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1 Introduction

Modern optimizing compilers contain several optimization phases, including register allocation and in-
struction scheduling which have received widespread attention in past academic and industrial research. It
is now generally recognized that the separation between the register allocation and instruction scheduling
phases leads to significant problems, such as poor optimization for cases that are ill-suited to the specific
phase-ordering selected by the compiler, and additional conceptual and software-engineering complexities
in trying to adjust one phase to take into account cost considerations from the other. The goal of our research
is to address these problems by building on past work and combining register allocation and instruction
scheduling into a single phase. Henceforth, we refer to our model of these problems as CRISP (for Combined
Register allocation and Instruction Scheduling Problem).

The main contributions of this paper are as follows:� A formulation of combined register allocation and instruction scheduling within a basic block as a
single optimization problem, with an objective cost function that more directly captures the primary
measure of interest in code optimization — the completion time of the last instruction.

This formulation has new underlying data structure abstractions which lend themselves to designing
the heuristic algorithm mentioned below. This heuristic algorithm could not have been formulated in
the context of an existing phase-ordered solution.� A result showing that a simple instance of the combined problem (single register, no latencies, single
functional unit) is NP-hard, even though instruction scheduling for a basic block with 0/1 latencies on
a single pipelined functional unit is not NP-hard (for a given register allocation) and register allocation
for a basic block is also not NP-hard (for a given schedule).� A result showing that the combined problem is much easier to solve approximately than graph coloring,
which is a common formulation used for the register allocation phase in phase-ordered solutions5.� A simple and effective heuristic algorithm for the combined problem. This algorithm is called the�������	�

-Combined Heuristic; parameters
�

and
�

provide relative weightages for controlling register
pressure and instruction parallelism considerations in the combined heuristic.� Experimental results comparing the heuristic algorithm for the combined problem with two phase-
ordered solutions (register allocation followed by instruction scheduling, and instruction scheduling
followed by register allocation) on randomly generated graphs.

Preliminary results show that the combined heuristic yields improvements in the range of 16-21%
compared to the phase-ordered solutions, when the input graphs contain balanced amount of register
pressure and instruction-level parallelism. If there is an imbalance, then the performance of the
combined heuristic approaches that of one of the phase-ordered solutions.

Most of the results in this paper apply to combining register allocation and instruction scheduling within
a single basic block. Our ultimate research goal is to extend these results to a more global context. However,
it is important to first get a detailed understanding of the combined problem and its characteristics in the
context of a single basic block, since such a combined approach has not been studied earlier in the literature.
This is what the contributions in our paper provide. In addition, there are cases of practical interest that arise
in which large basic blocks are encountered (typically, after code transformations such as inline expansion

5Graph coloring is used as a common formulation for global register allocation, i.e., register allocation across multiple basic
blocks. In practice, most compilers that use graph coloring do so uniformly for both local and global register allocation, rather than
using an optimal algorithm for register allocation within a single basic block (for a given schedule).
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of calls and unrolling of loops) with sufficient register pressure to warrant the use of the combined solution
for a single basic block presented in this paper.

The rest of the paper is organized as follows. Section 2 uses an example to discuss phase-ordered
solutions to the register allocation and instruction scheduling problems for a single basic block, and to
illustrate the problems that arise in phase-ordered solutions. Section 3 presents our basic formulation of
the combined register allocation and instruction scheduling optimization problem for a single basic block.
Section 4 starts by showing that the combined problem is NP-hard. This section also shows that the
combined problem is essentially in low-level approximation complexity class (MAX SNP) and thus easier
to solve approximately than graph coloring and many other NP-hard problems. Section 5 presents a simple
polynomial-time heuristic for our formulation of the combined register allocation and instruction scheduling
problem. Section 6 outlines some important extensions to the basic formulation of the combined problem
presented in Section 3. Our results apply to this extended formulation as well; these extensions were excluded
from the basic formulation so as to simplify the technical discussion in the earlier sections. Section 7 contains
experimental results comparing phase-ordered solutions for register allocation and instruction scheduling
with our approximate solution to the combined problem. Section 8 discusses related work, and Section 9
wraps up with conclusions and an outline of future work.

2 Phase-ordered Solutions

Source Code: 

Z = X(i)

temp = X(i+1+N)

 Intermediate Code

v1: VR1  ADDR(X)+i

v2: VR2 LOAD @(VR1)

v3: Z STORE VR2

v4: VR4  VR1+1

Dependence Graph

v3v1

0

0
v2

v4

v6

v5

0

1

1:

LOAD NVR5v5:

v6: VR6  LOAD @(VR4+VR5)

Figure 1: A Basic Block and Dependency Graph

v1 v6

VR5
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VR4VR1 VR1

VR2

Figure 2: Instruction Scheduling followed by Register Allocation

In this section, we use an example to discuss phase-ordered solutions to the register allocation and
instruction scheduling problems for a single basic block, and to illustrate the problems that arise in phase-
ordered solutions. In our discussion, we informally use terms such as “value range”, “spills”, “schedule”,
and “completion time” and postpone their formal definitions to Section 3.

The example that we will use is shown in Figure 1. To simplify the discussion, we chose an example
with a small basic block (6 instructions) in the context of a single two-stage pipeline and two available
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Figure 3: Register Allocation followed by Instruction Scheduling
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Figure 4: Combined Register Allocation and Instruction Scheduling

physical registers. The trends discussed for this example can also be observed for larger problem sizes, as
reported in Section 7.

