: Axioms of LLNC

“resolvable” relation in SDSI, which is between compound names and principals, to a relation ——
among arbitrary compound principals. As shown by Halpern and van der Meyden [9], Abadi’s logic
draws conclusions about local names that do not follow from SDSI’s name resolution algorithm.
Abadi’s generalizations lead to a quite complex axiom system, which include axioms of modal log-
ics to reason about says and propositional logic tautologies for = and A. Studying axioms in this
generalized setting may be an interesting problem by itself, but it is not needed to understand or
to implement SDSI’s linked local-name resolution.

Halpern and van der Meyden want to capture SDSI’s name resolution exactly. However, they
still use Abadi’s generalized relation ——. The axioms for their logic LLNC are given in Figure 2.
We think it is inadequate to use the generalized relation —— for the purpose of capturing SDSI’s
name resolution. There is no query in SPKI/SDSI about the — relationship between two arbitrary
compound names. Furthermore, using —— leads to some problems that we now discuss.

The semantics for — is hard to define. The semantics for both logics maps compound names
to sets of principals. The notation [[p]] represents the set of principals that a compound name p
maps to. The semantics for —— is defined as the superset relation, which seems to be the only
reasonable choice. So their semantics has the rule:

p+—q if and only if [[p]] 2 [[q]]

Abadi’s axiomatization is not complete with respect to this semantics, but LLNC’s is. To achieve
this, LLNC has Witnesses Axioms, which are not in Abadi’s logic.
Now consider the following example, in which one principal sees only the following three certificates:

keyAlice says binds(poker_buddies, keyTom) .
keyAlice says binds(poker_buddies, keyJohn).
keyAlice says binds(classmates, keyJohn) .

Then [[keyAlice’s poker_buddies]| = {keyTom, keyJohn} and [[key Alice's classmates]| = {keyJohn}.

According to the above semantics, LLNC has to conclude:

keyAlice's poker_buddies +—— keyAlice's classmates

This conclusion can be derived in LLNC by using the first Witness axiom and propositional tau-
tologies. We think that this conclusion is counter-intuitive. Omne intuitive reading of the relation-
ship p — ¢ is that p is somehow reducible (through 4-tuple reduction or some similar mecha-
nism with more rules) to q. However, the name keyAlice’s poker_buddies can not be reduced to
keyAlice's classmates given the above three certificates. Moreover, this conclusion is nonmono-
tonic. By nonmonotonic, we mean that if a principal sees only the above three certificates, it can
derive this conclusion; but if it sees an additional fourth certificate, it may no longer do so. F.g.,
consider adding the certificate “keyAlice says binds(classmates, keyJack).” We think that
this nonmonotonicity is quite unacceptable in SDSI’s distributed setting. All conclusions in SDSI
are monotonic. It is often very difficult to know that one has all the certificates in a distributed
environment. Therefore, one doesn’t know whether the conclusion is valid from another princi-
pal’s point of view or whether the conclusion will remain valid when the principal knows more
information later.

Another disadvantage of using — is that, given one compound name p, there may exist an infi-
nite number of compound names ¢’s such that p — ¢. For example, applying the Left-monotonicity
axiom: (p—q)= ((p's) — (¢'s 1))

to (alice’s friends) — (alice’s friends's friends)
results in an infinite sequence of new conclusions. This problem causes difficulty in implementing
the logic. A query for all compound names ¢’s such that p — ¢ may not be answered in finite
time. This is the nontermination problem described in [6], which we will review in Section 2.3.

Finally, these two logics do not handle threshold functions, which are part of SPKI/SDSI 2.0.
Nor do they consider the certificate discovery problem.

2.3 Certificate reduction and discovery

SPKI/SDSI 2.0 defines the certificate-reduction procedure when certificates are provided in the
right order. The requester needs to find the relevant certificates among a potentially very large
set of certificates and to provide them in right order. In [6], Elien studied this certificate discovery
problem.

Elien considered the certificate-discovery problem with name-definition certificates as well as
delegation certificates and ACL entries. He considered the problem of finding a path of certificates
that delegates a right R from a source principal to a destination principal given a set of certificates
C. Elien used the implication notation “I — S” to represent all kinds of certificates. Each certificate
is translated into an implication. In an implication, I and S are compound names; [is called the
issuer, and S is called the subject. An implication “K — S” means that the principal K delegates
the right R to S. An implication “(K’s N) — S” means that the principal K defines its local
name N to be S.

Certificate discovery can be done by inferring new implications from those that are translated
from certificates. The general rule is as follows. Let 1, Is, 51,52 be compound names.

