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Abstract

The abscissa mapping on the affine variety of monic polynomials of
degree n is the mapping that takes a monic polynomial to the maximum
of the real parts of its roots. This mapping plays a central role in the
stability theory of matrices and dynamical systems. It is well known
that the abscissa mapping is continuous, but not Lipschitz continuous.
Furthermore, its natural extension to the linear space of polynomials of
degree n or less is not continuous. In our analysis of the abscissa mapping,
we use techniques of modern nonsmooth analysis described extensively in
Variational Analysis (R. T. Rockafellar and R. J.-B. Wets, Springer, 1998).
Using these tools, we completely characterize the subderivative and the
subgradients of the abscissa mapping, and establish that the mapping is
subdifferentially regular. This regularity permits the application of our
results in a broad context, by means of a calculus based on the chain
rule from nonsmooth analysis. Our approach is epigraphical, and our key
result is that the epigraph of the abscissa map is Clarke regular.
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Let P,, denote the linear space of complex polynomials of degree n or less,
and let M,, denote the affine variety in P,, consisting of the monic polynomials of
degree n. In this article we study variational properties of the abscissa mapping

a: M, — IR

given by
a(p) = max{Re(¢) [p(¢) =0}.

Our study is partly motivated by the need to provide tools for understanding
the variational behavior of the spectral abscissa mapping on the n by n complex
matrices defined by

a(M) = a(det(N — M)).

Properties of the spectral abscissa are closely tied to stability theory for matrices
and dynamical systems. Thus, the variational behavior of the spectral abscissa
has important consequences for the sensitivity of the stability properties of
such systems under perturbation. In [BO99], we apply the variational results
obtained in this paper to study the variational behavior of the spectral abscissa
map.

The abscissa mapping has a number of characteristics that make it difficult
to analyze. It is well known that a is continuous, but not Lipschitz continuous,
on M,,. In addition, the extension of a to all of P, is not continuous. In this
paper, we show that the techniques of modern nonsmooth analysis described
in the recent book [RW9S8] are ideally suited to the study of mappings of this
type. Thus, a secondary purpose of this paper is to illustrate the usefulness of
the nonsmooth analysis techniques developed by many authors over the last 30
years by applying them to a classical function of great practical importance.
Using techniques from nonsmooth analysis, we are able to establish the subdif-
ferential reqularity of the abscissa mapping. This remarkable result has major
consequences for the development of a calculus for the variational behavior of
the abscissa mapping under composition.

It needs to be stated that our analysis owes a great debt to earlier work of
Levantovskii [Lev80]. Levantovskii studied the set of stable polynomials, i.e.,
the set of polynomials whose abscissa is non positive, and provided an outline
for the derivation of the tangent cone to this set. We generalize this proof
technique to establish the key result of Section 1 (Theorem 1.2).

The paper is organized as follows; we assume that the reader is familiar
with [RW98]. Section 1 is devoted to the derivation of the subderivative of
a. This is done via an epigraphical approach where we derive the formula for
the subderivative from a description of the tangent cone to the epigraph of the
abscissa mapping a. In addition, we develop some basic tools that relate the
prime factorization of a polynomial to a factorization of the tangent cone. The
key to this result is the local factorization lemma Lemma 1.4. In Section 2,
we use the representation of the tangent cone obtained in Section 1 to derive
a representation for the set of reqular mormals to the epigraph of a. This in
turn yields a representation for the set of regular subgradients for a at any point



in M,,. In Section 3, we establish the subdifferential regularity of the abscissa
mapping. The key result is that the epigraph of the abscissa map is Clarke
regular.

Most of the notation that we use is introduced as it is required. However, it
is useful to briefly describe our conventions for discussing polynomials in their
distinct roles as points in the linear space P,, and as functions over the complex
field. One could identify P, with €"*! and attempt to derive the variational
properties of a as a mapping on C"™*!, but this would completely ignore the
very rich underlying algebraic structure of polynomials. Since it is the roots of
polynomials that lie at the heart of the mapping a, it the polynomial perspective
that drives our analysis. Given a polynomial p € P, we will always use the
Greek letter A to denote the indeterminant associated with representing the
polynomial as a function. Thus we write p(\) as the associated polynomial
function. Monomials and shifted monomials play a central role in our analysis.
For this reason we give them a special notation so that we can discuss them as
points in P,,. We write

et r) (V) = (A= Xo)".

1 The Subderivative and the Tangent Cone

To apply the tools developed in [RW9S], we first extend the definition of a to
the entire linear space P,,:
a:Pn— IR

is given by

+o0 , otherwise.

a(p) _{ max {Re (¢) [p(¢) =0} , if p € Mp;

This extension allows us to focus our attension on the set of monic polynomials.
In particular, we have dom (a) = {p |a(p) < +0} = M,,. Given p € M,,
our goal is to derive a formula for da(p), the subderivative of the mapping a.
Following [RW98, Definition 8.1], the subderivative of a at a point p € M,, is
the mapping da(p) : P, — IR U {£oo} given by

e ealp+79) —a(p)
da(p)(q) = hr%gﬂ .
where the parameter 7 is understood to be real. Since a is +00 on P, \M,,, we
have
dom (da(p)) = {p [da(p) < 400} C Pp_1.

Hence, we restrict our attention to the behavior of da(p) on the subspace P,,_1.
We approach the problem of computing da(p) from an epigraphical perspec-
tive. The epigraph of a is the set

epi(a) = {(p,n) [a(p) < p < +oo}.



Using this set, we can construct da(p) from the formula
epi (da(p)) = Tep; (o) (P> alp)) (1)

[RW98, Theorem 8.2]. Here Tepi (a) (p, a(p)) is the tangent cone to the set epi (a)

at the point (p, a(p)). For a subset C of a finite dimensional linear space X over
the real or complex field, we have

3 {z*} ¢ C and {t;} C Ry such that } @)

ok — 2, 4\, 0, and t; 2k —2) —d

To(z) = {d

v >0, and there exits {z*} C C,
= ’)/d k _ ) (3)
with zF — z such that d = lim ———©_
koo ||k — x|

where IR, is the set of non-negative real numbers and ||-|| is any norm on X.
By considering P,,_1 as a subspace of P, we have

Tepi (o)1) CPnor ® R for all > a(p), (4)
since a is +o00 on P, \ M,,. In particular,
Tepi ()P 1) = Pn1 @ IR whenever p > a(p), (5)

since a is continuous on M,,.

In our first lemma we show that the tangential geometry of epi (a) remains
essentially unchanged under the linear transformations corresponding to a uni-
form shift of the roots. For each Ay € C" define the linear transformation
H/\O : Pn — Pn by

Hy, (p)(A) = p(A = Xo)-

Lemma 1.1 Let \g be a given complexr number. Then
Tepi(ay(Hxo (P), 1+ Re(Xo)) = {(Hxo (v), 1) = (vs1) € Tepj(oy(pom)} -
Proof Define the affine transformation ];I,\O :Prn® R — P, IR by

FI}\O(pa :u) = (H)\o(p)vu+ Re (/\0))

Clearly, the mapping PAIAO is invertible (indeed, ﬁ;ol = fAI,AO). In addition,
f[;ol (epi(a)) = epi (a). Therefore, by [RW9S8, 6.7] and the invertibility of Hy,,
we have
Topi () (Hro (), 11+ Re (M) = Topi (o) (Hno (0, 1))
= VH (0, 1) Tepi (o) (s 1)
= {(H/\O(U)aM) : (Uhu’) € Tepi(a)(pan)} .