Instruction Scheduling followed by Register Allocation A common phase ordering used in industry
compilers is to perform instruction scheduling before register allocation. This phase ordering gives priority
to exploiting instruction-level parallelism over register utilization, which, if one had to choose a specific
phase ordering, is quite likely the right choice for modern RISC processors.

It is well known that any phase-ordered solution can generate poor code for cases that are ill-suited to
that phase-ordering. Figure 2 shows the schedule generated by this approach. It is an optimal schedule
with no idle slots and completion time = 6 cycles. The instruction scheduler cleverly hides the unit latency
in each memory instruction by pushing 
 3 further away from 
 2 and by pulling 
 5 further away from 
 6.
However, the problem occurs later during register allocation where we see that the instruction schedule has
stretched out value ranges

�
vr2
���

1
� 
 2 ���� 1

� 
 3 ��� and
�
vr5
���

1
� 
 5 ���� 1

� 
 6 ��� thus increasing register pressure.
As a result, the bandwidth at time 3 is three, and this phase-ordered solution is forced to spill one value
range.

Register Allocation followed by Instruction Scheduling The converse approach is to perform register
allocation before instruction scheduling. This phase ordering gives priority to utilizing registers over
exploiting instruction-level parallelism. It was a common approach used in early compilers when the target
machine had only a small number of available registers. Figure 3 shows the schedule and register allocation
generated by this approach. The register allocation requires no spills. The register allocator cleverly avoids
spilling a value range by allocating virtual registers vr2, vr5 to one physical register and vr1, vr4 to the
second physical register. However, the problem occurs during instruction scheduling when we see that an
idle slot is created in the schedule between 
 2 and 
 3 and between 
 5 and 
 6 due to extra register dependences.
As a result, the completion time of the schedule is now 8 cycles, with no spills.

Combined Register Allocation and Instruction Scheduling This approach pays attention to issues
relating to both spilling and loss of instruction-level parallelism.

Figure 4 shows the schedule and register allocation generated by this approach. This solution chose to
move 
 5 closer to 
 6, but did not move 
 3 closer to 
 2. As a result, there is one idle slot in the schedule and
no value ranges need to be spilled.

3 CRISP Model for a Single Basic Block

Let ������
 1 ��������� 
���� be the set of instructions in the basic block. ��� �!�#"$� is the data-dependence
graph, in which an edge

� 
�% � 
'& � enforces the constraint that instruction 
'& must start execution after
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instruction 
�% completes in any feasible schedule. Each instruction is labeled with an execution time, ( � 
�% � .
Each dependence edge

� 
 % � 
 & �*) �+� is labeled with an inter-instruction latency, , � 
 % � 
 & �*- 0; this means
that instruction 
 & must start at least , � 
 % � 
 & � cycles after the completion time of instruction 
 % . In this basic
formulation, we assume that all instructions have the execution time = 1 cycle, and all edge latencies are
either 0 or 1. These assumptions are primarily for ease of exposition; extensions to this basic formulation
are discussed in Section 6.

A schedule,
�

, specifies the start time
�.� 
 % �/- 0 for each instruction 
 % . The completion time of schedule�

(also referred to as the makespan) is simply 0 ���1� � max%2� ��� 
�% �43 ( � 
�% � � , the completion time of the
last instruction to complete in

�
. All schedules must obey the following condition, which enforces the

data-dependence and the inter-instruction latency constraints:��� 
 & �657��� 
 % �13 ( � 
 % �83 , � 
 % � 
 & � for each data-dependence edge
� 
 % � 
 & �6) �+�

To model register usage, we define 9;:�< � 
 % � and =><�? � 
 % � to be the set of virtual registers read and
written by instruction 
 % . We assume that each virtual register @ satisfies the static-single-assignment rule:@ must belong to exactly one =A<�? � 
 % � set. Thus, a single program variable is separated into multiple virtual
registers, one for each def. We define BC@ED�= � @ � to be the producer instruction for virtual register @ so thatBC@EDE= � @ � ��
 %!F @ ) =A<�? � 
 % � , and we define GDEHI: � @ � to be the set of consumer instructions for virtual
register @ so that 
�% ) GD�HI: � @ � F @ ) 9C:�< � 
�% � . We assume that the dependence graph �+� includes all
data flow dependences on virtual registers i.e. for each virtual register @ , 
 % �JB;@�DE= � @ ��K 
 & ) GDEH8: � @ � F� 
 % � 
 & �L) ��� . �+� may include other dependences as well, e.g., a dependence between two memory
operations that may potentially interfere.

For a single basic block, we do not need to worry about the case of multiple defs reaching the same use
(as identified by M -functions in static-single-assignment form). Since the basic-block contains straight-line
code with no intervening control flow, there must be a unique def value that reaches a specific use6. We also
assume that all virtual register-register copy operations are coalesced within the basic block before invoking
the instruction scheduling and register allocation phases of the compiler.

It is also convenient to define NO� maxP�QSRUT.�WVX9C:�< � 
 % � V 3 VY=A<�? � 
 % � VZ� to be the maximum number of
virtual registers accessed by a single instruction. Typically, N 5 4.

For a given schedule
�

, we define a value range of virtual register @ to be the triple
� @ ����� 
 % ������ 
 & ��� ,

such that� ��� 
 % �/[\��� 
 & � , instruction 
 % is scheduled before instruction 
 & in
�� 
 % is either a producer or a consumer of virtual register @� 
 & is a consumer of virtual register @� there is no intervening instruction 
E] such that

��� 
 % �/[\��� 
E] �/[7��� 
 & � and 
E] is a consumer of virtual
register @

Note that a virtual register can have multiple value ranges: the first being from the def to the first use,
the next being from the first use to the second use, and so on. This is different from a live range, which
traditionally extends from the first def to the last use. Value ranges represent the finest granularity for
splitting live ranges.