Implication Chaining: From (I; — (I4s S1)) and (Is — S3), derive (I3 — (Shs S1)).
Elien showed that certificate discovery is a non-trivial problem. The following implication

(Kis A) — (Kis A's A)

alone generates an infinite number of implications:

(Kis A) — (Kjs A’s A's A)
(Kis A) — (Kjs A's A's A's A)

Nonetheless, he was able to provide a certificate-discovery algorithm that is guaranteed to terminate
within polynomial time. His algorithm restricts the Implication Chaining rule to be used only when
|Sa| < |I2|. He proved that, with this restriction, all implications of the form “Ky — K;” can still
be generated. This restriction guarantees termination and polynomial complexity. Given a set R
of n certificates, the total number of implications that can be derived from R is O(n3C), where C
is the length of the longest compound name in R.

Actually, it is possible to go one step further. One can further restrict the Implication Chaining
rule to be used only when |S2| = 1, i.e., when Ss is a principal. This more strict restriction can
reduce the complexity to O(n%C) and still generate all implications of the form “Ky — K;.” To
prove this, it is worth noting that the issuer of every implication is either a principal or a principal
followed by a local name. With this observation, it is not difficult to modify Elien’s proof to prove
this result. We omit this proof, because it is not directly related to our main result.

3 A Logic Program for Linked Local Names

In this section, we present our logic program for SDSI’s linked local-name scheme. We want to
give a logic program that captures SPKI/SDSI’s linked local-name schemes exactly, is as simple as
possible, and can be used in practice. We think that these goals have been met. In this section,
we first discuss the distributed-group interpretation of local names. In Section 3.2, we give a four-
rule logic program to capture SDSI’s linked local-name-resolution algorithm. In Section 3.3, we
prove that our logic program is equivalent to the name-resolution algorithm of SDSI 1.1 and the
4-tuple-reduction mechanism of SPKI/SDSI 2.0. In Section 3.4, we enhance the program to handle
threshold functions and certificate discovery in addition to name resolution. In Section 3.5, we
compare this logic program with existing logics.

3.1 Local names as distributed groups

The algorithm REF in Figure 1 defines a “resolvable” relation between compound names and princi-
pals. Therefore, we can view compound names as groups of principals and the “resolvable” relation
as a group-member relation. We use a binary predicate “contains” to represent this relation.

The information for determining the contains relation comes from name-definition certificates.
We now assume that subjects of such certificates do not contain threshold functions; we will handle
threshold functions in Section 3.4. A certificate “k says binds(n, c¢n)” means that any principal
that the compound name cn contains is also contained by the compound name “k’s n.” Thus a
name-definition certificate actually defines a superset-subset relationship, which we use the binary
predicate “includes” to represent.

SDSI local names are really group names. Moreover, these groups are distributed. There
isn’t a central authority that manages all the groups. Each principal is in charge of defining its
own groups. A principal does this by issuing name-definition certificates. An interesting point of
SDSI is that one can use linked groups. A compound name is a linked group. The linked group
“keyA’s mamels names” can be defined as:

keyA's name|s names = U { KeyX's namey | KeyX € keyA's name; }

7

Linking: contains([P0, NO|T], P2) : — contains([P0, N0, P1), contains([P1|T], P2).
Superset: contains([P0, NO|, P) : — includes([P0, N0}, CN2), contains(CN2, P).
Globality: contains([P0, P1], P1) : — isPrincipal(P1).

Self-containing: contains([P0], P0) : — isPrincipal(P0).

Figure 3: P4: Logic Program for Name Resolution 2

3.2 A logic program for SDSI’s name resolution

In our logic program, a fully-qualified compound name “keyA’s namels namehs...name,” is
represented by a list: [keyA, name;, names, ..., name,|. We assume that principals and
local names are not encoded in lists and that principals can be distinguished from local names
by a unary predicate “isPrincipal.” A name-definition certificate is translated into a fact of the
predicate “includes.” For example:
keyA says binds (nameO, keyB)
is translated to includes([keyA, nameg], [keyB]).
keyA says binds (nameO, keyB’s namel’s name2)
is translated to includes([keyA, namey], [keyB, name;, names)).
The first version of our program P4 has four rules to infer about the predicate contains from facts
of the predicate includes translated from certificates. These rules are shown in Figure 3.

The Linking rule implements the semantics of linked local names. The Superset rule enforces
the semantics of includes. Actually, the relation includes is not strictly necessary. We can translate
each certificate to a rule using only the predicate contains. For example:

keyA says binds (nameO, keyB)
to contains([keyA, namey|, keyB).
keyA says binds (nameO, keyB’s namel’s name2)
to contains([keyA, namegy|, X) : — contains([keyB,namey, names], X).
If we use this translation, the Superset rule won’t be needed. However, we think it is clearer to have
the predicate includes. It is also helpful in extending this program to handle certificate discovery.
The Globality rule handles principals that occur inside a compound name; we will have more to say
about this kind of compound names in Section 4. The only reason for the Self-containing rule is to
handle certificates that have a principal as their subjects. They are translated into facts of the form
“Includes([keyA, name0], [keyB]).” It is quite clear that the essence of SDSI’s linked local-name
scheme is the Linking rule.