O

We now derive a formula for the tangent cone to epi(a) at (e(n,0),0). All of
our subsequence analysis relies on this key result. The proof is rather long and
involved. It is based on an outline provided by Levantovskii [Lev80] for deriving
a formula for the tangent cone to the set of stable polynomials.

Theorem 1.2 We have (v,n) € Tepi(a)(e(mo),O), with

v = [re(n_1,0) T B2€(n-2,0) + -+ Bn, (6)
if and only if
Rey > —nn, (7)
R662 > 07 (8)
Impy, = 0, and 9)
Bk = 0, fork=3,...,n. (10)

Therefore, for v € P,y given by (6), we have

da(en0))(v) = *% ,if (8)—(10) hold, and
(0) 400 otherwise.

Proof We begin by showing that (7)—(10) and (6) imply that (v, n) is an element
of the tangent cone Tepi (@) (e(n,O); 0). This is done by constructing a curve in
epi (a) converging to (e(n,0),0) and having derivative equal to (v,7). Consider
the polynomials having coefficients polynomial in £ given by

B1 b1

P8 = 0+ Zor0 st + Lo - Vet + e
= A"+ (n— 2)%@”*3 +0(&))(N + 2%5/\ + Bob + 0(€))

= X'+ BN+ BN +0(€)
= A"+ &\ +o0(&) .

Let £ be real and positive. Then a(p(),§)) = —%{. Therefore,

o aPOLE) —a) _ Re(B) _
EN0 I3 n -

which yields the result.
We now show that any element (v,7) in the tangent cone Tepi (a)(e(n,g), 0)

must satisfy (7)—(10) if v is given the representation (6). To this end, we make
use of the following norm on P, ® IR:

||(boe(n,0) +biem—_1,0)+ ...+ bn, M)H = max{ |bo|, [b1],..., |bnl, |} -



Let (v,n) € Tepi(q
a sequence {(pg, pr)} € epi(a) with (pg, px) — (€(n,0),0) and

y(€(n,0),0) with v written as in (6). By definition there is

((pka Mk) (e(n 0); )) (’Y’U, ’}/f]) (11)
H(pka.uk) e(n 0); H

for some v > 0.
Given € € €, define 0; : €" — € for j = 1,2,...,n to be the symmetric
functions

€) = Zet and oj(e) = Z (H ets> for j=2,...,n, (12)

1<t1<t2<...<t;<n \s=1
and set o = (01,09,...,0,)T. Foreach k = 1,2,... there exist complex numbers
€% = (ep1, €x2,---s€kn)T — 0 such that Re (€xj) > —pg for j=1,2,...,n and
n
PN = [T\ Ferg) = A"+ o (N4 4 ou(F)) . (13)
j=1

For each k =1,2,..., set

ke = ||(Pks 1) — (€(n,0), 0)|| = max{(|[o(e")]| _, [l }-

Then the limit (11) can be interpreted componentwise as

(") _ i, 94(€)
Vi k—oc Vg ’

~ . = 1
/f = Jim,

for j =1,2,...,n. Set 6; = ~3; for j =1,2,...,n. We establish the result by
showing that

Red1 > —nyn, Reda >0, Imaoe =0, and 6, =0 for k =3,4,...,n. (14)

Clearly, Re (G1) > —n~yn since Re (o1(€¥)) = > 05— Re(erj) > —npy for all
k=1,2,... and p /vy — 1. We now show that 6; = 0 for j = 3,4,...,n
First note that

ai(€) =o(|le]%) for j=3,4,...,n. (15)

Define
arj = Reep; and  Opj = Imey; (16)

forj=1,2,...,nand k =1,2,.... Note that ag; > —py, for j =1,2,...,n and
k =1,2,.... In addition, it is easily verified that

Re O'Q(Gk) = Z[aksakt OksOkt] and Imoa(e¥) = Zaks5kt + Z&ksakt

s<t s<t s<t



Then, by definition,

o1 ()2 =[]l + 2D Re (Froerr)

s<t

= HekHz+22aksakt+2z5ks(5kt
s<t s<t

= HekHz + 4Zaksakt + 2 Z[dksékt — aksakt]
s<t s<t

= ||+ 4 arsare — 2Recs(c")
s<t

> |42~ 2n(n — 1) — 2Re (02(e))

> |12 — 4n(n — 1) max{ |l , |o2(e9)]}

whenever [ux| < 1. Hence, if ¢¥ and puy, are such that |oq(e¥)| <
|uk] <1, then, for A = 2, we have

16n2>

max{ |ug|, |U2(6k)’ P>A HekHio ‘

2
On the other hand, if |crl(ek)| > ”62”“’ and HekHoo < 1, then |01(ek)| > Hekj‘w
Thus, in either case, we have
max(|ux|, [o1(e¥)], |oa(eh)]) > Alle<]2 (17)
whenever HekHOO <1land |ux| < 1. This implies that
ve = A2, (18)

for all k sufficiently large. This bound, in conjunction with (15), allows us to
conclude that
(K
&5; = lim %) 0 forj=3.4.....m
k—oo Vg

We now turn our attention to the coefficient 5. If
max{ |01(ek)| , |02(ek)‘ } =o(vk),

we are done since then & = 0. Hence, we assume that

02(e")| } # o(vi)

max{ ’01 (€k)

b

so that
Vi = max{ ’Ul(Gk)’ s |02(6k))’ ) |N‘k| }

for all k sufficiently large. Set #x; = max{|o;(e*)|, [uk|} for j = 1,2. Observe

02~(ek)

that if limy_. = 0, then we are done since in this case vy = pyy for all k



sufficiently large which implies that 6o = 0. Hence, with no loss in generality,
we can assume that there is a constant ¢ > 0 such that

‘Ug(Gk)| >chp forallk=1,2,.... (19)
Therefore, there is a constant K > 0 such that
K ’02(6'“)‘ >y, for all k sufficiently large. (20)

Now observe that

<3 Jeal el < 222D g2 (21)

s<t

o2(0)] = | eue

s<t

Therefore, for all k sufficiently large,

c!Re(al(ek))| <c ’O’l(ék)| < g < |02(ek)’ < n(nT—l) HekH2
and so, from (20), we have
| < vk < Knln—1) H kHOO. (22)

In particular, this implies that

Mk
€%l o

In addition, since ayj + pg > 0 for each j =1,2,...,nand all k =1,2,... and

O<Zak;+uk |Re (o1(e")| +nlue] _ n(n—1)

1
. = =T Gl
(o9}

for all k =1,2,... (recall the definition of the ay;’s from (16)), we obtain

lim -k — ¢ for j =1,2,...,n. (23)
koo [l€¥]|

Putting together, the bounds (18), (20), and (22), we obtain the relation
k)2 k n(n—1) 42
Al v < Koa(M)] < K—=—— |||, (24)
for all k =1,2,.... In addition, the bound (19) implies that

|Im(01(ek))|2 |01(€k)|2

loa(eF)] T loz(eb)]