Let VR
�S�1�

be the set of value ranges (triples) over all virtual registers in schedule
�

. The bandwidth
of VR

���1�
at any time ^ , _a` ���I� VR

���1�� ^ � is the number of value-ranges in VR
���1�

that start at some time
before ^ and end at some time after ^ in schedule

�
. Note that there is no overlap between a value range that

6A virtual register that is live on entry to a basic block is modeled by adding a def to a dummy source node for the basic block,
and a virtual register that is live on exit to a basic block is modeled by adding a use to a dummy sink node for the basic block.
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ends at instruction 
�% and a value range that starts at instruction 
�% . This correctly models the hardware’s
ability to execute an instruction that uses the same physical register as an input and an output, without there
being any interference between the two.

Let b be the number of physical registers available. Register spills are required if _a` ���I� VR
���1�� ^ �4c b

at any time ^ . Let SVR
���d� � VR

���1�
be the set of spilled value ranges and AVR

���1� � VR
���1�fe

SVR
���1�

be
the set of active (non-spilled) value ranges.

Spilling a value range,
� @ � ^ 1 � ^ 2 � , has the effect of forcing the value contained in virtual register @ to

reside in memory during the time interval,
� ^ 1 � ^ 2 � , thereby avoiding the need for a physical register to

hold that value during that time interval. The overhead of spilling a single value range consists of a store
instruction inserted at time ^ 1 and a load instruction inserted at time ^ 2. For architectures that charge a single
cycle overhead for each instruction, the total cost of all spilled value ranges will equal twice the number of
spilled value ranges7.

Schedule
�

and spilled-value-range set SVR
�S�1�

are said to be resource-feasible if and only if they satisfy
the following two resource constraints:

1. At any given time ^ , the bandwidth for the active value ranges must be no larger than the number of
available registers, _g` ���I� AVR

���d�� ^ �45 b .

In this basic formulation, we ignore the (at most N ) extra registers required for storing and loading
spilled register values. This is not a serious limitation because typically, at any instant of time in the
schedule, the number of registers to be spilled is much smaller than the number of available registers.
For processors with hardware register renaming, the extra registers are a non-issue.

2. At any given time ^ , the number of executing instructions (i.e. instructions with
��� 
 % �h5 ^ [��� 
 % �13 ( � 
 % � ) must not exceed the number of available functional units i .

In this basic formulation, we assume that i � 1, deferring the discussion of the general case to
Section 6. Together with the restriction of 0/1 edge latencies, our basic formulation models a CPU
with a single two-stage pipeline as in [25, 26, 4].

Given the above definitions, we formulate the combined register allocation and instruction scheduling
problem as follows:

Combined Register Allocation and Instruction Scheduling Problem (CRISP) Π ] � b � :
Find a resource-feasible schedule

�
and spilled-value-range set SVR

�S�1�
so as to minimize the overall

completion time j ���d� �k0 ���d�83 2 V SVR
���1� V , the sum of the completion time of the schedule and twice the

number of spilled value ranges.

4 Theoretical Underpinnings of CRISP

In this section, we present a rigorous theoretical study of the CRISP problem Π ] � b � as formulated above;
due to space limitations, the proofs of our results are either omitted or placed in the Appendix. First, we show
that the problem (in fact, an extremely restricted version thereof) is NP-hard. We observe that instruction
scheduling for a basic block with 0/1 latencies on a single pipelined functional unit is not NP-hard (for a
given register allocation) and register allocation for a basic block is also not NP-hard (for a given schedule).

Given that the combined cost measure has not been studied earlier in the literature, it is important to
settle the hardness issue first. The rest of this section is devoted to showing that a significant distinction

7In some cases, this spill cost can be an overestimate because it may be possible to accommodate a load/store spill instruction
in an idle slot of the schedule. It’s also possible to avoid executing intermediate spill load/store instructions for a set of contiguous
value ranges for the same virtual register.
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can be made among NP-hard problems if we change the goal from that of obtaining an optimal solution
to that of obtaining an approximate or near-optimal solution. We provide a series of results related to the
approximability of CRISP.

4.1 Establishing NP-hardness of CRISP

We show that a restricted version of the CRISP problem Π ] � b � is equivalent to an NP-hard problem called
Feedback Vertex Set (FVS) [14]. This will imply that the generic CRISP problem Π ] � b � is also NP-hard.
We start by giving a formal definition of the decision version of the two problems.

Restricted CRISP (RCRISP): The restriction of Π1
�
1
�

to the input instances where the edge latencies are
all 0. The objective is to determine whether there is a permutation

�
such that j �S�1�/5 ( , for a parameter ( .

Feedback Vertex Set (FVS) Problem: Given a directed graph � � ` ��lm� and a positive integer : , decide
whether there is a feedback vertex set no��` of size at most : , where a feedback vertex set is a set of
vertices whose removal (along with incident edges) from � will result in an acyclic graph

The Reduction: Given an instance � � ` ��lm� and : of FVS, we reduce it to an instance of RCRISP
as follows. For each vertex p ) ` , we introduce into the basic block � the following: instructionsp 1, p 2, and p 3, and a distinct virtual register @q , where =><�? � p 1

� �r9;:�< � p 2
� �s9C:�< � p 3

� �t��@qf� and9C:�< � p 1
� � =A<�? � p 2

� � =A<�? � p 3
� � u . In the dependence graph �+� , the only dependence edges are as

follows: for an edge from 
 to p in � , we add an edge from 
 3 to p 2 in �+� ; further, for each vertexp ) ` , we add edges from p 1 to both p 2 and p 2. Finally, we define the parameter (v� 3 H 3 2 : , whereH is the number of vertices in � and : is the parameter for the FVS problem. Note that the total number
of instructions in the RCRISP instance is 3 H and so : is a bound on the number of spills allowed for the
RCRISP instance.