Given a set of certificates C, we can get a logic program P¢ as follows: Start with Py; add a
fact of “includes” for each certificate in C; finally add definitions for principals, by, for example,
adding a fact “isPrincipal(k)” for each principal k that occurs in C.

The program P has a minimal Herbrand model, as defined in standard logic programming lit-
erature. The semantics of C is defined by this minimal model of P¢. For any atom “contains(cn, k)”
in the minimal model of P, we can construct a proof sequence for the atom from C.

Definition 5 A proof sequence for an atom “contains(cn,k)” from a set of certificates C is a
sequence of atoms: ay,as,...,a,, where a; = contains(cn, k). Each atom a; is the head of a ground

2Note that we are using Prolog’s syntax. Variables start an upper-case letter. The notation [P0, NO|T represents
a list in which the first element is PO, the second element is N0, and the rest of the list is 7.

instance RINST of one of the four rules in Py, and each atom in the body of RINST is either a fact
in Pc or appears as aj, where 1 < j <11 — 1.

Definition 6 A compound name cn contains a principal k given a set of certificates C if and only
if there exists a proof sequence for “contains(cn,k)” from C.

The minimal Herbrand model of P may be infinite, because we can construct an infinite number
of compound names from just one principal and one local name. However, given any compound
name cn, the set of principals k& such that “contains(cn,k)” is true is finite, because the total
number of principals is finite.

Readers familiar with logic programming might notice that the Linking rule is left-recursive
and may never terminate in a backward-chaining inference engine, such as a Prolog engine. To deal
with this problem, we use the XSB system [13], a logic programming system developed at SUNY
Stony-Brook. XSB has several nice features that most Prolog systems do not have. One of them is
tabling, which enables the handling of left-recursive programs.

Claim 1 Given a program Pc, any query that consists of one atom of the predicate “contains”
always terminates if the atom’s first argument is a list with fized number of elements.

In [5], Chen and Warren proved that a query @ with a program P terminates under XSB’s
tabled evaluation if P has the bounded-term-size property. A stronger requirement is that there
exists an upper bound on the size of the arguments of all goals generated while answering a query
@ with a program P. If this requirement is satisfied, only a finite number of goals will be generated;
thus, the query terminates. If the query @ is a contains atom that has a list with a fixed number
of elements as its first argument, let N1 be the size of this argument and Ny be the largest size of
any compound names in Pg¢; then the size of any argument of any goal generated during answering
@ is bounded by O(max(Ny, Na)).

We first give several examples of potentially nonterminating queries. A query of contains may
not terminate if its first argument is a variable or a list that has a variable as its tail, e.g., [k0,n1|N].
One such query is “: —contains(C'N,k1),” where CN is a variable, and k1 is a principal. This
query asks for a compound name that contains k1. It may not terminate, because there are an

infinite number of compound names. Similarly, the query “ —contains([k0|CN],k1)” may not
terminate either.
Note that the condition in Claim 1 is sufficient but not necessary. The query “: —contains(alice, X)”

always fails, because the constant “alice” can not unify with any list. This query trivially termi-
nates. The following are some terminating queries that are useful. Given a compound name

en and a principal k, the query “ —contains(cn,k)” determines whether cn contains k. Given
a compound name cn, the query “ —contains(cn,X)” gives one principal that cn contains.
To find all such principals, one can use the query “ — findall(X,contains(cn, X),S),” where

the predicate findall is a standard predicate in Prolog. Given principals k0, k1, the query “
— findall(N, contains([k0, N], k1), N)” gives the set of local names in k0’s name space that resolve
to k1. This is useful when one wants to determine all the authorizations one principal gives to

another. Such kinds of queries are very useful in writing, understanding, and debugging policies.

3.3 Equivalence results

The program Py is a rather straightforward translation from the algorithm REF in Figure 1 into
Prolog. Line 2 of the algorithimn REF corresponds to the Self-containing rule. Line 4 corresponds to
the Globality rule. Lines 5 to 7 correspond to the Superset rule. And Lines 10 and 11 correspond to
the Linking rule. In the following, we formally state the equivalence of the algorithm REF, certificate
reduction rules, and the logic program P4. The proofs are given in Appendix A.

Proposition 2 Equivalence of REF and Py: A compound name cn is reducible to a principal
k given a set of certificates C if and only if cn is resolvable to k given C.

Proposition 3 Equivalence of REF and contains: A compound name cn is resolvable to a
principal k given a set of certificates C if and only if the name cn contains the principal k.