1
szl

|2 (e")]

so that
| Im (al(ek))‘ 2

|o2(e¥)]



Now since |Im (o1(€¥))|2 = 3" 62, + 23, ., OksOke, this implies that

lim Z 6k36kt (25)

k—oo

Finally, recall that

Z Ofs Oty — Z OksOkt

+1

Z Ogs Okt + Z OksOikt

s<t s<t s<t s<t
Therefore, by (24), (25), and (23), we see that
k
Re (53) = lim Re(oa(ch) > 0.
k—o0 Vi
Similarly, from (24) and (23), we have
I k
) = Jim RO
k—o00
s Ot loke|  [Os|
S —1 hm < |ak | - + S
’HOOZ [ O O [ g [ 8
since Hl,c”‘ <lforallj=1,2,...,.nand k=1,2,....
The final statement of the Theorem concerning the formula for da(e(,,0y)(v)
now follows immediately from the equivalence of (1) and (7)—(10). O

By combining Lemma 1.1 with Theorem 1.2, we obtain the following corol-
lary.

Corollary 1.3 Given Ao € €, we have (v,1) € Ty,

v =B1em—1,0) T B2€(n—20) + -+ Bn , (26)

if and only if B1,B2,...,0n satisfy the conditions (7)—(10). Therefore, for v €
Pr—1 given by (26), we have

) (En,r0)s BE(X0)), with

da(egnny))(v) = { _% . if (8)-(10) hold,

400, otherwise.

We now show that the factorization of a polynomial into powers of linear
factors (or the prime factorization) can be used to obtain a description of the
tangent cone to the epigraph of a from Corollary 1.3. We begin by developing a
tool that allows us to treat each of the linear factors in the prime factorization
separately. We then glue the results for each of the factors back together to
obtain a result for the polynomial as a whole. This tool is provided in the next
lemma which establishes a local property for factorizations into relatively prime
factors.



Lemma 1.4 Let (n1,na,...,ny) be a partition of n, that is, for j =1,2,...,m
each nj is a positive integer and n =3 ;" n;. Set
S=CPp-10Pp—1®...0Pp,. 1

and let pj € My, for j =1,2,...,m. Consider the mapping F' : S — Py, given
by

m
F(’Uo,’l)l,’(}z,..., 1+’U0 HpJ+U]

If the polynomials p1,ps, ..., pm are relatively pmme(z.e., have no common fac-
tors), then there exist open neighborhoods U of 0 € S and W of F(0) € P,, such
that F is a homeomorphism between U and W with V(F ') eristing, continu-
ous on W, and satisfying V(F 1) (F(u)) = [VF(u)]"! for all w € U. Thus, in
particular, we have Ran(VF(0)) = P, that is, every polynomial h € P,, can be
written as

m
h = VF(0)(wg, w1, ..., wn) = erwj , (27)
for some (wo, w1, ..., wy) €S, where
m
rgznpj, and ’I“S:Hpj fors=1,2,...,m. (28)
j=1 J#s

Proof Since dim(S) = n + 1 = dim(P,), the result follows from the classical
inverse function theorem once it is shown that ker (VF(0)) = {0}. Let Z; denote
the set of zeros of the polynomial p; counting multiplicity, for j = 1,2,...,m,
and let (wg,ws,...,wn) € ker (VF(0)). Since the polynomials p1,pa,...,pm
are relatively prime, we have Z; N Z, = () whenever j # s. Equations (27)
and (28) and the inclusion (wq, w1, ..., wy,) € ker (VF(0)) imply that for each
s=1,2,...,m the polynomial

fs = rsws

has zeros not only at the points U;.sZ; (with the corresponding multiplicities)
but also at the points Z, (with the corresponding multiplicities). Hence, each f;
is either the zero polynomial or its degree is at least n. However, the degree of
each f, is at most n — 1, since ws € P,,,_1. Therefore, f, is the zero polynomial
for s =1,2,...,m. This in turn implies that w; = 0 for j = 1,2,...,m, and
finally that wg = 0. Consequently, ker (VF(0)) = {0}. O

As a first application of Lemma 1.4, we show that any factorization of a
polynomial into relatively prime factors corresponds to a factorization of the
tangent cone to the epigraph of a into separate tangent cones associated with
each of the factors.

Theorem 1.5 Let (ny,na,...,ny) be a partition of n, and let p; € My, forj =
1,2,...,m be relatively prime. Set p = H;nzl pj € My,. Let the space S and the

10



function F' : § — P, be as gwen in Lemma 1.4. If (h,w) € Tepiay (p,a(p)), then

there exists (0, w1, wa, ..., wy) €S such that h is given by (27) and (28) where,

for j =1,....m, (wj,w) € Tepia )(pj,a(p)) and ay,; denotes the abscissa
n

mapping on P, .

Proof Let (h,w) be a non zero element of the tangent cone Top; () (p: a(p))-

Then there is a sequence {(gg,ax)} C epi(a) C M,, ® IR and a scalar v > 0
such that

(K, k) — (P, a(p))
[[(qk, ) = (p, alp))||

(@, o) — (p,a(p)) and = (yh,yw) .

Let FF : § — P, be as in Lemma 1.4. Then, by trimming finitely many terms
from the beginning of the sequence if necessary so that ¢ is sufficiently close

to p, Lemma 1.4 yields the existence of a sequence {(0, Vg1, Vg2, .-, Vkm)} C S
such that (0, vk1, Vk2, ..., Ukm) — 0 and
m
qr = F(0,v51,0k2, -+, Vkgm) = H(pj +uog;) forallk=1,2,...,
j=1

since {q} C M,, = dom (a). Since (g, ax) € epi(a), we have

(pj + vkj, ax) € epi(an;) forall j=1,2,....mandk=1,2,..., (29)
and
(pj + Ukj;ak) - (pjaa(p)) for all j = 1: 27 sy M. (30)
Set vF = (0,vp1,Vk2,s ..., k) for k = 1,2,..., and set © = 0 so that v¥ — .
Then
g—p = F(O*) —F(@0)
= VF(@©)(©" —v)+o(|[v" —2]) - (31)

By Lemma 1.4, V(F~!) is continuous in a neighborhood of p so that F~! is
Lipschitz continuous near p. Consequently, there is a constant K > 0 such that

Hvk - 17| < K ||gk — p|| for all k =1,2,... This fact, combined with (31), yields
. qk — D
vh = lim
koo [[(qr, k) — (p.a(p))|l
vk — v
= VF(?) lim
k—oc ||(qr, k) — (p, a(p))
= VF(0)(0,w,wa, ..., Wn), (32)
where the limits
w; = lim Ukj for j=1,2,....,m

koo ||(qr. ) — (p, a(p))]|

11



exist since VF(v¥)~! — VF(v)~!. Equation (32) verifies the representation
(27) with w; = v l; for j = 1,2,...,m. From (29), (30) and definition
(2) (here t = [[(ge,ax) — (9. a(p)) ), we have (u;,) € Tepy (b1 a(p)), for
j=1,2,...,m, which proves the result. O

We now apply Corollary 1.3, Lemma 1.4, and Theorem 1.5 to obtain a
complete representation of the tangent cone to the epigraph of the abscissa
mapping at an arbitrary polynomial. This representation involves the prime
factorization of the polynomial. For this purpose, and for the application of
this result in later sections, it is useful to introduce some more notation.