The following lemma relates the two problems. Recall that a DAG is an directed acyclic graph.

Lemma 1 The RCRISP instance has a solution
�

with 0 spills if and only if the FVS instance is a DAG.

Using Lemma 1, we are able to prove the desired theorem.

Theorem 1 There is a polynomial-time reduction from FVS to RCRISP, and hence RCRISP is NP-hard.

4.2 Approximating NP-hard Optimization Problems

A standard technique for dealing with an NP-hard optimization problem is to relax the requirement of finding
an optimal solution, and instead settle for a near-optimal solution. This is the basic motivation behind the
development of the area of approximation algorithms [24]. Formally, let Π be an NP-hard optimization
problem and w denote an input instance. We define xzy{0 � w � as the value of the optimal solution for the
instance w . A suboptimal solution n � w � is said to be an @ -approximation if n � w ��| xmy{0 � w �45 @ . If the goal
is to minimize the value of the solution, then @ - 1 and it is desirable to find a solution with a small ratio @ .
Definition 1 Let Π be a minimization problem. An approximation algorithm } for Π is a polynomial-time
algorithm that produces a valid solution } � w � for any input w . The performance ratio ~ � } � is defined as:

~ � } � � max� } � w �xzy{0 � w � �
In practice one would like a guarantee that ~�� 1 rather than a constant ~ , but it is often the case that
an approximation algorithm with a constant (worst-case) performance ratio is also a good algorithm for
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the average-case. We believe that a performance ratio bounded by constant is a precondition for good
performance in practice.

There has been a recent characterization [28, 2, 20] of the class of NP problems that permit polynomial-
time approximation with a constant ratio ~ . Informally, this class MAX SNP is the closure (under
approximation-preserving reductions) of the syntactic class MAX SNP that consists of all problems ex-
pressible in terms of quantified first-order boolean formulas. We have used this machinery from the theory
of approximation algorithms to guide our modeling and solution of the CRISP problem. Consequently, we
are able to show that our CRISP formulation is not only a more accurate reflection of the desired goals
in code optimization, but it also leads to optimization problems that are "easier to approximate" than the
problems formulated using more conventional approaches.

4.3 Approximating Graph Coloring and Spill-Code Minimization

A standard technique for global register allocation is to view it as a problem involving the b -coloring of an
interference graph for the live ranges [6, 7, 8, 9, 10, 11]. The vertices correspond to live ranges or virtual
registers, and an edge between two vertices represents the information that the two live ranges will be active
simultaneously, requiring the assignment of distinct physical registers. Thus, it is feasible to create a no-spill
schedule if and only if the interference graph can be colored with b colors such that no two adjacent vertices
receive the same color (i.e., physical register). Since graph coloring is NP-hard, heuristics are employed
to determine a legal b -coloring, if one exists. When the graph is not b -colorable, spill code is introduced
heuristically.

In this section, we provide strong negative results on the approximability of the spill-code minimization
problem in this context, giving some explanation for the inherent difficulty of this problem as encountered in
practice. While this sheds light on difficulty of register allocation and spill-code minimization problems, our
interest is more towards establishing a contrast with CRISP which will be shown to bypass these negative
results while providing a more accurate model of the optimization problem of reducing the run-time.

Proposition 1 Given an interference graph � � � ��lm� and a register bound b , there is an approximation
algorithm with ratio ~z� ��f� 1 for the problem of finding the maximum b -colorable subgraph ���J� .

For example, when b�� 32, the approximation ratio is 32
|
31 which is extremely close to 1.

However, there are two inaccuracies in using this problem as a model for spill-code minimization.
First, the subgraph � is obtained from � by removing edges from it, and this corresponds to removing
interferences between live-ranges. Spilling live-ranges corresponds more closely to removing vertices from
the graph � , and the resulting problem becomes that of finding a maximum set ` �r� such that the
vertex-induced subgraph �r������`�� is b -colorable. We can prove the following strong negative result for
this new problem based on the results in [2].

Theorem 2 Given an interference graph � � � ��lm� and a register bound b , it is NP-hard to approximate the
problem of finding the maximum b -colorable vertex-induced subgraph of � to within a ratio of HI� .
The second inaccuracy in modeling spill-code minimization is that the objective is not to maximize the
number of live ranges not spilled, but rather to minimize the number of live ranges that are spilled. This is
because that the running time of the generated code is increased by an amount proportional to the number
of spills, and the number of non-spills is completely irrelevant. While the two problems are equivalent in
the case of finding optimal solutions, there is no reason why their approximability should be related. In fact,
for b�� 1, the problem of minimizing the amount of spill is the minimum vertex cover problem which can
be approximated within ratio ~�� 2 [24]. However, we can show that this happy situation does not carry
over to the case of arbitrary register bounds.
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Theorem 3 Given an interference graph � � � ��lm� and a register bound b , it is NP-hard to approximate
within a ratio ~ 5 H � the problem of finding the minimum number of vertices to delete from � so as to leave
an b -colorable subgraph.