3.4 Handling threshold functions and certificate discovery

The name-resolution algorithm REF does not handle subjects with threshold functions. SPKI/SDSI
2.0 also does not give a clear definition of certificate reduction procedures involving threshold
functions. We now extend the logic program in Figure 3 to handle them. A threshold function is
represented by a term of the following form:

threshold(k,n,[suby, subs, ... ,suby,])

The program Py in Figure 3 can do certificate reduction with name-definition certificates. To
solve the certificate-discovery problem, we need to keep track of which certificates are used to derive
a new conclusion. To do this, we add an extra argument to the predicates contains and includes.
The third argument of the predicate includes is a certificate identifier. The third argument of
the predicate contains is a list, which we call an evidence sequence. The evidence sequence for
resolving a threshold-free subject cn to a principal k is a list of identifiers of those certificates that
have been used in deriving the current conclusion. Our logic program returns the list in the same
order as used in SPKI’s certificate-reduction mechanism.

The evidence sequence for resolving a threshold function “(k-of-n K N suby suby ... suby)”
to a principal keyX is more complex than a list of certificate identifiers. We use the following form
to represent it: branch(K, levidence(sub;,,seq1), ..., evidence(sub;, ,seqk)]),

where seq; is the evidence sequence for resolving sub;; to keyX. It is straightforward to use evidence
sequences to reduce subjects to principals.

The full XSB program that handles threshold functions and certificate discovery is given in
Figure 4. This logic program provides a logical definition as well as an implementation for certificate
reduction and discovery with threshold functions. In Appendix B, we give a logic program that
encodes several name-resolution examples in Abadi [1] and Elien [6]. The two programs should be
put together. Then one can load it into XSB and type queries.

Elien’s certificate-discovery algorithm first generates all new implications and then checks
whether the desired one is in it. This bottom-up evaluation mechanism is very inefficient when
there are lots of certificates many of which are not relevant to the desired result.

Our logic programming approach puts the burden on the underlying logic programming system
XSB. In this way, we can leverage extensive research in logic programming field. The XSB’s table-
based evaluation is like a query-oriented hybrid of top-down and bottom-up evaluation. It is more
efficient than pure bottom-up evaluation, because unrelated conclusions are not generated.

10

:- table(contains/3).
:— import append/3 from basics.

contains([PO, NO | T], P2, CertS) :-
contains([PO, NO], P1, CertS1),
contains([P1 | T], P2, CertS2),
append (CertS1, CertS2, CertS).

contains([PO, NO], P, [Cert | CertS]) :-
includes([PO, NO], CN2, Cert),
contains(CN2, P, CertS).

contains([_PO, P1], P1, []) :- isPrincipal(P1).
contains([P], P, [1) :- isPrincipal(P).

contains (threshold(_K, N, _SubjectList), _P, [1) :-
N <O, !, fail.

contains (threshold(K, _N, _Subjectlist), _P, [branch(0, [1)]) :-
0> K, !.

contains (threshold(K, N, [Subject | SubjectList]), P,
[branch(K, [evidence(Subject,CertS1) | CertS21)]) :-
contains(Subject, P, CertS1),
K1 is K - 1,
N_1is N -1,
contains(threshold(K_1, N_1, SubjectList), P, [branch(K_1, CertS2)]).

contains(threshold(K, N, [_Subject | SubjectList]), P, CertS) :-
N_1is N -1,
contains (threshold(K, N_1, SubjectList), P, CertS).

Figure 4: The XSB Program for Name Resolution

11

Elien’s program can handle both name-definition certificates and delegation certificates. It is
not difficult to add the code for delegation certificates. Because we are going to question the value
of delegation certificates in SPKI/SDSI 2.0 in the next section, we stop with the current version of
the program.

3.5 Comparison with LLNC

Now let us compare LLNC’s axioms in Figure 2 with our rules in Figure 3. Our Self-containing rule
is a limited version of LLNC’s Reflexivity axiom. Our Globality rule is the same as LLNC’s Key
Globality axiom. Our Superset rule is a limited version of the Transitivity axiom. Our Linking rule
is a limited version of the chaining of the Left-monotonicity axiom and the Transitivity axiom. The
second Associativity axiom in LLNC is used implicitly when translating general compound names to
fully-qualified compound names. The Key Linking axiom is used implicitly when translating name-
definition certificates to facts of the predicate includes. The first Associativity axiom, the Key
Distinctness axiom, the Witnesses Axioms, and propositional tautologies do not have counterparts
in our logic program.

Our logic program can be viewed as a simplified version of LLNC’s axioms, yet it is still enough
to capture SPKI/SDSI’s linked local-name scheme. This simplification is possible because of the
use of two relations contains and include instead of one relation —. The simplicity leads to
direct implementation and is, we hope, easier to understand.

4 Discussions

In this section, we discuss the use of linked local names in authorization, show that local names can
serve the function of roles in Role-Based Access Control (RBAC), and suggest several modifications
of SPKI/SDSI 2.0.

Besides name-definition certificates, SPKI has delegation certificates and access control lists
(ACLs). An entry in an ACL is really a delegation from the issuer to the subject of the entry.
Because ACL entries are always stored by their issuers and are never transmitted, they do not need
to be signed and can only be used by their issuers. Otherwise, they are the same as delegation
certificates.