Let p € M,, have prime factorization

m
p= H €(ns.05) (33)
j=1
where A1,..., Ay are distinct complex numbers and (n1,na, ..., ny) is a parti-

tion of n. Define S, to be the product space
S =C3Pp,—193Pny—1®...0 Py, —1. (34)

In conjunction with S, we define the mapping Fj, : S, — P, by

m
Fp(vo,v1, ..., 0m) = (1 +v0) H €nyny) T v5)  forall (vo,v1,...,vm) € Sp,

(35)
so that Fj,(0) = p. By analogy with (27), for every (wo,w1,...,wn) € S, we
have

m
VF,(0)(wo, wi,. .., wn) :erwj , (36)
j=0
where
rg =p, and TS:He(njy,\j) for s=1,2,...,m. (37)

J#s
In addition, we define

I(p) = {7 €{1,2,...,m} la(p) = Re); }, (38)

the set of indices of active roots of p.
We now state and prove the main result of this section.

Theorem 1.6 Let p € M,, have factorization (33). Then (h,w) is an ele-
ment of the tangent cone Tepi(a) (p,a(p)) if and only if there exists a wvector

(wo, w1, wa, ..., W) in S, such that
h = VE,(0)(wo, w1, wa, - - ., W), (39)
where VEFy,(0) is defined in (36)-(37),
wgo = 0, (40)

12



and

(’U)j,(.d) € Tepi(anj)(e(nj,)\j)va(p))7 fOT’j = 1725"'am' (41)
That is, if for each j =1,2,...,m, w; is given the representation
wj = Bj1€(n;—1,7;) T Bi2€(n;—2.x,) + -+ Biny (42)

then, for each j € I(p), we have

RefBj1 > —njw, (43)
ReBjz > 0, (44)
ImpBj; = 0, and (45)

Bjs = 0, for s=3,4,...,n; . (46)

Proof Let us first assume that (h,w) € Top; () (P, a(p)) and show that (h,w)
must satisfy (39), (40), and (41). By Lemma 1.4, there must exist a vector
(wo, w1, wa, ..., wy) in S, such that (39) holds. The fact that wy = 0 follows
from (4), while (41) follows immediately from Theorem 1.5. The conditions
(43)—(46) follow from (41) and Corollary 1.3.

Next, let us assume that (h,w) € P,_1 ® IR satisfies (39), (40), and (41).
We need to show that (h,w) € Tepi ( a)(p, a(p)). We accomplish this by following
the approach taken in Theorem 1.2. That is, we will exhibit a curve in epi(a)
passing through (p,a(p)) and having the tangent direction (h,w) at (p,a(p)).
For j = 1,2,...,m, give each w; in (39) the representation (42). Then, by
Corollary 1.3, we know that the conditions (43)—(46) are satisfied for j € Z(p).
For each such j € Z(p), define

PG = (A=) + By
J

< (= M) + VB0 + () - Va0t + D)
J J
= (A= 2)" + (Ba&) (A = A)™ 71+ Bjz€(A = X)) 7% + 0(€)
= (A= A)" + &w;(A) + o(§), (47)

and, for j € {1,2,...,m}\Z(p), define
piA &) = (A= Aj)"™ + &w;(A) (48)
Set p(\, &) = H;nzl p;j(X,€), so that, from (36), (37), and (39),
p(A€) = p(A)+¢ Z 7 (Aw; (A) + o(€)
= p(A) +EVE,(0)(0,wy, ..., wy)(A) + o(€)

p(A) +Eh(A) + o(8).
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Then, for all £ small, positive, and real,

Bi
a(p(A, = max Re(\; — —=—
(O-O) = e Re(y o)
< a(p) +&w
so that (p(\, €), a(p)+£&w) € epi (a) for all € small, positive, and real. Therefore,
since
lim (p()‘aé)va(p) +£w) — (p()‘)aa‘(p)) — (h()\),w),
EN0 §
we have (h,w) € Topi (a) (p, a(p)), completing the proof. O

Corollary 1.7 Let p € M,, have factorization (33) and let h € P,,. By Lemma

1.4, there exists (wo, w1, wa, ..., wn) in S, such that (39) holds where, for each
J=12,....m, w;j can be written as in (42). With this representation for h,
either wo = 0 and (44)—(46) hold for j € I(p), in which case

— Re(B1)

da(p)(h) = max ——————= |
() (1) = max ==

or

Proof By Theorem 1.6, we know that da(p)(h) = +oo if either wg # 0 or the
coefficients 35, s = 1,2,...,n;, do not satisfy one of the conditions in (44)-(46)
for every j € Z(p). On the other hand, if wy = 0 and all of the conditions in
(44)—(46) are satisfied for every j € Z(p), then the inequality (43) in Theorem

1.6 implies that (h,w) € Tepi(a)((p,a(p))) if and only if w > #j(ﬁjl) for
every j € I(p). Since Tepi(a)((p,a(p))) = epi (da(p)) [RW98, Theorem 8.2],
this proves the corollary. |

2 Regular Subgradients and the Normal Cone

We now turn our attention to the variational objects dual to the subderivative
and the tangent cone. These are the subgradients and the normal cone. These
objects are defined in terms of a duality pairing between the linear space P,
and its dual space. Traditionally the dual space is the space of continuous linear
functionals on the primal space (which in our setting is P,,). The duality pairing
is then the continuous bilinear functional obtained by evaluating a given linear
functional at a given point. However, in general, the dual space may have many
possible representations and for each representation there may be any number
of bilinear functionals that pair the spaces in duality.

In our analysis, we have chosen to regard P, as a Hilbert space, in which
case the dual of P, is itself. However, we will need to consider a whole family
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of duality pairings, or inner products, on P,. To describe this family of inner
products, recall that for each \g € ', the polynomials

6(]-7)\0), j:O,l,...,n, (49)

form a basis for P,. Hence, for each A\ € €', we can define a real inner
product on P, associated with the representation in this basis. Given p =
Z;;l aj€n—jxr) and ¢ = 2?21 bj€(n—j o), define the inner product

(Vo) i Pn®Pn— R
by

(P30 (nxo Reza] (50)
(nXo) =

Thus, in the case n = 0, we recover the real inner product on €. Note that this
family of inner products behaves continuously in p, ¢, and g in the sense that
the mapping

(pa q, )‘) = <p7Q>(n7A) (51)

is continuous on P, ® P, ® €. To see this, note that the expansions of the

polynomials p and ¢ in the basis (49) are just their Taylor series expansions at
Ao, hence,

" p () gD (N)

<p7Q>(n,)\) = Re Z T

Jj=0 ’

where f(9) denotes the jth derivative of the function f.

By setting A\g = 0 in (49), we obtain the standard basis for P,. The inner
product (50) associated with the standard basis is simply written (-, ).