4.4 Approximability of CRISP

We now consider the approximability of the CRISP formulation. We saw earlier that FVS is a special
case of CRISP, and so it becomes interesting to first analyze the approximability of this problem. The
current best-known approximation algorithms for FVS instances of size H guarantee only a performance
ratio ~�� Ω

�
log H � (for example, see Leighton and Rao [22]). In fact, we conjecture that it is NP-hard to

obtain an approximation ratio ~m��x � log H � for FVS.
Given the difficulty of approximating FVS, it may appear impossible to devise a “good” approximation

algorithm (with constant ratio ~ ) for even the RCRISP problem. However, it is important to keep in mind
that the equivalence is only between the optimal solutions to these problems, and not their approximate
solutions. In particular, a careful examination of the reduction from FVS to RCRISP and the proof of
Theorem 1 shows that the FVS instance has a solution of value : if and only if the RCRISP instance has
a solution of value ({� 3 H 3 2 : , where H is the size of the FVS instance. Since a feedback vertex set is
a subset of the set of vertices, its size must satisfy 0

5 : 5 H . Consequently, the range of values for the
RCRISP instance will be 3 H 5 ( 5 5 H . It follows that any greedy solution for that RCRISP instance must
be a ~ -approximation for ~ 5 5

|
3. Of course, this only applies to the instances of RCRISP obtained from

FVS instances via the reduction, but the basic idea can be generalized to all RCRISP instances, and in fact
to all CRISP instances. We obtain the following theorem whose proof is omitted for the sake of brevity:

Theorem 4 For an instance w of CRISP, let 9 � w � be the average value of VY9;:�< � 
 % � V over all instructions
 % ) � . There exists a polynomial-time algorithm for CRISP that has approximation ratio 1
3 G for instancesw with 9 � w �/5 G .

In practice, the value of 9 � w � is significantly smaller than N , the average read/write degree of the basic block
which should lie between 1 and 2.

5 A General Heuristic for CRISP

While we have established that CRISP has an approximation algorithm with worst-case ratio ~ that is a small
constant, this does not suffice for practical purposes where we would like an average ratio of something like~L� 1

3��
with
� � 0 on typical input instances. We present a generic heuristic in this section which we

believe will give the desired performance in practice, as evidenced by our experimental results in Section 7.
The heuristic draws insight from the following optimal algorithm for spill-code generation when the

instruction schedule is fixed. Suppose that for an instance of CRISP, we have a specific instruction schedule�
that respects the dependences in �+� . The problem is to spill the minimum number of value ranges so

as to satisfy the register resource constraint. We can view value range VR � � @ ���.� 
E� ������ 
�� ��� as defining
an interval w�& that stretches between points

��� 
 � � and
��� 
 � � on the real line. The spill-code minimization

problem can now be viewed as the problem of removing the smallest number of intervals so as to ensure
that no more than b value ranges contain or straddle any point on the line. This is equivalent to the problem
of deleting the smallest number of vertices in an interval graph � to render it b -colorable. Recall that an
interval graph is obtained by placing a vertex for each interval, and connecting two intervals if they overlap
non-trivially.

The following greedy algorithm runs in linear time and can be shown to give an optimal solution:
scan the points from left-to-right; at each point where the register bound is violated, delete that interval
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containing the current point which goes furthest to the right. We omit the straightforward proof of the
following proposition.

Proposition 2 The greedy algorithm gives an optimal solution to the CRISP spill-code minimization.

In the case of multiprocessor schedules, we can employ the same algorithm after associating with a point
all instructions that are scheduled on any processor at that point in time. Variants of this greedy algorithm
have been considered earlier in the compiler literature [12, 13, 17, 18].

We are now ready to describe our proposed heuristic. The heuristic depends on the following two rank
functions that will be used in a greedy list scheduling algorithm.

Register Rank � � : For each instruction 
 , let nI� � 
 � be the set of all successors of 
 in ��� that read a
virtual register @ associated with 
 . For any p ) n � � 
 � , let B � 
 � p � be the length of the longest directed path
in ��� going from 
 to p , where the length is defined by the adding up the instruction execution times and
the edge latencies over the path. Also, let � � 
 � p � be the total execution time of the instructions that lie on
all paths from 
 to p in ��� . We define the rank as:

� � � 
 � � minqdRU������P�� max
� B � 
 � p �'� � � 
 � p �i � �

This rank is 0 if n � � 
 � � 0. If there are multiple virtual registers associated with 
 , then the rank is summed
over the distinct choices of the virtual registers at 
 .
Scheduling Rank ��� : We use the rank function of any good greedy list scheduling algorithm; for example,
the rank function defined in [25, 26] could be a good choice.

Now, for any choice of the parameters
�����o) � 0 � 1 � such that

�$3�� � 1, we define the following
heuristic.���.���	�

-Combined Heuristic: This heuristic creates a combined rank function ��� � ��� 3J� � � , and orders
the instructions into a list in increasing order of rank. Then, it runs the greedy list scheduling algorithm
using this list to obtain a schedule without worrying about the register bound. The spill-code minimization
algorithm described above is then used on this schedule to decide which value ranges to spill.

It is easy to verify that the computation of the rank functions and the greedy list schedule can be
implemented in worst-case polynomial (quadratic) time; however, it is expected to be run in linear-time on
typical inputs or in the average-case. This heuristic easily generalizes to CRISP, as well as its extensions
described in Section 6.