4.1 Compound names in ACL entries

We’ve shown that compound names can be interpreted as distributed groups. Groups can be used
to implement roles. Therefore, local names can be viewed as local roles.

In SPKI/SDSI 2.0, local names are used differently from roles. For example, the subject of an
ACL entry can be any compound name or threshold function. In particular, the subject can be
a principal. This is different from RBAC, in which authorizations can only be given to roles, and
principals can only acquire authorizations through memberships in roles.

What if we impose the restriction that only local names be used as subjects of ACL entries?
First, this restriction won’t hurt expressive power. If an ACL entry has an arbitrary complex
subject, one can always define a new local name and bind this new name to this complex subject.
Moreover, this step makes sense. If a principal wants to grant some right to some complex subject,

12

then the group of principals defined by this subject have some common meaning to this principal.
It makes sense to define a local group for them.

After making this restriction, we can view local names as local roles. ACLs grant rights to local
roles. Name-definition certificates define eligibility for local roles.

This change brings local names closer to existing paradigms such as groups and ACLs. This
makes it easier for administrators to understand. We think this is very important. No matter how
good a mechanism is, if it is very hard for the people who are going to write policies to understand
it, it is going to be hard to deploy the mechanism widely.

4.2 Principals inside compound names

The syntax for SDSI’s compound names allows principals to occur inside a compound name after
a local name. For example, the following compound name is valid.

keyA's namels keyB's names
SDSI’s resolution algorithm doesn’t have a problem dealing with it. SPKI/SDSI’s syntax also
allows these kinds of compound names; its 4-tuple-reduction mechanism doesn’t mention this case,
but it would be trivial to modify the mechanism to handle this case.

What is the intuition for such a compound name? The principal keyB resolves to itself in any
name space. It doesn’t matter what principals the name “keyA’s mame;” resolves to; as long as
it resolves to some principal, this whole compound name is equivalent to “keyB’s names.” But if
“keyA’s mame;” resolves to the empty set, then the name “keyA’s namels keyB's namey” also
resolves to empty set. Therefore, the name definition

includes([keyC, name0], [key A, namey , key B, names))
really means:

includes([keyC, name0|, [key B, namez]) : — contains([keyA, name;|, X).
This seems to be the only reasonable reading of such a certificate. Although it might be useful in
some scenarios, this is an obscure way to write a name definition. We believe that, if one really
needs the ability to specify that a name binding is valid only when another compound name does
not define an empty group, then, more likely, one needs other kinds of conditions for a name binding.
What is needed is a mechanism to specify conditions on name definitions. Such a mechanism will
yield clearer and more expressive policies. We recommend modifying the syntax of compound
names to forbid principals to appear in the middle of compound names; we further recommend
considering whether to support conditions for name definition.

)

4.3 Threshold functions in name definitions

We’ve given the logic program for handling threshold functions. But what is the intuitive interpre-
tation of a threshold function? Consider the following example:
threshold(2,3, [keyA’s namey, keyB's namesy, keyC's names)).

What group does this threshold function correspond to? According to the resolution algorithin,
it is the set of principals who belong to at least two of the three groups: “keyA’s name;,”
“keyB’'s names,” and “keyC’s names.” This is an unusual definition. In SPKI/SDSI 2.0, the
most obvious way to use threshold functions is to simulate conjunctions and disjunctions. For exam-
ple, “threshold(k,k,cny,cno,...,cny)” is actually the intersection of all groups cnq,cno, ..., cng,
and threshold(1, k,cny,...,eny) is the union of all these groups. Because SPKI/SDSI 2.0 doesn’t
have the conjunction and disjunction operators, one has to implement them this way. We believe

13

that it would be better to support conjunction and disjunction directly and therefore recommend
adding these operators to SPKI/SDSI.

4.4 Are delegation certificates necessary?

The functionality of delegation certificates can be performed by ACLs and name-definition certifi-
cates. What value do delegation certificates add? Section 4.3 of RFC 2693[7] discusses this issue.
The following example is given as a justification for delegation certificates.

Consider a firewall proxy for a network of DoD machines. The authors of [7] argue that using
ACL on the firewall would require a gigantic ACL. But this is only true without name-definition
certificates. The solution proposed in [7] uses delegation certificates. It uses an ACL to grant the
access right to the key of the Secretary of Defense and also allows this key to further delegate.
This can be done just as easily using name-definition certificates. Let key firewall be the fire-
wall proxy’s public key; the firewall proxy can have an ACL containing an entry “key firewall’s
authorized users.” Then key firewall defines its group “authorized users” to be
“key_Secretary Defense’s authorized firewall users.” The principal key_Secretary Defense
can in turn define its group “authorized _firewall users” to include groups of other principals,
and so on.