The spaces S, defined in (34) also play a key role in our analysis; therefore,
we need an inner product on these spaces as well. We use the inner product

m
((wo, U1y« -« s Um) , (Vo V1, e e vy U Z us,vs (ne—T,\e) (52)
s=0
for every (ug,u1,...,umy) and (vg,v1,...,0y) in Sp, where we define ng =1 in

this expression and hereafter.

Spaces paired in duality give rise to the notion of the adjoint of a linear
transformation. Suppose (X, X*) and (Y, Y™*) are spaces paired in duality, with
the duality pairing between X and X*, and Y and Y™ given by (-,-), and
(-, )y, respectively. If A is a linear transformation mapping X to Y, then the
adjoint of A, denoted A*, is the linear transformation mapping Y* to X* defined
by the condition that

(Ay,z)y =(y,Az)y forallz € X andy e Y™

The dual variational objects studied in this section are the cone of regular
normals and the set of regular subgradients. The cone of regular normal vectors
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to the epigraph of a at a polynomial p € P,,, denoted /]\\Tepi(a) (p,a(p)), is given

by
{(z ") ’ ((z:m) (@, 1) = (p,a(p))) < o(ll(q, ) = (p, a(p))I]) }
’ V (g, 1) € epi(a) ’
where {(z,7), (g, 1)) = nu+ (2, ¢) (note that epi(a) C P, ® IR so that n and u
are real). The set of regular subgradients of a at p is given by

da(p) = {= |a(g) > a(p) + (z,q —p) +o(llg — pl)) Vg € P}

By [RW98, Theorem 8.9], we have the following relationship between the cone
of regular normals and the set of regular subgradients:

o~

da(p) = {2 [ (2:=1) € Nepi (o) (-a(0)) } - (53)

In addition, [RW98, Proposition 6.5] tells us that the cone of regular normals is
the polar of the tangent cone:

—

Nepi (o) (P, (D)) = Tepi (o) (P, a(p))° (54)

where
Topi (o2 a(0)” = {(2:6) [ (2,6, (h,w)) <0, ¥ (h,w) € T () (02 al)) } -

We take a moment to observe two important consequences of the equivalence
(54). These observations are based on the relations (4) and (5). By (4), we
have that the vector (e(,,0),0) is orthogonal to every vector in Tepi (@) (p,a(p)),

regardless of the choice of the polynomial p € M,,. Therefore, by (54),

{(Be(n,0),0) |[BeC} C Nepi(a)( ,a(p)), for every p € M,,. (55)

In addition, (5) and (54) imply that
{(Beney0) 1B € €} = Nopy (0 p), whenever > afp).  (56)

We now proceed to derive an expression for N epi (a) (p, a(p)) using (54) and
Theorem 1.6. We then use the relation (53) to determine da(p).

Theorem 2.1 Let p € M,, have factorization (33) and let Z(p) be as defined
in (38). Then (z,n) is an element of the normal cone Nepz( y(p,a(p)) if and

only if
n<0 (57)

and the vector u € S, defined by u = VF,(0)*z and given the representation
i
uj = Zujle(njfl,kj) forj=1,...,m (58)
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satisfies

uj = 0 forj¢Z(p) andj#0, (59)
Repjs < 0 forjeI(p), (60)

and there exist real m; > 0 for j € I(p) such that

T .
Z m;=-n and pj = *# for j € Z(p). (61)
JEZ(p) !

Proof Let (h,w) € Tepi (a) (p,a(p)). By Theorem 1.6, we know that there
exists (0, w1, wa, ..., wy) € S, such that h = VF,(0)(0, w1, ws, ..., w,), where
for j =1,2,...,m each w; has the representation (42) with the coefficients 3,
satistying (43)—(46) for j € Z(p), and, for j ¢ Z(p),

Bjs s=1,2,...,n; are unrestricted. (62)

Now let (z,m7) € P, ® R and set v = (ug, U1, ..., Uy) = VF,(0)*z where
each uj, j = 1,...,m is given the representation (58). Then, from definition
(52), we have

z,h)
27VFp(O)(07w17w2a <. awm»
VFP(O)*Z ) (0,’[1}1,'(1)2, R :wm)>p

(w0, U1,y ), (0, w1, W2,y W),

((z:n),(hw)) = nw+
= nw+
= nw+

o~ o~~~

e nw—|—

= nw+z<uj’wj>(njfl,)\j)
j=1
m MNj

= nw+ Z Z Re 11651 (63)
j=11=1

o~

Hence, by (54), (2,n) € Nepj ()(p, a(p)) if and only if

m Ny

nw + Z Z Re 8 <0 (64)

j=11=1

for all choices of w and B;;, j=1,...,m, I =1,...,n;, satisfying (43)—(46) for
each j € Z(p).

We first show that any (z,7) € P, ® IR for which the associated vector u =
(w0, u1,...,um) = VF,(0)*z, where each u;, j = 1,...,m has representation
(58) and for which n and pj;, j =1,...,m, L =1,...,n;, satisfy (57) and (59)—
(61), is necessarily an element of the normal cone /]\\fepi (@) (p,a(p)). For this
purpose, suppose that w and 8;;, j=1,...,m, I =1,...,n; satisfy (43)—(46)
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for each j € Z(p) so that the corresponding vector (h,w) is an element of the
tangent cone Ty, (p,a(p)). Then

m Ny
<(Zan)7(haw)> = nw+ZZReﬂjlﬂﬂ
j=11=1
-
= nw+ Z [n—_]Re(,le)—l-Re(ujz)Re(ﬂjg)
j€T(p) -
—Ref;
S Wt Z Wj(T]l)
JEL(p) /
< nw+ Z W
JEL(p)

= O7

where the first equality follows from (64), the second equality from (61), (59),
(45) and (46), the first inequality from (60) and (44), the second inequality from
(43), and the final equality from (61). Therefore, the set of (z,7) satisfying (57)—
(61) is contained in /Nepi () (P, a(p)).

We now show the reverse inclusion. Let (z,n) € /Nepi (a) (p, a(p)) and set u =
(w0, U1, -+, Um) = VF,(0)*z with each u;j, j = 1,...,m given representation
(58). We show that (z, ) must satisfy the conditions (59)—(61) by requiring that
the inequality (64) holds for every (h,w) in the tangent cone Tepi (a) (p, a(p)).
To this end, let (h,w) be any element of the tangent cone Tepi (a) (p, a(p)) so that
the corresponding vectors wj, j = 1,...,m, satisty (43)-(46) for each j € Z(p)
and (62) for j ¢ Z(p). By setting w = 1 and all ;; equal to zero in (64), we
find that n < 0. By (62), §;s is free for j ¢ Z(p), s = 1,2,...,n;, so that (64)
implies that (59) holds. Since Im 31 is free whenever j € Z(p), (64) implies that
Imp;1 = 0 for all j € Z(p). In addition, (43) and (64) imply that Repjs < 0
for all j € Z(p). Therefore, (57)—(60) have been verified.