6 Extensions to the Basic CRISP Model

In this section, we outline some important extensions to the basic formulation of the CRISP problem
presented in Section 3; these extensions were excluded from the basic formulation so as to simplify the
technical discussion in the earlier sections. While it is clear that the hardness results apply to the extended
formulation, it is also not very hard to see that our heuristics and algorithms can also be suitably extended.

Multiple Register Classes. The basic formulation in Section 3 can be directly extended to model multiple
register classes. For instance, consider the case when we need to model fixed-point registers, floating-point
registers, and condition registers. We assume that each virtual register and each physical register belongs to
one of these classes. Therefore, we can define VR � ���1� to be the set of value ranges (triples) over all virtual
registers from register class G in schedule

�
. The main extension required is to define the bandwidth for

register class G at time ^ , _a` � ���I� VR� �S�1�� ^ � to be the number of value-ranges from register class G that
start at some time before ^ and end at some time after ^ .
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Let b � be the number of physical registers available for class G . Register spills are required for class G if_g`�� ���I� VR
�S�1�� ^ ��c b�� at any time ^ . Let SVR � ���1� � VR � �S�1� be the set of spilled value ranges for register

class G , and AVR � ���1� � VR � �S�1�fe SVR � �S�1� be the set of active (non-spilled) value ranges for register classG . Let x � be the overhead of a spill for register class G (in Section 3, we assumed x � � 2 for a single class
of registers). The objective function to be minimized is now 0 ���1�I37  � xg�/"¡V SVR � ���1� V .N -Stage Pipeline. In the basic formulation, we restricted all instruction execution times to = 1, and all
edge latencies to = 0 or 1. This formulation can be used to model a single two-stage pipeline as in [25, 26, 4].
The generalization to a single N -stage pipeline is simple. We still restrict all execution times to = 1, but now
restrict edge latencies to be in the range 0

��������� N e 1.

Spill Cost of Contiguous Value Ranges. We briefly mentioned in Section 3 that it is possible to avoid
executing intermediate spill load/store instructions for a set of contiguous value ranges for the same virtual
register. The savings come from not requiring an intermediate load/store pair at the point between two
contiguous value ranges. This can be modeled by allowing contiguous value ranges to be merged in
the SVR � sets, e.g., if

� @ � ^ 1 � ^ 2 �h) SVR � and
� @ � ^ 2 � ^ 3 �¢) SVR � , then we can replace them by a single

merged value range,
� @ � ^ 1 � ^ 3 � . Let SVR £ � be the reduced spilled-value-range set obtained after this merging.

The cost function now becomes 0 ���1�/3¤  � x � "�V SVR £ � ���1� V , which can be smaller than before sinceV SVR£ � ���1� V 5 V SVR � ���d� V .
Multiple Functional Units. For i load/store units, we extend the definition of the combined cost function
to now be, j ���1� ��0 ���1�I3 2 ¥ � V SVR

�S�1� V ��| ik¦ , so as to account for spill costs more accurately.

7 Experimental Results

In this section, we present some experimental results comparing phase-ordered solutions for register alloca-
tion and instruction scheduling with our approximate solution for CRISPusing the

���.���f�
-combined heuristic.

Subsection 7.1 summarizes the results observed. Subsection 7.2 outlines the instruction scheduling and
register allocation algorithms that were implemented to obtain these experimental results. Subsection 7.3
describes the methodology used to automatically generate random problem instances for CRISP.

7.1 Summary of Results

Table 1 (in the appendix) summarizes the average cost ratios that we observed for the combined heuristic,
when compared to the phase-ordered solution in which instruction scheduling is followed by register
allocation, for a single two-stage pipeline with 4, 8, and 16 available registers. Cost ratio values

[
1

identify cases when the combined heuristic has a lower cost than the phase-ordered solution. These
measurements were averaged over 100 randomly generated 100-instruction DAG’s. The results show that
the combined heuristic yields combined costs that are 16-21% better those obtained by this phase-ordered
solution, despite the fact that the phase-ordered solution found schedules with makespans that are 13-14%
smaller than those obtained by the combined solution. These results underscore the importance of focusing
the optimization on improving the combined cost function right from the start rather than on first improving
the makespan.

Table 2 (in the appendix) summarizes the improvements that we observed for the combined heuris-
tic, when compared to the phase-ordered solution in which register allocation is followed by instruction
scheduling, for a single two-stage pipeline with 4, 8, and 16 available registers. These measurements were
averaged over 100 randomly generated 100-instruction DAG’s. The results show that the combined heuristic
performs 4-21% than this phase-ordered solution.

10



The above results were obtained using a simple
�
0
�
1
�
-combined heuristic, where we ignore the � � 
 � p �

component of the rank function � � � 
 � defined in Section 5.
In separate measurements, we’ve observed that for DAG’s with little register pressure the phase-ordered

solution in which instruction scheduling is followed by register allocation performs a little better (2-5%)
than the

�
0
�
1
�
-combined heuristic. However, the difference goes away if the

���.���	�
values are adjusted to

give more priority to instruction scheduling in this case e.g. by setting
� � 0

�
75 and

� � 0
�
25. The ability

to adapt the behavior of the combined heuristic by adjusting the
�

and
�

values is an important practical
strength of our algorithm.

7.2 Algorithms used in Experiments

For the Scheduling
e � Allocation phase-ordered solution, we implemented the Rank Algorithm [25, 26] for

the instruction scheduling step, and the greedy algorithm (Section 5) for the register allocation step.
For the Allocation

e � Scheduling phase-ordered solution, we first tried using a standard coloring-based
heuristic algorithm (e.g. [11]) and quickly discovered that it led to significantly larger number of spills than
the greedy algorithm outlined in Section 5. To avoid severely penalizing this phase-ordered solution, note
that all our measurements in Table 2 are based on using the greedy algorithm from Section 5 for the first
register allocation step. For the instruction scheduling step, we use the Rank Algorithm as before.