This example does not show that delegation certificates are necessary. Instead, we see that
ACLs and local-name definitions can achieve delegation of authority. Actually, this is true in
general. Delegating to a principal k& without allowing it to further delegate can be achieved by
putting k into a local group n that has the authority from an ACL. Furthermore, delegating to k
and allowing it to further delegate can be achieved by including one of £’s local groups in n. This
can implement SPKI’s boolean redelegation control.

Then, what additional values do delegation certificates offer? Our answer is “a different view
of authorization.” Delegation certificates give a per-right view. They allow the delegation of a
specific right. When one principal keyA delegates some rights to another principal keyB, keyB has
to delegate this right explicitly to other principals if the right is to propagate. For this to work,
principals need to have a common understanding of authorizations.

Local names give a per-group view to authorization. Each member of a group has every right
the group is entitled. In this sense, a group membership is a delegation of all authorities. One has
to very careful when defining one local group to include a group of another principal.

Having two views of authorization can be helpful in some special cases. But, in general, it
causes unnecessary confusion. It may be easier to achieve a common understanding of local names,
because rights tend to relate to local resources, which may not be known by other principals.

We propose only giving authorization to local names. Principals acquire authorization through
binding to local names. This use of local names is very similar to the notion of roles in RBAC. Exist-
ing RBAC normally assumes that there is a centrally defined role structure. However, local names
are distributed and controlled by different principals. Therefore, they can be called distributed
roles. This is very useful in scenarios where there is not a central authority, e.g., e-commerce.

5 Conclusion

We have introduced a simple logic program for certificate reduction and discovery of SPKI/SDSI’s
linked local-name scheme and argued that it has some advantages over existing work. We have

14

also discussed the use of “local names” in authorization and two interpretations for “local names,”
namely, distributed groups and distributed roles. We hope that this paper contributes to the
understanding of local names, SPKI/SDSI, and trust management in general.

References

[1] M. Abadi, “On SDST’s Linked Local Name Spaces,” Journal of Computer Security, 6(1-2), 1998, pp. 3—-21.

[2] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin, “A Calculus for Access Control in Distributed
Systems,” ACM Transactions on Programming Languages and Systems, 15(4), 1993, pp. 706—734.

[3] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis, “The Role of Trust Management in Distributed
Systems,” in Secure Internet Programming, LNCS vol. 1603, Springer, Berlin, 1999, pp. 185-210.

[4] ITU-T Rec. X.509 (revised), The Directory - Authentication Framework, International Telecommunica-
tion Union, 1993.

[5] W. Chen and D. S. Warren, “Tabled Evaluation with Delaying for General Logic Programs,” Journal
of the ACM, 43 (1996), pp. 20-74.

[6] Jean-Emile Elien, “Certificate Discovery Using SPKI/SDSI 2.0 Certificates,” Masters Thesis, MIT LCS,
May 1998, <http://theory.lcs.mit.edu/"cis/theses/elien-masters.ps>.

[7] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen, “SPKI Certificate Theory,”
IETF RFC 2693, September 1999, <ftp://ftp.isi.edu/in-notes/rfc2693.txt>.

[8] S. T. Kent, “Internet Privacy Enhanced Mail,” Commaunications of the ACM, 8 (1993), pp. 48-60.

[9] J. Halpern and R. van der Meyden, “A Logic for SDST’s Linked Local Name Spaces Preliminary Version,”
in Proceedings of the 12th IEEE Computer Security Foundations Workshop, 1999, pp. 111-122.

[10] B. Lampson, M. Abadi, M. Burrows, and E. Wobber, “Authentication in Distributed Systems: Theory
and Practice,” ACM Transactions on Computer Systems, 10 (1992), pp. 265-310.

[11] R. Rivest and B. Lampson, “SDSI - A Simple Distributed Security Infrastructure,”
<http://theory.lcs.mit.edu/"cis/sdsi/sdsill.html>.

[12] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman, “Role-Based Access Control Models,” IEEE Com-
puter, 29(2), 1996, pp. 38-47.

[13] D. Warren, etc. “The XSB Programming System,”
<http://www.cs.sunysb.edu/~sbprolog/xsb-page.html>.

15

A Proofs

Name-definition certificates can be classified into two types.

Definition 7 A type-1 name-definition certificate binds a local name in the issuer’s name space
to a principal. A type-2 name-definition certificate binds a local name to a compound name that is
not a principal.

Proposition 2 Equivalence of REF and certificate reduction: A compound name cn is
reducible to a principal k given a set of certificates C if and only if cn is resolvable to k given C.

Proof. By definitions, we need to prove that there exists a sequence of certificates C1,...,C)p in
C such that when C1,...,C, are applied to cn one after another, cn is reduced to k if and only if
there exists an execution of REF(C, cn) that returns k.