We now establish (61). By taking Re (3;2) = 0 for j € Z(p), the expression
(63) can be simplified to

(), (hyw)) =nw+ > mji Re(Bj). (65)
JeZ(p)
By combining this with (64), we must have
Z i1 Re (Bj1) < —nw (66)
JEZ(p)

for all choices of w and Re(f;1), j € Z(p), satisfying (43). Observe that (43)
holds if and only if
w > max M_ (67)
JEZ(p) nj
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Since —n > 0, we can multiply this inequality through by —n to obtain the
inequality
—Re(8j1)

—pw > —n max — I 68
o Z ) max (68)

Since the right hand side of this inequality yields the smallest possible value of
the product —nw, we find that (43) and (66) hold if and only if

S i Re(Bn) < () max — o)

4 VBj1 € C, jE€I(p). (69)
i€T(p) JEZ(p) n;j

Consider two cases: n = 0 and n < 0. If n = 0, then (69) implies that
pj1 = 0 for all j € Z(p) so that (61) is satisfied. On the other hand, if n < 0,

define fi; = %le and f3; = #jﬂjl) for j € Z(p). Substituting into (69), we
obtain

> B < max B V€ R (70)

JET) s
But this holds if and only if fi; > 0 for j € Z(p) and EjGI(p) fi;j =1, or
equivalently, (61) holds. O

Theorem 2.1 and (53) immediately yield the following representation for the
set of regular subgradients.

Theorem 2.2 Letp € M, have factorization (33). Then z € da(p) if and only
if the vector of polynomials

VE,(0) 2z = (ug, U1, ..., Un) € Sp,
with o,
Uj:ZMjle(njfl,Aj) 1=12,...,m
=1
is such that
w = 0 forj¢I(p) andj#0,
Re(uj2) < 0 forjeI(p),

and there exist non—negative real numbers m; for j € I(p) satisfying
—; _
Z ;=1 and p;j = — for j € Z(p).
J€Z(p) ’

The representation of the set of regular normals in Theorem 2.1 and the
regular subgradients in Theorem 2.2 make use of the adjoint of the linear trans-
formation VF,(0). In the next section we use these results to establish the
subdifferential regularity of a. In order to do this we need to understand the
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behavior of the operators VF,(0) and their adjoints as p is perturbed. As a first
step in this direction we obtain a more concrete representation for VF,(0)*.
Given positive integers m, n with m +n < n, and a polynomial r € Py, we
define M(;.») : Pn — Py to be the linear transformation defined as multiplica-
tion by r:
M(rﬁ)h =rh. (71)

Note that the mapping from Py, to the space of linear transformations from Py
to P, given by
= Mg

is continuous in r. Let p € P, have factorization (33) and set ng = 1. Then the
operator VF,(0) given in (36) can be written as

VE,(0)(ho, hi, - - -, Z E— (72)
7j=0

Therefore, for every ¢ € P, and (ho, h1, ..., hy) € Sp we have

ML

<Q7VFp(O)(h0ahla"'ahm)> - <Q7M(rj7njfl)hj>

<.
Il
o

I
NE

M ,h->
< (g =0T/

j=0
= ((Mirpmgm1)® Mymimny@s v M 1)) s (o, b, . .,hm)>p.
Consequently, VF,(0)* is the transformation given by
VE 00 = (M{y 1)@ My 1y My @) (73)
For example, if p = e, ),), then
VE,(0)(ho, h1) = hoem ) + 1
and .
VE(0)* Y bie(n—jro) bg,Zb €n—jro)) (74)
j=0

In this case VF,(0)* = VF,(0) !
Theorem 2.2 and (74) immediately yield the following compact formula for
the set of regular subgradients of a at e, x,):

. = Z?:o Hj€(n—j,x0)
da(e(n,z,)) = § 2 | where uj eC, j=0,1,...,n, ;. (75)
p1 = =%, and Re (u2) <0

n ?
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A compact representation in the general case can be obtained with the aid of
the recession cone of this set:

R = Z?:o Hi€(n—75,20)s
da(e(nng))™ =1 2| where uj € €, j=0,1,...,n, . (76)
u1 =0, and Re(u2) <0

Define éa(e(m/\o))oz’ as the projection of éa(e(n,xo))o" onto Pp_1:

) ) 2= Yje1 Hi€n—j o)
dale(n,n))™ =1 2| where p; € €, j=1,...,n,
u1 =0, and Re(u2) <0

Then, given a polynomial p € P,, having prime factorization (33), the set of
regular subgradients of a at p has the form

da(p) = F,(0)™* [conv {v; | j € Z(p) } + K], (77)
where vq,...,vy, €Sy are given by
1
V1 = —n—l(o,e(n1,17A1)70,...,0)
L (0,0 0,....0)
v e _— Clr. _ “ e
2 o y Uy E(ne—1,22)s Yy )
1
Um = 7_(0a07'"aoae(nm—l,km))a
Nm

and K is the convex cone in S, given by

K=C® 3a(e(nlyh))°~° X...Q aa(e(nm,ly,\m))“’
Observe that this implies that the recession cone of éa(p) is given by

da(p)* = F(0) K. (78)

3 Subdifferential Regularity

The set of normal vectors to epi(a) at a point (p, u) € epi(a) is given by

F{(pk, &)} C epi (a/)l {(zk,wi)} TP ® R
with (zp,wg) € Nepi(a)(pkaﬂk) VE,
such that
Pk, ) — (ps 1), and (zg, wi) — (2,w)

Nepi (a) (psp) = 1 (2,w)

(79)
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The abscissa mapping a is said to be subdifferentially regular (equivalently,
epi(a) is Clarke regular) if

—

Nepi (a)(Pr 1) = Nepi (o) (Ps 1) (80)

for all (p,u) € epi(a) [RW9S8, Definition 7.25]. The goal of this section is to
establish (80).

Some simplification is possible due to the continuity of a on its domain M,,.
Recall from (56) that

—

Nepi (a) (p, ) = {(ﬂe(mo)ao) EXS (U} whenever p > a(p).
Since this subspace is constant on the set {(p, ) | > a(p) }, we find that

Nepi (a) (P2 1) = Nepi (o) (P, 1) whenever 11> a(p).

Therefore, to establish subdifferential regularity we need only establish the
equivalence (80) at the points (p,a(p)) for p € M,,. In addition, from (55),
we have {(Be(,,0).0) |3 € C} C Nepi (a) (p, p) for all (p, u) € epi(a). Hence, it
is always the case that

—

Nepi (a)(Ps1) € Nepi (o) (P 1) whenever a(p) < p <.

Therefore, the representation for the normal cone at the points (p,a(p)) for
p € M,, can be refined to

IHpr} € Ma, {(zh,08)} CPo @ R
(2,0) with (zp,wg) € Nepi(a)(pk,a(pk)) VEk,
such that
pr — p, and (zx,wi) — (z,w)

Nepi (a) (p.a(p)) =

(s1)

However, even with this simplification, we are confronted with a significant
technical hurdle. Recall from Theorem 2.1 that the regular normals are char-
acterized through the adjoint operator VF,(0)*. Therefore, we now need to
compute limits of these operators along sequences pr — p. But these adjoints
are defined as linear transformations from P, to Sp, and are based on the inner
products (-,-), . How can we interpret limits of the adjoints VF, (0)* when
the spaces S, and their associated inner products (-, -) p, My not even be com-
mensurate? The answer again lies with the local factorization lemma, Lemma
1.4.