For the combined solution, we use the
���.���f�

-Combined Heuristic presented in Section 5.

7.3 Generation of Random DAG’s

The random DAG generator works with the following set of input parameters: number of nodes, number
of node types, average inputs and outputs for each type, max latency, percentage of loads and stores. It
forms a sequence of the nodes and randomly assign types to them. Now, the the connectivity and latency
information is added as follows:

1. Repeat the following steps for each node § in the input graph.

2. We now select random predecessors for node § as follows: Let , = number of inputs for instruction in
node § . Select , nodes randomly from the current def set. If node § is not a store (sink), addd it to the
current def set.

3. Toss a coin biased by age to remove nodes that have been in the def set for a long time.

4. Increase the ages of all the nodes in the def. set.

5. Once the graph is defined, randomly assign latenices to all the nodes where the outgoing edges from
node § get latencies 1

�����
maxlatency ��(©¨�BC< � § � � ; note that given a node § , its type defines its maximum

latency.

8 Related Work

Recent research has now started to examine the interaction between register allocation and scheduling. The
closest approach to a formulation which deals with the combined optimization problem is due to Probsting
and Fischer [30]. They present an algorithm based on Sethi-Ullman numbering [31] which solves the
combined allocation and scheduling problem for data-dependences that can be represented as trees. They
restrict themselves to the case where the inter-instructional latencies (modeling pipeline delays) are required
to be either 0 or 1 and latency-1 instructions (delayed loads) are only allowed to occur as leaves of the
trees. Their approach does not address the question of data dependence structures more general than trees;

11



note that even within basic blocks, the elimination of common subexpressions gives rise to directed acyclic
graph (DAG) structures rather than trees.

In contrast, our proposed research aims at the general case where program fragments that represent basic
blocks are modeled as DAGs, as also pieces that represent traces of entire procedures, well beyond single
basic blocks. We will also consider more aggressive pipeline depths — essentially arbitrary integer depths
specified as part of the input, rather than merely 0/1 pipeline latencies.

Another interesting attempt at reducing the interaction instruction scheduling and register allocation
involves constructing a special “parallelizable interference graph.” [29]. This graph has the property that
if an optimal coloring is found for it, the result does not create any false dependences between instructions
(due to register sharing). However, this approach is still dependent on allocation via graph coloring. If the
performance of the coloring heuristic is poor and hence the number of available colors (registers) is less than
the number required by the coloring heuristic, it once again becomes necessary to introduce spill-code. In
this case, Pinter’s non-interference property breaks down and heuristics are suggested to prioritize allocation
over scheduling, or vice-versa, based on “estimates” of relative benefits. Other approaches have also been
proposed for handling this interaction, e.g., by iterating repeatedly over the two steps separately [5, 15].

It is also interesting to note that rematerialization [7], a recent enhancement to register allocation,
is actually a limited form of combined register allocation and instruction scheduling. The idea behind
rematerialization is to shorten a live range by moving the instruction that computes the live range value
closer to its first use. Rematerialization only considers limited code motion of this kind, and does not address
any of the code motion that is required for instruction scheduling.

The drawback with previously known approaches is that they do not model combined register allocation
and instruction scheduling within a single cost function. As a result, they do not have a sharp quantitative
understanding and ability to predict the performance of algorithms and heuristics that are designed for the
two optimizations, as parameters of the target processors (e.g. number of functional units, pipeline depths,
number of registers) change over time.

9 Conclusions and Future Work

In this paper, we studied the problem of combining register allocation and instruction scheduling into a
single phase. We established hardness and approximability results for this problem. We developed a new
heuristic algorithm for the combined problem that is very promising, as evidenced by our early experimental
results.

For future work, we will do a more comprehensive comparison of the combined and phase-ordered
solutions, including a prototype implementation of these solutions within the back-end of the IBM XL
compilers.
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Average Average Average
Processor # Available Ratio of Ratio of Ratio of
Description Registers Makespan # Spilled Value Ranges Combined cost

Two-stage pipeline 4 1.14 0.73 0.84
8 1.14 0.57 0.79

16 1.13 0.33 0.84

Table 1: Average cost ratio of Combined Heuristic compared to Scheduling � Allocation phase ordering,
for 100 randomly generated 100-instruction DAG’s

Average Average Average
Processor # Available Ratio of Ratio of Ratio of
Description Registers Makespan # Spilled Value Ranges Combined cost

Two-stage pipeline 4 0.78 0.81 0.79
8 0.93 0.72 0.82

16 1.04 0.65 0.96

Table 2: Average cost ratio of Combined Heuristic compared to Allocation � Scheduling phase ordering,
for 100 randomly generated 100-instruction DAG’s

Appendix

Proof of Lemma 1. Suppose that the graph � is a DAG. Then, we can associate with it an ordering
isomorphism ? : ` �ª� 1 �������©� Hd� such that there for any pair of vertices 
 � p ) ` , there is an edge in �
from 
 to p only if ? � 
 �/[ ? � p � . From this, we construct a schedule

�
for the RCRISP instance by defining

an ordering isomorphism « : ���¬� 1 ��������� 3 H1� and then scheduling instruction 
 % ) � at time « � 
 % � . We
define « as follows: for each vertex p ) ` , « � p 1

� � 3 ? � p �1e 2, « � p 2
� � 3 ? � p �1e 1, and « � p 3

� �!? � p � .
Intuitively, the linear ordering of � is obtained from the linear ordering of ` by replacing each vertexp ) ` by the sequence of vertices 2p 1

� p 2
� p 3 ® .