We first prove the only if part. Do induction on the length p of the sequence. Base case: p is
zero, i.e., cn is the principal k. Clearly, REF(C, k) returns k. Induction step, case one, cn = k{)s ny:
Consider C;. If C1 is a type-1 certificate, then p = 1 and C; =binds (ks n1, k). Therefore, line 4
of REF(C, c¢n) returns k. If C is a type-2 certificate, then C1 =binds (ks n1, kis mis ... m,),
and Cy,...,C, reduce ks mis ... my to k. By induction assumption, there is an execution of
“REF(C, kjs my ... m,)” that returns k. Therefore, line 5 to 7 of REF(C, cn) may choose C4
and returns k.

Induction step, case two, cn = k(s n}s nhs ... ng, where ¢ > 1: Consider the sequence of
compound names resulted from the reduction: cng = cn,cnq,...,cn, = k, where cn; is the result
of applying the certificate C; to cn;—1. Because each reduction step can only change the first two
symbols in a compound name. The only way to shorten a compound name is by replacing two
symbols with one principal. And compound names can only be modified from front. Then there
exists an integer s such that 1 <= s < p and cnys = kis n2's ... n,. Therefore, the certificates
C1,Cy,...,C5 reduce kjs nj to k, and the certificates Cryq,...,C), reduce ks n2's ... ng to
k. By induction assumption, corresponding executions of REF exist. Therefore, line 10 and 11 of
REF(C, cn may return k.

We now prove the if part. Suppose that there is an execution of REF(C, cn) that returns k. Do
induction on the number ¢ of all recursive calls of REF in the execution. If ¢ is one, then cn is either
k or ks k. If t is greater than one, consider the first recursive call of REF. It happens either on line
7 or line 10. If it is on line 7, then cn has the form ks n;. Let C; be the certificate chosen on lines
5 and 6 and cny be the subject of C. Because the call on line 7 returns k with £ — 1 recursive calls,
by induction assumption, there exist a sequence of certificates that reduces cni to k. Therefore,
C followed by this sequence reduce cn to k. If the first recursive call happens on line 10, then cn
has the form “kjs nis ... ng, where ¢ > 1. Then the call REF(C, k(s n1) (on line 10) returns a
principal k, within less than ¢ recursive calls, and the call REF(C, ks nhs ... ng) (on line 11)
returns k£ within less than ¢ calls. By induction assumption, there exist one sequence of certificates
that reduce k(s ni to k, and another sequence of certificates that reduce k.s nhs ... ng to k.
Concatenating two sequence together, they reduce cn to k. [|

Proposition 3 Equivalence of REF and contains: A compound name cn is resolvable to a
principal k given a set of certificates C if and only if the name cn contains the principal k.

16

Proof. First, let us prove the if part. If there is a sequence of proof steps that ends with
contains(cn, k). Do induction on the length of the sequence. Base case: when length is one,
either Globality rule or Self-containing rule is used. In either case, cn is trivially resolvable to k.
Consider the rule that is used in the last step. Again, cn is trivially resolvable to k if it is either the
Self-containing rule or the Globality rule. If it is the Superset rule, then cn is of the form k(s n,
there is a certificate in C that is represented by “includes([ko,n1], [k1, m1,ldots, m4],” and the atom
contains([ky,m1,...,mg|, k) appears earlier in the proof sequence. By induction assumption, there
is an execution of “REF(C, kis mis ... my)” that returns k. Therefore, the call “REF(C,
kys n1)” will go to line 5 through 7 and may return k. If the last step uses the Linking rule, then
cn is of the form kjs nis nbs ... ng and contains([ko, n1l, k1) and contains([k1,ng, ldots, ng|, k)
appear earlier in the sequence. By induction assumption, there exists an execution of “REF(C,
kys n1)” that returns k; and there exists an execution of “REF(C, kis nhs ... ng)” that returns
k. Therefore, there exists an execution of “REF(C, kjs nis nhs ... n,)” that goes through lines
10 and 11 and returns k.

We now prove the only if part. Suppose that there is an execution of REF(C, cn) that returns
k. Do induction on the number ¢ of all recursive calls of REF in the execution. If £ is one, then
cn is either k or k}s k. The Self-containing rule and the Globality rule will prove contains(cn, k).
If t is greater than one, consider the first recursive call of REF. It happens either on line 7 or line
10. If it is on line 7, then cn has the form k(s nj. Let C; be the certificate chosen on lines 5
and 6 and cni be the subject of C;. Because the call on line 7 returns £ with ¢ — 1 recursive
calls, by induction assumption, there exist a proof sequence for contains(cni, k). This sequence
followed by contains(cn, k) is a proof sequence for contains(cn, k), the last step uses the Superset

rule. If the first recursive call happens on line 10, then cn has the form “k{s nis ... ng, where
g > 1. Then the call REF(C, k(s n1) (on line 10) returns a principal k, within less than ¢
recursive calls, and the call REF(C, ks nbs ... mng) (on line 11) returns & within less than ¢

calls. By induction assumption, there exist one proof sequence for contains([kg,n1], k) and one for
contains([ky,na, ldots, ng, k). Concatenating them together and add contains(cn, k) to the end is
a proof sequence for contains(cn, k). The last step uses the Linking rule. [|

B Examples

The following are several examples of name resolution. To use them, make one file that contains
both these examples and the rules in Figure 4, then load the file into XSB and type in queries, e.g.,
“query1(S).”