Suppose that the polynomial p € M,, has prime factorization (33) and let
{pr} be a sequence of monic polynomials converging to p. Lemma 1.4 says
that, by trimming off finitely many elements of the sequence if necessary, we
may assume with no loss of generality that each of the polynomials p; has a
factorization of the form

Pk = H dky (82)
j=1
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where the roots of the polynomials gx;, j = 1,...,m, are pairwise disjoint and
Qkj — €(n;,n;) for each j = 1,...,m. Moreover, since there are only finitely
many partitions of n, we may assume with no loss in generality (by extracting
a subsequence if necessary) that there exist positive integers ¢;, j = 1,...,m,

and njs, j =1,...,m, s = 1,...,¢;, with Zﬁ"zl njs = n;, such that, for each
k=1,2,...

45
i = [ €nsonnse) (83)
s=1

where the complex numbers Agjs, 7 =1,...,m, s = 1,...,{; are distinct and
satisfy Agjs — Aj for s =1,...,¢;. Hence, for each k = 1,2,..., we have

m

Spe =C® | (Pnjl,l Q... ®7>nﬂj,1) , (84)

=1

m é_[

Fpk(’Uo,’U]l, e U1ty oo s Umdy - - - J’Umfm) = (1 +’U0) H H(e(njs,kkjs) +'Ujs>,
j=1s=1

(85)
and

m L
VFpk (0)(h0, hi1,y ..., hlzl, vy hmt, .. hmgm) = horio + Zrkj Zf’kjshjs
j=1 s=1

(86)
where
[J
o = pr and  Tgj, = H H €(njeNijs) Jo=1,...,m
J#jo s=1
and
Zjo
fkjoso = H e(njos’)\kjos) j(] = 1, ceoymy Sg = 1, e ,Kj .
et
Let us write & = Sp,.» since S, is fixed for all & = 1,2,.... Note that as
k — oo, we have r; — 15, where r; is defined in (37), for j = 0,1,...,m, and
This — €(n;s,\,): Where fijs = nj —njs, for j =1,...,m, s = 1,...,{;. Hence,
VFE,, (0) — ¥, where the linear transformation ¥ : S — P, is given by
m 45
\I/(ho, hll; Ceey hlgl, - ,hml, Ceey hmém) = hgrg + ZT‘]’ Ze(ﬁjsij)hjs
j=1 s=1
(87)

Observe that the representation of VF),(0) given in (72) enables us to write the
operator ¥ as the composition

U = VF,(0)oE, (88)
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where the linear operator = : S— S, is given by

E(h(]ahll:-"ahlha 7hm17-"7hmfm)

£ 4
= <h07Ze(n157A1)h15,..., e(nan7Am)hms). (89)

s=1 s=1

3

Theorem 2.1 gives us access to the regular normals through the adjoint op-
erators VF,(0)*. Thus, in order to understand the normal cone, which consists
of the limits of the regular normals, we need to come to an understanding of the
limit of the adjoints VFj, (0)*. This limit is an adjoint of the operator ¥. How-
ever, what this means needs clarification since each of the adjoints VFj, (0)*
arises from a different duality pairing. We need to determine the correct duality
pairing for the definition of the adjoint U* so that it is the limit of the operators
VE, (0)".

The duality pairing that we seek is obtained from our earlier observation
(51) that the mapping (p,q, ) — (p.q), is continuous. This continuity implies
that the pointwise limit of the inner products (-, -)pk exists as k — oco. Indeed,
for each

U = (uo,un,...,uu” ,uum,...,umgm)
and
U= (V0y V115« s Vltyy « -+ s V1,5 -« s Umi,, )

in S, we have
(u, ), — (u,v),

where
Z.?

(u,0) 0 = (0, v0) + DY (Ujs Vjs) (.. 1, - (90)

j=1s=1

Therefore, if we define ¥* to be the adjoint of ¥ with respect to the duality

pairings (Pm < ) >) and (Sa < ’ >oo)a then
VE, (0) — . (91)

Our next task is to derive a representation for the operator ¥*. Using the
representation for ¥ given in (88), this reduces to deriving a representation for
the adjoint of the operator Z. For this, the following lemma provides the key.

Lemma 3.1 Let \g € C and let § = (ny,na, ..., Ny) be a partition of n. Define
Ds to be the product space

Ds =Pni-1) @ Ping—1) @ - - @ P, —1)>

endowed with the inner product

m

(1, sum), (v, - -avm»(&,)\o) = Z (u; an>(nj71,)\0) :

j=1
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For j =1,2,...,m, define nj = n —n; and consider the linear transformation
D(570) : Ds — Pr—1 given by

m

(b((s)\o)(hl? Tt hm) = Z e(ﬁj7)‘0)hj
Jj=1

Then the adjoint of ®(s,x,) with respect to the duality pairings
(Pn-1, (-, '>(n71,,\0)) and (Ds, (-, '>(5,>\0))

is given by

5>\0 E bje(n—jxe) E bj€(ni—j,x0)s § :b €(nm—3j,N0)

Proof Define J; = {j |n; > s} for s =1,2,...,n. Note that J; may be empty
for some values of s. For example, if m > 2, then J,, = 0. Let (hy,...,hp) € Dy,
where each h; € P, 1 has representation

hj = ajiem;—1.20) + @j2€(n;—2,00) T -+ + Qjn; -

Given q € P,,_1 with
q= ble(n—l,Ao) 4+ ...+ by,

we have

<q 3 q)(é,)\o)(hla ceey hm)>(n,17)\0)

= <(ble(nl7>\o) +.o0+ bn) y | E(n—1,20) Z 51

je1

n2)\0 ZCLJQ . Zajn >

JEJ2 JE€In (n—1.20)

= Re 51 Zajl +---+Bn Zajn
JEJ1 JE€EJIn
Zl Bsals + ZQBS(]IQS + ...+ Zmbsa'ms]
= < <Z b e(nl $,20)7 Z b e(nm s >\0)>
<Z A15€(ny—s,X0)> Z Ams€(n,,—s, )\0)> >
(6,20)

= <<Zb € —sh0)> Zbe(nm SA[,)) (h1,...,h )>

= Re

(61>‘0)
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Since this relation holds for all possible choices of ¢ € P,,_1 and (h1,...,hy,) €
Ds, we have established the result. O

By using the notation developed in Lemma 3.1, we can rewrite the operator
E, defined in (89), as

E:Diag (17(1)(51,/\1)7'"7(1)(5m,)\m))? (92)

where §; = (nj1,n2,...,n4,) is a partition of n; for each j = 1,2,...,m.
Hence, from (88), we have

U = =" 0 VE,(0)*, (93)

where Z* : §, — § can be written as

=" = Diag (1,050, ®f5, 00 ) - (94)
An explicit representation for the operator =Z* can be obtained by applying
Lemma 3.1 to each of the operators @5, ;) for j =1,2,...,m.

We now prove the main result of this section.

Theorem 3.2 The abscissa mapping a is subdifferentially regqular. Equiva-
lently, epi(a) is Clarke regular.