We claim that schedule
�

respects the dependence graph ��� , and this can be verified by considering
the two types edges in ��� . Suppose there is an edge from 
 3 to p 2. Then, there is an edge in � from 
 top , implying that ? � 
 �/[ ? � p � ; hence, « � 
 3 �/[ « � p 2

�
and this verifies that 
 3 is scheduled before p 2 by

�
.

The edges from p 1 to p 2 and p 3 are respected because of the ordering of these three vertices. It can also be
verified that the schedule

�
meets the register bound bk� 1 without any spilling, as follows: first, observe

that a value range for a virtual register @q is either
� @'q � 3 ? � p �Ie 2

�
3 ? � p �Ie 1

�
or
� @q � 3 ? � p �Ie 1

�
3 ? � p ��� ,

implying that each value range has an extent of 1; therefore, at most one value range is active at any point
in the schedule.

Conversely, suppose we have a schedule
�

that does not require any spilling. We claim that it must be
the case that for any p ) ` , the instructions p 1, p 2, and p 3 are scheduled contiguously. Suppose not, then
there must be another instruction 
 % scheduled between p 1 and either p 2 or p 3. But then, at the time when
 % gets executed, there must be at least two active value ranges (one for @'P and another for @q ), leading to
the violation of the register bound b!� 1 in the absence of any spills. Note that we can assume without loss
of generality that the ordering for the p -instructions is ¯p 1

� p 2
� p 3 ® since p 1 must precede the other two,

and there is no dependence between p 2 and p 3.
Thus, the schedule

�
defines an ordering isomorphism « : �#�¬� 1 �������°� 3 Hd� such that for each vertexp ) ` , « � p 1

� �±« � p 3
�*e

2, and « � p 2
� �s« � p 3

�*e
1. We can now define an ordering isomorphism? : ` � � 1 �������°� Hd� such that for each vertex p ) ` , ? � p � �²« � p 3

��|
3. We claim that for any pair of
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vertices 
 � p ) ` , there is an edge in � from 
 to p only if ? � 
 �{[ ? � p � . This is so because then there
must be an edge from 
 3 to p 2, implying that the 
 -instructions all get scheduled before the p -instructions
and that 3 ? � 
 � �k« � 
 3 ��[ « � p 3

� � 3 ? � p � . Thus, since � has an ordering isomorphism that respects the
edge directions, it must be the case that � is a DAG.

Proof of Theorem 1. It is clear that the reduction from FVS to RCRISP can be computed in polynomial
time (in fact, time quadratic in the size of � ), and so we focus on the verification of the correctness of the
reduction. For the latter, we need to show that the FVS instance has a feedback vertex set n of size at most :
if and only if the RCRISP instance has a schedule

�
of total cost j ���d�/5 (³� 3 H 3 2 : . Note that a schedule�

has cost j ���1� � 3 H 3 2 ´ where ´ is the number of spills. Thus, we are required to show that � has a
feedback vertex set of size at most : if and only if the RCRISP instance has a schedule with at most : spills.

Suppose that the FVS instance has a feedbackvertex set n of size : . Consider the subgraph � ���µ�Z`o¶>n³�
induced by the set of vertices in � not belonging to n . The graph � is a DAG by definition of a feedback
vertex set n and so, by Lemma 1, the instructions corresponding to the vertices in � can be scheduled
without any spilling. Let · be a no-spill schedule (respecting the register bound b¸� 1) for these instructions
obtained from vertices in `#¶�n . Observe that this schedule must respect all the precedence relations between
those instructions, including those obtained by transitivity from the instructions corresponding to the vertices
contained in n ; however, by the form of our reduction, each instruction either has predecessors or successors,
but not both, and so there are no transitively induced precedences to be handled.

We now extend · to a schedule for all instructions in the RCRISP instance, introducing exactly : spills
in the process. Consider any vertex p ) n and the corresponding instructions p 1, p 2, and p 3. In

�
,

we schedule p 1 and p 2 contiguously before all the instructions in · , and we schedule p 3 after all the
instructions in · ; further, the value range for @'q extending from p 2 to p 3 is spilled. The exact ordering
between the instructions scheduled before or after the schedule · is immaterial from the point of view of
precedence edges. Finally, note that putting each pair of instructions p 1 and p 2 next to each other means
that the value range between them does not need to be spilled. Clearly, we have obtained a valid schedule
where the number of spills is exactly the number of vertices in n , i.e., : .

Conversely, suppose now that the RCRISP instance has a valid schedule
�

with exactly : spills. LetnJ�\` be the set of vertices in � corresponding to all virtual registers which are spilled in
�

; note, it doesn’t
matter whether only one or both of the value ranges of a virtual register corresponding to a vertex were
spilled and therefore VYn¹V 5 : . Consider now the schedule · obtained from

�
by removing all instructions

corresponding to the vertices in n ; clearly, · is a no-spill precedence-respecting schedule for the remaining
instructions. In other words, the instructions corresponding to the vertices in `º¶fn have a no-spill schedule
( · ) respecting the precedences in the induced subgraph �r������`»¶6n³� . From Lemma 1, we obtain that �
is a DAG and hence n is a feedback vertex set for � of size at most : .
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