%%/, Beginning of the example program

isPrincipal (prin(_X)).

% Example one, from Elien’s master thesis.

% The following are from certificates in Section 1.5 of Elien’s thesis.
includes([prin(k1l), ’Grad_Student’], [prin(kl), ’Jean_Emile_Elien’], cert04).

includes([prin(k0), ’MIT’], [prin(k0), ’EECS’, ’Student’], certO1l).
includes([prin(k1), ’Student’], [prin(kil), ’Grad_Student’], cert03).

17

includes ([prin(k0), ’EECS’], [prin(k1)], cert02).
includes([prin(k1l), ’Jean_Emile_Elien’], [prin(k2)], cert05).

%» The following is a certificate that uses recursive definition.
includes([prin(k0), ’MIT’], [prin(k0), ’MIT’, ’MIT’], cert00).

% The query "queryl(S)" returns a set of tuples (P,C) where P is a

% principal that "prin(k0)’s MIT" reduces to and C is the evidence sequence
% of the reduction, i.e., certificates used in the same order as in SPKI’s
% 4-tuple reduction. The following line is the result of the query.

% 8 = [(prin(k2) ’,’ [cert01,cert02,cert03,cert04,cert05])]

% This also shows that the program can handle recursive name definitions.

queryl(S) :- setof((P,C), contains([prin(k0), ’MIT’], P, C), S).

% Example two, from Abadi’s paper.

includes([prin(’K_self’), ’BrokersInc’], [prin(’K1’)], certil0).
includes([prin(’K_self’), broker],

[prin(’K_self’), ’BrokersInc’, ’NYoffice’, ’Smith’], certill).
includes([prin(’K1’), ’NYoffice’], [prin(’K2’)], certil2).
includes([prin(’K2’), ’Smith’], [prin(’smith@aol.com’)], certl3).

% Similar to "queryl(S)," the query "query2(S)" asks for all principals
% and evidence sequence that "prin(’K_self’)’s broker" reduces to.

% The following line is the result of this query.

% S = [(prin(smith@aol.com) ’,’ [certll,certlO,certl2,cert13])]

query2(S) :- setof((P,C), contains([prin(’K_self’), broker]l, P, C), S).

% Example three, to test threshold functions.
includes([prin(alice), trusted],
threshold(2, 3, [[prin(alice), friends], [prin(alice), trusted, trusted],
[prin(alice), classmates]]), cert20).
includes([prin(alice), friends], [prin(bob)], cert21).
includes([prin(alice), friends], [prin(carl)], cert22).
includes([prin(alice), friends], [prin(david)], cert23).

includes([prin(alice), classmates], [prin(bob)], cert24).

includes([prin(bob), trusted], [prin(carl)], cert25).

18

includes([prin(david), trusted], [prin(david)], cert26).

% The query does similar things as in example two; however, the evidence
% sequence is more complex than a simple list.

% The following is the answer cut into several lines. The two principals
% "prin(bob)" and "prin(carl)" are in "prin(alice)’s trusted".

% S = [(prin(bob) ’,’ [cert20,branch(2, [evidence([prin(alice),friends], [cert21]),
% evidence([prin(alice),classmates], [cert24]1)]1)1),
% (prin(carl) ’,’ [cert20,branch(2, [evidence([prin(alice),friends], [cert22]),
% evidence([prin(alice),trusted,trusted],
% [cert20,branch(2, [evidence([prin(alice) ,friends], [cert21]),

% evidence([prin(alice),classmates], [cert24])]),cert25]1)]1)1)]

query3(S) :- setof((P,C), contains([prin(alice), trusted], P, C), S).

%%% Ending of the example program

C SDSI’s name resolution algorithm

(ref: nl n2 ... nk) means REF(current principal,nl,n2,...,nk)
where
REF(P,n1,n2,...,nk) =
Q=P
for i =1 to k do Q = REF2(Q, (Local-Name: ni))
return Q
where:
REF2(P,n) =
if P is not of form (Principal: ...) ERROR
if n = (Principal: ...) return n
if n = (Group: ...) return n
if n = (Quote: y) return n
if n = (Local-Name: y) return REF2(P,lookup-value(P,y))
if n = (ref: n1 n2 ... nk) return REF(P,n1,n2,...,nk)
if n = (Encrypt: ...) return REF2(P,decrypt(n))
if n = (Assert-Hash: s h)

then let t = REF2(P,s)
if hash(t) = h then return t else ERROR
if n has the form name@al.a2..... ak
then return value of appropriate (ref: ...) form
according to special DNS name-handling rules
(This returns ERROR if P is not a local name-space.)
else ERROR
where:
lookup-value(P,y) = current value of y in P’s name space.

19