Proof Let p € P,, have factorization (33). Let (z,w) € Nepi (a) (p, a(p)) so that
there exist sequences {pr} C M,, and {(zk,wr)} C Pn ® IR such that p, — p,
(zg,wi) — (z,w), and (zg,wk) € /Nepi(a)(pk,a(pk)) for k =1,2,.... We need
to show that (z,w) € /ﬁepi (@) (p,a(p)).

The discussion preceding this theorem shows that we may assume with no

loss of generality that (82)—(94) hold for the sequence {pr}. Hence, we make
free use of these facts and their associated notations.

Let Z(pr) = {(j,s) |a(pr) = Regjs }. Since (z,wr) € /Nepi(a)(pk,a(pk))
for k =1,2,..., Theorem 2.1 states that wix < 0 and there exists

Ug = (Uk(), Uk11y -« -y Uk1lyy - -y Ukmls - - - 7uk:mém) €S
with
Njs k = 17 2./ « e
ukjs - Z,ukjste(njs—t,kkjs) .7 = 1727"‘7m
t=1 s=1,2,...,4;,
such that
up = VF, (0)"z, (95)
Ukjs = 0 for (Ja S) gi—(pk)a (96)
Re Hkjs2 S 0 for (.7; S) € j(pk)a (97)
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and there exist real g, > 0 for (4, s) € Z(py) with

Z ijs = —Wk (98)
(4,5)€Z(p)
such that

Tkis . ~
[ikjs1 :frfj for (j,s) € Z(pk)- (99)

js
Due to the finiteness of the index sets, we may assume with no loss of
generality that Z(py) =7 for all k = 1,2,.... Define

I:{j ’(j,s)efforsomes:l,...,ﬂj}.

By the continuity of the roots of the monic polynomials (as a multi-valued
mapping), we have Z C Z(p), where Z(p) is defined in (38). Since wp — w,
compactness and (98) imply that we may also assume that there exist

mjs >0 for (j,s)el (100)

such that 7,5 — m;, and

Y me=—w. (101)

(G,9)€1
Using (91), let
u=U"2= lim VF, (0)"z = lim uy, (102)
k—o0 k—o0
and write .
u = (UO,UH,---7U1€17---7'Uzm17 ,umgm) eSS
where
Njs
Ujs = Zujste(njsft,/\j)a (103)
t=1
with pigjst — pjse for j=1,...,m, s=1,...,¢;, t=1,...,njs.

By (102) and (95)—(97), we have

ujs = 0 for (j,s) &1, (104)
Repjss < 0 for (j,s) € 7. (105)
In addition, by (99), we have

7Tj3 . ~

Pjs1 = ——— for (4,s) € L. (106)
Njs
Set

(Wo, Wi, ..y, W) = VEL(0)*z, (107)
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with
n;
wj =Y bjsen,—sn;)  forj=1,...,m. (108)
s=1
By (93), (102), and (107), we have
(’U,jl,uj'g,...,u]'gj):(I))(k(;j’)\j)w‘j forj:1,...,m.
Consequently, by Lemma 3.1 and (103),

Njs Njs

Ujs = E Hjst€(nj,—t, ;) = E bjte(nj—t,7;)
t=1 t=1

forj=1,...,m, s=1,...,¢;, or equivalently,
st =bje  forj=1,....my s=1,....6; t=1,.. nj. (109)
Combining this with (104) and the definitions (103) and (108), we find
w; =0 forj¢1, (110)
combining (109) with (105) yields
Rebj, <0 for j €, (111)
and combining (109) with (106) yields

Tjs

Hjs1 = —n = 051 for j € j (112)

js

Therefore, for every j € 7 for which bj1 # 0 it must be the case that pjs1 # 0
which implies that {(j1), (j2),...,(j¢;)} C Z. Therefore, by (101) and (112),

£
—w==D > bjnjs == b,
jei s=1 jel
If we now define m; = —bjin; for j € Z, then —w = >_jez ™ while (112) and
(100) imply that 0 < 7; for j € Z. Therefore, by (107), (110), (111), the

inclusion Z € Z(p), and Theorem 2.1, we find that (z,w) € Nepi (a) (p,a(p)),
which establishes the result. O

Just as the set of normal vectors is defined to be the set of limits of regular
normal vectors, the set of subgradients is defined to be the set of limits of regular
subgradients:

I{pr} C dom (a) and {qr} C Pn,
Oda(p) = ¢ q | such that g, € éa(pk)Vk =1,2,..., ;. (113)
pe — pand g — q
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The set of horizon subgradients, denoted 0>°«a(p), is defined similarly, however,
instead of g — ¢ one has trqr — ¢ for some sequence of positive real numbers
{tx} converging to zero. As in the case of regular subgradients, there is a
relationship between these subgradients and the normal cone [RW98, Theorem
8.9]:

da(p) = {q ‘(q,*l) € Nepi(a)(p,a(p))}

and
0%a(p) = {q ’ (q,0) € Nepi (a) (p,a(p)) }

Using these relationships, Theorem 3.2 and [RW98, Corollary 8.11] imply that

da(p) = da(p) and 0%a(p) = da(p)™ (114)
(see (77) and (78)).
The subdifferential regularity of the abscissa mapping implies that it pos-

sesses a rich subdifferential calculus. For example, the following chain rule
holds.

Theorem 3.3 [RW98, Theorem 10.6] Let X be a finite dimensional Fuclidean
space, and suppose G : X — Py, is continuously differentiable in the real sense.
Consider the composite mapping g = ao G. If x € X is such that the only
polynomial q € 0°a(G(x)) with VG(x)*q =0 is ¢ = 0, then

dg(x) = VG(2) da(G(z)), 9%g(x) = VG(2)"0%a(G(2)),

and

dg(x)(d) = da(G(x))(VG(x)d).

To illustrate these results, we apply Theorem 3.3 to the example studied in
[BLO99]. Let X be €™ with the standard real inner product, and consider the
composition of the abscissa function with the affine mapping G : C" — P,
given by

G(ZL‘) = (1 -+ Io)e(n,o) -+ T1€(n—1,0) — Z Tj—-1€(n—j,0)-
=2

In [BLO99, Theorem 2.1], it is shown that = = 0 is a strict global minimizer of
the function g = a o G. Since G is affine, we have

VG(0)d = doen0) + die(n-1,0) — Z dj—1€(n—j0
j=2

and
n

VG0) > yiem—j0 = Mo, Y1 = Y2, =3, -, —Yn)-
=0
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The representation for 0>°a(e(n,0)) given by (114) and (76) shows that the only
q € 0®a(e(n,0)) with VG(x)*q = 0 is ¢ = 0. Therefore, Theorem 3.3 and the
relations (114) and (75) show that

A 1
9g(0) = 9g(0) = {(zo,zl — 5,22,...,%_1) | Rezg > 0}.

Finally, observe that since the origin is in the interior of 5g(0), we have, directly
from the definition of regular subgradients, that x = 0 is a sharp minimizer of
g in the sense that there exist € > 0 and x > 0 such that

g(x) > g(0) + & ||zl whenever  ||z]| < e.

Further consequences of these results are explored in [BLO99].
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